Mucopolysaccharidoses: future therapies and perspectives – SciTech Europa
By daniellenierenberg
Mucopolysaccharidoses (MPS) are a group of very rare disorders, also known as orphan diseases. They belong to the group of lysosomal storage diseases which are caused by a deficiency of one of the enzymes involved in the degradation of mucopolysaccharides (the acid glycosaminoglycans or GAGs). The enzymes are coded by genes which produce deficient gene products due to gene variants in each of the two gene-alleles.
Children of two carriers as parents have a 25% risk to suffer from MPS. For many families, the birth of the first affected child is a shock and a disaster. The disease is continuously progressing, and life spans are dramatically decreased without therapy. As a result, extensive efforts are put into the cure of these fatal disorders.
Enzymes are relatively small proteins, produced in the endoplasmatic reticulum of each cell. Before reaching the locus of their function, the lysosomes, additional modifications with special sugars are performed in the Golgi apparatus (glycosylation). Via mannose-6-phosphate marker, they connect to the mannose-6-phosphat receptor on the lysosomal membrane and can reach the final locus of their function. In the lysosomes, enzymes degrade the GAG chains into the smallest molecules for recycling or excretion. Any disturbance in this process leads to the accumulation of non-degraded material, which affects many other cell functions such as homeostasis, calcium metabolism, accelerates apoptosis and induces inflammation processes.
As lysosomes are ubiquitous, any disturbance leads to storage in many different tissues and organs. MPSs are a good example for chronic progressive multi-systemic disorders. The best theoretical option for treatment of any patient is to supplement the missing enzyme which could reach any organ via blood flow and get inside the lysosomes continuing the interrupted degradation processes.
The enzymes are ubiquitous and have some tissue specific compositions. Enzymes produced in the different cells and tissues have their own characteristics and are available on site. The production of recombinant enzymes means that the artificial glycosylation is created in a uniform composition for intravenous substitution with the aim to reach the organs with the blood-flow. There is no doubt that the therapeutic efficacy is ideal for many organs, such as liver, spleen, lung, and skin. All these organs have a good blood circulation and some ability to regenerate.
However, after years of treatment with the already available enzymes, it is shown that some organs are poorly supplied with blood and renewal cycles are slow, the ability to regenerate is decreased. Organs such as bones, cartilage, muscles, cornea, heart valves, meninges or the brain do not show the hope-for effect. All MPS types with brain involvement (neuronopathic forms of MPS types I, II and VII) or predominant skeletal dysplasia (MPS types IVA and B) cannot benefit from enzyme-replacement therapy and do not show the desired improvement.
In animal studies, modifications of glycosylation can change the ability to pass into organs not yet sufficiently reached such as cartilage or bones, but tissue-specific features cannot be sufficiently considered in any artificial production of the enzymes.
Avascular cartilage, heart valves and corneas cannot be reached by blood flow. Also, between blood vessels and brain tissue, several specialised cells form the blood-brain-barrier (BBB) to protect the brain from any unwanted substances in the blood. Therefore, new strategies are necessary to improve the therapeutic efficiency and to provide better outcomes for the affected patients. If patients with MPS I are diagnosed at a very young age, the best option is to treat them with haematopoietic stem cell transplantation (HSCT). Migrating stem cells can reach the brain and other organs, and then differentiate into organ-specific cells producing the missing lysosomal enzymes.
A straightforward method to overcome BBB is the direct injection of a recombinant enzyme into the cerebral fluid. This can be by lumbar puncture (intra-thecal) or intra-ventricular injections in the brain ventricles. Effects can be observed, however unfortunately not all challenges can currently be solved. The liquor flow can be reduced by thickened meninges with storage and vertebral deformities, which are typical for the disease. However, the barrier between cerebral fluid and brain tissue has still not been fully studied. The half-life of enzymes is limited, and the procedure has to be repeated regularly. The clinical trials for patients with MPS I, II, IIIA and IIIB could show some reduced or reversed progression of CNS pathology but long-term effects remain unclear.
Another possibility to overcome BBB is to fuse the enzyme proteins with macromolecules which enter the brain through receptor mediated active transport systems. This physiological transport is known for hormones, neurotransmitters and many other proteins (such as transferrin and insulin). They are transported through the BBB directly into the brain via specific receptores, so, the strategy is to fuse the natural proteins with the artificial enzymes needed in the MPS patient. It is important to note that clinical trials could potentially still show some improvement in affected MPS patients.
Another method is to conjugate the therapeutic enzymes with nano-capsules and to then ferry them across BBB via transcytosis or other transport mechanisms directly into brain cells. Pharmacological chaperones have been proven to be effective in other lysosomal storage diseases such as Gaucher or Fabry disease. Chaperones are able to stabilise three-dimensional conformation of misfolded proteins, such as enzymes. This would be the case of genetic variants causing missense mutation and exchange of only one amino acid in the protein chain. The misfolding pathology reduces stability, half-life and effect of the genetically conditioned enzyme, whereas the chaperone can reverse this disadvantage and increase the activity and efficacy of the enzyme. As a result, pharmacological chaperones are a good option for some diseases and could therefore be an option for some MPS patients in the future.
Some genetic variants cause stop-codons and the production of truncated dysfunctional peptides without any enzymatic activity and degradation within the cell. Stop-codon read through therapy aims for the genetic correction on an RNA level, resulting in the production of a sufficiently functioning gene product. It is already used for some specific mutation for patients with Duchenne muscular dystrophy, but it is too early to predict positive results for patients with MPS I.
Another possibility in the future might be the use of GAG-reducing small molecules such as Genistein, Pentosam polysulfate or Rhodamine B. They are able to influence and/or reduce the synthesis of GAGs which cannot be degraded sufficiently by the genetically changed enzymes with reduced function.
To reduce the GAGs as substrate, could be a chance to create a better relation between substrate and the impaired substrate reducing enzyme. As a result, lysosomal storage could therefore be reduced. Substrate reduction therapy is an established therapeutic concept in some of the other lysosomal storage diseases, but the usefulness in MPS disorders still needs to be proven.
The genetic corrections of DNA sequences in patient cells are no longer only future options as they have now become a reality. Gene variants causing missing or impaired functioning gene products could be replaced by correct genetic sequences and genes. This can be made as an ex vivo approach, where stem cells or fibroblast are removed from the patient and are then cultured in vitro, genetically corrected and consecutively re-injected into the patient.
The genetically corrected DNA in the re-transplanted autologous cells is able to produce correct gene products (in terms of MPS, this is the specific enzyme). The amounts of newly produced enzymes might be sufficient to positively influence the disease course of the treated patients.
An in vivo approach utilises viral vectors which invade cells, and even cell nuclei. Such viruses used are adeno-associated-viruses or lenti-viruses. Such manipulated viruses with the corrective genetic material are directly injected into the patient where they are internalised into deficient cells and are then able to produce the missing gene product. In the case of MPS, the aim is to produce enzyme proteins with sufficient concentrations and activity to prevent the storage of GAGs. Furthermore, clinical trials are underway for several MPS types and therefore, might offer a therapeutic opportunity in early life for affected patients. However, larger studies and a longer follow-up is still needed.
To conclude, MPS are rare genetic disorders and for a long time, they were linked with the myth of being untreatable diseases. Although some of the new therapeutic options are still in clinical trials and not routinely used, the present shows that many of the patients can benefit from the yet available options of HSCT and enzyme replacement therapies. These therapies have an undoubted effect for some of the MPS patients, especially if any form of therapy is started early or if the course of the disease does not affect the nervous system.
However, in the future, new therapeutic options will hopefully bring benefits to those that are not sufficiently improved; the decision of the best therapy will be made on the basis of factors such as the genetic defect, the type of MPS, and the age during treatment. This individualised and personalised therapy will improve the success of MPSs therapies.
Susanne Gerit KircherMedical University of Vienna, AustriaCenter of Pathobiochemistry and Geneticssusanne.kircher@meduniwien.ac.atwww.mps-austria.at
Original post:
Mucopolysaccharidoses: future therapies and perspectives - SciTech Europa
- Are Plant-Based Stem Cells the New Botox? This Derm Thinks So - The Daily Beast - January 5th, 2025
- Skin science: Latest stories on cosmetics science and formulation - CosmeticsDesign-Asia.com - November 15th, 2024
- The Firsthand Results Of A Nanofat Treatment Using Stem Cells And PRP - Forbes - November 15th, 2024
- Boundary-Pushing Skin Care Company Exoceuticals Garners Beauty Innovation Award For 'Beauty Innovation Technology Of The Year - The Manila Times - November 15th, 2024
- New skin research could help slow signs of ageing - BBC.com - October 21st, 2024
- Human skin map gives 'recipe' to build skin and could help prevent scarring - Medical Xpress - October 21st, 2024
- A new cell therapy company takes its vision from four founders, and its skin from George Church - STAT - September 23rd, 2024
- Women 60+ love this hydrating stem cell-infused moisturizer that's $15 right now - Yahoo Life - September 23rd, 2024
- NKGen Biotech Publishes Phase 1 Interim Analysis Results of SNK02 Allogeneic NK Cell Therapy in Advanced Solid Tumors at the 2024 American Society of... - May 25th, 2024
- FibroGen Announces Presentation of Positive Interim Data from the Phase 1b Study of FG-3246 (FOR46) in Combination with Enzalutamide in Patients with... - May 25th, 2024
- Cogent Biosciences Appoints Cole Pinnow as Chief Commercial Officer - May 25th, 2024
- G1 Therapeutics Announces Upcoming Presentation at the 2024 American Society of Clinical Oncology (ASCO) Meeting - May 25th, 2024
- Updated Phase 1 Clinical Data for SYS-6002 (CRB-701) to be presented at 2024 ASCO Annual Meeting - May 25th, 2024
- Affimed Announces Positive Early Efficacy and Progression Free Survival Results of AFM24-102 Study in EGFR Wild-Type Non-Small Cell Lung Cancer at the... - May 25th, 2024
- SpringWorks Therapeutics Announces Data to be Presented at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Sensei Biotherapeutics Presents Promising Clinical Data from Phase 1 Dose Escalation Study of SNS-101 - May 25th, 2024
- Elicio Therapeutics Announces Preliminary Data from the Ongoing AMPLIFY-7P Phase 1a Study of ELI-002 7P in Patients with mKRAS-driven Solid Tumors at... - May 25th, 2024
- Kronos Bio to Present Clinical Update on Phase 1/2 Trial of KB-0742 at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Coherus Presents Preliminary Results from Phase I Dose Escalation Study of its Anti-chemokine receptor 8 (CCR8) Antibody, CHS-114, at the 2024... - May 25th, 2024
- 3Daughters to Participate in Women’s Health Panel During the 2024 BIO International Convention in San Diego, CA, June 3-6 - May 25th, 2024
- HUTCHMED Highlights Presentations at the 2024 ASCO Annual Meeting - May 25th, 2024
- Myriad Genetics Showcases New Research and Product Innovations Advancing Cancer Care at 2024 ASCO® Annual Meeting - May 25th, 2024
- Lift BioSciences Announces Abstract Publications at the American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Nicox: 2024 Ordinary Shareholder Meeting to be held on June 28th, 2024 - May 25th, 2024
- Adlai Nortye Ltd. to Present Encouraging Data of the Combination of AN0025 and Definitive Chemoradiotherapy (dCRT) at ASCO 2024 - May 25th, 2024
- Vitamin A could have a key role in both stem cell biology and wound healing: Study - Medical Dialogues - March 10th, 2024
- Cyclerion Strengthens Board of Directors with Experienced Company Builder and Cutting-edge Innovator - December 4th, 2023
- Aptose Appoints Fletcher Payne Chief Business Officer, Expanding his Executive Role - December 4th, 2023
- Opthea to Present at the FLORetina 2023 Congress - December 4th, 2023
- HUTCHMED Highlights Clinical Data to be Presented at 2023 ESMO Asia and ESMO Immuno-Oncology Congresses - December 4th, 2023
- AC Immune Strengthens Management, Appoints Madiha Derouazi as CSO and Christopher Roberts as CFO - December 4th, 2023
- Publication of a transparency notification received from Tolefi SA (Article 14 §1 of the Law of 2 May 2007) - December 4th, 2023
- Annovis Bio Appoints Andrew Walsh as Vice President Finance - December 4th, 2023
- Foghorn Therapeutics Announces Clinical Data from Phase 1 Study of FHD-286, a Novel BRG1/BRM Inhibitor, in Patients with Advanced Hematologic... - December 4th, 2023
- Akari Therapeutics Appoints Experienced Life Sciences Entrepreneur Samir R. Patel, M.D. to Board of Directors - December 4th, 2023
- Ovid Therapeutics to Present Five Abstracts Supporting its Epilepsy Programs at the 77th American Epilepsy Society Annual Meeting (2023) - December 4th, 2023
- Spectral Medical Announces CFO Departure - December 4th, 2023
- Are STEM CELL EXOSOMES the secret to a 'snatched' jawline? Discover the products that influencers are claiming - Daily Mail - November 18th, 2023
- Defence Mechanisms: Four ways your body is protecting you every time you fall sick - indulgexpress - May 16th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, 111SKIN, Nest & More - E! NEWS - May 16th, 2023
- INTERNATIONAL STEM CELL CORP MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - April 5th, 2023
- Skin Regeneration: The Science and How to Boost It - Healthline - March 9th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, U Beauty, Nest & More - E! NEWS - March 1st, 2023
- 7-year-old vows to find a cure for brother in need of bone marrow transplant - WJLA - February 21st, 2023
- World's most radioactive man 'cried blood' as his skin melted in 83-day nightmare - Times Now - February 4th, 2023
- How old are you, really? The answer is written on your face. - National Geographic UK - February 4th, 2023
- Skin: Layers, Structure and Function - Cleveland Clinic - January 27th, 2023
- Human skin | Definition, Layers, Types, & Facts | Britannica - January 27th, 2023
- Skin Disorders: Pictures, Causes, Symptoms, and Treatment - Healthline - January 27th, 2023
- Skin care: 5 tips for healthy skin - Mayo Clinic - January 27th, 2023
- Skin Care and Aging | National Institute on Aging - January 27th, 2023
- Wrinkles - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Dry skin - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Stem cells: a brief history and outlook - Science in the News - January 3rd, 2023
- Still Drinking Green Tea? Doctor Reveals A Healthier Drink With Proven Benefits For Diabetes, Aging, Oxidative Stress, And Cancer - Revyuh - January 3rd, 2023
- RUDN Physician And Russian Scientists Investigate Long-term Effects Of Treating Diabetic Ulcers With Stem Cells - India Education Diary - December 25th, 2022
- The Use of Stem Cells in Burn Wound Healing: A Review - Hindawi - December 1st, 2022
- FACTORFIVE Skincare The Power of Stem Cells for Skin - December 1st, 2022
- Embryonic Stem Cells - The Definitive Guide | Biology Dictionary - December 1st, 2022
- From pro soccer hopeful to hip hop artist with illness and addiction along the way, Tymaz Bagbani releases debut album - Toronto Star - December 1st, 2022
- Stem Cells | The ALS Association - November 22nd, 2022
- What is a stem cell? YourGenome - October 29th, 2022
- Skin Cell - The Definitive Guide | Biology Dictionary - October 29th, 2022
- Explora Journeys Plans Extensive Fitness And Well-Being Initiatives At Sea, Right On Trend - Forbes - October 29th, 2022
- Ahead of the holiday shopping season, Amazon kicks off second annual Holiday Beauty Haul on Oct. 24 - KXAN.com - October 21st, 2022
- Human skin color - Wikipedia - October 13th, 2022
- Mesenchymal Stem Cells | Properties, Process, Functions, & Therapies - October 13th, 2022
- Skin Grafting, Cryopreservation, and Diseases: A Review Article - Cureus - October 13th, 2022
- Anti-ageing cosmetics: Can they turn back the hands of the clock? - The Sunday Guardian Live - The Sunday Guardian - October 13th, 2022
- Brennand named Elizabeth Mears and House Jameson Professor of Psychiatry - Yale News - October 13th, 2022
- The Switch to Regenerative Medicine - Dermatology Times - October 13th, 2022
- Last Chance to Get The Collagen-Infused Massage Oil That Moisturizes Skin & Diminishes Cellulite For Less Than $20 - msnNOW - October 13th, 2022
- Addison's Disease Explained: Causes, Symptoms, And Treatments - Health Digest - October 13th, 2022
- Stem Cells Therapy for Autism: Does it Work? - October 5th, 2022
- Stem-like CD8 T cells mediate response of adoptive cell ... - PubMed - October 5th, 2022
- 6 Under Eye Products You Need To Have STAT - Grazia India - October 5th, 2022
- CellResearch Corporation (CRC) to present promising new stem cell products for the treatment of chronic diabetic foot ulcers at the world's premier... - September 27th, 2022
- Reprogramming pig cells leads way for new regenerative therapies - National Hog Farmer - September 27th, 2022
- A glimpse into Indian consumers expectations for cosmetic treatments and consumption insights - The Financial Express - September 27th, 2022
- Tajmeel redefines beauty to give its patients the best results - Gulf News - September 27th, 2022