Measuring Heart Toxicity of Cancer Drugs | Technology Networks – Technology Networks
By LizaAVILA
A stem cell-derived heart muscle cell. Proteins that are important for muscle cell contraction are highlighted in red and green, and cell nuclei are blue. Credit: Joseph C. Wu, M.D., Ph.D., Stanford Cardiovascular Institute
Using human heart cells generated from adult stem cells, researchers have developed an index that may be used to determine how toxic a group of cancer drugs, called tyrosine kinase inhibitors (TKIs), are to human cells. While 26 TKIs are currently used to treat a variety of cancers, some can severely damage patients hearts, causing problems such as an irregular heartbeat or heart failure.
For the study, reported February 15 in Science Translational Medicine, the researchers used stem cell-derived heart cells from 13 volunteers to develop a cardiac safety index that measures the extent to which TKIs kill or alter the function of heart cells. They found that the TKIs' toxicity score on the index was generally consistent with what is known about each drug's heart-related side effects.
This work follows on the heels of an earlier study from the same research team, published in Nature Medicine, in which they assessed the heart cell toxicity of doxorubicin, a chemotherapy drug that also causes heart-related side effects, including heart failure. In that study, the researchers used stem cell-derived heart cells from women with breast cancer to correctly predict how sensitive each womans heart cells were to doxorubicin.
Such tests could ultimately help the pharmaceutical industry identify drugs that cause heart-related side effects earlier in the drug development process and help the Food and Drug Administration (FDA) during the drug review and approval process, said the study's senior author Joseph C. Wu, M.D., Ph.D., director of the Stanford Cardiovascular Institute.
I hope this research will be helpful for individual patients, once we further implement precision medicine approaches, he added.
Ranking Heart Toxicity
To assess the potential risk of heart toxicity for drugs in development, pharmaceutical companies use laboratory tests involving animals (usually rats or mice) or cells from animals or humans that are engineered to artificially express heart-related genes. Drug candidates that appear to have an acceptable balance of benefits and risks typically proceed to testing in human clinical trials.
But there can be biological differences between these existing models and humans, so non-clinical lab tests can have significant limitations, explained Dr. Wu.
Currently, the first time humans are exposed to a new drug is during clinical trials, he said. We think it would be great if you could actually expose patients heart, brain, liver, or kidney cells to a drug in the lab, prior to clinical treatment, allowing researchers to determine whether the drug has any toxic effects.
Dr. Wu, a cardiologist by training, studies toxicities cancer drugs cause in heart cells. Human heart muscle cells (called cardiomyocytes), however, are hard to obtainrequiring risky heart surgery that may be of no direct benefit to the patientand are notoriously difficult to grow in the lab.
As an alternative, researchers have developed a method to produce heart cells from human induced pluripotent stem cells (hiPSCs). hiPSCs are created by genetically engineering normal human skin or blood cells to express four specific genes that induce them to act like stem cells. Chemical treatments can prompt hiPSCs to develop into mature cell types, such as heart muscle cells.
A large body of research has established that human adult stem cell-derived heart cells, which function and grow in cell culture, can be used as an initial model to screen drug compounds for toxic effects on the heart, said Myrtle Davis, Ph.D., chief of the Toxicology and Pharmacology Branch of NCIs Division of Cancer Treatment and Diagnosis, who was not involved in the studies.
For the Science Translational Medicine study, Dr. Wu and his colleagues set out to determine if a panel of human stem cell-derived heart cells could be used to evaluate the heart toxicity of 21 different FDA-approved TKIs.
They generated hiPSC-derived heart endothelial, fibroblast, and muscle cells from 13 volunteers: 11 healthy individuals and 2 people with kidney cancer who were being treated with a TKI. Using drug concentrations equivalent to what patients receive, the investigators next determined how lethal each TKI was to the heart cells.
They found that several TKIs were very lethal to endothelial, fibroblast, and heart muscle cells from all 13 individuals, while others were more benign.
Stem cell-derived heart muscle cells grown in a dish spontaneously contract as a beating heart does, so the researchers also analyzed the effects of TKIs on the cells beat rate, or contractility. They found that several TKIs altered the cells beat rate before they were killed by the drug treatment. If severe enough, an irregular heartbeat (called an arrhythmia), can disrupt normal heart function.
From these lethality and contractility experiments, the team developed a cardiac safety index, a 0-to-1 scale that identifies how toxic a TKI is to heart cells (with 0 being the most toxic). They then used the index to rank the 21 TKIs. The control treatment scored a 1, while a few TKIs that are labeled by the FDA with boxed warnings for severe heart toxicity scored close to 0.
Safety indices like this one can be very useful during drug discovery, said Dr. Davis, and the applicability of the index developed by Dr. Wu and his colleagues will become clear when they evaluate its performance with more compounds.
And for the safety index to be applicable to more patients, the panel of cells used to develop it would need to be gathered from a sufficiently representative population of people reflecting different ages, races/ethnicities, health statuses, and other characteristics, said Lori Minasian, M.D., deputy director of NCIs Division of Cancer Prevention, who was not involved in either study.
For example, the study did not include cells derived from patients with [pre-existing] cardiac disease, said Dr. Davis.
A Personalized Approach
In addition to their potential application during drug development, Dr. Wu believes that stem cell-derived heart cells could potentially be used to predict toxicity risk for individual patients. He and his colleagues explored this possibility in their Nature Medicine study.
Doxorubicin, used on its own or in combination with other drugs, is an effective treatment for breast cancer and several other types of cancer. Like TKIs, however, it is known to cause heart toxicities, such as arrhythmias and heart failure, in a small proportion of patients. But there has been no way to predict which patients will experience these side effects.
The researchers developed stem cell-derived heart cells from eight women with breast cancer who had been treated with doxorubicinhalf of whom experienced cardiotoxicity from the treatment and half who did not.
In several different lab tests, the heart cells from women who had experienced cardiotoxicity were more sensitive to doxorubicin than those from women who had not. More specifically, in heart cells from women who had experienced cardiotoxicity, doxorubicin treatment caused more severe irregularities in cell contractility, and even low concentrations of the drug killed the cells.
An Improved Model
While the stem cell-derived heart cell model may be an improvement over the current [drug testing] system, its not perfect, said Dr. Minasian. For example, the model does not capture contributions of other organs and cells to the toxic effects of a drug, she explained. The drug may be broken down in the liver, for instance, and side products (called metabolites) may also cause toxic effects.
In addition, the lab-grown stem cell-derived version of someones heart cells are not going to be exactly the same as the cells found in that persons heart, Dr. Wu noted. Nevertheless, they reflect the same genetics and they are pretty good at predicting drug response, he said.
Looking forward, Dr. Minasian said, figuring out how to best use this approach is going to take more work, but being able to better predict human response [to cancer drugs] is important.
The research teams next steps include conducting prospective studies to determine whether they can use a patients stem cell-derived heart cells to potentially predict if that person will develop heart toxicity before they actually receive cancer treatment.
This article has been republished frommaterialsprovided byNCI. Note: material may have been edited for length and content. For further information, please contact the cited source.
Reference
Sharma, A., Burridge, P. W., McKeithan, W. L., Serrano, R., Shukla, P., Sayed, N., ... & Matsa, E. (2017). High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Science translational medicine, 9(377), eaaf2584.
Excerpt from:
Measuring Heart Toxicity of Cancer Drugs | Technology Networks - Technology Networks
- Developing the Cell-Based Therapies of the Future - University of Miami - November 15th, 2024
- Advancing heart stem cell therapy - UHN Foundation - November 15th, 2024
- Heart defects affect 40,000 US babies every year but cutting edge AI and stem cell tech will save lives and even cure them in the womb - New York... - November 15th, 2024
- Science Is Finding Ways to Regenerate Your Heart - The Wall Street Journal - November 6th, 2024
- AIIMS Bathinda Makes Breakthrough in Stem Cell Therapy Research for Heart Ailments - Elets - October 21st, 2024
- USC launches collaboration with StemCardia to advance heart regeneration therapies - University of Southern California - October 13th, 2024
- The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish - Nature.com - September 3rd, 2024
- Opthea Announces Results of the A$55.9m (US$36.9m¹) Retail Entitlement Offer - July 16th, 2024
- Benitec Biopharma Reports Continued Durable Improvements in the Radiographic Assessments of Swallowing Efficiency and the Subject-Reported Outcome... - July 16th, 2024
- AstraZeneca Closes Acquisition of Amolyt Pharma - July 16th, 2024
- Addex Presents Positive Results from GABAB PAM Cough Program at the Thirteenth London International Cough Symposium (13th LICS) - July 16th, 2024
- Lexeo Therapeutics Announces Positive Interim Phase 1/2 Clinical Data of LX2006 for the Treatment of Friedreich Ataxia Cardiomyopathy - July 16th, 2024
- ANI Pharmaceuticals Announces the FDA Approval and Launch of L-Glutamine Oral Powder - July 16th, 2024
- MediWound Announces $25 Million Strategic Private Placement Financing - July 16th, 2024
- Atsena Therapeutics Appoints Joseph S. Zakrzewski as Board Chair - July 16th, 2024
- ASLAN Pharmaceuticals Announces Receipt of Nasdaq Delisting Determination; Has Determined Not to Appeal - July 16th, 2024
- Kraig Biocraft Laboratories Completes Phase One of its Spider Silk Production Facility Expansion - July 16th, 2024
- Pliant Therapeutics Announces Positive Long-Term Data from the INTEGRIS-PSC Phase 2a Trial Demonstrating Bexotegrast was Well Tolerated at 320 mg with... - July 16th, 2024
- Oncternal Announces Enrollment Completed and Dosing Initiated for Sixth Dose Cohort of Phase 1/2 Study of ONCT-534 for the Treatment of R/R Metastatic... - July 16th, 2024
- Rectify Pharmaceuticals Appoints Bharat Reddy as Chief Business Officer - July 16th, 2024
- Spectral AI Continues Support of Naked Short Selling Inquiry - July 16th, 2024
- Milestone Pharmaceuticals Refreshes Board of Directors - July 16th, 2024
- New Published Data Highlights Potential Cost-Savings of INPEFA® (sotagliflozin) for Heart Failure - July 16th, 2024
- Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis - Hindustan Times - April 21st, 2023
- Cardiac stem cells: Current knowledge and future prospects - April 13th, 2023
- Stem cell therapies in cardiac diseases: Current status and future ... - April 13th, 2023
- Stem Cell and Regenerative Biology | Johns Hopkins Heart and Vascular ... - April 13th, 2023
- Center for Regenerative Biotherapeutics - Cardiac Regeneration - April 13th, 2023
- MAGENTA THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 25th, 2023
- CAREDX, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 1st, 2023
- A Possible Connection between Mild Allergic Airway Responses and Cardiovascular Risk Featured in Toxicological Sciences - Newswise - February 4th, 2023
- Baby's life saved by surgeon who carried out world's first surgery ... - December 25th, 2022
- An organoid model of colorectal circulating tumor cells with stem cell ... - December 25th, 2022
- Skeletal Muscle Cell Induction from Pluripotent Stem Cells - December 1st, 2022
- Stem-cell niche - Wikipedia - December 1st, 2022
- Scientists Discover Protein Partners that Could Heal Heart Muscle | Newsroom - UNC Health and UNC School of Medicine - October 13th, 2022
- Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027 - Yahoo Finance - October 13th, 2022
- Scientists Spliced Human Brain Tissue Into The Brains of Baby Rats - ScienceAlert - October 13th, 2022
- Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution | Communications Biology - Nature.com - October 13th, 2022
- Global Synthetic Stem Cells Market Is Expected To Reach Around USD 42 Million By 2025 - openPR - October 13th, 2022
- Merck and Moderna Announce Exercise of Option by Merck for Joint Development and Commercialization of Investigational Personalized Cancer Vaccine -... - October 13th, 2022
- Regenerative Medicine For Heart Diseases: How It Is Better Than Conventional Treatments | TheHealthSite.co - TheHealthSite - October 5th, 2022
- 'Love hormone' oxytocin could help reverse damage from heart attacks via cell regeneration - Study Finds - October 5th, 2022
- Recapitulating Inflammation: How to Use the Colon Intestine-Chip to Study Complex Mechanisms of IBD - Pharmaceutical Executive - September 27th, 2022
- Adult Stem Cells // Center for Stem Cells and Regenerative Medicine ... - September 19th, 2022
- CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease - Cardiovascular Diabetology - Cardiovascular... - September 19th, 2022
- Kite's CAR T-cell Therapy Yescarta First in Europe to Receive Positive CHMP Opinion for Use in Second-line Diffuse Large B-cell Lymphoma and... - September 19th, 2022
- Neural crest - Wikipedia - September 3rd, 2022
- Rise In Number Of CROS In Various Regions Such As Europe Is Expected To Fuel The Growth Of Induced Pluripotent Stem Cell Market At An Impressive CAGR... - September 3rd, 2022
- Discover the Mental and Physical Health Benefits of Fasting - Intelligent Living - September 3rd, 2022
- Heart Association fellowship to support research - Binghamton - August 26th, 2022
- Repeated intravenous administration of hiPSC-MSCs enhance the efficacy of cell-based therapy in tissue regeneration | Communications Biology -... - August 26th, 2022
- High intensity interval training protects the heart against acute myocardial infarction through SDF-1a, CXCR4 receptors and c-kit levels - Newswise - August 26th, 2022
- Yale University: Uncovering New Approaches to a Common Inherited Heart Disorder | India Education - India Education Diary - August 10th, 2022
- Heart failure in obesity: insights from proteomics in patients treated with or without weight-loss surgery | International Journal of Obesity -... - August 10th, 2022
- Pigs died after heart attacks. Scientists brought their cells back to life. - Popular Science - August 10th, 2022
- Protocol for a Nested, Retrospective Study of the Australian Placental Transfusion Study Cohort - Cureus - August 10th, 2022
- Autologous Cell Therapy Market Size to Grow by USD 4.11 billion, Bayer AG and Brainstorm Cell Therapeutics Inc. Among Key Vendors - Technavio - PR... - August 2nd, 2022
- UTSW researcher part of team awarded $36 million heart research grant - The Dallas Morning News - August 2nd, 2022
- Buffalo center fuels research that can save your life from heart disease and stroke - Buffalo News - August 2nd, 2022
- Hyperglycaemia-Induced Impairment of the Autorhythmicity and Gap Junction Activity of Mouse Embryonic Stem Cell-Derived Cardiomyocyte-Like Cells -... - July 25th, 2022
- NASA's Solution to Stem Cell Production is Out of this World - BioSpace - July 25th, 2022
- Inhibition of pancreatic EZH2 restores progenitor insulin in T1D donor | Signal Transduction and Targeted Therapy - Nature.com - July 25th, 2022
- 'My Teen Sweetheart And I Drifted Apart. 30 Years Later I Made a Shocking Discovery' - Newsweek - July 25th, 2022
- EU: New Blood? Proposed Revisions to the EUs Blood, Tissues and Cells Rules - GlobalComplianceNews - July 25th, 2022
- Stem Cells Market to Expand at a CAGR of 10.4% from 2021 to 2028 Travel Adventure Cinema - Travel Adventure Cinema - July 25th, 2022
- Cell Separation Technologies Market Expands with Rise in Prevalence of Chronic Diseases, States TMR Study - GlobeNewswire - July 25th, 2022
- Dental Membrane and Bone Graft Substitutes Market to Exceed Value of US$ 1,337 Mn by 2031 - PR Newswire UK - July 25th, 2022
- Stem Cells Used to Repair Heart Defects in Children - NBC 5 Dallas-Fort Worth - July 16th, 2022
- Pneumonia and Heart Disease: What You Should Know - Healthline - July 16th, 2022
- Promising solution to fatal genetic-disorder complications discovered by University professor and Ph.D. candidate - Nevada Today - July 16th, 2022
- Current and advanced therapies for chronic wound infection - The Pharmaceutical Journal - July 16th, 2022
- Why do some women struggle to breastfeed? A UCSC researcher on what we know, and don't - Lookout Santa Cruz - July 16th, 2022
- Mesenchymal stem cells: from roots to boost - PMC - July 8th, 2022
- New study allows researchers to more efficiently form human heart cells from stem cells - University of Wisconsin-Madison - July 8th, 2022
- Dr Victor Chang saved hundreds of lives. 31 years ago today, he was murdered. - Mamamia - July 8th, 2022
- Exosome Therapeutics Market Research Report Size, Share, New Trends and Opportunity, Competitive Analysis and Future Forecast Designer Women -... - July 8th, 2022
- Cell Line Development Market: Increase in Prevalence of Cancer and Other Chronic Diseases to Drive the Market - BioSpace - July 8th, 2022
- Homology Medicines Announces Peer-Reviewed Publication on Novel Discovery of AAVHSC with Robust Distribution to the Central Nervous System and... - July 8th, 2022
- What New Advances are there in 3D Bioprinting Tissues? - AZoM - June 30th, 2022