New Stem Cell Finding Bodes Well for Future Medical Use in Humans

By daniellenierenberg

Concerns that stem cells could cause cancer in recipients are fading further with a new study

New bone formation (stained bright green under ultra-violet light) was seen in monkeys given their own reprogrammed stem cells. Courtesy of Nature magazine

A major concern over using stem cells is the risk of tumors: but now a new study shows that It takes a lot of effort to get induced pluripotent stem (iPS) cells to grow into tumors after they have been transplanted into a monkey. The findings will bolster the prospects of one day using such cells clinically in humans.

Making iPS cells from an animal's own skin cells and then transplanting them back into the creature also does not trigger an inflammatory response as long as the cells have first been coaxed to differentiate towards a more specialized cell type. Both observations, published inCell Reports today, bode well for potential cell therapies.

It's important because the field is very controversial right now, saysAshleigh Boyd,a stem-cell researcher at University College London, who was not involved in the work. It is showing that the weight of evidence is pointing towards the fact that the cells won't be rejected.

Pluripotent stem cells can be differentiated into many different specialized cell types in culture and so are touted for their potential as therapies to replace tissue lost in diseases such as Parkinsons and some forms of diabetes and blindness. iPS cells, which are made by reprogramming adult cells, have an extra advantage because transplants made from them could be genetically matched to the recipient.

Researchers all over the world are pursuing therapies based on iPS cells, and a group in Japan began enrolling patients for a human study last year. But work in mice has suggested controversially that even genetically matched iPS cellscan trigger an immune response, and pluripotent stem cells can also form slow-growing tumors, another safety concern.

Closer to human Cynthia Dunbar, a stem-cell biologist at the National Institutes of Health in Bethesda, Maryland, who led the new study, decided to evaluate both concerns in healthy rhesus macaques. Human stem cells are normally only studied for their ability to form tumors in mice as a test of pluripotency if the animals immune systems are compromised, she says.

We really wanted to set up a model that was closer to human. It was somewhat reassuring that in a normal monkey with a normal immune system you had to give a whole lot of immature cells to get any kind of tumour to grow, and they were very slow growing.

Dunbar and her team made iPS cells from skin and white blood cells from two rhesus macaques, and transplanted the iPS cells back into the monkeys that provided them. It took 20 times as many iPS cells to form a tumor in a monkey, compared with the numbers needed in an immunocompromised mouse. Such information will be valuable for assessing safety risks of potential therapies, Dunbar says. And although the iPS cells did trigger a mild immune response attracting white blood cells and causing local inflammation iPS cells that had first been differentiated to a more mature state did not.

See more here:
New Stem Cell Finding Bodes Well for Future Medical Use in Humans

Related Post


categoriaSkin Stem Cells commentoComments Off on New Stem Cell Finding Bodes Well for Future Medical Use in Humans | dataMay 16th, 2014

About...

This author published 4799 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024