Nasal Stem Cells Show Promise in Repairing Spinal Cord Damage Caused by Contusion

By daniellenierenberg

An important new study by a team of scientists at RhinoCyte™ Inc., Louisville, Ky., details promising results on the effectiveness of olfactory (nasal) stem cells in repairing spinal cord damage resulting from the most common cause of these injuries — contusions (bruising) due to major trauma such as is seen in auto accidents, falls or combat. This could have major implication for the estimated 5 million people worldwide affected by spinal cord injuries – 1.275 million of them in the United States alone, where the cost of treatment exceeds $40.5 billion each year.

Louisville, Kentucky (PRWEB) February 22, 2012

An important new study released by a team of scientists at RhinoCyte™ Inc., Louisville, Ky., details promising results on the effectiveness of olfactory (nasal) stem cells in repairing spinal cord damage resulting from the most common cause of these injuries — contusions (bruising) due to major trauma. Their study is featured in the current issue of the Journal of Neurodegeneration and Regeneration.

The study, led by Dr. Fred Roisen, has great implication for the estimated 5 million people worldwide affected by spinal cord injuries – 1.275 million of them in the United States alone, where the cost of treatment exceeds $40.5 billion each year. Current treatment options are limited to retaining and retraining mobility; no drug therapies are available, but studies pertaining to stem cell treatments are showing great promise for these as well as other neurodegenerative conditions.

A previous study by the group made national headlines when lab rats whose spinal cords had been partially cut in the region of the animal’s neck in a way that disabled their front right paws were able to regain significant use of their paws after being injected with olfactory stem cells. The investigative team took the cells from the olfactory neurosensory epithelium — the part of the nose that controls the sense of smell — in adult volunteer donors who were already undergoing elective sinus surgery. The removal of the stem cells has no effect on the patients’ ability to smell. Also, the minimally invasive surgery is frequently done on an outpatient basis so the cells are readily available and, as such, are a potentially promising source of therapeutic stem cells.

The researchers isolated the stem cells and increased their numbers in the laboratory by growing them in an enriched solution. The cells were then injected into a group of lab rats. Twelve weeks later, these animals had regained control of their affected paws while a control group that received no cells had not.

This latest study continued that original work, by concentrating on contusions caused by blunt force trauma such as that resulting from an automobile accident or a fall. Spinal cord and head trauma are common among soldiers suffering serious combat injuries, too.

Two independent sets of experiments were conducted, beginning two weeks after the rats had received contusions administered in a computer-controlled surgery. In the first group, 27 out of 41 rats were injected with olfactory stem cells, while the remainder received none. In the second group, 16 rats were treated with olfactory stem cells, 11 received no treatment and 10 received stem cells grown from human skin to see how the olfactory cells compared with another stem cell source.

The results once again showed great promise, with 40 percent of the rats treated with the olfactory-derived stem cells showing significant improvement after just six weeks, compared to 30 percent of those treated with human skin-derived cells and only 9 percent of those receiving no treatment. In addition, the olfactory stem cell-treated rats showing the highest rate of improvement recovered much faster than the other groups.

“This is very exciting on numerous levels,” said Dr. Roisen. “As an autologous cell source — that is, the patient is both the donor and the recipient — olfactory stem cells bypass the time a patient must wait while a suitable donor is found, which can be critical to the outcome of the patient’s treatment. They also eliminate the need for immunosuppressive drugs, which have numerous negative side effects.

“And just as importantly, stem cells taken from the nose of an adult do away with the ethical concerns associated with using embryonic stem cells.”

The researchers are in the final stages of their enabling studies, which are scheduled to be completed by summer; Phase 1 safety studies could begin as soon as early next year.

Dr. Roisen is chief science officer and co-founder of RhinoCtye™, and a professor and chair of the University of Louisville School of Medicine’s Department of Anatomical Sciences and Neurobiology. The original work forming the basis for the contusion study was conducted by Dr. Roisen’s group at UofL and has been licensed to RhinoCtye™ (http://www.rhinocyte.com), a company he co-founded in 2005 with Dr. Chengliang Lu and Dr. Kathleen Klueber to develop and commercialize diagnostic tools and therapies for stem cell treatment of multiple degenerative and traumatic neurological diseases. RhinoCyte™ currently has three patents for olfactory stem cell treatments approved in the United States, Australia and Israel, with others pending worldwide.

###

Laurel Harper
Laurel92@msn.com
502-550-0089
Email Information

Read more:
Nasal Stem Cells Show Promise in Repairing Spinal Cord Damage Caused by Contusion

Related Post


categoriaSkin Stem Cells commentoComments Off on Nasal Stem Cells Show Promise in Repairing Spinal Cord Damage Caused by Contusion | dataFebruary 23rd, 2012

About...

This author published 4819 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024