New research digs into the genetic drivers of heart failure, with an eye to precision treatments – STAT
By daniellenierenberg
When coronary arteries are blocked, starving the heart of blood, there are good medications and treatments to deploy, from statins to stents. Not so for heart failure, the leading factor involved in heart disease, the top cause of death worldwide.
Its whats on death certificates, said cardiologist Christine Seidman.
Seidman has long been interested in heart muscle disorders and their genetic drivers. She studies heart failure and other conditions that affect the myocardium the muscular tissue of the heart not the blood vessels where atherosclerosis and heart attacks come from, although their consequences are also felt in the myocardium, including heart failure.
advertisement
With her colleagues at Brigham and Womens Hospital and Harvard Medical School, she and a long list of international collaborators have been exploring the genetic underpinnings of heart failure. Based on experiments deploying a new technique called single-nucleus RNA sequencing on samples from heart patients, on Thursday they reported in Science their discovery of how genotypes change the way the heart functions.
Their work raises the possibility that some of the molecular pathways that lead to heart failure could be precisely targeted, in contrast to treating heart failure as a disease with only one final outcome.
advertisement
Were not there yet, but we certainly have the capacity to make small molecules to interfere with pathways that we think are deleterious to the heart in this setting, she said. To my mind, thats the way to drive precision therapeutics. We know the cause of heart failure. We intervene in a pathway that we know is activated. And for the first time, we have that information now from human samples, not from an experimental model.
Seidman talked with STAT about the research, including how snRNAseq solves the smoothie problem, and what it might mean for patients. The conversation has been edited for clarity and brevity.
What happens in heart failure?
The heart becomes misshapen in one of two ways. It either becomes hypertrophied, where the walls of heart muscle become thickened and the volume within the heart is diminished, in what we call hypertrophic cardiomyopathy. Or it becomes dilated, when the volume in the heart is expanded and the walls become stretched. I think of it as an overinflated balloon, and that is called dilated cardiomyopathy.
Hypertrophy and dilatation are known to cause the heart over time to have profoundly diminished functional capacity. And clinically, we call that heart failure, much more commonly arising from dilated cardiomyopathy.
What does it feel like to patients?
When we see patients clinically, theyre short of breath, they have fluid retention. When we look at their hearts, we see that the pump function is diminished. That has led to a hypothesis of heart failure as sort of the end stage of many different disorders, but eventually the heart walks down a final common pathway. Then you need a transplant or a left ventricular assist device, or youre going to die prematurely.
What can be done?
Heart failure is a truly devastating condition, and it can arise early in life, in middle age, and in older people. There is no treatment for it, no cure for it, except cardiac transplantation, of course, which provides a whole host of other problems.
How did you approach this problem?
One of the questions we wanted to answer is, are there signals that we can discern that say there are different pathways and there are molecules that are functioning in those pathways that ultimately converge for failure, but through different strategies of your heart?
We treat every patient with heart failure with diuretics. We give them a series of different medications to reduce the pressure against which the heart has to contract. Im clinically a cardiologist, but molecularly Im a geneticist, so it doesnt make sense. If your house is falling down because the bricks are sticking together or if its falling down because the roof leaks and the water is pooling, you do things differently.
Tell me how you used single-cell RNA sequencing to learn more.
Looking at RNA molecules gives us a snapshot of how much a gene is active or inactive at a particular time point. Until recently, we couldnt do that in the heart because the approach had been to take heart tissue, grind it all up, and look at the RNAs that are up or down. But that gives you what we call a smoothie: Its all the different component cells those strawberries, blueberries, bananas mixed together.
But theres a technology now called single-cell RNA sequencing. And that says, what are the RNAs that are up or down in the cardiomyocytes as compared to the smooth muscle cells, as compared to the fibroblasts, all of which are in the cells? You get a much more precise look at whats changing in a different cell type. And thats the approach that we use, because cardiomyocytes [the cells in the heart that make it contract] are very large. Theyre at least three times bigger than other cells. We cant capture the single cell it literally does not fit through the microfluidic device. And so we sequenced the nuclei, which is where the RNA emanates from.
What did you find?
There were some similarities, but what was remarkable was the degree of differences that we saw in cardiomyocytes, in endothelial cells, in fibroblasts. Theres a signature thats telling us I walked down this pathway as compared to a different one that caused the heart to fail, but through activation or lack of activation of different signals along the way.
And that to me is the excitement, because if we can say that, we can then go back and say, OK, what happens if we were to have tweaked the pathway in this genotype and a different pathway in a different genotype? Thats really what precision therapy could be about, and thats where we aim to get to.
Whats the next step?
It may be that several genotypes will have more similarities as compared to other genotypes. But understanding that, I think, will allow us to test in experimental models, largely in mice, but increasingly in cellular models of disease, in iPS [induced pluripotent stem] cells that we can now begin to use molecular technologies to silence a pathway and see what that does to the cardiomyocytes, or silence the fibroblast molecule and see what that does in that particular genotype.
To my mind, thats the way to drive precision therapeutics. We know the cause of heart failure. We intervene in a pathway that we know is activated. And for the first time, we have that information now from human samples, not from an experimental model.
What might this mean for patients?
If we knew that an intervention would make a difference thats where the experiments are we would intervene when we saw manifestations of disease. So the reason I can tell you with confidence that certain genes cause dilated cardiomyopathy is theres a long time between the onset of that expansion of the ventricle until you develop heart failure. So theres years for us to be able to stop it in its tracks or potentially revert the pathology, if we can do that.
What else can you say?
I would be foolish not to mention the genetic cause of dilated cardiomyopathy. Ultimately, if you know the genetic cause of dilated cardiomyopathy, this is where gene therapy may be the ultimate cure. Were not there yet, but we certainly have the capacity to make small molecules to interfere with pathways that we think are deleterious to the heart in this setting.
My colleagues have estimated that approximately 1 in 250 to 1 in 500 people may have an important genetic driver of heart muscle disease, cardiomyopathy. Thats a huge number, but not all of them will progress to heart failure, thank goodness. Around the world, there are 23 million people with heart failure. Its what ends up on most peoples death certificate. It is the most common cause of death.
Its a huge, huge burden. And there really is no cure for it except transplantation. We dont have a reparative capacity, so were going to have to know a cause and be able to intervene precisely for that cause.
Visit link:
New research digs into the genetic drivers of heart failure, with an eye to precision treatments - STAT
- FDA Grants Orphan Drug Designation to IPS HEARTs GIVI-MPC Stem Cell Therapy for Becker Muscular Dystrophy - Business Wire - January 14th, 2025
- GMP-compliant iPS cell lines show widespread plasticity in a new set of differentiation workflows for cell replacement and cancer immunotherapy -... - January 14th, 2025
- Stem cells head to the clinic: treatments for cancer, diabetes and Parkinsons disease could soon be here - Nature.com - December 27th, 2024
- Exclusive: Cell therapy startup Shinobi adds Borges as science chief, Katz as top medical officer - Endpoints News - December 18th, 2024
- Sumitomo Chemical and Sumitomo Pharma to Establish Regenerative Medicine and Cell Therapy Joint Venture - - December 18th, 2024
- Shinobi Strengthens Leadership to Propel Scalable Immune-Evasive Cell Therapies to the Clinic - The Eastern Progress Online - December 18th, 2024
- BrightPath Bio and Cellistic Announces Process Development and Manufacturing Collaboration for Phase 1 Clinical Trial of iPSC-derived BCMA CAR-iNKT... - December 18th, 2024
- Induced Pluripotent Stem Cells: Problems and Advantages when Applying ... - December 9th, 2024
- How Minaris is Tackling the Scalability Challenge in Cell and Gene Therapy: A Conversation with CEO, Dr. Hiroto Bando - geneonline - November 29th, 2024
- Toward Personalized Cell Therapies by Using Stem Cells 2013: BioMed Research International - Wiley Online Library - November 15th, 2024
- Cell therapy for heart disease and therapeutic cloning: will embryos re-enter the stem cell race? - Genethique - November 15th, 2024
- Cutting-edge stem cell therapy proves safe, but will it ever be ... - AAAS - November 6th, 2024
- Induced pluripotent stem cell - Wikipedia - October 21st, 2024
- What are iPS cells? | For the Public | CiRA | Center for iPS Cell ... - October 21st, 2024
- Nobel Winner Shinya Yamanaka: Cell Therapy Is Very Promising For Cancer, Parkinsons, More - Forbes - October 13th, 2024
- iPSCs Manufacturing for Cell-Based Therapies: A Market Analysis of Cell Types, Therapeutic Applications, Ma... - WhaTech - August 4th, 2024
- Abu Dhabi Stem Cells Center partners with Japan-based Kyoto University and Rege Nephro - ZAWYA - January 14th, 2024
- Eterna Therapeutics Enters Into Option and License Agreement with Lineage Cell Therapeutics to Develop Hypoimmune Pluripotent Cell Lines for Multiple... - March 1st, 2023
- What is an Intrusion Prevention System? Definition ... - Fortinet - January 27th, 2023
- What is an IPS Monitor? Monitor Panel Types Explained ... - January 27th, 2023
- IPS panel - Wikipedia - January 27th, 2023
- Cell and gene therapy products: what is an ATMP? - The Niche - January 3rd, 2023
- Cell Therapy - an overview | ScienceDirect Topics - November 22nd, 2022
- Ayala Pharmaceuticals Reports Third Quarter 2022 Financial Results and Provides Corporate Update - November 6th, 2022
- Aligos Therapeutics Presents Clinical Data for its Capsid Assembly Modulator, ALG-000184, at AASLD’s The Liver Meeting® 2022 - November 6th, 2022
- Correcting and Replacing: CinCor Reports Third Quarter Financial Results and Provides Corporate Update - November 6th, 2022
- NGM Bio Announces Poster Presentation Featuring Preclinical Characterization of NGM936 at Upcoming 2022 ASH Annual Meeting - November 6th, 2022
- Assembly Biosciences Presents New Data at AASLD The Liver Meeting® Highlighting Breadth of Virology Portfolio and Potential of Next-Generation Core... - November 6th, 2022
- CymaBay Therapeutics Presents Additional Analyses from Clinical Studies of Seladelpar for Patients with Primary Biliary Cholangitis at The Liver... - November 6th, 2022
- Immutep Announces Abstract Highlighting Eftilagimod Alpha Selected for SITC 2022 Annual Meeting Press Conference - November 6th, 2022
- Osteal Therapeutics, Inc. Completes Enrollment in APEX Phase 2 Clinical Trial of VT-X7 for Periprosthetic Joint Infection - November 6th, 2022
- PMV Pharmaceuticals Appoints Industry Veteran Dr. Carol Gallagher to Board of Directors - November 6th, 2022
- ORYZON to Give Updates on Corporate Progress in November - November 6th, 2022
- Terns Pharmaceuticals Highlights Results from Phase 1 Clinical Trial of TERN-501 at AASLD The Liver Meeting® 2022 - November 6th, 2022
- Aligos Therapeutics Presents Clinical Data for its NASH Program and Nonclinical Data for its Chronic Hepatitis B Portfolio at AASLD’s The Liver... - November 6th, 2022
- First U.S. patient receives autologous stem cell therapy to treat dry ... - October 29th, 2022
- BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH - Yahoo Finance - October 13th, 2022
- iPS-Cell Based Cell Therapies for Genetic Skin Disease - October 5th, 2022
- Jcr Pharmaceuticals Co., Ltd. and Sysmex Establish A Joint Venture in the Field of Regenerative Medicine and Cell Therapy - Marketscreener.com - October 5th, 2022
- MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress - Yahoo... - October 5th, 2022
- Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe - Digital Journal - September 27th, 2022
- Implanting a Patient's Own Reprogrammed Stem Cells Shows Early Positive Results for Treating Dry AMD - Everyday Health - September 19th, 2022
- Current status of umbilical cord blood storage and provision to private biobanks by institutions handling childbirth in Japan - BMC Medical Ethics -... - September 19th, 2022
- Global Induced Pluripotent Stem Cells Market (2022 to 2027) - Growth, Trends, Covid-19 Impact and Forecasts - ResearchAndMarkets.com - Business Wire - September 11th, 2022
- Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials... - September 11th, 2022
- Improving the differentiation potential of pluripotent stem cells by optimizing culture conditions | Scientific Reports - Nature.com - August 26th, 2022
- Creative Biolabs Leads the Forefront of iPSC Technology - Digital Journal - August 10th, 2022
- The zinc link: Unraveling the mechanism of methionine-mediated pluripotency regulation - EurekAlert - July 25th, 2022
- Live Cell Metabolic Analysis Paving the Way for Metabolic Research and Cell & Gene Therapy, Upcoming Webinar Hosted by Xtalks - Benzinga - July 16th, 2022
- PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT - Dove Medical Press - July 8th, 2022
- Gene & Cell Therapy FAQs | ASGCT - American Society of Gene & Cell ... - June 30th, 2022
- The benefits and risks of stem cell technology - PMC - June 30th, 2022
- The Future of Parkinson Disease Therapies and the Challenges With Stem Cell Therapies - Neurology Live - June 20th, 2022
- Umoja Biopharma and TreeFrog Therapeutics Announce Collaboration to Address Current Challenges Facing Ex Vivo Allogeneic Therapies in Immuno-Oncology... - June 11th, 2022
- Newsletter April 2022 - Progress in Cline's cell lab and in the stem cell therapy field - Marketscreener.com - April 29th, 2022
- Healios K K : Joint Research with the Division of Regenerative Medicine, the Institute of Medical Science for Developing a Mass Production Method of... - April 3rd, 2022
- A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy - March 22nd, 2022
- The Pipeline for of iPSC-Derived Cell Therapeutics in 2022 ... - March 22nd, 2022
- Cell Therapy Processing Market CAGR of 27.80% Share, Scope, Stake, Trends, Industry Size, Sales & Revenue, Growth, Opportunities and Demand with... - January 3rd, 2022
- Stem cell therapy for diabetes - PubMed Central (PMC) - November 22nd, 2021
- Stem cells: Therapy, controversy, and research - October 5th, 2021
- How much does stem cell therapy cost in 2021? - The Niche - October 5th, 2021
- "Stem cell-based therapeutics poised to become mainstream option - BSA bureau - October 5th, 2021
- Exclusive Report on Stem Cell Therapy in Cancer Market | Analysis and Opportunity Assessment from 2021-2028 |Aelan Cell Technologies, Baylx, Benitec... - August 6th, 2021
- Asia-Pacific Cell Therapy Market 2021-2028 - Opportunities in the Approval of Kymriah and Yescarta - PRNewswire - August 6th, 2021
- Base Editing as Therapy for Common Inherited Lung and Liver Disease Shows Promise - Clinical OMICs News - July 22nd, 2021
- MoHAP, EHS reveal immunotherapy for cancer, viral infections at Arab Health 2021 - WAM EN - June 25th, 2021
- Kiromic Announces Expansion of In-House Cell therapy cGMP Manufacturing Facility and the Appointment of Industry Veteran Ignacio Nez as Chief... - June 8th, 2021
- Cryopreservation Media helps in Development of a Cell Therapy for Parkinson's Disease - Microbioz India - June 8th, 2021
- Accelerated Biosciences' Immune-Privileged Human Trophoblast Stem Cells (hTSCs) Offer Breakthrough Opportunities in Cancer-Targeting Therapeutics and... - May 15th, 2021
- Factor Bioscience to Deliver Six Digital Presentations at the American Society of Gene & Cell Therapy (ASGCT) 24th Annual Meeting - PRNewswire - May 15th, 2021
- St. Jude's $11.5B, six-year plan aims to improve global outcomes for children with cancer and catastrophic diseases - The Cancer Letter - May 15th, 2021
- Synthego Launches Eclipse Platform to Accelerate Research and Development of Next-generation Medicines - The Scientist - April 19th, 2021
- The Google Play video app will leave Roku, Vizio, LG and Samsung's TV platforms - Yahoo Canada Finance - April 19th, 2021
- New Controversy for Stem Cell Therapy That Repairs Spinal Cords - The Great Courses Daily News - March 8th, 2021
- Brentuximab Vedotin Plus Chemotherapy Works as a Primary Option for Hodgkin Lymphoma - Targeted Oncology - March 8th, 2021
- Induction of muscle-regenerative multipotent stem cells from human adipocytes by PDGF-AB and 5-azacytidine - Science Advances - January 14th, 2021
- A Potential Therapy for One of the Leading Causes of Heart Disease - PRNewswire - December 10th, 2020
- Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach - BioSpace - December 9th, 2020
- Induced Pluripotent Stem Cell (iPS Cell) Applications in 2020 - November 28th, 2020