Lung Institute | Stem Cell Research Study for Lung Disease

By Dr. Matthew Watson

The Problem with Chronic Pulmonary Diseases

Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disorder that often occurs as a result of prolonged cigarette smoking, second-hand smoke, and polluted air or working conditions. COPD is the most prevalent form of chronic lung disease. The physiological symptoms of COPD include shortness of breath (dyspnea), cough, and sputum production, exercise intolerance and reduced Quality of Life (QOL). These signs and symptoms are brought about by chronic inflammation of the airways, which restricts breathing. When fibrotic tissues contract, the lumen is narrowed, compromising lung function. As histological studies confirm, airway fibrosis and luminal narrowing are major features that lead to airflow limitation in COPD1-3.

Today, COPD is a serious global health issue, with a prevalence of 9-10% of adults aged 40 and older4. And the prevalence of the disease is only expected to rise. Currently COPD accounts for 27% of tobacco related deaths and is anticipated to become the fourth leading cause of death worldwide by 2030 5. Today, COPD affects approximately 600 million individualsroughly 5% of the worlds population 6. Despite modern medicine and technological advancements, there is no known cure for COPD.

The difficulty in treating COPD and other lung diseases rests in the trouble of stimulating alveolar wall formation15. Until recently, treatment has been limited by two things: a lack of understanding of the pathophysiology of these disease processes on a molecular level and a lack of pharmaceutical development that would affect these molecular mechanisms. This results in treatment focused primarily in addressing the symptoms of the disease rather than healing or slowing the progression of the disease itself.

The result is that there are few options available outside of bronchodilators and corticosteroids7. Although lung transplants are performed as an alternative option, there is currently a severe shortage of donor lungs, leaving many patients to die on waiting lists prior to transplantation. Lung transplantation is also a very invasive form of treatment, commonly offering poor results, a poor quality of life with a 5-year mortality rate of approximately 50%, and a litany of health problems associated with lifelong immunosuppression13.

However, it has been shown that undifferentiated multipotent endogenous tissue stem cells (cells that have been identified in nearly all tissues) may contribute to tissue maintenance and repair due to their inherent anti-inflammatory properties. Human mesenchymal stromal cells have been shown to produce large quantities of bioactive factors including cytokines and various growth factors which provide molecular cueing for regenerative pathways. This affects the status of responding cells intrinsic in the tissue 18. These bioactive factors have the ability to influence multiple immune effector functions including cell development, maturation, and allo-reactive T-cell responses 19. Although research on the use of autologous stem cells (both hematopoietic and mesenchymal) in regenerative stem cell therapy is still in the early stages of implementation, it has shown substantive progress in treating patients with few if any adverse effects.

The Lung Institute (LI) provided treatment by harvesting autologous stem cells (hematopoietic stem cells and mesenchymal stromal cells) by withdrawing adipose tissue (fat), bone marrow or peripheral blood. These harvested cells are isolated and concentrated, and along with platelet-rich plasma, are then reintroduced into the body and enter the pulmonary vasculature (vessels of the lungs) where cells are trapped in the microcirculation (the pulmonary trap). Alternatively, nebulized stem cells are reintroduced through the airways in patients who have undergone an adipose (fat tissue) treatment.

Individuals diagnosed with COPD were tracked by the Lung Institute to measure the effects of treatment via either the venous protocol or adipose protocol on both their pulmonary function as well as their Quality of Life.

All PFTs were performed according to national practice guideline standards for repeatability and acceptability8-10. On PFTs, pre-treatment data was collected through on-site testing or through previous medical examinations by the patients primary physician (if done within two weeks). The test was then repeated by their primary physician 6 months after treatment.*

* Due to the examination information required from primary physicians, only 25 out of 100 patients are reflected in the PFT data.

Patients with progressive COPD will typically experience a steady decrease in their Quality of Life. Given this development, a patients Quality of Life score is frequently used to define additional therapeutic effects, with regulatory authorities frequently encouraging their use as primary or secondary outcomes17.

On quality of life testing, data was collected through the implementation of the Clinical COPD Questionnaire (CCQ) based survey17. The survey measured the patients self-assessed quality of life on a 0-6 scale, with adverse Quality of Life correlated in ascending numerical order. It was implemented in three stages: pre-treatment, 3-months post-treatment, and 6-months post-treatment. The survey measured two distinct outcomes: the QLS score, which measured the patients self-assessed quality of life score, and the QIS, a percentage-based measurement determining the proportion of patients within the sample that experienced QLS score improvements.

Over the duration of six months, the results of 100 patients treated for COPD through venous and adipose based therapies were tracked by the Lung Institute in order to measure changes in pulmonary function and any improvement in Quality of Life.

Of the 100 patients treated by the Lung Institute, 64 were male (64%) and 36 were female (36%). Ages of those treated range from 55-88 years old with an average age of 71. Throughout the study, 82 (82%) were treated with venous derived stem cells, while 18 (18%) were treated from stem cells derived from adipose tissue.

* The survey measured the patients self-assessed quality of life on a 0-6 scale, with adverse Quality of Life correlated in ascending numerical order.

Over the course of the study, the patient group averaged an increase of 35.5% to their Quality of Life (QLS) score within three months of treatment. While in the QIS, 84% of all patients found that their Quality of Life score had improved within three months of treatment (figure 1.3).

Within the PFT results, 48% of patients tested saw an increase of over 10% to their original pulmonary function with an average increase of 16%. During the three to six month period after treatment, patients saw a small decline in their progress, with QLS scores dropping from 35.5% to 32%, and the QIS from 84% to 77%.Fletcher and Petos work shows that patient survival rate can be improved through appropriate or positive intervention14 (figure 1.4). It remains to be seen if better quality of life will translate to longevity, but if one examines what factors allow for improved quality of life such as improvement in oxygen use, exercise tolerance, medication use, visits to the hospital and reduction in disease flare ups then one can see that quality of life improves in association with clinical improvement.

Currently the most utilized options for treating COPD are bronchodilator inhalers with or without corticosteroids and lung transplant each has downsides. Inhalers are often used incorrectly11, are expensive over time, and can only provide temporary relief of symptoms. Corticosteroids, though useful, have risk of serious adverse side effects such as infections, blood sugar imbalance, and weight gain to name a few 16. Lung transplants are expensive, have an adverse impact on quality of life and have a high probability of rejection by the body the treatment of which creates a new set of problems for patients. In contrast, initial studies of stem cells treatments show efficacy, lack of adverse side effects and may be used safely in conjunction with other treatments.

Through the data collected by the Lung Institute, developing methodologies for this form of treatment are quickly taking place as other entities of the medical community follow suit. In a recent study of regenerative stem cell therapy done by the University of Utah, patients exhibited improvement in PFTs and oxygen requirement compared to the control group with no acute adverse events12. Through the infusion of stem cells derived from the patients own body, stem cell therapy minimizes the chance of rejection to the highest degree, promotes healing and can improve the patients pulmonary function and quality of life with no adverse side effects.

Although more studies using a greater number of patients is needed to further examine objective parameters such as PFTs, exercise tests, oxygen, medication use and hospital visits, larger sample sizes will also help determine if one protocol is more beneficial than others. With deeper research, utilizing economic analysis along with longer-term follow up will answer questions on patient selection, the benefits of repeated treatments, and a possible reduction in healthcare costs for COPD treatment.

The field of Cellular Therapy and Regenerative Medicine is rapidly advancing and providing effective treatments for diseases in many areas of medicine.The Lung Institutes strives to provide the latest in safe, effective therapy for chronic lung disease and maintain a leadership role in the clinical application of these technologies.

In a landscape of scarce options and rising costs, the Lung Institute believes that stem cell therapy is the future of treatment for those suffering from COPD and other lung diseases. Although data is limited at this stage, we are proud to champion this form of treatment while sharing our findings.

See the rest here:
Lung Institute | Stem Cell Research Study for Lung Disease

Related Post


categoriaIPS Cell Therapy commentoComments Off on Lung Institute | Stem Cell Research Study for Lung Disease | dataMarch 9th, 2018

About...

This author published 5992 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2025