New Mechanism of Bone Maintenance and Repair Discovered – Technology Networks

By daniellenierenberg

Led by researchers at Baylor College of Medicine, a study published in the journal Cell Stem Cell reveals a new mechanism that contributes to adult bone maintenance and repair and opens the possibility of developing therapeutic strategies for improving bone healing.

Adult bone repair relies on the activation of bone stem cells, which still remain poorly characterized, said corresponding author Dr. Dongsu Park, assistant professor of molecular and human genetics and of pathology and immunology at Baylor. Bone stem cells have been found both in the bone marrow inside the bone and also in the periosteum the outer layer of tissue that envelopes the bone. Previous studies have shown that these two populations of stem cells, although they share many characteristics, also have unique functions and specific regulatory mechanisms.

Of the two, periosteum stem cells are the least understood. It is known that they comprise a heterogeneous population of cells that can contribute to bone thickness, shaping and fracture repair, but scientists had not been able to distinguish between different subtypes of bone stem cells to study how their different functions are regulated.

In the current study, Park and his colleagues developed a method to identify different subpopulations of periosteum stem cells, define their contribution to bone fracture repair in live mouse models and identify specific factors that regulate their migration and proliferation under physiological conditions.

Periosteal stem cells are major contributors to bone healing

The researchers discovered specific markers for periosteum stem cells in mouse models. The markers identified a distinct subset of stem cells that contributes to life-long adult bone regeneration.

We also found that periosteum stem cells respond to mechanical injury by engaging in bone healing, Park said. They are important for healing bone fractures in the adult mice and, interestingly, their contribution to bone regeneration is higher than that of bone marrow stem cells.

In addition, the researchers found that periosteal stem cells also respond to inflammatory molecules called chemokines, which are usually produced during bone injury. In particular, they responded to chemokine CCL5.

Periosteal stem cells have receptors molecules on their cell surface that bind to CCL5, which sends a signal to the cells to migrate toward the injured bone and repair it. Deleting the CCL5 gene in mouse models resulted in marked defects in bone repair or delayed healing. When the researchers supplied CCL5 to CCL5-deficient mice, bone healing was accelerated.

The findings suggested potential therapeutic applications. For instance, in individuals with diabetes or osteoporosis in which bone healing is slow and may lead to other complications resulting from limited mobility, accelerating bone healing may reduce hospital stay and improve prognosis.

Our findings contribute to a better understanding of how adult bones heal. We think this is one of the first studies to show that bone stem cells are heterogeneous and that different subtypes have unique properties regulated by specific mechanisms, Park said. We have identified markers that enable us to tell bone stem cell subtypes apart and studied what each subtype contributes to bone health. Understanding how bone stem cell functions are regulated offers the possibility to develop novel therapeutic strategies to treat adult bone injuries.

Reference

Ortinau et al. (2019) Identification of Functionally Distinct Mx1+SMA+ Periosteal Skeletal Stem Cells. Cell Stem Cell. DOI: https://doi.org/10.1016/j.stem.2019.11.003

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Read more:
New Mechanism of Bone Maintenance and Repair Discovered - Technology Networks

Related Post


categoriaBone Marrow Stem Cells commentoComments Off on New Mechanism of Bone Maintenance and Repair Discovered – Technology Networks | dataDecember 12th, 2019

About...

This author published 4827 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2025