New Therapies in Development for Myelofibrosis – Targeted Oncology
By daniellenierenberg
Building on the transformative impetus from the first Food and Drug Administration (FDA)-approved Janus kinase (JAK) 1/2 inhibitor, ruxolitinib (Jakafi), in the clinical landscape of myeloproliferative neoplasms (MPNs), we are entering a new era of multiple JAK inhibitors and other diverse classes of drugs in rapid clinical development. Advancements in elucidating the pathophysiology of MPNs have spurred significant progress in developing novel promising agents or combination regimens with ruxolitinib to treat patients who are unresponsive to standard treatments or have specific clinical needs.
In myelofibrosis (MF), the most aggressive MPN, with an average survival of 5 to 7 years, abnormal clonal hematopoietic stem cell proliferation in the bone marrow (BM) leads to liberation of pro-inflammatory cytokines and extensive fibrosis, causing progressive pancytopenia, especially anemia and thrombocytopenia, along with splenomegaly and other symptoms, compromising quality of life.1
For nearly a decade, ruxolitinib has been the centerpiece therapy for patients with MF, markedly improving splenomegaly and constitutional symptoms and providing survival benefit.2 The second FDA-approved JAK2 inhibitor, fedratinib (Inrebic), may actually be a good second-line option for patients who are ruxolitinib-resistant with intermediate-2 and high-risk MF (primarily thrombocytopenic and characterized by platelet counts 50100 109/L).3 At present, 2 ongoing phase 3 clinical trials, the single-arm FREEDOM trial (NCT03755518) and the double-arm FREEDOM 2 trial (NCT03952039), are assessing the efficacy and safety of fedratinib in patients with MF who are resistant/refractory/intolerant to ruxolitinib. The FREEDOM trials are important because the previous JAKARTA studies (NCT01523171, NCT01437787) were placed on hold or terminated given concerns for the development of Wernicke encephalopathy. Pacritinib is a potent inhibitor of both JAK2 and fms-related receptor tyrosine kinase
3, or FLT3, but does not affect JAK1. Pacritinib is being evaluated in comparison with the physicians choice in an ongoing phase 3 trial (PACIFICA; NCT03165734) in patients with MF and severe thrombocytopenia (baseline platelet count < 50 109/L) at the optimal dose determined in the PAC203 study (200 mg twice daily; NCT03165734).3 Successful clinical development of pacritinib will provide a non-myelosuppressive JAK2 inhibitor for frontline treatment of patients with MF who have severe thrombocytopenia, a setting currently lacking approved drugs. Another JAK1/2 inhibitor that is in advanced clinical development and complements its predecessors is momelotinib, possessing the exclusive attribute to improve anemia, which becomes severe in patients with MF.3 At present, momelotinib is undergoing evaluation in patients who are symptomatic and anemic with advanced MF, previously treated with a JAK inhibitor, in a phase 3 trial (MOMENTUM; NCT04173494); the comparator drug is danazol.
Targeting anemia and thrombocytopenia. Given that patients with MF experience disease-associated and JAK inhibitor-induced anemia, several clinical trials have been evaluating drugs counteracting anemia, as monotherapies or in combination with ruxolitinib, in patients with MF-associated anemia.4 Currently, a global, multicenter phase 2 trial is under way to evaluate the safety and efficacy of luspatercept-aamt (Reblozyl), an activin receptor ligand trap that enhances late-stage erythropoiesis in patients with anemia and MF, including ruxolitinib-treated, transfusion-dependent individuals; a phase 3 trial (INDEPENDENCE) is planned for 2020. Interim results of the phase 2 study demonstrated significant efficacy of luspatercept-aamt, achieving reduction in red blood cell transfusion burden in ruxolitinib-treated patients with MF. Thalidomide (Thalomid), an immunomodulatory agent, significantly improved anemia and thrombocytopenia (platelet counts increased in 60% of patients) in a phase 2 trial evaluating ruxolitinib-treated patients with MF and baseline thrombocytopenia (NCT03069326).5
Synergistic combinations with ruxolitinib targeting epigenetics and JAK2 (TABLE). CPI-0610 is a selective bromodomain and extraterminal protein inhibitor that improved spleen volume, anemia, BM fibrosis, total symptom score, and transfusion dependence (alone or with ruxolitinib) in patients with MF who are enrolled in the global phase 2 MANIFEST study (NCT02158858).3 Furthermore, a phase 1 clinical trial combining an inhibitor of heat shock protein 90 (JAK2 is its chaperone protein), PU-H71, with ruxolitinib in patients with primary/secondary MF is under way (NCT03935555).3 The previous 2 trials are supported by preclinical data showing drug synergism. In a phase 2 trial of ruxolitinib/azacitidine (hypomethylating agent) in patients with MF, synergism was demonstrated in spleen length reduction and BM fibrosis improvement compared with ruxolitinib monotherapy (NCT01787487).5
Synergistic combinations with ruxolitinib targeting antiapoptotic proteins and JAK2. Navitoclax is an orally bioavailable inhibitor of the antiapoptotic B-cell lymphoma 2 (BCL2) family of proteins (primarily BCL extra-large [XL]). In preclinical studies, the nonclinical analogue of navitoclax, ABT-737, in combination with ruxolitinib showed synergism in inducing apoptosis of JAK2 V617F-driven MPN cell lines. Interim data from an ongoing phase 2 clinical trial evaluating navitoclax in combination with ruxolitinib in ruxolitinib-treated patients with MF (with baseline platelet count 100 109/L) showed reduction in spleen volume and BM fibrosis (1 grade) and improvement in total symptom score in a proportion of the patients (NCT03222609).3
Imetelstat is a short oligonucleotide telomerase inhibitor that possibly prolonged median overall survival in patients with MF in the higher-dose (9.4-mg/kg) arm of the phase 2 IMbark study (NCT02426086).3 A phase 3 trial comparing imetelstat to best available therapy in patients with refractory MF is planned for early 2021.
PRM-151, a plasma-derived analogue of the human antifibrotic protein pentraxin 2, improved BM fibrosis in mice models and patients with MF in preclinical and phase 1/2 clinical studies, respectively.3 The promising results merit a phase 3 trial, especially given the scarcity of antifibrotic agents.
The two relatively indolent MPN subtypes, polycythemia vera (PV) and essential thrombocythemia (ET), are characterized by abnorabnormal proliferation of myeloid cells, resulting in elevated blood counts (erythrocytosis and thrombocytosis in PV and ET, respectively), considerable risk of thrombosis and hemorrhage, and progression to secondary MF and acute myeloid leukemia (more common in PV than ET).6 In PV and ET, therapies are aimed at reducing risk of thrombosis, which is higher in patients over 60 years old or with a history of thrombosis, and in ET, when the calreticulin gene, CALR, is absent. A particularly promising agent for the two indolent MPNs is the long-acting ropeginterferon -2b, which was approved in Europe for frontline treatment of high-risk patients with PV and without symptomatic splenomegaly on the basis of the PROUD/CONTINUATION-PV studies [EudraCT, 2012-005259-18 (PROUD-PV) and 2014-001357- 17 (CONTINUATION-PV)].7 The previous investigations demonstrated superiority of ropeginterferon -2b versus hydroxyurea after 3 years of therapy. Besides awaiting possible approval of ropeginterferon -2b to treat patients with PV in the United States, a phase 3 trial of ropeginterferon -2b versus anagrelide in hydroxyurea-resistant/intolerant patients with ET has been planned to start in 2020. Givinostat, an inhibitor of histone deacetylases, demonstrated promising clinical responses (reduction in pruritus and thrombosis, and normalization of hematological parameters) in phase 1/2 studies in patients with JAK2 V617F positive PV and is entering a phase 3 trial in 2021.7 Currently, hydroxyurea and ruxolitinib are the first- and second-line treatments for high-risk patients with PV, respectively, and hydroxyurea is the first-line treatment for ET.
Herein we highlighted an array of drugs ranging from new JAK inhibitors to an antifibrotic agent, epigenetic modifiers, and telomerase and BCL-XL/BCL2 inhibitorsthat are in early or advanced clinical development in MPN. We are looking forward to enrichment of the MPN arsenal with new disease-modifying agents complementing the clinical benefits of ruxolitinib and fulfilling unmet needs in this population.
References:
1. Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10(1):156. doi:10.1186/s13045-017-0527-7
2. Bose P, Verstovsek S. Management of myelofibrosis after ruxolitinib failure. Leuk Lymphoma. Published online April 16, 2020. doi:10.1080/1 0428194.2020.1749606
3. Bose P, Verstovsek S. Management of myelofibrosis-related cytopenias. Curr Hematol Malig Rep. 2018;13(3):164-172. doi:10.1007/s11899- 018-0447-9
3. Bose P, Alfayez M, Verstovsek S. New concepts of treatment for patients with myelofibrosis. Curr Treat Options Oncol. 2019;20(1):5. doi:10.1007/s11864-019-0604-y
4. Bose P, Verstovsek S. Updates in the management of polycythemia vera and essential thrombocythemia. Ther Adv Hematol. 2019;10:2040620719870052. doi:10.1177/2040620719870052
5. Gisslinger H, Klade C, Georgiev P, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7(3):e196-e208. doi:10.1016/S2352- 3026(19)30236-4
6. Chifotides HT, Bose P, Verstovsek S. Givinostat: an emerging treatment for polycythemia vera. Expert Opin Investig Drugs. 2020;29(6):525- 536. doi:10.1080/13543784.2020.1761323
Read more from the original source:
New Therapies in Development for Myelofibrosis - Targeted Oncology
- Discovery of lung-based blood stem cells may transform transplant therapies - Medical Xpress - March 1st, 2025
- VUMC part of new study validating curative therapy for sickle cell disease - VUMC Reporter - March 1st, 2025
- What Is the Role of MRD Testing Before HSCT in MDS/MPN? - DocWire News - March 1st, 2025
- Melphalan-based conditioning with post-transplant cyclophosphamide for peripheral blood stem cell transplantation: donor effect - Nature.com - March 1st, 2025
- Mesenchymal Stem Cells Market Projected to Reach USD 11.26 Billion by 2034, Growing at a CAGR of 12.9% - openPR - March 1st, 2025
- See snazzy slugs in all their luminous glory Februarys best science images - Nature.com - March 1st, 2025
- On the origin of neutrophils - Nature.com - March 1st, 2025
- Four-year-old donates stem cells to save her baby sister from blood cancer in Odisha - The Hindu - February 20th, 2025
- Effect of pre-transplant cytoreductive therapy on the outcomes of patients with MDS or secondary AML evolving from MDS undergoing allo-HSCT: a... - February 20th, 2025
- A heart disease trigger that lurks inside bone marrow - Harvard Health - February 20th, 2025
- 4-year-old donates stem cells to save sister as SCB performs first-of-a-kind bone marrow transplant in Odisha - OTV News - February 20th, 2025
- KU Cancer Center recognized for transplant that saved 1-year-olds life - WDAF FOX4 Kansas City - February 20th, 2025
- Orca-T With RIC Is Safe in Advanced Hematologic Malignancies - OncLive - February 20th, 2025
- SCB conducts Odisha's first bone marrow transplant on two-year-old - The New Indian Express - February 20th, 2025
- Bahrain's pioneering use of sickle cell disease treatment hailed by medical experts - The National - February 20th, 2025
- Cancer survivor is the first monumental bone marrow transplant patient in Baton Rouge in 8 years - NOLA.com - February 11th, 2025
- Autologous Cell Therapy Market to Hit Valuation of US$ 44.55 Billion By 2033 | Astute Analytica - GlobeNewswire - February 11th, 2025
- Nanoparticle that cuts middlemen could improve stem cell therapy - Futurity: Research News - January 31st, 2025
- GATA2 mutated allele specific expression is associated with a hyporesponsive state of HSC in GATA2 deficiency syndrome - Nature.com - January 31st, 2025
- Coordinated immune networks in leukemia bone marrow microenvironments distinguish response to cellular therapy - Science - January 31st, 2025
- How the bone marrow microbiome responds to immunotherapy - Chemical & Engineering News - January 31st, 2025
- My Experience With Stem Cell Therapy: Snake Oil or Silver Bullet? - GearJunkie - January 31st, 2025
- Hematopoietic Stem Cell Transplantation - StatPearls - NCBI ... - January 22nd, 2025
- Doctors retrieve stem cells from 20-month-old to treat thalassaemic sister - The Times of India - January 22nd, 2025
- YolTech Therapeutics to Initiate a Clinical Trial for YOLT-204, a First-in-Class Bone Marrow-Targeted In Vivo Gene Editing Therapy for -Thalassemia -... - January 22nd, 2025
- School of Medicine professor receives grant to study improved cancer treatments - Mercer University - January 14th, 2025
- 1st stem cell therapy, new HIV drug approved - ecns - January 5th, 2025
- Suppression of thrombospondin-1mediated inflammaging prolongs hematopoietic health span - Science - January 5th, 2025
- A pilot raced through the airport to surprise an old friend: the woman who saved his life - CNN - December 27th, 2024
- Types of Stem Cell and Bone Marrow Transplants - December 27th, 2024
- Explained: What is mesenchymal stem cell therapy? - Drug Discovery News - December 18th, 2024
- Stem Cell Transplants Offer New Hope for Saving the Worlds Corals - Technology Networks - December 18th, 2024
- Scientists Present Research on Novel Cancer Therapies at ASH - City of Hope - December 18th, 2024
- Navigating CAR-T cell therapy long-term complications - Nature.com - December 18th, 2024
- High-dose chemotherapy followed by autologous stem cell transplant ineffective for patients with mantle cell lymphoma - News-Medical.Net - December 18th, 2024
- Stem Cell Therapy Market Is Expected To Reach Revenue Of - GlobeNewswire - December 18th, 2024
- The Importance of Cellular Therapy in the Clinical Case of a Young Man With a Challenging Precursor B-cell Lymphoblastic Leukemia - Cureus - December 18th, 2024
- A search for the perfect match, Apex six year old in need of donor - CBS17.com - December 18th, 2024
- New insights into survival of breast cancer cells in the bone marrow - News-Medical.Net - December 9th, 2024
- Cellular trafficking and fate mapping of cells within the nervous system after in utero hematopoietic cell transplantation - Nature.com - December 9th, 2024
- Saving lives, one stem cell at a time - Texas A&M The Battalion - December 9th, 2024
- Turn Biotechnologies Announces Landmark Study to Assess Effectiveness of ERA Therapy in Restoring Bone Marrow - PR Newswire UK - December 9th, 2024
- Orca Bio Presents Three-Year Survival Data with Orca-T in Patients with Hematological Malignancies at the 66th ASH Annual Meeting - Yahoo Finance - December 9th, 2024
- You are the match. How UNC student honored her late grandfather with life-saving effort - Raleigh News & Observer - November 29th, 2024
- scRNA-seq revealed transcriptional signatures of human umbilical cord primitive stem cells and their germ lineage origin regulated by imprinted genes... - November 29th, 2024
- Atlanta pilot with an aggressive cancer finds lifesaving help from a stranger and a simple test - The Atlanta Journal Constitution - November 29th, 2024
- Researchers have brought the promise of stem cell therapies closer to reality - The Week - November 29th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to ... - November 15th, 2024
- Hematopoietic Stem Cells and Their Niche in Bone Marrow - November 15th, 2024
- Bone Marrow Transplant Program - Overview - Mayo Clinic - November 15th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to Cadavers - WIRED - November 15th, 2024
- More stem cells for sickle cell gene therapy readied with motixafortide - Sickle Cell Disease News - November 15th, 2024
- Skull bone marrow expands throughout life and remains healthy during aging, researchers discover - Medical Xpress - November 15th, 2024
- Adult skull bone marrow is an expanding and resilient haematopoietic reservoir - Nature.com - November 15th, 2024
- Evaluation of standard fludarabine dosing and corresponding exposures in infants and young children undergoing hematopoietic cell transplantation -... - November 15th, 2024
- Stem cells grown in space show super powers but theres a catch - Study Finds - November 15th, 2024
- Getting a Stem Cell or Bone Marrow Transplant - October 21st, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 21st, 2024
- 1.5 Lakh Indians Register To Save Lives: Join the Mission To Fight Blood Cancer - The Better India - October 21st, 2024
- How Stem Cell and Bone Marrow Transplants Are Used to Treat Cancer - October 13th, 2024
- Stem Cell (Bone Marrow) Transplants - MD Anderson Cancer Center - October 13th, 2024
- Donating Bone Marrow and Stem Cells: The Process and What To Expect - October 13th, 2024
- What to expect as a stem cell or bone marrow donor - October 13th, 2024
- Structural organization of the bone marrow and its role in ... - October 13th, 2024
- Stem cell donor from down the road saved my life after global search - BBC.com - September 23rd, 2024
- Awaiting the call: family hopes to find blood stem cell donor - Claremont Courier - September 23rd, 2024
- Michigan woman one of first in world to successfully receive bone marrow from deceased donor - WDIV ClickOnDetroit - September 23rd, 2024
- Next-generation stem cell transplant: Revolutionizing a lifesaving cancer therapy - The Business Journals - September 23rd, 2024
- Sophie's life was saved by a stranger. Some in her position have an 'unfair' disadvantage - SBS News - September 23rd, 2024
- What Are Leukemia and Lymphoma and How Are They Treated? - LVHN News - September 23rd, 2024
- Giralt on MDS Transplant Timing and Candidacy - Targeted Oncology - September 14th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 14th, 2024
- A practical guide to therapeutic drug monitoring in busulfan: recommendations from the Pharmacist Committee of the European Society for Blood and... - September 14th, 2024
- ISU researcher blown away by blood cell replication discovery - Radio Iowa - September 14th, 2024
- Pausing biological clock could give boost to lab-produced blood stem cells - Phys.org - September 14th, 2024
- 9-year-old gets successful bone marrow transplant - The Times of India - September 14th, 2024
- Dr. Crandall: Stem Cell Treatment Heals the Heart - Newsmax - September 3rd, 2024
- Orion Corporation: Managers’ transactions – Hao Pan - August 19th, 2024
- BioCorRx Reports Business Update for the Second Quarter of 2024 - August 19th, 2024
- Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern, Eliminates... - August 19th, 2024
