Kidney research leads to heart discovery – Newsplex – The Charlottesville Newsplex

By JoanneRUSSELL25

CHARLOTTESVILLE, Va. (NEWSPLEX) -- Researchers at the University of Virginia School of Medicine were looking into kidneys and learned more about the formation of the heart.

They also identified a gene that is responsible for a deadly cardiac condition.

According to a release, scientists discovered the heart's inner lining forms from the same stem cells, known as precursor cells, that turn into blood.

That means a single type of stem cell created both the blood and part of the organ that pumps it.

A particular gene, called S1P1, is necessary for the proper formation of the heart, and without it, the tissue develops a sponginess that compromises the heart's ability to contract tightly and pump blood efficiently.

That condition is called ventricular non-compaction cardiomyopathy, which often leads to early death.

"Many patients who suffer from untreatable chronic disease, including heart and kidney disease, are in waiting lists for limited organ transplantation. Therefore, there is an urgent need to understand what happens to the cells during disease and how can they be repaired," said researchers Yan Hu, PhD. "Every organ is a complex machine built by many different cell types. Knowing the origin of each cell and which genes control their normal function are the foundations for scientists to decipher the disease process and eventually to find out how to guide the cells to self-repair or even to build up a brand new organ using amended cells from the patients."

The researchers were looking into how the kidneys form when they noted a deletion of the S1P1 gene in research mice led to deadly consequences elsewhere in the bodies of the mice.

"We were studying the role of these genes in the development of the vasculature of the kidney," said Maris Luisa S. Sequeira-Lopez, MD, of UVA's Child Health Research Center. "The heart is the first organ that develops, and so when we deleted this gene in these precursor cells, we found that it resulted in abnormalities of the heart, severe edema, hemorrhage and low heart rate."

In looking closer at the heart, the researchers discovered the gene deletion caused thin heart walls and other cardiac problems in developing mice embryos.

"For a long time, scientists believed that each organ developed independently of other organs, and the heart developed from certain stem cells and blood developed from blood stem cells," said researcher Brian C. Belyea, MD, of the UVA Children's Hospital. "A number of studies done in this lab and others, including this work, shows that there's much more plasticity in these precursor cells. What we found is that cardiac precursor cells that are present in the embryonic heart do indeed give rise to components of the heart in adults but also give rise to the blood cells."

He also said the discovery may one day lead to the development of better treatments for the cardiac condition.

The findings have been published in the journal Scientific Reports.

View post:
Kidney research leads to heart discovery - Newsplex - The Charlottesville Newsplex

Related Post


categoriaCardiac Stem Cells commentoComments Off on Kidney research leads to heart discovery – Newsplex – The Charlottesville Newsplex | dataMay 12th, 2017

About...

This author published 814 posts in this site.
Just for fun

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2025