iPS Cell Therapy: Is Japan the Market Leader?
By NEVAGiles23
Although there are key players in markets like the U.S., Australia, and the EU, Japan continues to accelerates its position as a hub for induced pluripotent stem cell (iPS cell) therapy with generous funding, acquisitions, and strategic partnerships.
Pluripotent stem cells are cells that are capable of developing into any type of cell or tissue in the human body. These cells have the capability to replicate and help in repairing damaged tissues within the body. In 2006, the Japanese scientist Shinya Yamanaka demonstrated that an ordinary cell can be turned into a pluripotent cell by genetic modification. These genetically reprogrammed cells are known as induced pluripotent cells, also called iPS cells or iPSCs.
An induced pluripotent stem cell (iPS cell) is a type of pluripotent stem cell that has the capacity to divide indefinitely and create any cell found within the three germ layers of an organism. These layers include the ectoderm (cells giving rise to the skin and nervous system), endoderm (cells forming gastrointestinal and respiratory tracts, endocrine gland, liver, and pancreas), and mesoderm (cells forming bones, cartilage, most of the circulatory system, muscles, connective tissues, and other related tissues.).
iPS cells have significant potential for therapeutic applications. For autologous applications, the cells are extracted from the patients own body, making them genetically identical to the patient and eliminating the issues associated with tissue matching and tissue rejection.
iPS cells have the potential to be used to treat a wide range of diseases, including diabetes, heart diseases, autoimmune diseases, and neural complications, such as Parkinsons disease, Alzheimers disease.
Over the past few years, Japan has accelerated its position as a hub for regenerative medicine research, largely driven by support from Prime Minister Shinzo Abe who has identified regenerative medicine and cellular therapy as key to the Japans strategy to drive economic growth.
The Prime Minister has encouraged a growing range of collaborations between private industry and academic partners through an innovative legal framework approved last fall.
He has also initiated campaigns to drive technological advances in drugs and devices by connecting private companies with public funding sources. The result has been to drive progress in both basic and applied research involving induced pluripotent stem cells (iPS cells) and related stem cell technologies.
2013 was a landmark year in Japan, because it saw the first cellular therapy involving transplant of iPS cells into humans initiated at the RIKEN Center in Kobe, Japan.[1]Led by Masayo Takahashi of theRIKEN Center for Developmental Biology (CDB).Dr. Takahashi and her team wereinvestigating the safety of iPSC-derived cell sheets in patients with wet-type age-related macular degeneration.
To speed things along, RIKEN did not seek permission for a clinical trial involving iPS cells, but instead applied for a type of pretrial clinical research allowed under Japanese regulations.The RIKEN Center is Japans largest, most comprehensive research institution, backed by both Japans Health Ministry and government.
This pretrial clinical research allowed the RIKEN research team to test the use of iPS cells for the treatment of wet-type age-related macular degeneration (AMD) on a very small scale, in only a handful of patients.Unfortunately, the study was suspended in 2015 due to safety concerns. As the lab prepared to treat the second trial participant, Yamanakas team identified two small genetic changes in the patients iPSCs and the retinal pigment epithelium (RPE) cells derived from them.
However, in June 2016 RIKEN Institute announced that it would be resuming the clinical study involving the use of iPSC-derived cellsin humans.According to theJapan Times, this second attempt at the clinical studyis using allogeneic rather than autologous iPSC-derived cells, because of the greater cost and time efficiencies.
Specifically,the researchers will be developing retinal tissues from iPS cells supplied by Kyoto Universitys Center for iPS Cell Research and Application, an institution headed by Nobel prize winner Shinya Yamanaka.
Japan has a unique affection for iPS cells, as the cells were originally discovered by the Japanese scientist, Shinya Yamanaka of Kyoto University. Mr. Yamanaka was awarded the Nobel Prize in Physiology or Medicine for 2012, an honor shared jointly with John Gurdon, for the discovery that mature cells can be reprogrammed to become pluripotent.
In addition, Japans Education Ministry said its planning to spend 110 billion yen ($1.13 billion) on induced pluripotent stem cell research during the next 10 years, and the Japanese parliament has been discussing bills that would speed the approval process and ensure the safety of such treatments.[3]
In April, Japanese parliament even passed a law calling for Japan to make regenerative medical treatments like iPSC technology available for its citizens ahead of the rest of the world.[4] If those forces were not enough, Masayo Takahashi of the RIKEN Center for Developmental Biology in Kobe, Japan, who is heading the worlds first clinical research using iPSCs in humans, was also chosen by the journal Natureas one of five scientists to watch in 2014.[5]
Clearly, Japan is the global leader in iPS cell technologies and therapies. However, progress with stem cells has not been without setbacks within Japan, including a recent scandal at the RIKEN Institute that involved falsely manipulated research findings and a hold on the first clinical trial involving transplant of an iPS cell product into humans.
Nonetheless, Japan has emerged from these troubles to become the most liberalized nation pursuing the development of iPS cell products and services.
iPS cells represent one of the most promising advances within the field of stem cell research, because of their diverse ability to differentiate into any of the approximately 200 cell types that compose the human body.
Even though there is growing evidence to support the safety of iPS cells within cell therapy applications,some people remain concerned that patients who receive implants of iPS derived cells might be at risk of cancer, as genetic manipulation is required to create the cell type.
In a world-first, Cynata Therapeutics (ASX:CYP) received approval in September 2016 to launch a clinical trial in the UK with the worlds first first formal clinical trial of an allogeneic iPSC-derived cell product, which it calls CYP-001.The study involves centers in both the UK and Australia.
In this landmark trial, the Australian regenerative medicine company is testing an iPS cell-derived mesenchymal stem cell (MSC) product for the treatment of Graft-vs-Host-Disease (GvHD).Not surprisingly, the Japanese conglomerate Fujifilm is also involved with this historic trial.
Headquartered in Tokyo, Fujifilm is one of the largest players in regenerative medicine field and has invested significantly into stem cells through their acquisition of Cellular Dynamics International (CDI). Additionally, Fujifilm has invested in Japan Tissue Engineering Co. Ltd. (J-Tec), giving it a broad base in regenerative medicine across multiple therapeutic areas.
For a young company like Cynata, having validation from an industry giant like Fujifilm is a huge boost. As stated by Cynata CEO, Dr. Ross Macdonald, The decision by Fujifilm confirms that our technology is very exciting in their eyes. It is a useful yardstick for other investors as well. Of course, the effect of the relationship with Fujifilm on our balance sheet is also important.
If Fujifilm exercises their option to license Cynatas GvHD product, then the costs of the product and commercialization will become the responsibility of Fujifilm. Cynata would also receive milestone payments from Fujifilm of approximately $60M AUS and a double-digit royalty payment.
Cynata was also the first to scale-up manufacture of an allogeneic cGMP iPS celll line. It sourced the cell line from Cellular Dynamics International (CDI) when CDI was still an independent company listed on NASDAQ. In April 2015, CDI was subsequently acquired by Fujifilm, who as mentioned, is a major shareholder in Cynata and its strategic partner for GvHD.
Although Cynata is showing promising early-stage data from its GvHD trial, methods for commercializing iPS cells are still being explored and clinical studies investigating iPS cells remain extremely low in number.
Footnotes[1] Dvorak, K. (2014).Japan Makes Advance on Stem-Cell Therapy [Online]. Available at: http://online.wsj.com/news/articles/SB10001424127887323689204578571363010820642. Web. 14 Apr. 2015.[2] Note: In the United States, some patients have been treated with retina cells derived from embryonic stem cells (ESCs) to treat macular degeneration. There was a successful patient safety test for this stem cell treatment last year that was conducted at the Jules Stein Eye Institute in Los Angeles. The ESC-derived cells used for this study were developed by Advanced Cell Technology, Inc, a company located in Marlborough, Massachusetts.[3] Dvorak, K. (2014).Japan Makes Advance on Stem-Cell Therapy [Online]. Available at: http://online.wsj.com/news/articles/SB10001424127887323689204578571363010820642. Web. 8 Apr. 2015.[4] Ibid.[5] Riken.jp. (2014).RIKEN researcher chosen as one of five scientists to watch in 2014 | RIKEN [Online]. Available at: http://www.riken.jp/en/pr/topics/2014/20140107_1/. Web. 14 Apr. 2015.
View original post here:
iPS Cell Therapy: Is Japan the Market Leader?
- FDA Grants Orphan Drug Designation to IPS HEARTs GIVI-MPC Stem Cell Therapy for Becker Muscular Dystrophy - Business Wire - January 14th, 2025
- GMP-compliant iPS cell lines show widespread plasticity in a new set of differentiation workflows for cell replacement and cancer immunotherapy -... - January 14th, 2025
- Stem cells head to the clinic: treatments for cancer, diabetes and Parkinsons disease could soon be here - Nature.com - December 27th, 2024
- Exclusive: Cell therapy startup Shinobi adds Borges as science chief, Katz as top medical officer - Endpoints News - December 18th, 2024
- Sumitomo Chemical and Sumitomo Pharma to Establish Regenerative Medicine and Cell Therapy Joint Venture - - December 18th, 2024
- Shinobi Strengthens Leadership to Propel Scalable Immune-Evasive Cell Therapies to the Clinic - The Eastern Progress Online - December 18th, 2024
- BrightPath Bio and Cellistic Announces Process Development and Manufacturing Collaboration for Phase 1 Clinical Trial of iPSC-derived BCMA CAR-iNKT... - December 18th, 2024
- Induced Pluripotent Stem Cells: Problems and Advantages when Applying ... - December 9th, 2024
- How Minaris is Tackling the Scalability Challenge in Cell and Gene Therapy: A Conversation with CEO, Dr. Hiroto Bando - geneonline - November 29th, 2024
- Toward Personalized Cell Therapies by Using Stem Cells 2013: BioMed Research International - Wiley Online Library - November 15th, 2024
- Cell therapy for heart disease and therapeutic cloning: will embryos re-enter the stem cell race? - Genethique - November 15th, 2024
- Cutting-edge stem cell therapy proves safe, but will it ever be ... - AAAS - November 6th, 2024
- Induced pluripotent stem cell - Wikipedia - October 21st, 2024
- What are iPS cells? | For the Public | CiRA | Center for iPS Cell ... - October 21st, 2024
- Nobel Winner Shinya Yamanaka: Cell Therapy Is Very Promising For Cancer, Parkinsons, More - Forbes - October 13th, 2024
- iPSCs Manufacturing for Cell-Based Therapies: A Market Analysis of Cell Types, Therapeutic Applications, Ma... - WhaTech - August 4th, 2024
- Abu Dhabi Stem Cells Center partners with Japan-based Kyoto University and Rege Nephro - ZAWYA - January 14th, 2024
- Eterna Therapeutics Enters Into Option and License Agreement with Lineage Cell Therapeutics to Develop Hypoimmune Pluripotent Cell Lines for Multiple... - March 1st, 2023
- What is an Intrusion Prevention System? Definition ... - Fortinet - January 27th, 2023
- What is an IPS Monitor? Monitor Panel Types Explained ... - January 27th, 2023
- IPS panel - Wikipedia - January 27th, 2023
- Cell and gene therapy products: what is an ATMP? - The Niche - January 3rd, 2023
- Cell Therapy - an overview | ScienceDirect Topics - November 22nd, 2022
- Ayala Pharmaceuticals Reports Third Quarter 2022 Financial Results and Provides Corporate Update - November 6th, 2022
- Aligos Therapeutics Presents Clinical Data for its Capsid Assembly Modulator, ALG-000184, at AASLD’s The Liver Meeting® 2022 - November 6th, 2022
- Correcting and Replacing: CinCor Reports Third Quarter Financial Results and Provides Corporate Update - November 6th, 2022
- NGM Bio Announces Poster Presentation Featuring Preclinical Characterization of NGM936 at Upcoming 2022 ASH Annual Meeting - November 6th, 2022
- Assembly Biosciences Presents New Data at AASLD The Liver Meeting® Highlighting Breadth of Virology Portfolio and Potential of Next-Generation Core... - November 6th, 2022
- CymaBay Therapeutics Presents Additional Analyses from Clinical Studies of Seladelpar for Patients with Primary Biliary Cholangitis at The Liver... - November 6th, 2022
- Immutep Announces Abstract Highlighting Eftilagimod Alpha Selected for SITC 2022 Annual Meeting Press Conference - November 6th, 2022
- Osteal Therapeutics, Inc. Completes Enrollment in APEX Phase 2 Clinical Trial of VT-X7 for Periprosthetic Joint Infection - November 6th, 2022
- PMV Pharmaceuticals Appoints Industry Veteran Dr. Carol Gallagher to Board of Directors - November 6th, 2022
- ORYZON to Give Updates on Corporate Progress in November - November 6th, 2022
- Terns Pharmaceuticals Highlights Results from Phase 1 Clinical Trial of TERN-501 at AASLD The Liver Meeting® 2022 - November 6th, 2022
- Aligos Therapeutics Presents Clinical Data for its NASH Program and Nonclinical Data for its Chronic Hepatitis B Portfolio at AASLD’s The Liver... - November 6th, 2022
- First U.S. patient receives autologous stem cell therapy to treat dry ... - October 29th, 2022
- BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH - Yahoo Finance - October 13th, 2022
- iPS-Cell Based Cell Therapies for Genetic Skin Disease - October 5th, 2022
- Jcr Pharmaceuticals Co., Ltd. and Sysmex Establish A Joint Venture in the Field of Regenerative Medicine and Cell Therapy - Marketscreener.com - October 5th, 2022
- MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress - Yahoo... - October 5th, 2022
- Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe - Digital Journal - September 27th, 2022
- Implanting a Patient's Own Reprogrammed Stem Cells Shows Early Positive Results for Treating Dry AMD - Everyday Health - September 19th, 2022
- Current status of umbilical cord blood storage and provision to private biobanks by institutions handling childbirth in Japan - BMC Medical Ethics -... - September 19th, 2022
- Global Induced Pluripotent Stem Cells Market (2022 to 2027) - Growth, Trends, Covid-19 Impact and Forecasts - ResearchAndMarkets.com - Business Wire - September 11th, 2022
- Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials... - September 11th, 2022
- Improving the differentiation potential of pluripotent stem cells by optimizing culture conditions | Scientific Reports - Nature.com - August 26th, 2022
- New research digs into the genetic drivers of heart failure, with an eye to precision treatments - STAT - August 10th, 2022
- Creative Biolabs Leads the Forefront of iPSC Technology - Digital Journal - August 10th, 2022
- The zinc link: Unraveling the mechanism of methionine-mediated pluripotency regulation - EurekAlert - July 25th, 2022
- Live Cell Metabolic Analysis Paving the Way for Metabolic Research and Cell & Gene Therapy, Upcoming Webinar Hosted by Xtalks - Benzinga - July 16th, 2022
- PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT - Dove Medical Press - July 8th, 2022
- Gene & Cell Therapy FAQs | ASGCT - American Society of Gene & Cell ... - June 30th, 2022
- The benefits and risks of stem cell technology - PMC - June 30th, 2022
- The Future of Parkinson Disease Therapies and the Challenges With Stem Cell Therapies - Neurology Live - June 20th, 2022
- Umoja Biopharma and TreeFrog Therapeutics Announce Collaboration to Address Current Challenges Facing Ex Vivo Allogeneic Therapies in Immuno-Oncology... - June 11th, 2022
- Newsletter April 2022 - Progress in Cline's cell lab and in the stem cell therapy field - Marketscreener.com - April 29th, 2022
- Healios K K : Joint Research with the Division of Regenerative Medicine, the Institute of Medical Science for Developing a Mass Production Method of... - April 3rd, 2022
- A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy - March 22nd, 2022
- The Pipeline for of iPSC-Derived Cell Therapeutics in 2022 ... - March 22nd, 2022
- Cell Therapy Processing Market CAGR of 27.80% Share, Scope, Stake, Trends, Industry Size, Sales & Revenue, Growth, Opportunities and Demand with... - January 3rd, 2022
- Stem cell therapy for diabetes - PubMed Central (PMC) - November 22nd, 2021
- Stem cells: Therapy, controversy, and research - October 5th, 2021
- How much does stem cell therapy cost in 2021? - The Niche - October 5th, 2021
- "Stem cell-based therapeutics poised to become mainstream option - BSA bureau - October 5th, 2021
- Exclusive Report on Stem Cell Therapy in Cancer Market | Analysis and Opportunity Assessment from 2021-2028 |Aelan Cell Technologies, Baylx, Benitec... - August 6th, 2021
- Asia-Pacific Cell Therapy Market 2021-2028 - Opportunities in the Approval of Kymriah and Yescarta - PRNewswire - August 6th, 2021
- Base Editing as Therapy for Common Inherited Lung and Liver Disease Shows Promise - Clinical OMICs News - July 22nd, 2021
- MoHAP, EHS reveal immunotherapy for cancer, viral infections at Arab Health 2021 - WAM EN - June 25th, 2021
- Kiromic Announces Expansion of In-House Cell therapy cGMP Manufacturing Facility and the Appointment of Industry Veteran Ignacio Nez as Chief... - June 8th, 2021
- Cryopreservation Media helps in Development of a Cell Therapy for Parkinson's Disease - Microbioz India - June 8th, 2021
- Accelerated Biosciences' Immune-Privileged Human Trophoblast Stem Cells (hTSCs) Offer Breakthrough Opportunities in Cancer-Targeting Therapeutics and... - May 15th, 2021
- Factor Bioscience to Deliver Six Digital Presentations at the American Society of Gene & Cell Therapy (ASGCT) 24th Annual Meeting - PRNewswire - May 15th, 2021
- St. Jude's $11.5B, six-year plan aims to improve global outcomes for children with cancer and catastrophic diseases - The Cancer Letter - May 15th, 2021
- Synthego Launches Eclipse Platform to Accelerate Research and Development of Next-generation Medicines - The Scientist - April 19th, 2021
- The Google Play video app will leave Roku, Vizio, LG and Samsung's TV platforms - Yahoo Canada Finance - April 19th, 2021
- New Controversy for Stem Cell Therapy That Repairs Spinal Cords - The Great Courses Daily News - March 8th, 2021
- Brentuximab Vedotin Plus Chemotherapy Works as a Primary Option for Hodgkin Lymphoma - Targeted Oncology - March 8th, 2021
- Induction of muscle-regenerative multipotent stem cells from human adipocytes by PDGF-AB and 5-azacytidine - Science Advances - January 14th, 2021
- A Potential Therapy for One of the Leading Causes of Heart Disease - PRNewswire - December 10th, 2020
- Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach - BioSpace - December 9th, 2020