Page 106«..1020..105106107108..120130..»

Tiziana Life Sciences Announces Resignation of CEO

By Dr. Matthew Watson

NEW YORK, July 15, 2022 (GLOBE NEWSWIRE) -- Tiziana Life Sciences Ltd.(Nasdaq: TLSA) (“Tiziana” or the “Company”), a biotechnology company enabling breakthrough immunotherapies via novel routes of drug delivery, today announces that the Board of Directors has accepted the voluntary resignation of Dr. Kunwar Shailubhai as Chief Executive Officer, Chief Scientific Officer and Board director, effective as of August 1, 2022. Dr. Shailubhai resigned for personal reasons, and his resignation is not related to any disagreement with the Company on any matter relating to the Company’s operations, policies or practices.

Go here to see the original:
Tiziana Life Sciences Announces Resignation of CEO

To Read More: Tiziana Life Sciences Announces Resignation of CEO
categoriaGlobal News Feed commentoComments Off on Tiziana Life Sciences Announces Resignation of CEO | dataJuly 16th, 2022
Read All

Aeterna Zentaris Announces Shareholder Approval of Share Consolidation

By Dr. Matthew Watson

TORONTO, ONTARIO, July 15, 2022 (GLOBE NEWSWIRE) -- Aeterna Zentaris Inc. (NASDAQ: AEZS) (TSX: AEZS) ("Aeterna" or the "Company"), a specialty biopharmaceutical company developing and commercializing a diversified portfolio of pharmaceutical and diagnostic products, today announced that the proposed consolidation of the Company’s shares (the “Share Consolidation”) was approved at its reconvened annual meeting of shareholders (the “Meeting”) held today.

Read more:
Aeterna Zentaris Announces Shareholder Approval of Share Consolidation

To Read More: Aeterna Zentaris Announces Shareholder Approval of Share Consolidation
categoriaGlobal News Feed commentoComments Off on Aeterna Zentaris Announces Shareholder Approval of Share Consolidation | dataJuly 16th, 2022
Read All

Agra Ventures Announces Resignation of Brian O’Neill as Director

By Dr. Matthew Watson

VANCOUVER, British Columbia, July 15, 2022 (GLOBE NEWSWIRE) -- Agra Ventures Ltd. (“AGRA” or the “Company”) (CSE: AGRA) (OTC: AGFAF) (FRA: PU30), a growth-oriented and diversified company focused on the international cannabis industry, announces the resignation of Brian O’Neill as Director of the Company, effective immediately. The Company would like to thank Mr. O’Neill for his time and service to AGRA and wish him well with his future endeavours.

Read the rest here:
Agra Ventures Announces Resignation of Brian O’Neill as Director

To Read More: Agra Ventures Announces Resignation of Brian O’Neill as Director
categoriaGlobal News Feed commentoComments Off on Agra Ventures Announces Resignation of Brian O’Neill as Director | dataJuly 16th, 2022
Read All

Stem Cells Used to Repair Heart Defects in Children – NBC 5 Dallas-Fort Worth

By daniellenierenberg

Almost one out of 100 babies are born with a heart defect each year in the United States. Many of these babies will need surgery within weeks of birth, followed by more surgeries throughout their lives. Now, doctors are turning to stem cells to give big hope for little hearts.

Hypoplastic left heart syndrome is a complex congenital heart disease. It is where the left ventricle does not develop, Sunjay Kaushal, MD, Ph.D., Chief of Pediatric Cardiac Surgery at Lurie Childrens Hospital in Chicago, explained.

Hypoplastic left heart syndrome

Those newborns depend solely on their right ventricles to pump blood throughout their bodies.

Kaushal emphasizes, These babies need surgical intervention in the first weeks of life.

Between 15% and 20% of those babies will not live to see their first birthday. For the little ones who do, medications and implanted devices can help, but ultimately, those children will need a heart transplant to survive.

That right ventricle becomes tired. It doesn't pump blood efficiently, Kaushal further explains.

The latest news from around North Texas.

Pediatric cardiac surgeons at Lurie Childrens Hospital are injecting stem cells directly into the heart to revitalize the worn-out right ventricle.

We're trying to see if we can actually put stem cells in there in order to remodel, rejuvenate that right ventricle in order to pump blood more efficiently for that baby, Kaushal said.

In the long run, stem cell therapy could possibly prevent those children from needing a heart transplant at all.

Kaushal added, I think that these studies could be game-changing for our babies.

They said 38 patients will be enrolled at seven clinical sites across the United States for a phase two clinical trial this year. Researchers hope that eventually, the stem cell injections will not have to be given as an injection into the heart, but as an intravenous injection like other medicine.

See the rest here:
Stem Cells Used to Repair Heart Defects in Children - NBC 5 Dallas-Fort Worth

To Read More: Stem Cells Used to Repair Heart Defects in Children – NBC 5 Dallas-Fort Worth
categoriaCardiac Stem Cells commentoComments Off on Stem Cells Used to Repair Heart Defects in Children – NBC 5 Dallas-Fort Worth | dataJuly 16th, 2022
Read All

Pneumonia and Heart Disease: What You Should Know – Healthline

By daniellenierenberg

Your heart and lungs share a close relationship, each relying on the other to replenish your blood with oxygen, remove wastes, and move blood and nutrients around your body.

When one of these players is underperforming or damaged, the other is quickly affected.

Pneumonia is an infection in one or both lungs. The tiny air sacs (alveoli) that move gases like oxygen in and out of your blood fill with fluid or pus.

This article will explore how pneumonia can affect how well your heart works and what can happen if you already have heart disease and then develop pneumonia.

Coronary artery disease is the most common form of heart disease in the United States. It develops when cholesterol and other substances build up in your blood vessels specifically the coronary arteries that supply blood to your heart.

Many things can lead to this buildup, including diet, lifestyle choices, and genetics.

The buildup of substances in your blood vessels is dangerous on its own since it can restrict blood flow to the heart and other body parts. But its even more serious when pieces of this buildup called plaques break off from the walls of your blood vessels.

When these pieces break off, they can travel to other areas of the body like the brain or heart, cutting off the blood supply to these organs resulting in a stroke or heart attack.

On its own, pneumonia is not a heart disease. Its a lung infection caused by bacteria or viruses.

However, heart disease complications like congestive heart failure can cause a condition similar to pneumonia.

Certain types of heart failure can lead to pulmonary edema. In this case, the heart is too weak to effectively pump blood out to the body, so the blood backs up into the heart and eventually into the lungs.

As this backed-up blood builds up in the lungs, pressure in the blood vessels of your lungs increases, and it can cause fluid buildup in the alveoli.

This results in an effect similar to pneumonia, where these air sacs fill with fluid.

Pneumonia is an infection that can cause inflammation throughout the body. This inflammation can lead to other complications, including an increased risk that bits of plaque can break free from your vessel walls and lead to heart attack or stroke.

Even without existing coronary artery disease or plaque buildup, the body-wide inflammation that pneumonia triggers can cause its own problems.

Inflammation can interfere with the normal function of all kinds of systems in your body especially the heart. This makes heart failure one of the most common complications of pneumonia.

About 30% of people hospitalized with community-acquired pneumonia develop heart failure and other cardiovascular problems, but the risk isnt always immediate. Research indicates that the greatest risk of heart complications occurs in the month after a pneumonia diagnosis, and the risk can continue for up to a decade.

It can be difficult to tell when pneumonia is affecting your heart, as pneumonia and heart disease can share symptoms including:

Additional symptoms you may experience with pneumonia that are not as common with heart disease include:

Inflammation in response to a pneumonia infection has some of the greatest impact on your heart.

Although heart damage from pneumonia can happen in anyone, it affects people with preexisting heart disease the most.

Among people who develop pneumonia with preexisting heart failure, about 1.4% who are treated in the outpatient setting find their heart failure gets worse after pneumonia. That percentage increases to 24% in people with more severe pneumonia that requires hospitalization.

Aside from inflammation, some individual cardiac symptoms or complications that can develop after a bout with pneumonia include:

The relationship between pneumonia and cardiovascular disease goes both ways: Pneumonia can increase the risk of heart disease, and a history of heart disease can increase the risk of pneumonia.

One 2018 study found that people with cardiovascular diseases heart failure in particular are three times more likely than others to develop community-acquired pneumonia.

Generally, the best way to prevent problems like pneumonia and heart failure is to take care of your overall health.

This means:

People with heart disease are generally recommended to stay up-to-date on various vaccinations, too. This can prevent acute infection and its complications.

However, there may be little difference in mortality rates among people with heart failure and pneumonia who had been vaccinated against things like influenza and pneumonia.

With every heartbeat and every breath, your lungs and heart work in tandem. Infections and chronic diseases that affect one organ can affect the other.

Pneumonia can increase your risk of developing heart disease or having your existing heart disease worsen. Likewise, heart disease can increase your risk of developing several types of pneumonia.

Talk with your doctor about your overall health and how to avoid chronic heart disease and acute infections like pneumonia.

Vaccines are one part of the equation, but the best strategy involves other health and diet strategies, too.

Read more:
Pneumonia and Heart Disease: What You Should Know - Healthline

To Read More: Pneumonia and Heart Disease: What You Should Know – Healthline
categoriaCardiac Stem Cells commentoComments Off on Pneumonia and Heart Disease: What You Should Know – Healthline | dataJuly 16th, 2022
Read All

Promising solution to fatal genetic-disorder complications discovered by University professor and Ph.D. candidate – Nevada Today

By daniellenierenberg

Affecting one in 5,000 male births worldwide, Duchenne Muscular Dystrophy (DMD) is a fatal genetic disorder that currently doesnt have a cure, but published research conducted at the University of Nevada, Reno School of Medicine shows promise and may lead to the eventual development of a new molecular therapeutic.

The latest, significant research finding, published in Human Molecular Genetics, February 2022, involves the small-molecule sunitinib which has been shown to mitigate DMD-related skeletal muscle disease in a number of ways.

As patients with DMD grow older, muscular dystrophy worsens, causing respiratory and cardiac muscle failure resulting in premature death. There are no effective treatments to prevent DMD-related cardiac failure, however continued research in the lab of UNR Med Professor of Pharmacology Dean Burkin is pointing to protein and molecular-based solutions, including sunitinib which is already FDA approved and used in cancer treatments.

Burkin conducted the latest research with Ph.D. student Ariany Oliveira-Santos. Based on a mouse model, they found that sunitinib improved major negative symptoms that stem from DMD, such as cardiac muscle damage, without depressing the immune system completely. Oliveira-Santos was lead author on the published results. The study was supported by a grant from the Muscular Dystrophy Association and the National Institutes of Health.

Burkins lab focuses mainly on studying two key proteins 71 integrinand laminin and understanding the role they play in muscle development and disease. The lab primarily studies two muscle-damaging diseases: DMD and Laminin-2 related congenital muscular dystrophy (LAMA2-CMD).

Were interested in the biology of the 71 integrin, that's really the central focus of [our research], Burkin said. But we also have other big interests in these muscle diseases where the integrin [protein] is normally found.

Burkin explains that through this translational research, which he also calls the lab bench to bedside approach, researchers attempt to understand the biology of a system as much as possible, and then continue through the development steps that lead to therapeutic treatments.

Patients with DMD lack dystrophin which causes progressive muscle degeneration and weakness. This means the more these muscles are used, the more damage occurs. While there are repair cells in muscles, these cells eventually tire out. Burkin and Oliveira-Santos noted that the heart, an organ being used all the time, does not have this repair system, making the damage severe in cardiac muscles as well. Currently some therapeutic approaches have been beneficial for skeletal muscles but not for the heart; therefore, its important to have a drug or treatment that can target and be beneficial to skeletal and cardiac muscle at the same time, Oliveira-Santos explained.

We looked to the electrical and mechanical function of the heart and both were improved, Oliveira-Santos said. Sunitinib helped the cardiac function [and reduced] cardiac damage, and inflammation. I don't think theres really many drugs out there that do that right now.

Oliveira-Santos remembers wanting to be a scientist as early as eight years old. She went on to earn degrees in Brazil, including a bachelors in biomedicine and a masters in the scientific fields of immunology and pharmacology as they relate to transplant rejection. While earning her masters degree, Burkin was invited to Brazil by Oliveira-Santoss supervisor to give a talk, and the two met in-person and discussed her masters project. At the time, they were studying the same molecule, but in different models, so Oliveira-Santos had read some of Burkins papers.

Oliveira-Santos had always been interested in the physiology and pathology of disease and thought it would be a great area to study for a doctoral degree. She knew Burkin was working in this field, so about five years after their in-person meeting, Oliveira-Santos reached out to Burkin. He told her about an open position in his lab for a Ph.D. student, and their project of understanding the role of an FDA-approved small molecule for the treatment of DMD cardiomyopathy. She felt this project was a good match for what she was looking for and joined the lab in January 2019.

Oliveira-Santos said the mentorship and support shes received from Burkin and the rest of the lab has been invaluable.

Dean is always available to discuss and very happy to help [the lab members] with everything we need, Oliveira-Santos said. Everyone had an important opinion about the project and that was essential for the projects success.

While working in science oftentimes can come with struggles, Oliveira-Santos expressed how much these experiences have taught her.

Being in science is a big challenge, because you have to learn how to deal with problems all the time, she said. There are more failures than success [so] it teaches you how to deal with failure. Failure is normal. You just need to try to find a way around to get a solution.

Oliveira-Santos is set to finish her Ph.D. in Cellular and Molecular Pharmacology & Physiology in the fall 2022.

When I bring a student to the lab, I say I can supply everything but enthusiasm. And that's one thing that Ariany brings in abundance, Burkin said. I'm putting my students in contact with other principal investigators that I know to try and make sure that the next level on their career is achieved. She can go anywhere right now and move forward. The world is her oyster.

Continued here:
Promising solution to fatal genetic-disorder complications discovered by University professor and Ph.D. candidate - Nevada Today

To Read More: Promising solution to fatal genetic-disorder complications discovered by University professor and Ph.D. candidate – Nevada Today
categoriaCardiac Stem Cells commentoComments Off on Promising solution to fatal genetic-disorder complications discovered by University professor and Ph.D. candidate – Nevada Today | dataJuly 16th, 2022
Read All

Current and advanced therapies for chronic wound infection – The Pharmaceutical Journal

By daniellenierenberg

After reading this article, you should be able to:

A wound is any injury that disrupts the structure of healthy skin tissue caused by chemical, mechanical, biological or thermal trauma. Wounds can be classified as acute or chronic, depending on their period of healing[1]. Acute wounds usually heal without complication within ten days; however, chronic wounds do not undergo normal healing processes, commonly have exaggerated inflammation, persistent infections or microbial biofilm formation and persist longer than six weeks[24]. The most frequent causes of chronic wounds are pressure, diabetes and vascular diseases[5].

Chronic wounds are a global problem, with annual cases rising dramatically owing to the ageing population and increased prevalence of diabetes and obesity[6]. It is estimated that up to 7% of the UK adult population has a chronic wound, costing the NHS 8.3bn each year in staff costs, wound dressings and medication[7]. Individual costs for wound management have been reported to vary, from 358 to 4,684 per patient for a wound that follows the normal healing trajectory, increasing to 831 to 7,886 per patient for a chronic, non-healing wound[7]. The majority of the costs account for GP and nursing time, with infected wounds costing an additional 1.39bn on antibiotics[7].

Results from one study, published in 2020, found that 59% of chronic wounds healed if there was no evidence of infection, compared with 45% if infection was present or suspected[7].Health conditions, such as diabetes mellitus and vascular disease, can predispose people to wounds that are difficult to heal, which can become chronic unless the underlying causes are addressed. For example, people with diabetes are prone to have a high incidence of wounds on their feet, which are slow to heal because of the impact of diabetes on the immune system, circulation and diabetic neuropathy. Complex chronic wounds, such as venous leg ulcers and diabetic ulcers, can significantly impact quality of life, morbidity and mortality[7].

Wound healing is a complex series of physiological reactions and interactions between numerous cell types and chemical mediators[8,9]. It comprises four coordinated and overlapping phases: haemostasis, inflammation, proliferation and remodelling[10].

The Figure below shows the phases of wound healing[11].

The first stage, haemostasis, is instantly activated after injury to stop bleeding at the site and prevent the entry of pathogens. In primary haemostasis, within seconds of an injury occurring, damaged blood vessels vasoconstrict to reduce blood flow through the wound area and diminish blood loss. Platelets adhere to the sub-endothelium of the impaired vessels, initiated by the presence of von Willebrand factor. This binds to glycoprotein Ib receptors on the surface of platelets, causing a conformational change on the platelet surface, activating platelets. These activated platelets release chemicals, such as adenosine diphosphate,serotonin andthromboxane A2, from their dense granules to stimulate platelet recruitment and adhesion to form a platelet plug[12,13]. Secondary haemostasis is a sequence of events, described as a coagulation cascade, that consequently converts soluble fibrinogen into insoluble fibrin. A fibrin mesh sticks to the platelet plug producing a haemostatic plug to seal the inside of wound[12,14].

At the beginning of the inflammatory phase, activated platelets also release pro-inflammatory cytokines and growth factors to stimulate the recruitment of immune cells to clean the wound area, initially involving infiltration of neutrophils and monocytes[15]. Monocytes undergo a phenotypic change to become macrophages. The previously constricted blood vessels also vasodilate because of increased prostaglandins, facilitating the chemotaxis of inflammatory cells[16,17]. The proliferation phase is charactered by re-epithelialization, capillary regeneration and the formation of granulation tissue(18). Fibroblasts and endothelial cells proliferate during this phase, stimulated by the numerous cytokines and growth factors released by the platelets and macrophages. This leads to the formation of new blood vessels in a process called angiogenesis[18].

After migration to the wound site, fibroblasts begin to proliferate and synthesize collagen and extracellular matrix components, such as proteoglycans, hyaluronic acid, glycosaminoglycans, and fibronectin, to form granulation tissue[1618]. The final stage is remodelling, which can last for several years. The formation of new capillaries slows, facilitating maturation of blood vessels in the wound. Type III collagen is replaced by type I collagen in the extracellular matrix to create a denser matrix with a higher tensile strength. The differentiation of fibroblasts into myofibroblasts causes the wound to physically contract. However, owing to differences in collagen type, new tissue after healing does not fully regain its original strength[1618].

Delayed wound healing can be caused by local and/or systemic factors. Local factors in the wound site include oxygen deficiency (causing chronic hypoxia), excessive exudate (causing maceration) or insufficient exudate (leading to desiccation), local infection, foreign bodies intensifying the inflammatory response, repetitive trauma, pressure/shear, and impaired vascular supply to the injury area[16,19].

Systemic factors that delay the healing process include the following[16,19]:

Oestrogen insufficiency, for instance in postmenopausal women, is known to impair all stages of wound repair process, especially inflammation and regranulation, with improved wound healing being a potential benefit of hormone replacement therapy. Androgens can repress cutaneous repair in both acute and chronic wounds, retarding the healing process and increasing inflammation[20].

The process can also be delayed in people with immunocompromised conditions, such as acquired immunodeficiency syndrome, cancer and malnutrition, with deficiencies in protein, carbohydrates, amino acids, vitamins A, C and E, zinc, iron, magnesium all having an effect[16,19,21]. Certain medicines can also delay the process, such as glucocorticoid steroids, chemotherapeutic drugs and non-steroidal anti-inflammatory drugs[19,21].

The most common causes of delayed chronic wound healing are infection and biofilm formation: biofilms are microscopically identifiable in up to 60% of chronic and recurrent wounds,leading to significant morbidity and mortality and an escalated healthcare cost[5,22,23].

A wound is considered infected when there are sufficiently large numbers of microbes presenting in wound environment or sufficient virulence to raise either a local or systemic immune response.

The wound-infection continuum has three stages: contamination, colonisation and infection. In the contamination phase, micro-organisms are unlikely to replicate because of an unfavourable environment. Colonisation happens when microbes successfully multiply, but not in sufficient levels to destroy host defences. However, the accelerated loads and persistence of microbes in wound environments may prolong the inflammatory phase and delay wound healing. When bacteria invade deeper into the wound bed and proliferate speedily, they can provoke an immune reaction and initiate local infection. As pathogens proliferate beyond the boundaries of the wound, infection may spread into deeper tissues, adjacent tissues, fascia, muscle or local organs. Eventually, systemic infection, such as sepsis, can occur when microbes invade into the body via vascular vessels or lymphatic systems, affecting the entirety of the body[24,25].

Biofilm is an extracellular polymeric substance produced by bacteria that acts as a physical barrier, enveloping bacteria and protecting them from host defences and antimicrobial agents. Several pathogens isolated from chronic wounds are typically capable of forming biofilms, such asStaphylococcus aureusandPseudomonas spp[5,23,24,26]. Biofilms persisting within chronic wounds can continuously stimulate host immunity, resulting in the prolonged release of nitric oxide, pro-inflammatory cytokines such as interleukin-1 and TNF-, and free radicals, and activation of immune complexes and complement, causing the healing process to fail and convert to a chronic state[23,27]. Sustained inflammatory reactions also trigger an escalated level of matrix metalloproteases, which can disrupt the extracellular matrix[16].

Most of the time, wound infection is diagnosed via visual inspection based on clinical signs and symptoms, including the classic signs of heat, pain, swelling, suppuration, erythema and fever. Typical characteristics of an acute infected wound are pain, erythema, swelling, purulent drainage, heat and malodour. In addition, a chronic wound may display signs of delayed healing, wound breakdown, friable granulation, epithelial bridging and pocketing in granulation tissue, increasing pain and serious odour.

Microbiological analysis of a specimen from wound cultures (using tissue biopsy or wound swab, pus collection or debrided viable tissue) is performed to identify causative microorganisms and guide the choice of antimicrobial therapy. Traditional diagnostics can be time consuming, and some organisms can be difficult to culture, so molecular techniques including DNA sequencing may help with characterising genetic markers[25]. Other laboratory markers, such as C-reactive protein, have also been used as markers and imaging techniques, such as CT scanning and autofluorescence imaging, may help with real-time diagnosis[25,28].

In clinical practice, the evaluation and identification of underlying conditions that affect wound healing are vital to optimising wound care. Accurate assessment of causes and comorbidities will inform the best course of treatment, such as compression therapy for venous leg ulcers or offloading (relief of pressure points) for people with diabetic foot ulcers[29]. The underlying pathologies of wounds are numerous and failure to address them can lead to a failure in healing[2,29].

Once any underlying conditions are identified, the wound bed should be prepared to optimise the chance of healing. A wound hygiene approach should be considered; its core principle is to remove or minimise unwanted materials, such as biofilm, devitalised tissue and foreign debris, from the wound bed to kickstart the healing process[30]. A holistic patient and wound assessment will ensure wound pathology and wound biofilm are managed simultaneously[30]. The TIME framework (tissue, infection/inflammation, moisture balance, edges) is a systematic approach to wound management[31]. Wound-bed preparation and the TIME approach should be used alongside a holistic assessment of other patient factors such as pain, nutrition and hydration[2].

Effective management of infection in chronic wounds involves the removal of necrotic tissue, debris and biofilms using debridement plus the appropriate use of antimicrobials (including topical antiseptics and systemic antibiotics)[1,32].

Antiseptics have a broad spectrum of bactericidal activity and are used externally for the purposes of eliminating bacterial colonisation, preventing infection, and potentially stimulating wound healing. They are less likely to cause antimicrobial resistance (AMR) than antibioticsand inhibit the development of microbes by disrupting cell walls and cytoplasmic membranes, denaturing proteins, and damaging bacterial DNA and RNA[5,23,33,34]. An ideal antiseptic agent should have broad-spectrum activity, a fast onset of action, long-lasting activity, be safe for healthy surrounding tissue, possess minimal allergenicity, be stable in blood and tissue protein, persistently remain within the wound bed, and potentially be active against biofilms[23,35]. Antiseptics, antimicrobial washes or surfactants can be used to clean the wound and peri-wound skin and prepare the wound bed for debridement[30].

A variety of antiseptic agents are used in clinical practice[23,34]:

Antiseptics can also be used as an adjunct to other therapies (e.g. negative pressure therapies) in treating complicated wound types(e.g.diabetic foot ulcers,venous leg ulcers and sternal wounds)[36].

All open wounds will be colonised with bacteria, but antibiotic therapy is only required for those that are clinically infected[37]. Systemic antibiotic therapy should only be considered for the treatment of cellulitis, osteomyelitis, sepsis, lymphangitis, abscess, and invasive tissue infection. Inappropriate use of systemic antibiotics may increase the risk of side effects and contributes to emergence of AMR[5]. The choice of initial therapy and the duration is frequently empirical and should take into account the type of wound, severity of infection, suspected pathogens and local AMR[38]. With severe infections, broad-spectrum antibiotics should be used against both gram-positive and gram-negative organisms, while a relatively narrow spectrum agent is enough for most mild and many moderate infections[5].

A systematic review assessed the clinical and cost-effective efficacy of systemic and topical antibiotic agents in the treatment of chronic skin wounds. The authors of the review suggested that there was insufficient evidence to support any routine use of systemic antibiotics in specific chronic wounds[39].

Appropriate and judicious use of antimicrobials must be considered when managing wounds. The use of topical antibiotics is not recommended for eliminating bacterial colonisation or wound infections because of their limited effectiveness, high risk of resistance and potential to cause contact allergy[5,35].

AMR occurs when microorganisms naturally evolve in ways that cause medicines used to treat infections to become ineffective, and these micro-organisms become resistant to most[40,41]. The misuse and overuse of antibiotics is a major cause of the emergence of AMR, via four main mechanisms[42]:

Moreover, the multicellular nature of biofilm matrix is likely to give extra protection to bacteria communities, makes them resistant to antibiotics. There are several proposed mechanisms for AMR related to biofilm: the alteration of chemical environment within biofilm, slow or inadequate diffusion of the antibiotics into the biofilm, and a differentiated biofilm subpopulation[43].

Topical antimicrobial use plays an important role when the wound is clinically infected or there is a suspected biofilm. The British Society for Antimicrobial Chemotherapy and European Wound Management Association position paper highlighted antimicrobial stewardship (AMS) a set of strategies to improve the appropriateness and minimise the adverse effects of antibiotic use as being central to wound care treatment to improving patient outcomes, reducing microbial resistance and decreasing the spread of infections caused by multidrug-resistant organisms[37]. Effective AMS avoids the use of antimicrobial therapy when not indicated while enabling the prescribing of appropriate antimicrobial interventions when they are indicated to treat infection.

The UK government has outlined a 20-year vision for reducing AMR, proposing a lower burden of infection through better treatment of resistant infections[44]. This includes the optimal use of antimicrobials and good stewardship across all sectors and appropriate use of new diagnostics, therapies, vaccines and interventions in use, combined with a full AMR research and development pipeline for antimicrobials, alternatives, diagnostics, vaccines and infection prevention across all sectors.

The use of alternatives to traditional antibiotic therapy is of huge interest for combating increasing AMR, including bacteriophage therapy, phage-encoded products, monoclonal antibodies and immunotherapy[45]. Among these, endolysins phage-encoded peptidoglycan hydrolases selectively targeting bacterial taxa have been identified as promising antimicrobial agents because of their ability to kill antimicrobial-resistant bacteria and lack of reported resistance However, challenges restrict the widespread use of endolysin therapy, such as limited drug-delivery methods, their specificity to particular bacteria types, and bioavailability via IV administration[46,47].

Debridement is the physical removal of biofilm, devitalisedtissue, debris and organic matter and is a crucial component of wound care. The presence of non-viable tissue in the wound bed prevents the formation of granulation tissue and delays the wound healing process. The removal of non-viable tissue encourages wound healing. The type of tissue found in the wound bed (e.g. whether necrotic or sloughy) will determine whether debridement is required. Factors such as bioburden, wound edges and the condition of peri-wound skin can also influence whether debridement is required[48]. A range of techniques can be used, dependent on the clinicians ability level: these include autolytic, larval, mechanical, sharp and surgical methods[49,50].

The concept of moist wound healing is not newand can lead to healing up to 23 times quicker than that of dry wound healing[51,52].Wound dressings such as cotton wool, gauze, plasters, bandages, tulle or lint should not be used, as they do not promote a moist wound healing environment, require excessive changes, and can cause skin damage and pain during dressing changes. They have therefore been replaced by newer types of wound dressingsthat can play a role in autolysis and debridement, maintain a relatively stable local temperature, keep the wound hydrated, promote wound repair and prevent bacterial infection[14,53,54].

Wound dressings should keep the wound free from infections, excessive slough, contaminants and poisons, keep the wound at the ideal temperature and optimum pH for healing, be permeable to water, but not microbes, come away from wound trauma during dressing changes, not be painful and be comfortable[55]. There are a variety of dressings available for managing chronic wounds, such as hydrogels, hydrocolloids, alginates, foams, and film dressings[56]. Dressings can also be used carriers for active agents including growth factors, antimicrobial agents, anti-inflammatory agents, monoterpenes, silver sulfadiazine or silver nanoparticles[57].

Potential factors that may influence dressing selection include:

Antimicrobial dressings impregnated with iodine, silver and honey are available[58]. They can be divided into two categories: those that release an antimicrobial into the wound and those that bind bacteria and remove them from the wound into the dressing. A more detailed overview can be found in a recent consensus document on wound care and dressing selection for pharmacists[57].

It is essential wound dressings do not inadvertently lead to moisture-associated skin damage an umbrella term encapsulating incontinence-associated dermatitis, intertriginous dermatitis (or intertrigo), peri-wound maceration and peristomal dermatitis. Practitioners should ensure the dressing can manage any exudate and protects the peri-wound area. Skin barriers can be used to protect the peri-wound area and prevent skin damage[59].

Widely used to aid the healing of acute, chronic and traumatic wounds, negative-pressure wound therapy (NPWT) removes interstitial fluid/oedema and excessive exudate, provides a moist environment, improves blood flow and tissue perfusion, and stimulates angiogenesis and granulation tissue formation[4,60]. Results from several studies have demonstrated the selective effect of NPWT in eliminating non-fermentative gram-negative bacilli in wounds[36]. Additionally, NPWT can be combined with additional topical antimicrobial solutions, reducing bacteria load, stimulating wound closure and decreasing wound size faster than conventional NPWT[36,61,62].

Hyperbaric oxygen therapy wasfirst proposed as an additional treatment for chronic wounds in the mid-1960s. Treatment involves the intermittent exposure of the body within a large chamber to 100% oxygen at a pressure between 2.0 and 2.5 atmosphere absolute, leading to an increase in oxygen levels within haemoglobin and elevating oxygen tissue tension at the wound site[63].A Cochrane reviewpublished in 2015 reported a significant improvement in the healing of diabetes ulcers in the short term when treated with hyperbaric oxygen therapy. However, further high-quality studies are needed before clinical benefits can be proven[64].

For chronic wound healing, electrical stimulation is the most frequently studied biophysical therapy[4]. It uses direct current, alternative current, and pulsed current. Electrical stimulation has been shown to benefit every stage of the wound-healing process, both at cellular and systemic levels. During the inflammation phase, electrical stimulation promotes vasodilation and increases the permeability of blood vessels, thereby facilitating cellular movement to the wound site and so promoting a shorter inflammatory response.

Studies have reported an inhibition in bacterial proliferation after electric stimulation. In the proliferation phase, electrical stimulation raises the migration, proliferation and differentiation of endothelial cells, keratinocytes, myofibroblasts and fibroblasts. At the systemic level, it promotes revascularisation, angiogenesis, collagen matrix organisation, wound contraction, and re-epithelialisation. Ultimately,electrical stimulation promotes the contractility of myofibroblast and converts type III collagen into type I, along with rearranging collagen fibres to optimise the scars tensile strength[8,65,66].

A prospective clinical study conducted across the UK suggested that using an externally applied electroceutical device, combined with compression bandaging and dressings, was a cost-effective treatment for venous leg ulcers, compared with conventional treatments[67].

Low-frequency ultrasound has been used as an adjunct treatment for chronic wounds. It has a debriding effect, removing debris and necrotic tissue (primarily via cavitational and acoustic streaming phenomena). Ultrasound is also reported to disrupt biofilmin vitro, thus increasing the sensitivity of bacteria to antimicrobials[68]. It is proposed to be effective instimulating collagen synthesis, increasing angiogenesis,diminishing the inflammatory phase as well as promoting cellular proliferation[69].Several clinical studies have shown a reduction in wound size when wounds are treated with low-frequency ultrasound therapy[7072].

Extracorporeal shock wave therapy (ESWT) has been proposed to aid wound healing by transmitting acoustic pulsed energy to tissues. ESWT seems to promote angiogenesis, stimulate circulation, reduce anti-inflammatory response, and upregulate cytokine and growth-factor reactions[4]. A clinical trial demonstrated the feasibility and tolerability of ESWT in wounds with different aetiologies[73]. Furthermore, a review concluded that ESWT brings more benefits for patients with diabetic foot ulcers than hyperbaric oxygen therapy, based on increased angiogenesis, tissue perfusion and cellular reactions with reduced cell apoptosis, as well as a higher ulcer healing rate[74].

More recent developments include introducing nanomedicine to wound-healing approaches. It has been used to achieve controlled delivery, stimulate chronic wound healing and control microbial infections[14,75]. Nanotechnology-based wound dressings like nanogels and nanofibers offer a larger surface area and greater porosity, potentially enhancing absorption of wound exudate. They can also facilitate collagen synthesis and ultimately re-epithelisation through supporting the migration and proliferation of fibroblasts and keratinocytes.

Nanomedicines also seem to aid healing through molecular and cellular pathways[75]. For example, a methacrylated gelatin (MeGel)/poly(L-lactic acid) hybrid nanofiber synthesised has been reported to stimulate the recruitment and proliferation of human dermal fibroblasts, thereby promoting wound healing[76]. Nanoparticles can not only act as carriers of antimicrobial agents, they can also have an intrinsic antimicrobial effect[75,77,78]. In 2021, Qiu et al. successfully developed an antibacterial photodynamic gold nanoparticle (AP-AuNPs) that demonstrated antibacterial effects on both Gram-negativeEscherichia coliand Gram-positiveStaphylococcus aureus,as well as potentially inhibiting biofilm formationin vitro[79].

Growth factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF) are down-regulated in chronic wounds, suggesting that topical administration of growth factors and cytokines could improve wound healing[80].

Growth factors can improve wound repair through several mechanisms[81]:

Growth factors that have been studied in wound healing are EGF, VEGF, FGF, PDGF, transforming growth factor-beta 1 (TGF-1) and granulocyte-macrophage colony stimulating factor[82]. Becaplermin (rhPDGF-BB) was the first growth-factor therapy approved by the US Food and Drug Administration, after it demonstrated effectiveness in treating complex wounds when combined with standard wound care[80]. A systematic review and meta-analysis indicated that growth factors were effective in healing venous stasis ulcers, increasing wound healing by 48.8% compared with placebo and showing no difference in adverse effects compared with controls[83].

Stem cells may have certain advantages in wound healing because of their ability to differentiate into specialised cells and secrete numerous mediators including cytokines, chemokines, and growth factors[84,85]. This makes them a promising approach for treating chronic wounds.

Mesenchymal stem cells can be extracted from bone marrow, adipose tissue, umbilical cord blood, nerve tissue, or dermis and used both systemically and locally[86]. They release growth factors that stimulate blood-vessel and granulation tissue formation, fibroblast and keratinocyte migration, collagen synthesis, and fibroblast activation, increase re-epithelialisation, exert immunomodulatory properties, regulate inflammatory responses, and display antibacterial activities[85,8789].

Many studies have investigated the efficacy of stem-cell therapies for a variety of wounds, including burns, non-healing ulcers, and critical limb ischemia[9096]. A systematic review published in 2020 that investigated the clinical application of stem-cell therapy for the treatment of chronic wounds showed the potential of a variety of stem cells in the restoration of impaired wound healing, bothin vitroandin vivo, despite the clinical evidence being very limited. As the recorded studies were on case-by-case basis, there is a lack of comprehensive guidelines for the use of stem cells in different wounds[97].

Auto-transplantationof adipose tissue-derived mesenchymal stromal cells has been proposed as a safe, alternative method to treat chronic venous ulcers[96]. Bioscaffold matrices comprising hyaluronic acid, collagen or other bio-polymeric materials have increasingly been applied for stem-cell transplantation. These matrices not only provide wound coverage, but also offer protection for stem cells and controlled delivery[86].

Skin equivalents are polymeric biomaterials increasingly adopted for both acute and non-healing ulcers, such as venous ulcers, diabetic foot ulcers or pressure ulcers, to temporarily or permanently substitute the structure and function of human skin. Skin substitutes are designed to increase wound healing, provide a physical barrier that protects the wound from trauma or bacteria, provide a moist environment for the repair process, replace impaired skin components and decrease morbidity from more invasive treatments like skin grafting[98,99].

They can usually be classified as one of three major types: dermal replacement, epidermal replacement, and dermal/epidermal replacement[98]. Epidermal replacements (substitutes) comprising isolated autogeneous keratinocytes cultured on top of fibroblasts include Myskin (Regenerys), Laserskin(Fidia Advanced Biopolymers) and Epicel(Genzyme Tissue Repair Corporation). Dermal replacements include Dermagraft (Smith and Nephew) and Transcyte(Shire Regenerative Medicine)[98].

Epidermal/dermal skin replacements (also called composite skin substitutes) contain both epidermal and dermal layers that mimic the histological structure of original skin. The bi-layered bioengineering skin Apligraf (Organogenesis) was the first living skin equivalent for the management of complex chronic wounds like diabetic foot ulcers and venous leg ulcers. It is made up of a dermal layer of human fibroblasts embedded in a bovine type I collagen matrix and an epidermal layer generated by human keratinocytes[100]. Some other commercial products of composite substitutes are OrCel(Forticell Bioscience) andPermaDerm(Regenicin)[98]. In general, the current high cost of such dressings and limited evidence on effectiveness restricts them from being widely adopted[101]. Recently, technologies such as electrospinning or 3D-printing have been used to fabricate skin substitutes. Electrospinning can create nanofibers with high oxygen permeability, variable porosity, a large, exposed surface area and a morphology similar to the extracellular matrix, making them interesting candidates for skin substitutes[102,103].

TheNational Wound Care Strategy Programme, which was implemented by NHS England in 2018, has made progress in reducing unwanted variation in care and addressing suboptimal wound care.

Through its workstreams, the involvement of stakeholders, patients and carers, and the publication of the core capabilities for educating a multi-professional workforce, wound care has become a national priority. There are still many challenges in the management of chronic wounds the complexity of wound environment, limited knowledge of the biological, biochemical, and immunological healing processes, and the increasing complexity of disease pathophysiology that comes with ageing populations.

The development of standardised and clinically relevant testing for wound dressings, along with high-quality clinical trials, would enable useful comparisons of treatments. The whole episode of care should be considered in assessments of the cost-effectiveness of different dressings and devices, rather the simple cost of the individual entity. All these complex concerns restrict success in wound management, which in turn negatively impacts the quality of life of the patients and places a burden on global healthcare systems[75,104]. Organisations and healthcare providers should share best practice and education of healthcare professionals is needed to get the best outcomes for patients with preventable chronic wounds.

1

4

6

7

8

9

12

Bhagavan N, Ha C-E. Biochemistry of hemostasis. In: Essentials of Medical Biochemistry . Academic Press 2015. 752.

13

14

15

Pratt J, West G. Pressure therapy: history and rationale. In: Pressure garments: A manual on their design and fabrication. ButterworthHeinemann 1995. 146.

18

19

20

22

24

25

26

29

30

31

32

34

35

36

37

39

42

43

45

46

47

48

49

Moffatt C, Martin R, Smithdale R. Leg ulcer management. Blackwell Publishing 2007.

50

51

53

Continued here:
Current and advanced therapies for chronic wound infection - The Pharmaceutical Journal

To Read More: Current and advanced therapies for chronic wound infection – The Pharmaceutical Journal
categoriaCardiac Stem Cells commentoComments Off on Current and advanced therapies for chronic wound infection – The Pharmaceutical Journal | dataJuly 16th, 2022
Read All

Why do some women struggle to breastfeed? A UCSC researcher on what we know, and don’t – Lookout Santa Cruz

By daniellenierenberg

Have something to say? Lookout welcomes letters to the editor, within our policies, from readers. Guidelines here.

Like many moms, UC Santa Cruz stem cell biologist Lindsay Hinck struggled to make enough milk to feed her infant daughter.

Frustrated by her low supply, she went to a lactation consultant, who advised her to wake up every night at 3 a.m. an optimal time in the hormone cycle to pump precious drops of liquid gold for her baby.

Hinck did it, but she also wondered, why was she having so much trouble and losing so much sleep while other moms had no problem feeding their newborns?

After many exhausting early hours with the pump, Hinck did what she does best: research. She found something remarkable: More than 25% of women worldwide struggle to produce enough milk to feed their infant children.

But when she looked to scientific literature for an explanation, it came up empty.

Hinck, who got a masters degree in biochemistry from UC Davis and her Ph.D. in cancer biology from Stanford University, was shocked to realize scientists have barely studied human lactation. There was almost no information for scientists or moms about how human breast tissue makes milk.

Hinck decided to change that.

She switched her UCSC labs research focus from breast cancer to lactation, specifically looking into how stem cells in breast tissue create milk and why some womens supply comes out low.

Its a topic some view with skepticism; lactation and breastfeeding are still treated by many as uncomfortable or inappropriate. In fact, in the early days of her research, Hinck had to get funding from an animal health firm interested in increasing milk production in cows.

We sexualize breasts in the most amazing ways, and people dont seem to have a problem talking about that, says Hinck, who has been at UCSC since 1998 and serves as co-director of the universitys Institute for the Biology of Stem Cells. Yet when it gets down to their biological function which is to provide nutrition for infants somehow the world clams up.

With the a nationwide baby formula shortage having affected millions of families, Hincks work funded by the National Institutes of Health takes on even greater importance. Parents whose infants have allergies or metabolic conditions rely on formula, and women particularly those who are already struggling to breastfeed cant suddenly build a milk supply overnight when formula is not available.

Hinck spoke with Lookout from her office at UCSC; this interview has been edited for clarity.

Lookout: What is lactation insufficiency?

Lindsay Hinck: Lactation insufficiency is the inability of a woman to produce the breast milk in daily volumes that meet the nutritional needs of her infant.

The statistics that we have are very broad. Somewhere between 25% and 67% of women will experience this worldwide. And this statistic is so broad because lactation insufficiency is understudied, and its hard to study.

A lot of scientists would agree that breast milk does confer an immunological advantage, and that it is filled with immune cells that the mother is giving to her infant; milk is also filled with microbes. Those are two of the major deliveries to children that come through breast milk, not to mention all the comfort of the breastfeeding cycle, psychological comfort and connectedness through the skin on skin feeling of being fed that way.

Lookout: How do you feel about your research in the context of the baby formula shortage?

Hinck: A lot of women rely on formula because they have trouble building a milk supply. Currently there are no FDA (U.S. Food and Drug Administration)-approved drugs in the United States for lactation insufficiency. My research is identifying therapeutically relevant drug targets, so that maybe we will be able to address this issue. We hope that one day women can take a drug to better build a milk supply.

Were working on a nonhormonal drug. The current drugs work on the hormone prolactin, whereas my lab studies stem cells. None of the drugs targeting prolactin have been approved, because they have terrible side effects.

Hormones have wide-ranging effects. Theyre released and they spread throughout the body. I think maybe we have an opportunity to identify a therapeutic that wont have so many deleterious side effects.

(Mel Melcon / Los Angeles Times)

Lookout: Because of the baby formula shortage, an easy answer might be to tell mothers they should just breastfeed. Why might that not be a compassionate or realistic response?

Hinck: No, thats not a compassionate or realistic response. I mean, especially if you havent built your milk supply, its not a trivial thing. If you didnt build a milk supply from the beginning, and even if you are breastfeeding, if you cant meet the daily needs of your infant, you simply dont have the milk. Its just not there.

Building a milk supply doesnt occur over 24 hours, you cant just latch the child on more often and have more milk in a day. Eventually the milk supply will increase, but its complicated. Its hard for some women to initiate and build a milk supply.

Lookout: In the U.S., lactation and breastfeeding seem to be treated as somewhat taboo or uncomfortable topics. How do you respond to that?

Hinck: We dont want to see women doing it. It seems to make people uncomfortable, so at best we provide women a room somewhere, and at worst there are no accommodations. We certainly dont appear as a society that welcomes breastfeeding in public. I am bemused at this, and find it tragic at the same time.

I myself, when I breastfed, I just breastfed. I just got to the point where tough, you know? I know I made people uncomfortable. My mother-in-law would try to drape a huge blanket over me and my child in the summer in the heat, and it was like 100 degrees underneath that blanket. I would just be like, This is crazy! Its just an infant at my breast eating. Seems fine to me. And I dont think the climate has dramatically changed in many places in the world. My daughter is 22 years old, and in 22 years I have not seen that needle budge. It still seems like breastfeeding makes people uncomfortable, and I dont know why.

Lookout: Have you faced any skepticism about this as a research topic, or faced any particular challenges in studying lactation compared to other topics, like cancer?

Hinck: I would say that I have had a harder time getting my lactation research funded. But recently, I received a NIH grant from the National Institutes for Child Health and Human Development, so thats been terrific. There has been a gaining interest in a number of whats been classified as womens diseases that have been understudied for a long time.

But in the early days, I got money from an animal health firm because they were interested in increasing milk supply in cows. The biology is the same, however. So that worked out for me, and we were able to have a project that involves looking to see if this would work for building milk supply in cows, and then we were able to unravel the basic pathways, and now were applying that.

Lookout: What would you say are the big questions driving your current research?

Hinck: How does the breast tissue know how many progenitor cells to release or recruit to expand and to build the milk supply?

Breast stem/progenitor cells have to last a whole lifetime, and they have limited potential. Theyre stemlike in that they undergo an asymmetric cell division, which is a special type of cell division that recreates the stem/progenitor cells and gives rise to daughter cells that can go on to expand and become the milk producing cells.

So how many of those asymmetric cell divisions occur? How many cells are recruited to undergo those asymmetric cell divisions? All of that is unknown. Remember, the stem cell, the progenitor cell, wants to divide as infrequently as possible. Every time they replicate their DNA, it is opening up the possibility of damage that could lead to cancer.

Lookout: How would understanding these progenitor cell pathways help improve peoples lives, or pursue a solution to lactation insufficiency?

Hinck: Its early days. We dont understand a lot, and of course giving drugs to women who are pregnant is tough. There are drugs on the market for lactation domperidone is the best medicine to build milk supply, but its not approved by the FDA in America. It has side effects, cardiac side effects.

So its not unheard of that there would be drugs that could help build a milk supply. I think that would be the ultimate goal of our research, to understand if there is any pharmacological intervention that could help.

Lookout: What do you think nursing mothers who are struggling with lactation need? What can we do as a society to support them?

Hinck: Well, in the short term, certainly make workplace rules that change the climate. I mean, even if the rules are in place, if women dont feel welcome to take the breaks to pump then it doesnt happen. I mean, we all know how that goes.

Give mothers more time off. Create more welcoming environments when they come back to work to support them and their desire to breastfeed their child.

And in the longer term, we could understand the biology of building milk supply, which is still quite mysterious in humans. What are some of the factors that may impinge on that during pregnancy or after pregnancy?

Lookout: What did you have to do in order to feed your child when you were having trouble making enough milk?

Hinck: I saw the lactation consultant and I was told to pump at 3 a.m. when prolactin levels are the highest. I would set the alarm and get up and pump every night. I was also working full time, pumping every four hours. But I could barely pump the amount of milk for the next day.

Thats a burden, you know? Its just hard to balance. Youve got an infant, and youve got this other role, but youre also providing all the food for them. It doesnt always work seamlessly, thats for sure. I went to work to do my science, and I did the best I could.

It was a lot of work. Its so much to expect of mothers. And we just dont give parents, mothers, the space and time to breastfeed at work. Its also underappreciated that there could be other people who want to breastfeed, and we need to open doors for them for non-birth moms, trans people. Why do we keep lactation in just the realm of women? I think that if we understood lactation physiology better, we could help people breastfeed.

Guanan Gmez-Van Cortright is a 2022 graduate of the UC Santa Cruz Science Communication masters program. She has written for Good Times, KQED radio and the San Jose Mercury News.

Read this article:
Why do some women struggle to breastfeed? A UCSC researcher on what we know, and don't - Lookout Santa Cruz

To Read More: Why do some women struggle to breastfeed? A UCSC researcher on what we know, and don’t – Lookout Santa Cruz
categoriaCardiac Stem Cells commentoComments Off on Why do some women struggle to breastfeed? A UCSC researcher on what we know, and don’t – Lookout Santa Cruz | dataJuly 16th, 2022
Read All

Bone Marrow Market Global Projection By Key Players AGendia, Agilent Technologies, Inc., Ambrilia Biopharma Inc Analysis and Forecast to 2028 …

By daniellenierenberg

This bone marrow market report provides details of new recent developments, trade regulations, import export analysis, production analysis, value chain optimization, market share, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the bone marrow market contact Data Bridge Market Research for anAnalyst Brief,our team will help you take an informed market decision to achieve market growth.

The bone marrow market is expected to gain market growth in the forecast period of 2021 to 2028. Data Bridge Market Research analyses that the market is growing with the CAGR of 5.22% in the forecast period of 2021 to 2028 and is estimated to reach 13,899.60 USD Million by 2028. The growing amount of bone marrow diseases will help in escalating the growth of the bone marrow market. Bone marrow transplant also referred to as hematopoietic stem cell. It is a soft vascular tissue present in the interior of long bones. It comprises of two types of stem cells, that are hematopoietic and mesenchymal stem cells. Bone marrow is mainly responsible for the haematopoiesis, (formation of blood cells), production of lymphocytes, and the storage of fats. The bone marrow transplant is the last alternative generally recommended by the physicians in the cases of fatal bone marrow diseases and bone or skin cancer.

Get a Sample PDF of the report https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-bone-marrow-market

Major factors that are boosting the growth of the bone marrow market in the forecast period are the growing of the incidences of non-Hodgkin and Hodgkin lymphoma, thalassemia, and leukemia, along with the common bone marrow diseases around the world, the developments in the technology and the enhancing of the healthcare infrastructure. Furthermore, the advancing signs of bone marrow transplant for heart and neuronal disorders, increasing funding in the logistic services and the growing per capita of the healthcare expenses are some of the other factors anticipated to further propel the growth of the bone marrow market in the coming years. However, the high expenditure for the treatment, shortage of the bone marrow donors and instability of the repayment are few of the factors further responsible for the impeding the growth of the bone marrow market in the near future.

Bone MarrowMarket Scope and Market Size

The bone marrow market is segmented on the basis of transplantation type, disease indication and end user. The growth amongst these segments will help you analyse meagre growth segments in the industries, and provide the users with valuable market overview and market insights to help them in making strategic decisions for identification of core market applications.

To Gain More Insights into the Market Analysis, Browse Summary of the Research Report@ https://www.databridgemarketresearch.com/reports/global-bone-marrow-market

Bone MarrowMarket Country Level Analysis

The bone marrow market is analysed and market size insights and trends are provided by country, transplantation type, disease indication and end user as referenced above. The countries covered in the bone marrow market report are the U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.

Europe dominates the bone marrow market because of the occurrence of the increasing number of innovative healthcare centers. Furthermore, the healthcare systems have introduced the bone marrow transplant in their contributions and the state-of-the-art public facilities which will further boost the growth of the bone marrow market in the region during the forecast period. North America is projected to observe significant amount of growth in the bone marrow market because of the growing cases of chronic diseases such as blood cancer. Moreover, the increasing of the geriatric population is one of the factors anticipated to propel the growth of the bone marrow market in the region in the coming years.

The country section of the bone marrow market report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as consumption volumes, production sites and volumes, import export analysis, price trend analysis, cost of raw materials, down-stream and upstream value chain analysis are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.

Competitive Landscape and Bone MarrowMarket Share Analysis

The bone marrow market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies focus related to bone marrow market.

The major players covered in the bone marrow market report are AGendia, Agilent Technologies, Inc., Ambrilia Biopharma Inc., Astellas Pharma Inc., diaDexus, Illumina, Inc., QIAGEN, F Hoffmann-La Roche Ltd, Sanofi, Stryker Corporation, PromoCell GmbH, STEMCELL Technologies Inc., Lonza, ReachBio LLC, AllCells, ATCC, Lifeline Cell Technology., Conversant bio, HemaCare, Mesoblast Ltd., Merck KGaA, Discovery Life Sciences., ReeLabs Pvt. Ltd., Gamida Cell, among other domestic and global players. Market share data is available for global, North America, Europe, Asia-Pacific (APAC), Middle East and Africa (MEA) and South America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

Browse the complete table of contents at https://www.databridgemarketresearch.com/toc/?dbmr=global-bone-marrow-market

Related Reports:

Allogenic Stem Cell Therapy Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/global-allogenic-stem-cell-therapy-market

Cancer Stem Cell Therapy Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/global-cancer-stem-cell-therapy-market

North America Stem Cell Therapy Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/north-america-stem-cell-therapy-market

Europe Stem Cell Therapy Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/europe-stem-cell-therapy-market

Asia-Pacific Stem Cell Therapy Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/asia-pacific-stem-cell-therapy-market

Middle East and Africa Stem Cell Therapy Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/middle-east-and-africa-stem-cell-therapy-market

Asia-Pacific Drug-Device Combination Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/global-drug-device-combination-market

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today! Data Bridge Market Research set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavours to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process. Data Bridge is an aftermath of sheer wisdom and experience which was formulated and framed in the year 2015 in Pune.

Data Bridge Market Research has over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. We are content with our glorious 99.9 % client satisfying rate.

Contact Us:-

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email:- corporatesales@databridgemarketresearch.com

Original post:
Bone Marrow Market Global Projection By Key Players AGendia, Agilent Technologies, Inc., Ambrilia Biopharma Inc Analysis and Forecast to 2028 ...

To Read More: Bone Marrow Market Global Projection By Key Players AGendia, Agilent Technologies, Inc., Ambrilia Biopharma Inc Analysis and Forecast to 2028 …
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Market Global Projection By Key Players AGendia, Agilent Technologies, Inc., Ambrilia Biopharma Inc Analysis and Forecast to 2028 … | dataJuly 8th, 2022
Read All

Sickle cell disease gene therapy study set back by the mice – Cosmos

By daniellenierenberg

Sickle cell disease (SCD) is a debilitating illness affecting up to 40% of the population in some African countries. Its caused by mutations in the gene that makes haemoglobin the protein that carries oxygen in red blood cells.

It might one day be possible to treat this disease using gene editing by switching back on the production of a healthy form of haemoglobin called foetal haemoglobin, which is usually only produced by the body when were in the womb.

But a new study testing this promising new treatment in mice has found that scientists still have a long way to go before it can be attempted in humans. The research has been published in Disease Models & Mechanisms.

Healthy red blood cells (RBCs) are shaped similar to a donut but with an indentation instead of a hole.

In sickle cell disease the abnormal haemoglobin distorts the RBCs shape when they arent carrying oxygen. Instead, sickled RBCs are C-shaped, like the farm tool called a sickle, and they become hard and sticky, and die earlier.

Because of their shape, sickled RBCs can become stuck and stop blood flow when travelling through small blood vessels. This causes patients to suffer from episodes of excruciating pain, organ damage and a reduced life-expectancy.

Although current treatments have reduced complications and extended the life expectancies of affected children, most still die prematurely.

Red blood cells are made from haematopoietic stem cells in our bone marrow. These stem cells are able to develop into more than one cell type, in a process called haematopoiesis.

Researchers hope to edit the genes of these stem cells so that they produce RBCs with foetal haemoglobin instead of the abnormal protein and can be reintroduced into the body to alleviate the symptoms of SCD.

Get an update of science stories delivered straight to your inbox.

Unfortunately, they found that although two types of lab mice had the symptoms of sickle cell disease, their foetal haemoglobin gene and surrounding DNA were not properly configured, making the stem-cell treatment ineffective or even harmful.

These mice called Berkley and Townes mice were genetically engineered in different ways to carry several human haemoglobin genes (replacing the mice genes) so scientists could study sickle cell disease in an animal model.

The researchers removed stem cells from the mice and used CRISPIR-Cas9 to try to turn on the healthy foetal haemoglobin gene. They then put the reprogrammed stem cells back into the mice and monitored the animals for 18 weeks to find out how the treatment affected them.

Surprisingly, 70% of Berkley mice died from the therapy and production of foetal haemoglobin was activated in only 3.1% of the stem cells. On the other hand, treatment did not affect the survival of Townes mice and even activated the foetal haemoglobin gene in 57% of RBCs.

Even then, the levels of foetal haemoglobin produced were seven to 10 times lower than seen when this approach was used in human cells grown in the laboratory and were not high enough to reduce clinical signs of sickle cell disease.

We realised that we did not know enough about the genetic configurations of these mice, says senior author Dr Mitchell Weiss, chair of the haematology department at St Jude Childrens Research Hospital, US.

The researchers sequenced the mices haemoglobin genes and surrounding DNA, and discovered that Berkley mice instead of having a single copy of the mutated human gene had 22 randomly arranged, broken-up copies of the mutated human sickle cell disease gene and 27 copies of the human foetal haemoglobin.

This caused the fatal effects seen and meant that the mice cannot be used to test this treatment in the future.

Our findings will help scientists using the Berkeley and Townes mice decide which to use to address their specific research question relating to sickle cell disease or haemoglobin, concludes Weiss.

Additionally, this work provides a reminder for scientists to carefully consider the genetics of the mice that they are using to study human diseases and find the right mouse for the job.

Read more:
Sickle cell disease gene therapy study set back by the mice - Cosmos

To Read More: Sickle cell disease gene therapy study set back by the mice – Cosmos
categoriaBone Marrow Stem Cells commentoComments Off on Sickle cell disease gene therapy study set back by the mice – Cosmos | dataJuly 8th, 2022
Read All

Growing Prevalence & Recurrence Of Rheumatoid Arthritis Is Expected To Growth Of The Rheumatoid Arthritis Stem Cell Therapy Market Designer Women…

By daniellenierenberg

The Global Rheumatoid Arthritis Stem Cell Therapy Market is replete with new growth opportunities and expansion avenues. There has been an increase in the use of products and services falling under the ambit of Rheumatoid Arthritis Stem Cell Therapy, giving a thrust to the growth of the global Rheumatoid Arthritis Stem Cell Therapy market. The unprecedented use of these products can be attributed to the increasing paying capacity of the masses.

Furthermore, in the absence of robust or utilitarian alternatives, the demand within the global Rheumatoid Arthritis Stem Cell Therapy market is projected to reach new heights of recognition. It is worthwhile to mention that the global Rheumatoid Arthritis Stem Cell Therapy market is treading along a lucrative pathway due to favorable government legislations.

To get in-depth insights Request for Brochure here https://www.factmr.com/connectus/sample?flag=B&rep_id=1001

The COVID-19 pandemic has changed narratives related to growth and expansion across several key industries. Therefore, the Rheumatoid Arthritis Stem Cell Therapy market is also battling the cons of supply chain disruptions and procurement issues. Over the course of the next quarter, market players could be investing in new technologies to recover from the shocks of the pandemic.

The global market for rheumatoid arthritis stem cell therapy is highly fragmented. Examples of some of the key players operating in the global rheumatoid arthritis stem cell therapy market include Mesoblast Ltd., Roslin Cells, Regeneus Ltd, ReNeuron Group plc, International Stem Cell Corporation, TiGenix and others.

Through the latest research report on Rheumatoid Arthritis Stem Cell Therapy market, the readers get insights on:

Share Your Requirements & Get Customized Reports: https://www.factmr.com/connectus/sample?flag=RC&rep_id=1001

Tentatively, the global rheumatoid arthritis stem cell therapy market can be segmented on the basis of treatment type, application, end-user, and geography.

Based on treatment type, the global rheumatoid arthritis stem cell therapy market can be segmented into:

Based on application, the global rheumatoid arthritis stem cell therapy market can be segmented into:

Based on the distribution channel, the global rheumatoid arthritis stem cell therapy market can be segmented into:

Based on geography, the global rheumatoid arthritis stem cell therapy market can be segmented into:

The study further identifies major manufacturing trends, technologies that will be commercialized

Reasons to choose a Fact.MR:

For In-depth Analysis & Business Strategy, Buy a Copy of this Report: https://www.factmr.com/checkout/1001

About Fact. MR

Market research and consulting agency with a difference! Thats why 80% of Fortune 1,000 companies trust us for making their most critical decisions. We have offices in US and Dublin, whereas our global headquarter is in Dubai. While our experienced consultants employ the latest technologies to extract hard-to-find insights, we believe our USP is the trust clients have in our expertise. Spanning a wide range from automotive & industry 4.0 to healthcare & retail, our coverage is expansive, but we ensure even the most niche categories are analyzed. Reach out to us with your goals, and well be an able research partner.

Contact:US Sales Office :11140 Rockville PikeSuite 400Rockville, MD 20852United StatesTel: +1 (628) 251-1583E-Mail:sales@factmr.com

Corporate Headquarter:Unit No: AU-01-H Gold Tower (AU),Plot No: JLT-PH1-I3A,Jumeirah Lakes Towers,Dubai, United Arab Emirates

View post:
Growing Prevalence & Recurrence Of Rheumatoid Arthritis Is Expected To Growth Of The Rheumatoid Arthritis Stem Cell Therapy Market Designer Women...

To Read More: Growing Prevalence & Recurrence Of Rheumatoid Arthritis Is Expected To Growth Of The Rheumatoid Arthritis Stem Cell Therapy Market Designer Women…
categoriaBone Marrow Stem Cells commentoComments Off on Growing Prevalence & Recurrence Of Rheumatoid Arthritis Is Expected To Growth Of The Rheumatoid Arthritis Stem Cell Therapy Market Designer Women… | dataJuly 8th, 2022
Read All

‘World’s Greatest Tuba-Playing Car Salesman’ Bounces Back after Leukemia, Thanks to Wilmot Team – URMC

By daniellenierenberg

Returning home after a Fathers Day trip to New York City with his daughter in 2016, Scott Kesel thought he had come down with the flu. Bloodwork showed his blood platelets were lower than normal. He followed up with his regular physician and was given the news: he had chronic myelomonocytic leukemia (CMML).

CMML is a rare type of blood cancer that starts in the bone marrow, where blood cells are made. It can involve other areas of the body. There are only about 1,100 cases in the U.S. each year and its more common in people over age 60.

As a Canandaigua resident, Scott started his cancer journey at Wilmot Cancer Institutes Sands Cancer Center at F.F. Thompson. His oncologist laid out all the options: chemo and a stem cell transplant.

Knowing he would need a transplant, his team at Sands had him transfer to Wilmots Hematology team, where he began seeing Jason Mendler, M.D., and his transplant doctor, Omar Aljitawi, M.B.B.S.

He had chemotherapy at Wilmot, where he got to know the infusion nursing staff.

They have put a mindset in place thats so beneficial to the patient, he says.

For a stem cell transplant, his brother was the closest match they could find, although he was only a half-match. That left the option for a haplo-identical transplant available. Historically, it was required to have a closer match in order to do a transplant. With a haploidentical transplant, the donor is only half-matched. Its a newer procedure that is not available at all transplant centers, but the doctors at Wilmot have been performing the surgery since 2015.

He underwent the transplant but, unfortunately, in Scotts case, it didnt work.

For a short period, Scott went to another institution for a clinical trial. Unfortunately, that didnt work either. He developed pancreatitis and had to drop out of the trial. He also experienced cold agglutinin disease, which caused his immune system to attack his red blood cells. Cold temperatures can trigger it and he had to stay at Wilmot for about a month in a temperature-controlled room, set at 80 degrees at all times, to overcome it.

Once that resolved, the team at Wilmot suggested another treatment option to try on Scotts leukemia: a transplant with stem cells from an umbilical cord donation. Umbilical cord blood stem cells came from Australia and Spain to try to save Scotts life. He had only two cord blood units available and he needed both to have a successful transplant, which was his only viable chance to potentially cure his leukemia. Along with the cord blood, he also had radiation therapy with Louis Constine, M.D.

He had nothing but good things to say about the team that took care of him while he was hospitalized on Wilmot Cancer Centers sixth floor, the Blood and Marrow Transplant Unit.

It was exceptional. They were so friendly and accommodating right from the very beginning, he says. It wasnt limited to nurses. Theres medical technicians on the floor that were so friendly and became very good friends.

Scott Kesel (right) with Jason Mendler, M.D., at the 2019 Wilmot Warrior Walk

Thankfully, this time the transplant took. As of June 2022, Scott has been in remission for three-and-a-half years. He credits his team for getting him there.

Its an incredible group of people, he says.

But its not just his team hes grateful for. He appreciates that his life has returned basically back to normal, despite the tumultuous COVID pandemic that happened shortly after his transplant.

Hes gotten back to work and to hobbies he enjoys outside work.

I happen to be the worlds greatest tuba playing car salesman, he jokes.

This summer and fall, he has 28 gigs lined up, with different music groups around the region to keep him busy, and he looks forward to hunting and fishing during his free time.

For it all, he feels fortunate.

You have to be grateful for the outcome, he says. I got a lot of support remotely from people in my community who used the opportunity to promote bone marrow registration and blood drives, which was awful nice.

He adds, Im grateful that I ended up at Wilmot. I really couldnt have been in a better place.

Link:
'World's Greatest Tuba-Playing Car Salesman' Bounces Back after Leukemia, Thanks to Wilmot Team - URMC

To Read More: ‘World’s Greatest Tuba-Playing Car Salesman’ Bounces Back after Leukemia, Thanks to Wilmot Team – URMC
categoriaBone Marrow Stem Cells commentoComments Off on ‘World’s Greatest Tuba-Playing Car Salesman’ Bounces Back after Leukemia, Thanks to Wilmot Team – URMC | dataJuly 8th, 2022
Read All

Next-day manufacture of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: first-in-human clinical study | Blood Cancer Journal…

By daniellenierenberg

Preclinical evaluation of FasT CAR-T cellsFasT CAR-T (F-CAR-T) proliferation in vitro

To characterize the in vitro proliferative capacity of F-CAR-T cells, F-CAR-T and C-CAR-T cells were manufactured in parallel (Supplementary Methods, and Fig. S1) using T-cells from 6 B-ALL patients. To investigate the ex vivo proliferation of F-CAR-T, frozen CD19 F-CAR-T and C-CAR-T cells from each patient were thawed and stimulated with irradiated CD19-expressing K562 cells. The number of CD19-targeting CAR-T cells was then determined during the course of cell expansion in vitro. As shown in Fig. 1A, upon CD19 antigen stimulation, F-CAR-T proliferation was much more robust compared to C-CAR-T proliferation. On day 17 post co-culture, F-CAR-T expanded 1205.61226.3 fold (MeanSD), while C-CAR-T expanded only 116.437.2 fold (MeanSD), (p=0.001). To characterize the mechanism underlying the superior proliferative ability of F-CAR-T, we purified CD19+ CAR-T cells from both F-CAR-T and C-CAR-T. The expression of genes involved in cell proliferation, cell cycle, and apoptosis was analyzed using Nanostring (detailed gene sets are in Table S2). Gene expression profiles showed higher F-CAR-T expression scores for genes associated with cell cycle regulation (F-CAR-T vs. C-CAR-T, p<0.01) and lower expression scores for apoptosis-related genes (F-CAR-T vs. C-CAR-T, p<0.05) in F-CAR-T cells (Fig. S2A).

A Ex vivo cell proliferation of F-CAR-T and C-CAR-T derived from B-ALL patients (n=6) (***P=0.001, F-CAR-T vs. C-CAR-T, d17, unpaired student two-tailed t-test). B Tscm, Tcm, and Tem were characterized by surface staining of CD45RO and CD62L and analyzed with flow cytometry (***P<0.001 comparing F-CAR-T and C-CAR-T). C T-cell exhaustion was characterized by PD-1, LAG3, and TIM-3 staining; Statistical analyses of the percentage of PD1+ LAG3+ Tim3+ (***P<0.001, comparing F-CAR-T and C-CAR-T), unpaired student two-tailed t-test). D RTCA assay was used to examine the specific killing of HeLa-CD19 cells. Growth of target HeLa-CD19 or HeLa cells were monitored dynamically. E CD19+ target Nalm6-Luc cells or F Raji-Luc cells were co-cultured with either F-CAR-T or C-CAR-T for 6h. Target cell killing efficacy was calculated by luciferase activity. NS, P>0.05 F-CAR-T vs. C-CAR-T (unpaired student t-test, two-tailed). F-CAR-T FasT CAR-T, C-CAR-T conventional CAR-T, Tcm (CD45RO+CD62L+) T central memory cells, Tem (CD45RO+CD62L) T effector memory cells, Tscm (CD45ROCD62L+) T stem cell memory, PD1 programmed cell death protein 1, TIM-3 T cell immunoglobulin and mucin domain containing-3, LAG3 lymphocyte-activation gene 3, RTCA real-time cell analyzer, E:T effector cells: target cells, NT normal T-cell.

Phenotypes of unstimulated F-CAR-T from three healthy donors were analyzed by flow cytometry. The CD45ROCD62L+ population was 45.7%2.2% which was comparable to the un-transduced T-cells (data not shown). Upon stimulation with CD19+ tumor cells for 9 days, C-CAR-T central memory cells (Tcm, CD45RO+CD62L+ and effector memory cells (Tem, CD45RO+CD62L) were 56.62%11.97% and 40.48%9.70%, respectively, among the C-CAR-T cells (Fig. 1B and Figs. S2B and S2). In contrast, Tcm cells (87.92%4.36%) was predominant in F-CAR-T, with only a small fraction of Tem (7.84%3.79%). In addition, F-CAR-T cells demonstrated more abundant T stem cell memory (Tscm) (3.841.22% vs 2.342.48%, p<0.05) than C-CAR-T cells. We also examined the exhaustion status of the stimulated CAR-T cells. A higher percentage of PD-1+LAG3+Tim3+T-cells were detected in the C-CAR-T (11.19%2.54%) compared to F-CAR-T (3.59%2.51%, p<0.001) (Fig. 1C). Together these data indicated that the F-CAR-T exhibited a younger phenotype and was less exhausted compared to C-CAR-T.

We used a real-time cell analyzer (RTCA) assay to measure the cytotoxicity of F-CAR-T and C-CAR-T against CD19+ cells in vitro. F-CAR-T and C-CAR-T killing of Hela-CD19 target cells were comparable using this assay (Fig. 1D). Similar levels of IFN- and IL-2 production were also observed (Fig. S2D). In a luciferase-based cytotoxicity assay, CD19+ B leukemia cell lines, Raji and Nalm6, were both effectively killed to similar or better levels at different E:T ratios (Fig. 1E, F).

To compare the in vivo cytotoxicity of F-CAR-T and C-CAR-T, severe immunodeficient NOG mice were engrafted with Raji-luciferase cells. One week after the tumor grafts were established, F-CAR-T and C-CAR-T were intravenously injected at various doses. The engrafted tumors progressed aggressively in control groups with either vehicle alone or control T-cells (Fig. 2A). In contrast, F-CAR-T or C-CAR-T treatment greatly suppressed tumor growth in a dose-dependent manner (Fig. 2A). In the high dose group (2106/mice), both F-CAR-T and C-CAR-T eliminated the tumor rapidly. However, in the low dose group (5105/mice), F-CAR-T showed more effective tumor-killing compared to C-CAR-T. On day 20, mice in the low dose F-CAR-T group became tumor-free, while C-CAR-T treated mice exhibited tumor relapse (Fig. 2A). We examined the CAR-T cell expansion in vivo after infusion. As shown in Fig. 2B, both F-CAR-T and C-CAR-T began to expand in the peripheral blood 7 days after infusion. C-CAR-T cell numbers reached their peak on day 14 and receded on day 21. In contrast, the F-CAR-T cell number peaked on day 21 and declined to a baseline level on day 28. F-CAR-T not only persisted longer but also underwent 26 folds greater expansion than C-CAR-T (Fig. 2B).

A Raji-Luc cell engraftment NOG mice were given high dose (2106/mice, n=3) and low dose (5105/mice, n=3) F-CAR-T/C-CAR-T along with control groups. Tumor growth was monitored with IVIS scan once every 3 days; B CAR-T expansion in peripheral blood of mice was analyzed by flow cytometry (n=6). ***P<0.001 for F-CAR-T HD vs. C-CAR-T HD; F-CAR-T LD vs. C-CAR-T LD; F-CAR-T HD vs. F-CAR-T LD; C-CAR-T HD vs. C-CAR-T LD (two-way ANOVA statistical analysis); C Schematic of the Nalm6 (1106) xenograft model, CAR-T (2106) infused 1 day after cyclophosphamide (20mg/kg) treatment. Bone marrow infiltration of F-CAR-T was analyzed 10 days after CAR-T infusion (n=3); D CD45+CD2 F-CAR-T vs. C-CAR-T in peripheral blood of mice were analyzed by flow cytometry; *P<0.05 (unpaired student two-tailed t-test). IVIS in vivo imaging system, PB peripheral blood, i.v. intravenous, HD high dose, LD low dose, Cy cyclophosphamide; *p<0.05; #: number.

We examined the BM infiltration of F-CAR-T cells after infusion into Nalm6-bearing mice (Fig. 2C). A larger population of CAR-T cells was observed 10 days after infusion in BM in F-CAR-T infused group than that in the C-CAR-T group (p<0.05) (Fig. 2D), suggesting F-CAR-T cells possessed a better BM homing capability than C-CAR-T.

The chemokine receptor CXCR4 is known to be critical for BM homing of T-cells [25, 26]. Indeed, a higher percentage of CXCR4+ T cells were detected in F-CAR-T than in the C-CAR-T. Interestingly, this phenotype was more pronounced for CD4+ T cells than CD8+ T cells (Fig. S3A). In a two-chamber system, more F-CAR-T cells could be detected in the lower chamber than their C-CAR-T counterparts (Fig. S3B).

Between Jan. 2019 and Oct. 2019, 25 pediatric and adult patients with CD19+R/R B-ALL were enrolled onto our phase 1 trial, including two patients who had relapsed following a prior allo-HSCT. Patient characteristics are detailed in Table 1. The median age of patients was 20 (range: 344) years old. Twenty patients were >14 years old, and five were 14 years old. The median percentage of pre-treatment BM blasts was 9.05% (range: 0.1982.9%). As our pre-clinical studies demonstrated that F-CAR-T cells had a superior expansion capability as compared to C-CAR-T, we infused a relatively low doses of F-CAR-T cells, ranging from 104105 cells/kg: 3.0104 cells/kg (n=2), 6.5 (5.867.43)104 cells/kg (n=9), 1.01 (1.01.16)105 cells/kg (n=12), 1.52(1.471.56)105 cells/kg (n=2), (Fig. S4). The median time from apheresis to the infusion of CD19+F-CAR-T cells was 14 days (range: 1220). Although the manufacturing time of F-CAR-T was next day, the quality control time and detailed final product releases including sterility testing require a minimum of 710 days to complete. In addition, transportation of cell products requires approximately two days. Of the 25 patients who received CD19 F-CAR-T infusion, 22 (88%) received bridging chemotherapy between apheresis and lymphodepleting chemotherapy to control rapid disease progression (Table S3).

F-CAR-T cells were manufactured successfully for all patients. The mean transduction efficiency of F-CAR-T was 35.4% (range: 13.170.3%) (Fig. S5A). Both CD4+/CAR+ (mean, 49.6%; range: 13.673.2%) and CD8+/CAR+ (mean, 41.5%; range: 20.677.7%) subsets were present in the CD3+CAR+ T cell subsets of all products. The mean proportion of Tscm, Tem, and Tcm cells in the CD3+CAR+ T cell subsets of all products was 23.3% (range: 3.5545.3%), 33.2% (range: 17.267.9%), and 36.1% (range: 20.758.1%), respectively (Fig. S5B). F-CAR-T products exerted significant IFN- release and cytotoxic effects against the CD19+ cell line HELA-CD19 (Fig. S5, C, D).

All 25 infused patients experienced adverse events (AEs) of any grade, with 25 (100%) experiencing grade 3 or higher adverse events. No grade 5 events related to F-CAR-T treatment were observed (Table 2).

CRS occurred in 24 (96%) patients with 18 (72%) grade 12 CRS,6 (24%) of grade 3, and no grade 4 or higher CRS (Fig. S6). In the >14 years old group, 16/20 (80%) patients developed mild CRS, and only 2/20 (10%) developed grade 3 CRS. For 14 years old patients, 2/5 (40%) had mild CRS, yet 3/5 (60%) experienced grade 3 CRS (Table S4). ICANS was observed in 7 (28%) patients, with 2 (8%) grade 3 ICANS occurring in patients >14 years old and 5 (20%) grade 4 ICANS all occurring in patients 14 years old. No grade 5 ICANS was developed (Fig. S7 and Table S4). The most frequent presentation of CRS was fever, particularly a high fever of >39C. The first onset of CRS symptoms occurred between day 3 and 8 post-CAR-T infusion with a median onset at day 4 (range: 110 days). The most common symptoms of ICANS were seizure (5/7) and depressed consciousness (5/7). The median time to ICANS onset from CAR-T cell infusion was 7 days (range: 58), and the median time to resolution was 2 days (Fig. S7). All CRS and ICANS events were managed including early intervention when fever of 39C persisted for 24h. Sixteen (64%) patients received tocilizumab with a median total dose of 160mg (range: 160320mg). Twenty-one (84%) patients received corticosteroids including dexamethasone (median total dose, 43mg; range: 4127mg) and or methylprednisolone (median total dose, 190mg; range: 401070mg). The vast majority of these patients discontinued corticosteroids within 2 weeks. The change in IL-6, IFN-, IL-10, and GM-CSF levels after infusion are selectively shown in Fig. S8. The peak levels of these four cytokines were observed between day 710. Among all 21 cytokines examined, only post-infusion IL-6 levels were associated with moderate to severe CRS and/or ICANS (Figs. S9 and S10).

Superior in vivo proliferation and persistence of F-CAR-T compared to C-CAR-T cells were observed regardless of dose levels. The median peak level was reached on day 10 (range: 714 days) with 1.9105 transgene copies/g of genomic DNA (range: 0.225.2105 transgene copies/g of genomic DNA) by qPCR and 83 F-CAR-T cells per l blood (range: 42102 F-CAR-T cells per l blood) by FCM (Fig. 3A, B). No significant differences were observed among the different dose groups in the mean F-CAR-T copies peak (Fig. 3C). Importantly, there was no significant difference in the mean F-CAR-T copies peak between patients who received corticosteroids compared to those who did not (Fig. 3D).

A F-CAR-T cells in peripheral blood by qPCR. Purple, dose level 1; black, dose level 2; blue, dose level 3; red, dose level 4; B F-CAR-T cells in peripheral blood by flow cytometry. Purple, dose level 1; black, dose level 2; blue, dose level 3; red, dose level 4; C Comparison of the mean peak copy number of F-CAR-T cells in peripheral blood at each dose level. Statistical significance was determined by the MannWhitney test. D Comparison of the mean peak copy number of F-CAR-T cells in peripheral blood with or without steroids. Statistical significance was determined by the MannWhitney test.

Fourteen days after F-CAR-T cell infusion, all patients achieved morphologic CR including 2/25 with CR and 23/25 CR with incomplete hematologic recovery (CRi), which further improved to 11/25 CR and 14/25 CRi 28 days post F-CAR-T (Table 1 and Fig. 4). More importantly, 23/25 (92%) had the minimal residual disease (MRD)-negative remission on day 14 and day 28 after F-CAR-T treatment. Patients achieving remission through CAR-T were given the option to proceed to allo-HSCT. With a median time of 54 days (range: 4581 days) post F-CAR-T infusion, 20 of 23 patients with MRD-negative status decided to pursue consolidative allo-HSCT including one patient who received a 2nd transplant. As of 18 October 2021, with a median follow-up duration of 693 days (range: 84973 days) among the 20 patients who had received allo-HSCT, one patient relapsed on day 172 and died 3 months after relapse, and four patients died from transplant-related mortality (TRM) including infection (n=3) and chronic GVHD (n=1) on day 84, day 215, day 220, and day 312, respectively. The other 15 patients remained in MRD-negative CR with a median remission duration of 734 days (range: 208973) except for one who became MRD-positive on day 294 with CD19+ disease. Among the other three patients (F05, F06, F16), one remained in MRD-negative CR on day 304, one remained in MRD-negative CR until day 303, received allo-HSCT but died from an infection on day 505, and one was lost to follow-up after day 114. Two patients who had MRD-positive CR after infusion withdrew from the study on day 42 and day 44, respectively, to seek other studies.

Clinical outcomes and consolidative allo-HSCT for the 25 patients who were treated with F-CAR-T therapy are shown. On day 28, 23/25 patients achieved MRD-negative CR/CRi. With a median time of 54 days (range: 4581) post F-CAR-T infusion, 20 of 23 patients with MRD-negative status received consolidative allo-HSCT. Among the 20 patients, 1 patient (F23) relapsed on day 172 and died 3 months after relapse. Four patients (F04, F09, F11, F12) died from transplant-related mortality (TRM) including infection (n=3) and chronic GVHD (n=1) on day 84, day 215, day 220, and day 312, respectively. The remaining 15 patients were in MRD-negative CR except for one (F18) who became MRD-positive on day 294. Among the other 3 patients (F05, F06, F16), 1 remained MRD-negative CR on day 304, 1 remained in MRD-negative CR until day 303, received allo-HSCT, and subsequently died from an infection on day 505. One patient was lost to follow-up after day 114. MRD minimal residual disease, CR complete remission, Allo-HSCT allogeneic hematopoietic stem cell transplantation.

F-CAR-T/T ratio in cerebrospinal fluid (CSF) was evaluated by FCM in 13/25 patients with available samples (Table S5). Between days 10 and 32, 9 patients were found to have considerable F-CAR-T penetration in their CSF, ranging from 40.65 to 79.2%, including 4 who developed severe ICANS. Among the other 4 patients, F-CAR-T cell abundance in the CSF ranged from 1.29% to 3.57%, and none experienced severe ICANS. Patients with higher levels of CAR-T in PB on day 10 consistently had higher levels of CAR-T in CSF with the exception of patient F15. Notably, CAR-T cells were still detectable in the CSF on day 101 with a 2.36% CAR-T/T ratio in patient F06, who also had undetectable circulating CAR-T cells at the same time.

In addition, concentrations of seven cytokines (IL-1b, IL-6, IL-10, IFN-, TNF-, MCP-1, and GM-CSF) in CSF samples from the above 10 of 13 patients were measured. Specifically, IL-1b was not detected in any of the 10 patients, and only one patient had detectable GM-CSF. For the other five cytokines, patients with severe ICANS had higher IL-6 levels in contrast to patients without severe ICANS, and the difference between the median level of IL-6 among these two groups of patients was statistically significant (Fig. S11). We did not observe significant differences among the other 4 cytokines between the two groups of patients. No clear relation between the CSF cytokine levels and the F-CAR-T/T % was observed.

Continued here:
Next-day manufacture of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: first-in-human clinical study | Blood Cancer Journal...

To Read More: Next-day manufacture of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: first-in-human clinical study | Blood Cancer Journal…
categoriaBone Marrow Stem Cells commentoComments Off on Next-day manufacture of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: first-in-human clinical study | Blood Cancer Journal… | dataJuly 8th, 2022
Read All

Jasper Therapeutics to Participate in the William Blair 42nd Annual Growth Stock Conference – GuruFocus.com

By daniellenierenberg

REDWOOD CITY, Calif., June 07, 2022 (GLOBE NEWSWIRE) -- Jasper Therapeutics, Inc. ( JSPR), a biotechnology company focused on enabling cures with stem cell therapies, today announced that the Company is participating in the William Blair 42nd Annual Growth Stock Conference, to be held in Chicago from June 6-9, 2022.

Ronald Martell, Jaspers Chief Executive Officer, is scheduled to present on Thursday, June 9th at 8:00AM CT, with a breakout session to follow at 8:40AM CT. A live webcast of the presentation will be available at https://wsw.com/webcast/blair66/jasp/1933236 and at the Companys Investor Events webpage.

About Jasper TherapeuticsJasper Therapeutics, Inc. is a biotechnology company focused on the development of novel curative therapies based on the biology of the hematopoietic stem cell. The company is advancing two potentially groundbreaking programs. JSP191, an anti-CD117 monoclonal antibody, is in clinical development as a conditioning agent that clears hematopoietic stem cells from bone marrow in patients undergoing hematopoietic cell transplantation. It is designed to enable safer and more effective, and potentially curative, allogeneic hematopoietic cell transplants and gene therapies. A clinical study of JSP191 as a novel, disease-modifying, therapeutic for patients with lower risk MDS is also planned to begin in 2022. In parallel, Jasper Therapeutics, Inc. is advancing its preclinical mRNA hematopoietic stem cell grafts platform, which is designed to overcome key limitations of allogeneic and autologous gene-edited stem cell grafts. Both innovative programs have the potential to transform the field and expand hematopoietic stem cell therapy cures to a greater number of patients with life-threatening cancers, genetic diseases and autoimmune diseases than is possible today. For more information, please visit us at jaspertherapeutics.com.

Forward-Looking StatementsCertain statements included in this press release that are not historical facts are forward-looking statements for purposes of the safe harbor provisions under the United States Private Securities Litigation Reform Act of 1995. Forward-looking statements are sometimes accompanied by words such as believe, may, will, estimate, continue, anticipate, intend, expect, should, would, plan, predict, potential, seem, seek, future, outlook and similar expressions that predict or indicate future events or trends or that are not statements of historical matters. These forward-looking statements include, but are not limited to, statements regarding the potential of the Companys JSP191 and mRNA engineered stem cell graft programs. These statements are based on various assumptions, whether or not identified in this press release, and on the current expectations of Jasper and are not predictions of actual performance. These forward-looking statements are provided for illustrative purposes only and are not intended to serve as, and must not be relied on by an investor as, a guarantee, an assurance, a prediction or a definitive statement of fact or probability. Actual events and circumstances are difficult or impossible to predict and will differ from assumptions. Many actual events and circumstances are beyond the control of Jasper. These forward-looking statements are subject to a number of risks and uncertainties, including general economic, political and business conditions; the risk that the potential product candidates that Jasper develops may not progress through clinical development or receive required regulatory approvals within expected timelines or at all; risks relating to uncertainty regarding the regulatory pathway for Jaspers product candidates; the risk that prior study results may not be replicated; the risk that clinical trials may not confirm any safety, potency or other product characteristics described or assumed in this press release; the risk that Jasper will be unable to successfully market or gain market acceptance of its product candidates; the risk that Jaspers product candidates may not be beneficial to patients or successfully commercialized; patients willingness to try new therapies and the willingness of physicians to prescribe these therapies; the effects of competition on Jaspers business; the risk that third parties on which Jasper depends for laboratory, clinical development, manufacturing and other critical services will fail to perform satisfactorily; the risk that Jaspers business, operations, clinical development plans and timelines, and supply chain could be adversely affected by the effects of health epidemics, including the ongoing COVID-19 pandemic; the risk that Jasper will be unable to obtain and maintain sufficient intellectual property protection for its investigational products or will infringe the intellectual property protection of others; and other risks and uncertainties indicated from time to time in Jaspers filings with the SEC. If any of these risks materialize or Jaspers assumptions prove incorrect, actual results could differ materially from the results implied by these forward-looking statements. While Jasper may elect to update these forward-looking statements at some point in the future, Jasper specifically disclaims any obligation to do so. These forward-looking statements should not be relied upon as representing Jaspers assessments of any date subsequent to the date of this press release. Accordingly, undue reliance should not be placed upon the forward-looking statements.

Contacts:

John Mullaly (investors)LifeSci Advisors617-429-3548[emailprotected]

Jeet Mahal (investors)Jasper Therapeutics650-549-1403[emailprotected]

Read the original post:
Jasper Therapeutics to Participate in the William Blair 42nd Annual Growth Stock Conference - GuruFocus.com

To Read More: Jasper Therapeutics to Participate in the William Blair 42nd Annual Growth Stock Conference – GuruFocus.com
categoriaBone Marrow Stem Cells commentoComments Off on Jasper Therapeutics to Participate in the William Blair 42nd Annual Growth Stock Conference – GuruFocus.com | dataJuly 8th, 2022
Read All

Cutting Edge: Poop therapy can save your gut, and your life – The Indian Express

By daniellenierenberg

The very thought of getting someone elses poop transfused in your body may make you cringe but stool transplant has not only helped patients with gastrointestinal tract issues, it has also saved those who have had bone marrow transplants.

At Deenanath Mangeshkar Hospitals Centre of Excellence in Infectious Diseases and Department of Haematology, Pune, seven of the 11 patients of bone marrow transplants developed Clostridium difficile infection. They were treated with faecal microbial transplant (FMT), also referred to as stool transplant, over the past year.

Research worldwide has shown that a faecal transplant can restore healthy bacteria in the lower intestine which can help control Clostridium difficile or C. diff. According to the Johns Hopkins University School of Medicine, FMT can be more effective than antibiotics for keeping C. diff in check in some cases.

Since C. diff infection can recur and cause colitis (inflammation in the colon), FMT restores good and healthy bacteria, said Dr Parikshit Prayag, infectious disease consultant and in-charge of the Centre of Excellence in Infectious Diseases at Deenanath Mangeshkar hospital.

Dr Sameer Melinkeri, head of the department of haemotology at the hospital, said C. diff infection-related diarrhoea can occur in a normal setting in which antibiotics can be used for treatment. However, antibiotic treatment for recurrent infections can involve one or more courses of medication and their effectiveness comes down with each subsequent bout. FMT can arrest such infections post bone marrow transplant as it can be life-threatening, he added.

FMT is also done for certain disease conditions like Graft vs host disease (GvHD). Most people who undergo a bone marrow transplant suffer from blood cancer. Graft vs host disease can occur at any time after an allogeneic transplant where the donated bone marrow or peripheral stem cells can attack the recipients body. It can develop in the GI tract, skin or liver, Dr Prayag said.

Latest research published in the Journal of International Medical Research and others has shown how FMT is a promising treatment for patients with steroid-resistant GvHD. We have seen clinically relevant results in six of our patients, Dr Prayag said.

So, who can be donors? They are selected based on certain parameters. They should not be immune-compromised or have taken antibiotics over the past six months, says Dr Sampada Patwardhan, head of the department of microbiology at the hospital. Donor screening has to be done carefully. We need to rule out infections, she said.

Procedures on the transplant delivery methods may vary like colonoscopy and use of nasojejunal tube. The recovery may take a week or more and in most cases there are at least two weekly installations of the stool (in liquid form).

Very few centres conduct FMT and among them, the centre at Deenanath Hospital actively treats cases involving bone marrow transplants. At a recent virtual meeting of the International Society of Blood Transfusion, Dr Prayag made a strong case for encouraging stool transplants. The condition of C. diff is also underdiagnosed in the country as there isnt adequate infrastructure to correctly detect the problem, he pointed out.

In fact, FMT is being touted as a treatment option for many gut health issues. In an opinion article published on June 30 in the journal Trends in Molecular Medicine, a team from Harvard Medical School and Brigham and Womens Hospital (BWH) proposes that individuals bank samples of their own gut microbiota when they are young and healthy for potential use later in life in an autologous FMT.

A report in Science Daily quotes corresponding author Yang-Yu Liu, an associate professor of medicine at Harvard and an associate scientist in the Channing Division of Network Medicine at BWH, as saying, The idea of rewilding the human microbiome has taken off in recent years and has been hotly debated from medical, ethical and evolutionary perspectives. It is still unknown if people in industrialized societies can gain some health benefit by restoring their microbiome to an ancestral state. In this paper, we proposed a way to rejuvenate the human gut microbiome.

The report also listed OpenBiome, a non-profit stool bank based in Somerville, Massachusetts, as the first stool bank to offer an option for individuals to bank their own stool for future treatment of C. diff infection. Yang and his colleagues are now looking at if this treatment can be used for other diseases.

Conceptually, the idea of stool banking for autologous FMT is similar to when parents bank their babys cord blood for possible future use. However, there is greater potential for stool banking, and we anticipate that the chance of using stool samples is much higher than for cord blood. But there are many practical issues to implementing this idea, Yang is quoted as saying, hinting at optimal storage and cryopreservation issues.

See more here:
Cutting Edge: Poop therapy can save your gut, and your life - The Indian Express

To Read More: Cutting Edge: Poop therapy can save your gut, and your life – The Indian Express
categoriaBone Marrow Stem Cells commentoComments Off on Cutting Edge: Poop therapy can save your gut, and your life – The Indian Express | dataJuly 8th, 2022
Read All

Proteases implicated in ulcerative colitis – ASBMB Today

By daniellenierenberg

Ulcerative colitis, or UC, is a form of inflammatory bowel disease characterized by chronic and relapsing large intestine inflammation. Genetics account for only a minority of UC cases; hence, to develop treatments, researchers need to understand better the environmental contributions to this condition.

Gut microbes are in perpetual contact with the gastrointestinal tract, so they comprise important but poorly defined environmental variables contributing to UC development. Many studies have reported changes in gut microbiome composition in patients with UC compared to healthy individuals. While that suggests a potential role for gut microbes in UC pathogenesis, researchers have yet to pinpoint the causative microbes and associated bacterial proteins.

Dennis Wolans lab at Scripps Research is interested in identifying small-molecule activators and inhibiting bacterial enzymes involved in proliferation of human disease. Wolan said he was curious about what bacterial enzymes of the microbiome contribute to UC development.

Many publications have focused on the role of the microbiome in both health and disease states, he said. Most of these were focused on the taxonomical and phylogenic differences in the microbiome. But what about the associated bacterial proteins? What proteins are these gut bacteria making in disease conditions, and how are these interacting with the human body?

One protein of interest was serine proteases, a type of proteolytic enzyme that cleaves peptides at the serine amino acid. Researchers long have recognized that they coordinate many physiological processes and play key roles in regulating the inflammatory response. Previous studies have suggested increased proteolytic activity in microbial samples harvested from people with inflammatory disorders such as UC and Crohns disease.

Peter ThuyBuon, a graduate student and later a postdoc in the Wolan lab, led a project to study differential protein expression in healthy and UC fecal samples. He and the team described the project in a recent paper in the journal Molecular & Cellular Proteomics. In addition to standard mass spectrometry, ThuyBuon used a small molecular approach called affinity-based proteomic profiling to target and enrich for different types of proteases in the fecal samples.

We showed that there were 176 discrete host and microbial protein groups differentially enriched between healthy and UC patients, Wolan said. Furthermore, further enrichment of these proteins showed significantly higher levels of serine proteases in UC patients.

This finding has inspired exciting future research questions. For example, are elevated serine proteases the driver of UC or merely the effect of UC disease progression?

There is a lot of exciting work to be done using these findings, Wolan said. Future molecular studies should focus on how serine proteases might be contributing to UC and whether their levels can be manipulated to modify disease progression.

Functional proteomics has shown the potential role of serine proteases in UC. Future steps will include drug discovery and design of small-molecule regulators of bacterial enzymes.

Wolan said, Ultimately, the moderation of microbiome distribution in UC via external small-molecule intervention can serve as a foundation for UC prevention and treatment.

Visit link:
Proteases implicated in ulcerative colitis - ASBMB Today

To Read More: Proteases implicated in ulcerative colitis – ASBMB Today
categoriaBone Marrow Stem Cells commentoComments Off on Proteases implicated in ulcerative colitis – ASBMB Today | dataJuly 8th, 2022
Read All

Does Chemotherapy Have Cognitive and Emotional Side Effects? – Healthline

By daniellenierenberg

Chemotherapy has transformed cancer care, but its benefits come with side effects. Chemo brain is the name some people give to the brain fog and fuzziness that can result from these lifesaving treatments.

Chemotherapy works by destroying fast-reproducing cancer cells. But it can kill other healthy cells along the way, including certain brain cells. The destruction of brain cells can impact your emotional state and ability to think, leading to memory and concentration problems, among other concerns.

This article will explore what types of cognitive and emotional changes you might expect from chemotherapy, what factors increase your risk for these symptoms, and what you can do to treat them.

Various emotional and cognitive symptoms can occur during chemotherapy, and they should be categorized separately. Even though they both apply to your brain and can be considered mental side effects, emotion and cognition are different.

Cognition refers broadly to the intellectual processes of absorbing, analyzing, and using information. Emotions are our feelings and responses to experiences, environments, and relationships. For example, trouble focusing is a cognitive side effect, whereas irritability is an emotional one.

Lets go over some of the most common chemotherapy side effects in both categories.

Cognitive changes are usually the most noticeable impacting daily functioning, work or school performance, and personal relationships.

Confusion or delirium is the most common of these symptoms, affecting roughly 57 to 85 percent of people undergoing chemotherapy, compared to 15 to 30 percent of people hospitalized for other medical reasons.

Cognitive changes can look different depending on the individual but commonly include:

In addition to chemo, other factors can contribute to emotional stress as part of a cancer diagnosis. The emotional impacts of chemo can look like shifts in mood, depression or anxiety. Personality changes are common, too.

These can be linked to chemotherapy treatments, the disease process, and coping with a cancer diagnosis.

Learn more about the emotional impacts of a cancer diagnosis and cancer treatment.

There are several reasons why chemotherapy can impact your mental and emotional health.

One reason is that chemo medications cross the blood-brain barrier, causing inflammation. Brain shrinkage, or a loss of neurons, has been observed as a result of both cancer and chemotherapy.

Cognitive changes can also be heightened by complications of cancer treatment or other medical conditions. Chronic pain and lack of sleep or appetite from chemotherapy treatments can have profound negative life impacts.

This can affect your energy and strength levels, making it hard to focus or regulate your emotions.

Cancers spread to the brain can also directly affect cognitive and emotional functioning. This can be separate from, or in addition to, chemo.

While chemotherapy aims to slow or stop the spread of cancer, increased changes in mental status and cognition can also be signs of metastasis, or that the cancer is spreading.

Your doctor may also want to rule out intolerances or reactions to your chemotherapy treatment.

Treating cancer requires an individualized and multidisciplinary approach. Often, a rehabilitation plan is involved in helping you cope with or heal from the effects of chemotherapy and other intensive treatments, including any surgeries.

Your doctor may want to adjust your chemotherapy regimen depending on your side effects.

Cognitive rehabilitation is sometimes included in a chemotherapy plan and offers activities or exercises to help keep your mind sharp and focused during treatment.

The American Cancer Society suggests that exercise and meditation can go a long way in reducing the mental toll of chemotherapy and other cancer treatments.

Also, talk therapy, including cognitive behavioral therapy (CBT), may help you process the complex emotions arising from a cancer diagnosis and treatment.

Talk therapies can help you develop coping techniques that may help you manage fatigue, confusion, and any depression or anxiety you are experiencing due to chemotherapy.

There are particular cancer and chemotherapy medications that can increase the chances of confusion, delirium, and other cognitive changes in some people. Your doctor should review any risks of a potential treatment option with you when designing your chemo regimen.

Consider coming to your appointment prepared with questions about what risk of physical and mental impacts chemo may cause. Ensure your doctor knows all medications you are currently taking to avoid adverse reactions.

If you choose to move forward with treatment, your doctor may be able to help you find ways to preserve your thinking abilities should chemo affect them, or at the very least learn to cope with the changes.

There are certain risk factors that may increase your chance of experiencing mental side effects during chemotherapy.

Besides taking specific medications or having brain cancer, this can include having:

Chemotherapy can effectively manage cancer and bring about remission. But the medications for chemotherapy are strong and highly toxic to other cells and systems in your body. This treatment can cause unpleasant physical, mental, and emotional symptoms.

The physical effects of chemotherapy like nausea and hair loss are well-known, but substantial mental and cognitive changes can also happen with this therapy. Chemo brain refers to the fatigue, confusion, and overall brain fog some people experience.

Talk with your doctor about the specific risks versus benefits for your type of cancer, stage, and prescribed chemotherapy regimen. Your medical team should be able to help you with therapies and strategies that can help you cope with the emotional and cognitive toll of cancer and chemotherapy.

Visit link:
Does Chemotherapy Have Cognitive and Emotional Side Effects? - Healthline

To Read More: Does Chemotherapy Have Cognitive and Emotional Side Effects? – Healthline
categoriaSkin Stem Cells commentoComments Off on Does Chemotherapy Have Cognitive and Emotional Side Effects? – Healthline | dataJuly 8th, 2022
Read All

PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT – Dove Medical Press

By daniellenierenberg

Introduction

Stem cells are highly specialized cell types with an impressive ability to self-renew, able to transform into one or even more specific cell types that play a significant role in the regulation and tissue healing process.17 To self-renew, a stem divides into two identical daughter stem cells and a progenitor cell and the embryonic and adult cells contain stem cells.1,2,8

Curing patients with serious medical conditions has been the focus of all disciplines of medical research for many years. Stem cell treatment has evolved into a highly exciting and progressed field of scientific research. Major advances have recently been introduced in fundamental and translational stem-cell-based treatment studies. As stem cell research progressed, many therapeutic options were investigated. The development of therapeutic procedures has sparked a great deal of interest.1,9 Humanity has known for many years that it is possible to regenerate lost tissue. Recently, the regenerative medicine research has taken hold, defying the tremendous scientific advances in the molecular biology sciences only. Technological advances provide limitless opportunities for transformational and potentially restorative therapies for many of humanitys most illnesses. A variety of human organs have successfully yielded stem cells. Besides this, the cell therapy is rapidly bringing good advancements in the healthcare system, intending to restore and possibly replace injured tissue, as well as organs, and ultimately restore the functional capacity of the body.2,10,11

The stem cells can be obtained from various sources of Adult (Adult body tissues), Embryonic (Embryos), Mesenchyma (Connective tissue or stroma), and Induced pluripotent stem [ips] cells (Skin cells or tissue-specific cells).3,68,1215

Due to various stem cells cellular characteristics, the therapeutic clinical possibilities of stem-cell-based treatment are considered promising. These cells can regrow and restore various types of body tissues, for this reason, they are recognized as precursor cells to all kinds of cells.15 The following are the distinguishing features: 1. Self-renewal- Divide without distinction to generate an infinite supply, 2. Multi-potency- One mature cell may distinguish more than one, 3. Pluripotency- Create all sorts of cells except for embryonic membrane cells, 4. Toti- potency- Produce various sorts of cells, including embryonic stem cells.1,2,6,7,16

Stem cells are essential human cells that really can self-renew and make a distinction into particular mature cell types.3,6 The different types of stem cells are embryonic, induced pluripotent, and adult kind of cell types. They all share the important feature of self-renewal, and the ability to discern themselves. It should be mentioned that, the stem cells are not homogeneous, but instead appear in a progressive order. Totipotent stem cells are the most basic and immature stem cells. The above cells can form a complete embryo and also extra-embryonic tissue. This one-of-a-kind efficiency is only present for a short period, starting with ovum development and completing whenever the embryo achieves the 4 to 8 cell phases. Having followed that, cells that divide until they approach the blastocyst, about which point they end up losing their totipotency and acquire a pluripotent character trait, at which cells can only distinguish through each embryonic germ stack. After a few divisions, the pluripotency character trait starts to fade and the distinguishing ability has become more lineage constrained, where its cells are becoming multipotent, indicating they could only transform into the cells connected to a cell or tissue of origin.10 Many researchers believe that adult stem cells should be used in stem cell therapies.6,17

The stem cells can be transformed into a wide range of specialized functional cell types.3,18 In response to injury or maturation, those same stem cells can propagate in massive quantities.19 Adult, embryonic, and induced pluripotent stem cells are examples of stem cell-based therapies.14,15,1921 The stem cells, due to their capability to distinguish the specific cell types requisite for a diseased tissue regeneration, can provide an effective solution, while tissue and organ transplantation are considered necessary.10 The sophistication of stem cell-based treatment interventions, on the other hand, probably leads researchers to seek stable, credible, and readily available stem cell sources capable of converting into numerous lineages. As an outcome, it is critical to exercise caution when selecting the type of stem cells to be used in therapeutic trials.12,14,22

Only with the explosive growth of basic stem cell research in recent years, the comparatively recent study sector of Translational Research had also grown exponentially, starting to build on major research knowledge and insight to advance new therapies. Once the necessary regulatory clearances have been obtained, the clinical translation process can start. Translational research is important because it acts as a filtration system, ensuring that only safe and effective therapeutic approaches start making it to the clinic.23 Recent research illustrating, the successful application of stem cell transplantation to patient populations suggests that, such restorative approaches have been used to address a wide variety of complicated ailments of future concerns.19,24

Currently, clinical trials are available for a variety of stem cell-based treatments based on adult stem cells. To date, the WHO International Clinical Experiments Registration process has recorded more than 3000 experiments involved based on adult stem cells. Furthermore, preliminary trials involving novel and intriguing pluripotent stem cell therapies have been registered. These studies findings will assist the ability to comprehend and the timeframes required to obtain effective treatments and it will contribute to a better knowledge of the different disorders or abnormalities.10

The role of stem cells in modern medicine is vital, both for their widespread application in basic research and for the opportunities they provide for developing new therapeutic strategies in clinical practice.6,16 In recent times, the number of studies involving stem cells has expanded tremendously. Globally, thousands of studies claiming to use stem cells in experimental therapies have now been in the investigation field. This may give the impression that such treatments have already been shown to be extremely effective in the context of healthcare. Despite some promising results, the vast majority of stem cell-based therapeutic applications are still in the experimental stage itself.6,25

The stem cells are a valuable resource for understanding organogenesis as well as the bodys continual regenerative capacity. These cells have brought up enormous anticipations among doctors, investigators, patients, and the public at large because of their ability to distinguish into a variety of cell types.25 These cells are necessary for living beings for a variety of reasons and can play a distinguishable role. Several stem cells can play all cell types roles, and when stimulated effectively, they can also repair damaged tissue. This capability has the potential to save lives as well as treat human injuries and tissue destruction. Moreover, different kinds of stem cells could be used for several purposes, including tissue formation, cell deficiency therapeutic interventions, and stem cell donation or retrieval.3,6,26

New research demonstrating that the successful application of stem cell treatments to patients has expressed hope that such regenerative strategies might very well one day is being used to address a wide variety of problematic ailments. Furthermore, clinical trials incorporating stem cell-based therapeutics have advanced at an alarming rate in recent years. Some of these studies had a significant impact on a wide range of medical conditions.10 As a regenerative medicine strategy, cell-based treatment is widely regarded as the most fascinating field of study in advanced science and medicine. Such technological innovation paves the way for an infinite number of transformational and potentially curable solutions to some of humanitys most pressing survival issues. Moreover, it is gradually becoming the next major concern in medical services.11

Modern data, which shows that the successful stem cell transplantation in beneficiaries has raised hopes on the certain rejuvenating approaches, will one day be used to treat many different types of challenging chronic conditions.24 Preliminary data from highly innovative investigations have documented that the prospective advancement of stem cells provides a wide range of life-threatening ailments that have so far eluded current medical therapy.2,10,11 Furthermore, clinical trials involving stem cell-based therapies have advanced at an unprecedented rate. Many of these studies had a significant impact on various disorders.19 Despite the increasing significance of articles concerning viable stem cell-based treatments, the vast majority of clinical experiments have still yet to receive full authorization for stem cell treatments confirmation.11,12,27

Even though the first case of AIDS were noted nearly 27 years ago, and the etiologic agent was noticed 25 years ago, still for the effective control of the AIDS pandemic continues to remain elusive.28 The HIV epidemic started in 1981 when a new virus syndrome defined by a weakened immune system was revealed in human populations across the globe. AIDS showed up to have a substantial reduction in CD4+ cell counts and also elevated B-cell multiplication.15,2831

The agent that causes AIDS, later named HIV, is a retroviral disease with a genomic structural system made up of 2 identical single-stranded RNA particles.3234 According to the Centres for Disease Control and Prevention, with over 1.1 million Americans are presently infected with the virus.31 Compromised immune processes in HIV and AIDS, as well as partial immune restoration, barriers are confirmed for HIV disease eradication. Innovative developmental strategies are essential to maximizing virus protection and enabling the host immune response to eliminate the virus.35

The progression of HIV infection in humans is divided into the following stages of acute infection, chronic infection, and AIDS.15,36 During the acute infection phase, the circulation has a high viral replication, is extremely infectious, that may or may not demonstrate flu-like clinical signs. In the chronic stage, the viral load is lesser than in the acute stage, and individuals are still infectious but may be symptomless. The patient has come to the end stage of AIDS whenever the CD4+ cell count begins to fall below 200 cells/mm or even when opportunistic infections are advanced.15,36

There are currently two types of HIV isolated HIV-1 and HIV-2.15,37,38 However, HIV-1 is the most common cause of AIDS throughout the world, while HIV-2 is only found in a few areas of an African country. Although both virions can cause AIDS, HIV-2 infection is much more likely to occur in central nervous system disorder.15 Besides this, HIV-2 seems to be less infectious than HIV-1, and HIV-2 infection induces AIDS to develop more slowly. Even though both HIV-1 and HIV-2 have a comparable genetic structure comprised of group-specific antigen, polymerase, and envelope genes, their genome organizational structures are differed.15,3739

HIV infiltrates immune cell types, CD4+ T cell types, and monocytes, resulting in a drop in T-cell counts below a critical level and the failure of cell-mediated immune function.15,40 The glycoprotein (gp120) observed in the virion envelope comes into contact with the CD4 particle with high affinity, allowing HIV to infect T cells. By interacting with their co-receptors, CXCR4 and CCR5, the virus infiltrates T cells and monocytes. The retrovirus uses reverse transcriptase to convert its RNA into DNA after attaching it to and entering the host cell. These newly replicated DNA copies then exit the host cell and infect other cells.15,40,41

HIV-1 is a retrovirus and belongs to a subset of retroviruses known as lentiviruses.38,42 Infection is the most common global health concern around the world.15 It has destroyed the millions of peoples health and continues to wreak havoc on the individual health of millions more. The pandemic of HIV-1 is the most devastating plague in the history of humans, as well as a significant challenge in the areas of medicine, public health, and biological science of research activities.34,43 Antiretroviral therapy is the only treatment that is commonly used. This is not a curative treatment; it must be used for the rest of ones life.15 Although antiretroviral therapy has reduced significantly HIV intensity and transmission, the virus has not been eradicated, and its continued presence can lead to additional health issues.44

Infection with the human immunodeficiency virus necessitates entry into target cells, such as through adhesion of the viral envelope to CD4 receptor sites.43 Cellular antiviral responses fail to eliminate the virus, resulting in a gradual depletion of CD4+ T cells and, finally, a severely compromised immune functioning system. Unfortunately, there is no cure for the virus that destroys immunity.4447 In advanced HIV infection, memory T-cell depletion primarily affects cellular and adaptive immune responses, with a minor impact on innate immune responses.48 Globally, 37.7 million people were living with HIV in 2020, and with 1.5 million individuals are infected with the virus.49 The advancement of stem cell therapy and the conduct of implemented clinical trials have revealed that stem cell treatment has high hopes for a range of medical conditions and implementations.15

Stem cell treatment has shown impressive outcomes in HIV management and has the potential to have significant implications for HIV treatment and prevention in the future. In HIV patients, stem cell therapy helps to suppress the viral load even while enabling antiretroviral regimens to be tapered. Interestingly, this practice led to a significant improvement in procedure outcomes soon after starting antiretroviral treatment.15 Stem cell transplantation can alleviate a wide variety of diseases that are currently incurable. They could also be used to create a novel anti-infection therapy strategic plan and to enhance the treatment of immunologic conditions such as HIV infection. HIV wreaks havoc on immune system cells.30,50

The virus infects and replicates within T-helper cells (T-cells), which are white immune system cells. T-cells are also referred to as CD4 cells. HIV weakens a persons immune system over time by pulverizing more CD4 cells and multiplying itself. More pertinently, if the individual has been unable to obtain anti-retroviral medicine, he will progressively fail to control the infectious disease and illnesses.3,15,42

Despite 36 years of scientific research, investigators are still trying to cure human HIV and its potential problem, AIDS.3,5153 HIV continues to face unconquerable dangers to human survival. This virus has developed the potential to avoid anti-retroviral therapy and tends to result in victim death.52 Investigators are still looking for effective and all-encompassing treatment for HIV and its complexity, AIDS.54 This massive amount of data revealed potential AIDS treatment targets.55 Thousands of research projects have yielded a great deal of information on the elusive AIDS life cycle to date.5456 These massive amounts of data supplied possible targets for AIDS treatment.33,55,56 In HIV-infected patients, using stem cell therapy can augment the process of keeping the viral load stagnant by permitting antiretroviral regimens to be tapered.15

Overall, stem cell-based strategies for HIV and AIDS treatment have recently emerged and have become a key area of research. Ideally, effective stem cell-based therapeutic approaches might have several benefits.30 Clinical studies encompassing stem cell therapy have shown substantial therapeutic effects in the treatment of various autoimmune, degenerative, and genetic problems.15,25 Substantial progress has been developed in the treatment of HIV infection using stem cell-based techniques.30

Successfully treated, clinical studies have shown that total tissue recovery is feasible.15,57 In the early 1980s, the first stem cell transplants were accomplished on HIV-positive patients who were unsure of their viral disease. Following the above preliminary aspects, many HIV-positive patients with concurrent malignant tumours or other hematologic disorders underwent allogeneic stem cell transplantation around the world.42 After ART became a common treatment option for patients,58,59 the procedures prognosis improved dramatically. In addition, a retrospective study of 111 HIV+ transplant patients demonstrated a mildly lower overall survivorship performance in comparison to an HIV-uninfected comparison group.60

Earlier, the primary problem for people living with HIV and AIDS was immunodeficiency caused by a loss of productive T-cells. Some clinicians intended to replenish lost lymphocytes through adoptive cell transplants in the initial days before efficacious antiretroviral therapy options were available. Immunologically, it is relatively simple in an isogeneic condition, as illustrated on HIV-positive individuals with just a correlating identical twin who received T-lymphocytes and stem cell transfusions to rebuild the weak immune status of the patient.60 Cell therapy transfusion may be used to remove resting virion genomes from CD4+ immune cells and macrophages mostly through genome-editing or cytotoxic anti-viral cells.15,60 Cell technology and stem cell biological reprogramming developments have made a significant contribution to novel strategies that may give confidence to HIV healing process.3 However, human embryonic stem cells can be distinguished into significant HIV target cells, according to several research findings.30,61,62

Initially, stem cell transplantation was believed to influence the clinical significance of HIV infection, but viral regulation was not accomplished in the discipline. Moreover, improvements in stem cell transplants utilizing synthetic or natural resistant cell resources, in combination with novel genetic manipulative tactics or the advancement of cytotoxic anti-HIV effector cells, have significantly accelerated this sector of HIV cell management.60 Multiple techniques are being introduced to overcome HIV, either through protecting cells from infectious disease or by continuing to increase immune responses to the viral infection.30 The various methods are as follows: Bone marrow stem cells Therapies, Autologous stem cell transplantations, Hematopoietic stem cell transplantation, Genetical modifications of Hematopoietic stem cells (HSCT), HSCT and HAART therapeutic approach, Human umbilical cord mesenchymal stem cell transplantation, Mesenchymal stem/stromal cells (MSCs) applications, CCR5 Delta32/Delta32 Stem-Cell Transplantation, CRISPR and stem cell applications, Induced Pluripotent Stem Cells applications.

According to the findings, circulating replicative HIV remains the most significant threat to effective AIDS therapy. As a result, a method for conferring resistance to circulating HIV particles is required. The effective viral burden in the human body would be significantly reduced if it were possible to defeat reproducing HIV particles.43,44 For the treatment of AIDS, a restorative approach that relies on bone marrow stem cells has been suggested.52 The proposed treatment method captures and eventually destroys circulating HIVs using receptor-integrated red blood cells. Red blood cell membranes can be equipped with the CD4 receptor and the C-C chemokine receptor type 5 and C-X-C chemokine receptor type 4 co-receptors, which will selectively bind circulating HIV particles.15,30,32,33,43,44,46,6365

The term autologous pertains to blood-forming stem cells obtained from the patient for use as a source of fresh blood cells followed by high-dose chemotherapeutic agents.66 Lymphoma is still the biggest cause of mortality in HIV patients. Autologous stem cell recovery or transplantation with high-dose treatments has long been supported as a treatment for certain types of cancer in HIV-negative patients, including leukaemia and lymphoma. Individuals over the age of 65, as well as those with health problems such as HIV, were excluded from initial transfusion experiments. Moreover, the treatment regimen mortality of transplantation has also been reduced significantly due to its use of peripheral blood stem cells rather than bone marrow and the use of newer marginal conditioning therapeutic strategies. HIV-infected clients may be able to utilize enough stem cells for an autologous transplant advancement in HIV management. High-dose Autologous stem cell transplant (ASCT) treatments are better than conventional treatment in people with relapsed non-Hodgkin lymphoma, according to randomized trial evidence. Similarly, studies on HIV-negative people with Hodgkin Lymphoma have shown that ASCT would provide patients with repetitive illness with long-term progression-free survival.66,67 Even so, the clinical trial on Allogeneic Hematopoietic Cell Transplant for HIV Patients with Hematologic Malignancies report was explained as, the cell-associated HIV DNA and inducible infectious virus were not detectable in the blood of patients who attained complete chimerism.68

The study on long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates report findings was Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a potential innovative approach for the treatment of numerous human disorders. This report shows that genome-edited HSPCs engraft and contribute to multilineage repopulation following autologous transplantation in a clinically relevant large animal model, which is an important step toward developing stem cell-based genome-editing therapeutics for HIV and possibly other illnesses.69

Research on comprehensive virologic and immune interpretation in an HIV-infected participant again just after allogeneic transfusion and analytical interruption of antiretroviral treatment findings are the instance of HIV-1 cure having followed allogeneic stem cell transplantation (allo-SCT), resulting allo-SCTs in HIV-1 positive participants have failed to cure the disease. It describes adjustments in the HIV reservoir in a single chronically HIV-infected client who had undergone allo-SCT for acute lymphoblastic leukaemia treatment and was obtaining suppressive antiretroviral treatment.

To estimate the size of the HIV-1 reservoir and describe viral phylogenetic and phenotypic modifications in immune cells, the investigators just used leukapheresis to obtain peripheral blood mononuclear cells (PBMCs) from a 55-year-old man with chronic HIV infection prior and after allo-SCT. Once HIV-1 was found to be unrecognizable by numerous tests, including the PCR measurement techniques both of overall and fully integrated HIV-1 DNA, recompilation virus precise measurement by significant cell input quantifiable viral outgrowth assay, and in situ hybridization of intestine tissue, the client accepted to an analytic treatment interruption (ATI) with recurrent clinical observing on day 784 post-transplantation. He continued to remain aviremic off ART until ATI day 288, once a reduced virus rebound of 60 HIV-1 copies/mL resulted, which expanded to 1640 HIV-1 copies/mL five days later, urging ART reinitiation. Rebounding serum HIV-1 action sequences were phylogenetically distinguishable from pro-viral HIV-1 DNA discovered in circulating PBMCs before transplantation. It was indicated that allo-SCT tends to result in significant reductions in the magnitude of the HIV-1 reservoir and a >9-month ART-free cessation from HIV-1 multiplication.34

The Impact of HIV Infection on Transplant Outcomes after Autologous Peripheral Blood Stem Cell Transplantation: A Retrospective Study of Japanese Registry Data reported as ASCT is a successful treatment option for HIV-positive patients with non-Hodgkin lymphoma and multiple myeloma (MM). HIV infection was associated with an increased risk of overall mortality and relapse after ASCT for NHL in a study population.70

The procedure of delivering hematopoietic stem cells mostly through intravenous infusion to restore normal haematopoiesis or treat cancer is known as hematopoietic stem cell transplantation.71 There has recently been a rise in the desire to develop strategies for treating HIV/AIDS diseases employing human hematopoietic stem cells,30 along with this Hutter and Zaia were evaluated the background of Haematopoietic stem cell transplantation (HSCT) in HIV-infected individuals.42

Attempts to use HSCT as a technique for immunologic restoration in AIDS patients or as a therapeutic intervention for malignant tumours were initially insufficient. Regretfully, in the absence of sufficient ART, HSCT seemed to have no impact on the evolution of HIV infection, and the majority of the patients ended up dead of rapidly deteriorating immunosuppression or reoccurring lymphoma or leukaemia. A specific instance report described how an un-associated, matched donor supplied allogeneic HSCT to a patient with refractory lymphoma. The virus was unrecognizable by isolating or PCR of peripheral blood mononuclear cells commencing on day 32 after transplantation. Although HIV-1 was unrecognizable by cultural environment or PCR of several tissues examined at mortem, the patient died of recurring lymphoma on day 47. Another client who obtained both allogeneic HSCT and zidovudine had similar results, with HIV-1 becoming unnoticeable in the blood by PCR analysis. In some other particular instances, a 25-year-old woman with AIDS who obtained an allogeneic HSCT from a corresponding, unfamiliar donor after controlling with busulfan and cyclophosphamide and ART with zidovudine and IFN-2 regimen continued to live for 10 months before falling victim to adult respiratory distress. However, PCR testing of autopsy tissues revealed that they were HIV-1 negative.72

Recent research discovered significant progress towards the clinical application of stem cell-based HIV therapeutic interventions, principally illustrating the opportunity to effectively undertake a large-scale phase two HSC-based gene therapy experiment. In this investigation, the research team used autologous adult HSCs that had been transduced to a retroviral vector that usually contains a tat-vpr-specific anti-HIV ribozyme to develop cells that were less vulnerable to productive infection,73 whereas vector-containing cells have been discovered for extended periods (more than 100 weeks in most people) and CD4+ T cell gets counted were significantly high within anti-HIV ribozyme treating people group compared with the placebo group, the impacts on viral loads were minimal. The studys success, even so, is based on the realization that a stem cell-based strategy like this is being used as a more conventional and efficacious therapeutic approach.30 Some other latest clinical studies used a multi-pronged RNA-based strategic plan which included a CCR5-targeted ribozyme, an shRNA targeting tat/rev transcripts, and a TAR segment decoy.74

These crucial research findings are explained on lentiviral-based gene therapy vectors that can genetically manipulate both dividing and non-dividing HSCs and are less likely to cause cellular changes than murine retro-viral-based vectors. Long-term engraftment and multipotential haematopoiesis have been demonstrated in vector-containing and expressing cells, according to the researchers. Whereas the antiviral effectiveness was not reviewed, the results demonstrate the strategys protection, which helps to expand well for the possibility of a lentiviral-based approach in the upcoming years.30

A further approach, with a different emphasis, has been started up in the hopes of trying to direct immune function to target specific HIV to overcome barriers to attempting to clear the virus from the patient's body. These strategies use gene treatment innovations on peripheral blood cells to biologically modify cells so that they assert a receptor or chimeric particle that enables them to especially target a specific viral antigen,75 deception of HIV-infected peoples peripheral blood T cells raises issues to be addressed, such as the effects of ongoing HIV infection and ex vivo modification on the capabilities and lifetime of peripheral blood cells. Further to that, the above genetically manipulated cells would demonstrate their endogenous T cell receptors, and the representation of the newly introduced receptor could outcome in cross-receptor pairing, resulting in self-reactive T cells. Most of these deficiencies could be countered by enabling specific developmental strategies to take place that can start generating huge numbers of HIV-specific cells in a renewable, consistent way that can restore defective natural immune activity against HIV.30

One strategy being recognized is the application of B cells obtained from HSCs to demonstrate anti-HIV neutralizing specific antibodies. While animal studies have shown that neutralizing antibodies could protect against infection, and extensively neutralizing antibodies have been noticed in some HIV-infected persons, safety from a single engineered antibody might be exceptional.76,77 Realizing antibody binding and virus neutralization may assist in the development of chimeric receptors or single-chain therapeutic antibodies with recognition domains for other techniques that identify cellular immunity against HIV-infected cells.78,79 Thereby, genetically modifying HSCs to generate B cells that produce neutralizing anti-HIV specific antibodies, or engineering HSCs to enable multipotential haematopoiesis of cells that express a chimeric cellular receptor usually contains an antibody recognition domain, indicate one arm of an HSC-based engineered immunity process.30

A further technique of using HSCs that were genetically altered with molecularly cloned T-cell receptors or chimeric molecules particular to HIV to yield antigen-specific T cells. The basic difference in this strategy is that the cells produced from HSCs after standard advancement in the bone marrow and thymus are made subject to normal central tolerance modalities and are antigen-specific naive cells, and therefore do not have the ex-vivo manipulation and impaired functioning or exhaustion problems that other external cell modification methods would have. In this context, the latest actual evidence research using a molecularly cloned T cell receptor particular to an HIV-1 Gag epitope in the aspect of HLA-A*0201 revealed that HSC altered in this ability can progress into fully functioning, mature HIV specialized CD8+ T cells in human thymic tissue that conveys the acceptable constrained HLA-A*0201 particles.80 This explores the possibility of genetically engineering HSCs with a molecularly cloned receptor and signifies a step toward a better understanding and application of initiated T cell responses, which would probably result in the eradication of HIV infection from the body, similar to the natural immune function of other virus infections and pathogenic organisms.30

In an allogeneic transplantation, donor stem cells replace the patients cells.66 Allogeneic hematopoietic stem cell transplantation (HSCT) has appeared as one of the most potent treatment possibilities for many people who suffer from hemopoietic system carcinomas and non-malignant ailments.81 Both HIV-cured people have received HSCT utilizing CCR5 132 donor cells.82,83 This implies that HIV eradication necessitates a decrease in the viral reservoir through the myeloablative procedures,8486 Having followed that, immune rebuilding with HIV-resistant cells was carried out to prevent re-infection.45 The possibility of adoptive transfer of ex vivo-grown, virus-specific T-cells to prevent and control infectious diseases (eg, Cytomegalovirus and EBV) in immunocompromised patients helps to make adoptive T-cell treatment a feasible strategy to inhibit HIV rebound having followed HSCT.81,87,88

The Engineered Zinc Finger Protein Targeting 2LTR Inhibits HIV Integration in Hematopoietic Stem and Progenitor Cell-Derived Macrophages: In Vitro Study, the researchers investigated the efficacy and safety of 2LTRZFP in human CD34+ HSPCs. Researchers used a lentiviral vector to transduce 2LTRZFP with the mCherry tag (2LTRZFPmCherry) into human CD34+ HSPCs. The study findings suggest that the anti-HIV-1 integrase scaffold is an enticing antiviral molecule that could be utilised in human CD34+ HSPC-based gene therapy for AIDS patients.89

The fundamental element of HIV management is stem cell genetic modification, which involves genetically enhanced patient-derived stem cells to overcome HIV infection. In this sector, numerous experimental studies, in vitro as well as in vivo examinations, and positive outcomes for AIDS patients have been conducted.65,74 Genetic engineering for HIV-infected individuals can provide a once-only intervention that minimizes viral load, restores the immune system, and minimizes the accumulated toxicities concerned with highly active antiretroviral therapy (HAART).73 HSCs can be genetically altered, permitting for the addition of exogenous components to the progeny that protects them from direct infectious disease and/or enables them to target a specific antigen. Besides that, HSC-based strategies can enhance multilineage hemopoietic advancement by re-establishing several arms of the immune function. Eventually, as HSCs can be produced autologously, immunologic tolerance is typically high, enabling effective engraftment and subsequent distinction into the fully functioning mature hematopoietic cells.30

The utilization of human HSCs to rebuild the immune function in HIV disease is one application that tries to preserve newly formed cells from HIV infection, while another attempts to develop immune cells that attack HIV infected cells. While each initiative has many different aspects at the moment, they represent huge attention to HIV/AIDS therapies that, most likely when integrated with the other therapeutic approaches, would result in the body trying to overcome the obstacles needed for the virus to be effectively cleaned up.30

While HSC transplantation technique and processes are not accurately novel, as they are commonly and effectively used to address a wide variety of haematological diseases and malignant neoplasms,90 trying to combine them with a gene therapeutic strategy represents a unique and possibly potent therapeutic approach for HIV and AIDS-related ailments. As the results of HIV-infected patients who obtained autologous HSCT continued to improve, there was growing interest in genetically altered stem cells that were tolerant to HIV disease. Multiple logistical challenges have impeded the advancement of genetically modified hematopoietic stem cells as a conceivable therapeutic option for HIV/AIDS.72,73

UCLAs Eli and Edythe Broad Center for Restorative Medicine and Stem Cell Studies is one bit closer to constructing an instrument to arm the bodys immune system to attack and defeat HIV. Dr. Kitchen et al are the first ones to disclose the use of a chimeric antigen receptor (CAR), a genetically manipulated molecule, in blood-forming stem cells. In the experiment, the research team introduced a CAR gene into blood-forming stem cells, which were then moved into HIV-infected mice that had been genetically programmed. The scientists found that CAR-carrying blood stem cells efficiently transformed into fully functioning T cells that have the ability to kill HIV-infected cells in mice. The outcome was an 80-to-95 percentage reduction in HIV levels, suggesting that stem-cell-based genetic engineering with a CAR might be a viable and effective approach for treating HIV infection among humans. The CAR initiative, according to Dr. Kitchen, is much more able to adapt and ultimately more efficient, which can conceivably be used by others. If any further experiment showcases keep promising, the scientists expect that a practice based on their strategy will be accessible for clinical development within the next 510 years.91

HSCT and HAART therapeutic approaches in treating HIV/AIDS as the emergence of highly active antiretroviral therapy (HAART) in the 1990s improved survival rates of HIV infection, leading to a major dramatic drop in the occurrence of AIDS and AIDS-related mortalities. As an outcome, there is much less involvement with using HSCT as a therapy for HIV infection.28,33,43,67,86

A randomized clinical trial of human umbilical cord mesenchymal stem cell transplant among HIV/AIDS immunological non responders investigation, the researchers examined the clinical efficacy of transfusion of human umbilical cord mesenchymal stem cells (hUC-MSC) for immunological non-responder clients with long-term HIV disease who have an unmet medical need in the aspect of effective antiretroviral therapy. From May 2013 to March 2016, 72 HIV-infected participants were admitted in this stage of the randomized, double-blind, multi-center, placebo-controlled dose-determination investigation. They were either given a high dose of hUC-MSC of 1.5106/kg body weight as well as small doses of hUC-MSC of 0.5106/kg body weight, or a placebo application. During the 96-week follow-up experiment, interventional and immunological character traits were analysed. They found that hUC-MSC therapy was both safe and efficacious among humans. There was a significant rise in CD4+ T counts after 48 weeks of treatment in both the high-dose (P 0.001) and low-dose (P 0.001) groups, but no changes in the comparison group.92

One interesting invention made by a team of UC Davis investigators is the recognition of a particular form of stem cell that can minimize the quantity of the virus that tends to cause AIDS, thus dramatically increasing the bodys antiviral immune activity. Mesenchymal stem/stromal cells (MSCs) furnish an incredible opportunity for a creative and innovative, multi-pronged HIV cure strategic plan by augmenting prevailing HIV potential treatments. Even while no antivirals have been used, MSCs have been able to increase the hosts antiviral responses. MSC therapeutic approaches require specialized delivery systems and good cell quality regulation. The studys findings lay the proper scientific foundation for future research into MSC in the ongoing treatment of HIV and other contagious diseases in the clinical organization.35

Infection with HIV-1 necessitates the existence of both specific receptors and a chemokine receptor, particularly chemokine receptor 5 (CCR5).46 Resistance to HIV-1 infection is attained by homozygozygozity for a 32-bp removal in the CCR5 allele.93 In this investigation, stem cells were transplanted in a patient with severe myeloid leukaemia and HIV-1 infection from a donor who was homozygous to Chemokine receptor 5 delta 32. The client seemed to have no viral relapses after 20 months of transplantation and attempting to stop antiretroviral medicine. This finding highlights the essential role that CCR5 tries to play in HIV-1 infection maintenance.86

In comparison, additional HIV-1-infected people who have received allogeneic stem cell transplants with cells from CCR5 truly wild donors did not have long-term relapses from HIV-1 rebound, with 2 of these patients trying to report viral reoccurrence 12 as well as 32 weeks after analytic treatment interruption, respectively. Among these 2 patients, allogeneic stem cell transplantation probably reduced but did not eliminate latently HIV-infected cells, enabling persistent viral reservoirs to activate viral rebound. This viewpoint may not rule out the potential that allogeneic hematopoietic stem cell transplantation might result in a much more comprehensive or near-complete elimination of viral reservoirs, enabling long-term drug-free relapse of HIV-1 infection in some contexts.84 As just one report demonstrated a decade earlier, a curative treatment for HIV-1 remained elusive. The Berlin Patient has undergone 2 allogeneic hematopoietic stem cell transplantations to cure his acute myeloid leukaemia utilizing a potential donor with a homozygous genetic mutation in HIV coreceptor CCR5 (CCR532/32).15,34,46,64,65,72,82,84,86,9496 Other similar studies with CCR5 receptor targets are as follows: Automated production of CCR5-negative CD4+-T cells in a GMP compatible, clinical scale for treatment of HIV-positive patients,97 Mechanistic Models Predict Efficacy of CCR5-Deficient Stem Cell Transplants in HIV Patient Populations,98 Conditional suicidal gene with CCR5 knockout.99

Clustered regularly interspaced short palindromic repeats CRISPR/Cas9 is a promising gene editing approach that can edit genes for gain-of-function or loss-of-function mutations in order to address genetic abnormalities. Despite the fact that other gene editing techniques exist, CRISPR/Cas9 is the most reliable and efficient proven method for gene rectification.100103

Genome engineering employing CRISPR/Cas has proven to be a strong method for quickly and accurately changing specific genomic sequences. The rise of innovative haematopoiesis research tools to examine the complexity of hematopoietic stem cell (HSC) biology has been fuelled by considerable advancements in CRISPR technology over the last five years. High-throughput CRISPR screenings using many new flavours of Cas and sequential and/or functional outcomes, in specific, have become more effective and practical.104,105

The power of the CRISPR/Cas system is that it can specifically and efficiently target sequences in the genome with just a single synthetic guide RNA (sgRNA) and a single protein. Cas9 is directed to the specific DNA sequence by the sgRNA, which causes double stranded breaks and activates the cells DNA repair processes. Non-homologous end joining can cause insertiondeletion (indel) substitutions at the target location, whereas homology-directed repair can use a template DNA to insert new genetic material.104,106

The possibility for CRISPR/Cas9 to be used in the hematopoietic system was emphasised as pretty shortly after it was initiated as a new genome editing method.106,107 The efficiency with which CRISPR-mediated alteration can be used to evaluate hematopoietic stem/progenitor and mature cell function via transplantation. As a result, hematopoietic research has significantly advanced with the implementation of these technologies. Whilst single-gene CRISPR/Cas9 programming is a significant tool for testing gene function in primary hematopoietic cells, high-throughput screenings potentially offer CRISPR/Cas9 an even greater advantage in hematopoietic research.104

While understanding human haematological disorders requires the ability to mimic diseases, the ultimate goal is to transfer this innovation into therapies. Despite significant advancements in CRISPR technology, there are still barriers to overcome before CRISPR/Cas9 can be used effectively and safely in humans. CRISPR has also been used to target CCR5 in CD34+ HSPCs in an effort to make immune cells resistant to HIV infection, as CCR5 is an important coreceptor for HIV infection.104

CRISPR is a modern genome editing technique that could be used to treat immunological illnesses including HIV. The utilization of CRISPR in stem cells for HIV-related investigation, on the other end, was ineffective, and much of the experiment was done in vivo. The new research idea is about increasing CRISPR-editing efficiencies in stem cell transplantation for HIV treatment, as well as its future perspective. The possible genes that enhance HIV resistance and stem cell engraftment should be explored more in the future studies. To strengthen HIV therapy or resistance, double knockout and knock-in approaches must be used to build a positive engraftment. In the future, CRISPR/SaCas9 and Ribonucleoprotein (RNP) administration should be explored in the further investigations.108 As well as some different title studies were explained the effectiveness of the CRISPR gene editing technology on the management of HIV/AIDS including: CRISPR view of hematopoietic stem cells: Moving innovative bioengineering into the clinic,104 CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukaemia,109 Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice,110 Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA,111 HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells,112 CRISPR-Cas9 Mediated Exonic Disruption for HIV-1 Elimination,113 RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection,114 CRISPR/Cas9 Ablation of Integrated HIV-1 Accumulates Pro viral DNA Circles with Reformed Long Terminal Repeats,115 CRISPR-Cas9-mediated gene disruption of HIV-1 co-receptors confers broad resistance to infection in human T cells and humanized mice,116 Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9,117 Transient CRISPR-Cas Treatment Can Prevent Reactivation of HIV-1 Replication in a Latently Infected T-Cell Line,118 CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection,119 CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo.109

Induced pluripotent stem cells (iPSCs) have significantly advanced the field of regenerative medicine by allowing the generation of patient-specific pluripotent stem cells from adult individuals. The progress of iPSCs for HIV treatment has the potential to generate a continuous supply of therapeutic cells for transplantation into HIV-infected patients. The title of the study is reported on Generation of HIV-1 Resistant and Functional Macrophages from Hematopoietic Stem Cellderived Induced Pluripotent Stem Cells. In this investigation, researchers used human hematopoietic stem cells (HSCs) to produce anti-HIV gene expressing iPSCs for HIV gene therapy. HSCs were dedifferentiated into constantly growing iPSC lines using 4 reprogramming factors and a combination anti-HIV lentiviral vector comprising a CCR5 shRNA and a human/rhesus chimeric TRIM5 gene. After directing the anti-HIV iPSCs toward the hematopoietic lineage, a large number of colony-forming CD133+ HSCs were acquired. These cells were distinguished further into functional end-stage macrophages with a normal phenotypic profile. Upon viral challenge, the anti-HIV iPSC-derived macrophages displayed good protection against HIV-1 infection. Researchers have clearly shown how iPSCs can establish into HIV-1 resistant immune cells and explain their prospective use in HIV gene and cellular therapies.120

Some other similar titles of the studies reported on the effectiveness of IPSCs on HIV/AIDS managements are as follows: Generation of HIV-Resistant Macrophages from IPSCs by Using Transcriptional Gene Silencing and Promoter-Targeted RNA,121 Generation of HIV-1-infected patients gene-edited induced pluripotent stem cells using feeder-free culture conditions,122 A High-Throughput Method as a Diagnostic Tool for HIV Detection in Patient-Specific Induced Pluripotent Stem Cells Generated by Different Reprogramming Methods,123 Genetically edited CD34+ cells derived from human iPS cells in vivo but not in vitro engraft and differentiate into HIV-resistant cells,124 Engineered induced-pluripotent stem cell-derived monocyte extracellular vesicles alter inflammation in HIV humanized mice,125 Sustainable Antiviral Efficacy of Rejuvenated HIV-Specific Cytotoxic T Lymphocytes Generated from Induced Pluripotent Stem Cells.126

Recently, one HIV patient appeared to be virus-free after having undergone a stem-cell transfusion in which their WBCs were changed with HIV-resistant variations.84 Timothy Ray Brown also noted as the Berlin patient, who is still virus-free, was the first individual to undertake stem-cell transplantation a decade earlier. The most recent patient, like Brown, had a type of leukaemia that was vulnerable to chemo treatments. They required a bone marrow transplantation, which involved removing their blood cells and replacing them with stem cells from a donor cell.5,31,34,41,127130 Rather than simply choosing a suitable donor, Ravindra Gupta et al chose one who already had 2 copies of a mutant within the CCR5 gene,128,131 which provides resistance to HIV infection.3

Additionally, this gene encodes for a specific receptor of white blood cells that are assisted in the bodys immunological responses. The transplant, according to Guptas team, completely replaced the clients White cells with HIV-resistant forms.41,83 Cells in the patients blood disrupted expressing the CCR5 receptor, making it unfeasible for the clients form of HIV to infect the above cells again. The scientists determined that the virus had been cleared from the patients blood after the transplantation. Besides that, after 16 months, the client has withdrawn antiretroviral treatment. The infection was not detected in the most recent follow-up, which occurred 18 months after the treatment was discontinued. Adam, also known as the London patient, was the second person to be cured of HIV as a result of a stem cell transfusion. This discovery is an important step forward in HIV research because it may aid in the detection of potential future therapeutic interventions. It must be noted, but even so, that this is not an extensively used HIV treatment. For HIV-infected patients, antiretroviral drugs have been the foremost therapeutic option.3,31,41,94,129,130 It also encourages many investigators and clinicians to look at the use of stem cells in the treatment of a wide range of serious medical conditions. The reprogramming abilities of stem cells, as well as their accessibility, have created a window of opportunity in medical research. The clinical utility of stem cells is forecast to expand rapidly in the coming years.

On Feb 15, 2022, scientific researchers confirmed that a woman had become the 3rd person in history to be successfully treated for HIV, the virus that causes AIDS, after just receiving a stem-cell transfusion that has used cells from cord blood. Within those transplant recipients, adult hematopoietic stem cells have been used; these are stem cells that eventually develop into all blood cell types, which include white blood cells, these are a vital component of the immune framework. Even so, the woman who had fairly recently been completely cured of HIV infection had a more unique experience than that of the 2 men who were actually cured before her.132

The clients physician, Dr. JingMei Hsu of Weill Cornell Medicine in New York, informed them that, she had been discharged from the hospital just 17 days after her procedure was performed, even with no indications of graft vs host ailment. The woman was HIV-positive but also had acute myeloid leukaemia, a blood cancer of the bone marrow that affects blood-forming cells. She had likely received cord blood as a successful treatment for both her cancer and HIV once her doctors decided on a potential donor well with HIV-blocking gene mutation. Cord blood comprises a high accumulation of hematopoietic stem cells; the blood is obtained during a childs birth and donated by the parents.132

The patients donor was partly nearly matched, and she received stem cells from a close family member to enhance her immune function after the transfusion. The procedure was performed on the woman in August of 2017. She chose to discontinue taking antiretroviral drugs, the standardized HIV intervention, 37 months upon her transfusion. After more than 14 months, there is no evidence of the viral infection or antibodies against it in her blood. Umbilical cord blood, in reality, is much more commonly accessible and simpler to try to match to beneficiaries than bone marrow. Perhaps, some research suggests that the method could be more available to HIV patients than bone marrow transplantation. Nearly 38 million people worldwide are infected with HIV. The potential for using partly matched umbilical cord blood transplantation increases the chances of choosing appropriate suitable donors for these clients considerably.132

It is really exciting to see the earlier terminally ill diseases of being effectively treated. In recent times, there has been a surge of focus on stem cell research.3 Stem cell therapy advancements in inpatient care are receiving a growing amount of attention.20 HIV/AIDS has been and remains a significant health concern around the world. Effective control of the HIV pandemic will necessitate a thorough understanding of the viruss transmission.32

Despite concerns about full compliance and adverse reactions, HAART has demonstrated to be able to succeed and is a sign specifically targeted form of treatment against HIV advancement. As illustrated by the first case of HIV infection relapse attained by bone marrow transplant, anti-HIV HPSC-based stem cell treatment and genotype technology have established a possible future upcoming technique to try to combat HIV/AIDS.

Investigators have conducted experiments with engineering distinct anti-HIV genetic traits trying to target different phases of HIV infection utilizing advanced scientific modalities. In numerous in vivo and in vitro animal studies, HSPCs and successive mature cells were secured from HIV infection by trying to target genetic factors in the infection. Anti-HIV gene engineering of HSPCs is safe and efficacious.15

The number of stem-cell-based research trials has risen in recent years. Thousands of studies claiming to use stem cells in experimental therapies have been registered worldwide. Despite some promising results, the majority of clinical stem cell technologies are still in their early life. These achievements have drawn attention to the possibility of the potential and advancement of various promising stem cell treatments currently in development.11

HIV remains a major danger to humanity. This virus has developed the ability to evade antiretroviral medication, resulting in the death of individuals. Scientists are constantly looking for a treatment for HIV/AIDS that is both effective and efficient.52 The 1st treatments in HIV+ clients were conducted in the early 1980s, even though they were cognizant of their viral disease. Following these early cases, allogeneic SCT was used to treat HIV+ patients with associated cancer or other haematological disorders all over the world. Stem cell transplantation developments have also stimulated the improvement of innovative HIV therapeutic approaches, especially for large goals like eradication and relapse.60

Numerous stem cell therapy progressions have been recognized with autologous and allogeneic hematopoietic stem cell transplantation, as well as umbilical cord blood mesenchymal stem cell transplant in AIDS immunologic non-responders. Whereas this sector continues to advance and distinguishing directives for these cells become much more effective, totipotent stem cells such as hESC and the recently reported induced pluripotent stem cells (iPSC) could be very useful for genetic engineering methods to counter hematopoietic abnormalities such as HIV disease.133135

Immunocompromised people are at a higher risk of catching life-threatening diseases. The perseverance of latently infected cells, which is formed by viral genome inclusion into host cell chromosomes, is a significant challenge in HIV-1 elimination. Stem cell therapy is producing impressive patient outcomes, illustrating not only the broad relevance of these strategies but also the huge potential of cell and gene treatment using adult stem cells and somatic derivative products of pluripotent stem cells (PSCs).

Stem cells have enormous regeneration capacity, and a plethora of interesting therapeutic uses are on the frontier. This is a highly interdisciplinary scientific field. Evolutionary biologists, biological technicians, mechanical engineers, and others that have evolved novel concepts and decided to bring them to medical applications are required to make important contributions. Further to that, recent advancements in several different research areas may contribute to stem cell application forms that are novel. Several hurdles must be conquered, however, in the advancement of stem cells. On the other hand, this discipline appears to be a promising and rapidly expanding research area.

Stem cell-based approaches to HIV treatment resemble an innovative approach to trying to rebuild the ravaged bodys immune system with the utmost goal of eliminating the virus from the body. We will probably see effective experiments from the next new generation of stem cell-based strategies shortly, which will start serving as a base for the further development and use of these techniques in a range of treatment application areas for other chronic diseases.

My immense pleasure was mentioned to family members and friends, who supported and encouraged me in every activity.

There was no funding for this work.

The authors declare that they have no conflicts of interest in relation to this work.

1. Zakrzewski W, Dobrzyski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68. doi:10.1186/s13287-019-1165-5

2. Nadig RR. Stem cell therapy hype or hope? A review. J Conserv Dent JCD. 2009;12:131138. doi:10.4103/0972-0707.58329

3. Tasnim KN, Adrita SH, Hossain S, Akash SZ, Sharker S. The prospect of stem cells for HIV and cancer treatment: a review. Pharm Biomed Res. 2020;6:1726.

4. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000;287:14421446. doi:10.1126/science.287.5457.1442

5. Pernet O, Yadav SS, An DS. Stem cellbased therapies for HIV/AIDS. Adv Drug Deliv Rev. 2016;103:187201. doi:10.1016/j.addr.2016.04.027

6. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respir Int Rev Thorac Dis. 2013;85:310.

7. Ebrahimi A, Ahmadi H, Ghasrodashti ZP, et al. Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: a comprehensive review. Bosn J Basic Med Sci. 2021;21:672701. doi:10.17305/bjbms.2021.5508

8. Introduction stem cells. Available from: https://www.dpz.eu/en/platforms/degenerative-diseases/research/introduction-stem-cells.html. Accessed December 19, 2021.

9. Hu J, Chen X, Fu S. Stem cell therapy for thalassemia: present and future. Chin J Tissue Eng Res. 2018;22:3431.

10. Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig. 2020;7:8. doi:10.21037/sci-2020-001

11. Chari S, Nguyen A, Saxe J. Stem cells in the clinic. Cell Stem Cell. 2018;22:781782. doi:10.1016/j.stem.2018.05.017

12. De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol. 2019;21:801811. doi:10.1038/s41556-019-0344-z

13. Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 2008;4:311. doi:10.1007/s12015-008-9010-8

14. Bobba S, Di Girolamo N, Munsie M, et al. The current state of stem cell therapy for ocular disease. Exp Eye Res. 2018;177:6575. doi:10.1016/j.exer.2018.07.019

15. Khalid K, Padda J, Fernando RW, et al. Stem cell therapy and its significance in HIV infection. Cureus. 2021;13. doi: 10.1038/d41586-019-00798-3

16. Gq D, Morrell CN, Tarango C. Stem cells: roadmap to the clinic. J Clin Invest. 2010;121:120. doi:10.1172/JCI39828

17. Prentice DA. Adult Stem Cells. Circ Res. 2019;124:837839. doi:10.1161/CIRCRESAHA.118.313664

18. McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces. 2017;159:6277. doi:10.1016/j.colsurfb.2017.07.051

19. Prez Lpez S, Otero Hernndez J. Advances in stem cell therapy. In: Lpez-Larrea C, Lpez-Vzquez A, Surez-lvarez B, editors. Stem Cell Transplantation. New York, NY: Springer US; 2012:290313.

20. Zhang F-Q, Jiang J-L, Zhang J-T, Niu H, X-Q F, Zeng -L-L. Current status and future prospects of stem cell therapy in Alzheimers disease. Neural Regen Res. 2020;15:242250. doi:10.4103/1673-5374.265544

21. Hu L, Zhao B, Wang S. Stem-cell therapy advances in China. Hum Gene Ther. 2018;29:188196. doi:10.1089/hum.2017.224

22. Tadlock D Stem cell basics introduction; 19.

23. Poulos J. The limited application of stem cells in medicine: a review. Stem Cell Res Ther. 2018;9:1. doi:10.1186/s13287-017-0735-7

24. Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature. 2018;557:335342. doi:10.1038/s41586-018-0089-z

Originally posted here:
PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT - Dove Medical Press

To Read More: PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT – Dove Medical Press
categoriaIPS Cell Therapy commentoComments Off on PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT – Dove Medical Press | dataJuly 8th, 2022
Read All

Mesenchymal stem cells: from roots to boost – PMC

By daniellenierenberg

Stem Cells. Author manuscript; available in PMC 2020 Jul 1.

Published in final edited form as:

PMCID: PMC6658105

NIHMSID: NIHMS1024291

1NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland

1NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland

1NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland

2Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA

3Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA

1NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland

2Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA

3Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA

Author contributions:

Barbara Lukomska: Conception and design, financial support, collection and/or assembly of data, final approval of manuscript

Miroslaw Janowski: Conception and design, financial support, collection and/or assembly of data, manuscript writing, final approval of manuscript

It was shown as long as half a century ago that bone marrow is a source of not only hematopoietic stem cells, but also stem cells of mesenchymal tissues. Then the term of mesenchymal stem cells (MSCs) has been coined in early 1990s and over a decade later the criteria for defining MSCs have been released by International Society for Cellular Therapy. The easy derivation from a variety of fetal and adult tissues and not demanding cell culture conditions made MSCs an attractive research object. It was followed by the avalanche of reports from preclinical studies on potentially therapeutic properties of MSCs such as immunomodulation, trophic support and capability for a spontaneous differentiation into connective tissue cells, and differentiation into majority of cell types upon specific inductive conditions. While ontogenesis, niche and heterogeneity of MSCs are still under investigation, there is a rapid boost of attempts in clinical applications of MSCs, especially for a flood of civilization-driven conditions in so quickly aging societies in not only developed countries, but also very populous developing world. The fields of regenerative medicine and oncology are particularly extensively addressed by MSC applications, in part due to paucity of traditional therapeutic options for these highly demanding and costly conditions. There are currently almost 1000 clinical trials from entire world registered at clinicaltrials.gov and it seems that we are starting to witness the snowball effect with MSCs becoming a powerful global industry, however spectacular effects of MSCs in clinic still need to be shown.

Keywords: Mesenchymal stem cells, clinical, differentiation, immunomodulation, paracrine activity, history

Friedenstein was one of the pioneers of the theory that bone marrow is a reservoir of stem cells of mesenchymal tissues in adult organisms. It was based on his observation at the turn of the 1960s and 1970s., that ectopic transplantation of bone marrow into the kidney capsule, results not only the proliferation of bone marrow cells, but also the formation of bone [1] (). This indicated the existence in the bone marrow of a second, in addition to hematopoietic cells, stem cell population giving rise to bone precursors. Due to the ability of these cells to create osteoblasts, Friedenstein gave them the name of osteogenic stem cells. Friedenstein was also the first to isolate from bone marrow adherent fibroblast-like cells with the ability to grow rapidly in vitro in the form of clonogenic colonies (CFU-F; colony forming unit-fibroblast). These cells derived from CFU-F colonies were characterized by the ability to differentiate in vitro not only to osteocytes, but also to chondrocytes and adipocytes. After transplantation of CFU-F colonies into the recipient, they were capable of co-formation of the bone marrow micro-environment [2,3]. The term mesenchymal stem cells has been proposed by Caplan in 1991 because of their ability to differentiate into more than one type of cells that form connective tissue in many organs [4]. This name has become very popular and is currently the most commonly used, even though it raised doubts about the degree of their stemness [5]. Today, there are many substitutes in the literature for the abbreviation of MSCs, including Multipotent Stromal Cells, Marrow Stromal Cells, Mesodermal Stem Cells, Mesenchymal Stromal Cells and many more. In its latest work, Caplan recommends renaming these cells to Medicinal Signaling Cells due to the emphasis on the mechanism of their therapeutic effects after transplantation, which is believed to be based mainly on the secretion of factors facilitating regenerative processes [6].

The roots of research on bone marrow-derived stem cells of connective tissue, which has been then named: mesenchymal stem cells

Due to the growing controversy regarding the nomenclature, the degree of stemness and the characteristics of the cells discovered by Friedenstein, the International Society for Cellular Therapy (ISCT) in 2006 published its position specifying the criteria defining the population of MSCs, which was accepted by the global scientific community. These guidelines recommend the use of the name multipotent mesenchymal stromal cells, however, the name mesenchymal stem cells still remains the most-used. The condition for the identification of MSCs is the growth of cells in vitro as a population adhering to the substrate, as well as in the case of cells of human origin, a phenotype characterized by the presence of CD73, CD90, CD105 surface antigens and the lack of expression of proteins such as: CD45, CD34, CD14, CD11b, CD79a or CD19 or class II histocompatibility complex antigens (HLA II, human leukocyte antigens class II). Moreover, these cells must have the ability to differentiate towards osteoblasts, adipocytes and chondroblasts [7,8]. In addition to the markers mentioned in the ISCT guidelines, the following antigens turned out to be useful in isolating the human MSCs from the bone marrow: STRO-1 (antigen of the bone marrow stromal-1 antigen, cell surface antigen expressed by stromal elements in human bone marrow-1), VCAM / CD106 (vascular cell adhesion molecule 1) and MCAM / CD146 (melanoma cell adhesion molecule), which characterizes cells growing in vitro in a adherent form, with a high degree of clonogenicity and multidirectional differentiation ability [911].

The common mesenchymal core in both versions of MSC abbreviation comes from the term mesenchyme, which is synonymous with mesenchymal tissue or embryonic connective tissue. It is used to refer to a group of cells present only in the developing embryo derived mainly from the third germ layer - mesoderm. During the development these cells migrate and diffuse throughout the body of the embryo. They give rise to cells that build connective tissue in adult organisms, such as bones, cartilage, tendons, ligaments, muscles and bone marrow. The view about the differentiation of MSCs during embryonic development from mesenchymal cells is widely spread [4]. This is due, inter alia, to the observed convergence in the expression of markers such as: vimentin, laminin 1, fibronectin and osteopontin, which are typical for mesoderm cells during embryonic development, as well as characteristic for in vitro adherent bone marrow stroma cells [12]. However, the true origin of MSCs is unknown. In the literature, we can find also reports indicating that they are ontogenetically associated with a group of cells derived from ectoderm, which originate from Sox1 + cells (SRY - sex determining region Y) that appear during the development of embryonic neuroectoderm and neural crest. These cells inhabit newborn bone marrow and meet the criteria corresponding to their designation as MSCs. However, with the development of animals, the population of these cells disappears and is replaced by cells with a different, unidentified origin [13]. It has also been shown that in the bone marrow of the developing mouse embryo, at least two MSCs populations with distinct expression of the nestin protein and the intensity of cell divisions can be distinguished. The former one originates from mesoderm that does not express nestin, and is characterized by intense proliferation and is involved in the process of creating the embryo skeleton. The latter one is derived from the cells of the neural crest, which expresses nestin and is non-dividing and remains passive during bone formation while in the adult organism contributes to a niche of hematopoietic cells [14]. It seems, therefore, that the ontogenesis of MSCs is associated with cells belonging to different germ layers and their original source determines the role and functions that they play in the adult body.

In 1978, the concept of a niche was defined as a place in the body that is settled by stem cells and whose environment allows them to be maintained in an undifferentiated state [15]. MSCs were first obtained from the bone marrow stroma where they constitute an element of stromal cells, participating in the production of signals modulating the maturation of hematopoietic cells. However, the precise location of the niche for MSCs has not been known so far. In the context of research results indicating that MSCs can be isolated from many mesoderm-derived tissues during embryonic development, a common element was sought for all sources from which MSCs can be isolated and a theory was proposed about the existence of their niche within the blood vessels that are present in all structures from which these cells were isolated.

Crisan and colleagues have shown that cells inhabiting the perivascular space of blood vessels, isolated from human tissues such as skeletal muscle, pancreas, adipose tissue and placenta, with the phenotype CD146 +, NG2 + (neuroglycan-2), PDGF-R + (-type platelet-derived growth factor receptor), ALP + expressing endothelial, hematopoietic and muscle cell markers described as pericytes were precursors for cells that after in vitro expansion meet the criteria for determining them as MSCs [16]. Analogously to the described by Friedenstein MSCs, CD146 + cells colonizing the perivascular space of sinusoidal sinus vessels, are responsible for the production of signals allowing the reconstruction of the bone marrow microenvironment after transplantation to heterotopic location [11]. Whats more, tracing the fate of pericytes in the process of rebuilding a damaged tooth in rodents has shown that they are transforming into odontoblasts, which arise from MSCs found in the pulp. However, the same studies showed that in the process of reconstruction of incisors in mice, a different population of odontoblasts, which is not formed from pericytes, but from MSCs of different origin migrating to the area of damage, prevailed quantitatively [17]. The second cell population associated with blood vessels, proposed as a counterpart of MSCs in the body is advent building cells with the CD34+ CD31- CD146- phenotype, which after isolation and in vitro culture meet the criteria defining the population as MSCs. However, these cells also have the ability to differentiate into pericytes [18,19]. Although pericytes and MSCs have a very similar gene expression profile as well as an analogical capacity for differentiation, it has been shown that the functionality of these cells varies. In vitro studies of endothelial cell interactions in co-culture with MSCs or pericytes have shown that only pericytes are able to form highly branched, dense, cylindrical structures with large diameter, typical for well-organized blood vessels, while isolated from the bone marrow MSCs do not have such abilities. Currently, it is believed that there is a link between pericytes and MSCs, but their mutual relations are not well defined. There are speculations that MSCs are an intermediate form of pericytes or their subpopulation, but there is still no conclusive evidence confirming this hypothesis [20,21].

While the cells fulfilling criteria for MSCs can be harvested from various tissues at all developmental stages (fetal, young, adult and aged) using their plastic adherence property, there are profound differences between obtained MSC populations [22,23]. Bone marrow was historically the first source from which MSCs were obtained, however, over time, there have been reports of the possibility of isolation from other sources of cells with similar properties. Mesenchymal cells are obtained from both tissues and secretions of the adult body, such as adipose tissue, peripheral blood, dental pulp, yellow ligament, menstrual blood, endometrium, milk from mothers, as well as fetal tissues: amniotic fluid, membranes, chorionic villi, placenta, umbilical cord, Wharton jelly, and umbilical cord blood [2437]. MSCs of fetal origin as compared to cells isolated from tissues of adult organisms are characterized by a faster rate of proliferation as well as a greater number of in vitro passages until senescence [38]. However, MSCs derived from bone marrow and adipose tissue are able to create a larger number of CFU-F colonies, which indirectly indicates a higher degree of their stemness. The comparison of gene expression typical for pluripotent cells shows that only in cells isolated from the bone marrow we can observe the expression of the SOX2 gene, the activation of which is associated with the self-renewal process of stem cells as well as with neurogenesis during embryonic development [39]. Discrepancies in the ability of MSCs obtained from various sources to differentiate have also been described. The lack of differentiation of MSCs derived from umbilical cord blood towards adipocytes as well as the greater tendency of MSCs from bone marrow and adipose tissue to differentiate towards osteoblasts were observed [39,40].

In addition to the diverseness observed between MSCs from different sources, there are also differences associated with obtaining them from individual donors. Among the cells isolated from the bone marrow from donors of different ages and sexes, up to 12-fold differences in the rate of their proliferation and osteogenesis were found, combined with a 40-fold difference in the level of bone remodeling marker activity - ALP (alkaline phosphatase). At the same time, no correlations were found resulting from differences in the sex or age of donors [41]. However, the results of studies by other authors indicate that the properties of MSCs isolated from the bone marrow are strongly associated with the age of the donor. Cells collected from older donors are characterized by an increased percentage of apoptotic cells and slower rate of proliferation, which is associated with an increased population doubling time. There is also a weakened ability of MSCs from older donors to differentiate towards osteoblasts [42]. Heo in his work shows the different ability of MSCs to osteogenesis combining it with different levels of DLX5 gene expression (transcription factor with the homeodomain 5 motif) in individual donors, however independent of the type of tissue from which the cells were isolated [39].

The next stage in which we can observe diversity among the MSCs population is in vitro culture. The morphology of cultured cells that originate from the same isolation allows for differentiation into three sub-populations. There are observed spindle-shaped proliferating cells resembling fibroblasts (type I); large, flat cells with a clearly marked cytoskeleton structure, containing a number of granules (type II) and small, round cells with high self-renewal capacity [43,44]. The original hypothesis assumed that all cells that make up the MSCs population are multipotent, and each colony of CFU is capable of differentiating into adipocytes, chondrocytes and osteoblasts, as confirmed by appropriate studies [45]. However, in the literature we can find reports that cell lines derived from a common colony of CFU-F differ in their properties, characterized by uni-, di- or multipotence [46]. Some of the authors showed the division of clonogenic MSCs colonies into as much as eight groups distinct in their potential for differentiation. At the same time, it is suggested that there is a hierarchy within which cells subordinate to each other are increasingly directed towards osteo- chondro- or adipocytes and gradually lose their multipotential properties to di- and unipotential ones. This transformation may also be associated with a decrease in the rate of cell proliferation and the level of CD146 protein expression (CD; cluster of differentiation) - proposed as a marker of multipotency [47].

One of the main advantages of MSCs are their immunomodulatory properties. MSCs grown in vitro have the ability to interact and regulate the function of the majority of effector cells involved in the processes of primary and acquired immune response () [48]. They exert their immunomodulatory effects by inhibiting the complement-mediated effects of peripheral blood mononuclear cell proliferation [49,50], blocking apoptosis of native and activated neutrophils, as well as reducing the number of neutrophils binding to vascular endothelial cells, limiting the mobilization of these cells to the area of damage [51,52]. In addition, cytokines synthesized by activated MSCs stimulate neutrophil chemotaxis and secretion of pro-inflammatory chemokines involved in recruitment and stimulation of phagocytic macrophage properties [53]. Moreover MSCs limit mast cell degranulation, secretion of pro-inflammatory cytokines by these cells as well as their migration towards the chemotactic factors [54]. Native MSCs have the ability to block the proliferation of de novo-induced NK cells, but they are only able to partially inhibit the proliferation of already activated cells [55]. They also contribute to the reduction of cytotoxic activity of NK cells [56]. Moreover MSCs can block the differentiation of CD34 + cells isolated from the bone marrow or blood monocytes into mature dendritic cells both by direct contact as well as by secreted paracrine factors [57,58]. They inhibit the transformation of immature dendritic cells into mature forms and limit the mobilization of dendritic cells to the tissues [59]. Under their influence, M1 (pro-inflammatory) macrophages are transformed into M2 type cells with an anti-inflammatory phenotype, and the IL-10 (IL, interleukin) secreted by them inhibits T-cell proliferation [60,61]. In vitro studies have demonstrated a direct immunomodulatory effect of MSCs on lymphocytes. During the co-culture of MSCs with lymphocytes, suppression of activated CD4 + and CD8 + T cells and B lymphocytes was observed [62]. In addition, MSCs reduce the level of pro-inflammatory cytokines synthesized by T-lymphocytes, such as TNF- (tumor necrosis factor ) and IFN- (interferon ) [63], and increase synthesis of anti-inflammatory cytokines, e.g. IL-4. In the presence of MSCs, the inhibition of the differentiation of naive CD4 + T lymphocytes to Th17 + lymphocytes (Th; T helper cells) was observed, while the percentage of T cells differentiating towards CD4 + CD25 + regulatory T cells was found to increase [64,65]. Glennie et al. described this condition as anergy of activated T cells in the presence of MSCs [62]. MSCs also have the ability to limit the synthesis of immunoglobulins like IgM, IgG and IgA (Ig; immunoglobulin) classes secreted by activated B cells, thereby blocking the differentiation of these cells to plasma cells. They also reduce the expression of chemokines and their receptors on the surface of B lymphocytes, which probably have a negative effect on their ability to migrate [66].

The schematic representation of immunomodulatory capabilities of MSCs

Mesenchymal stem cells secrete a wide range of paracrine factors, collectively referred to as the secretome, which support regenerative processes in damaged tissues. They comprise the components of the extracellular matrix, proteins involved in the adhesion process, enzymes as well as their activators and inhibitors, growth factors and binding proteins, cytokines and chemokines, and probably many more [67]. These factors can have distinct impact on the processes they regulate (). MSCs secrete factors promoting angiogenesis, such as: vascular endothelial growth factor (VEGF) but they may also inhibit this process, through expression of monokine induced by interferon and tissue inhibitors of metalloproteinases 1 and 2 [68,69]. An important role is also played by chemokines secreted by MSCs in the process of blocking or stimulating cell chemotaxis, such as: CCL5 (RANTES, regulated by activation, expression and secretion by normal T lymphocytes), CXCL12 (SDF-1, stromal cell-derived factor 1) or CCL8 (MCP-2; monocyte chemoattractant protein 2). An essential group of factors from the point of view of regeneration processes are growth factors with an anti-apoptotic effect, including: HGF (hepatocyte growth factor), IGF-1 (insulin-like growth factor 1), VEGF, CINC-3 (cytokine induced by a chemoattractant for neutrophil chemoattractant), TIMP-1 (tissue inhibitor of metalloproteinases 1), TIMP-2 (tissue inhibitor of metalloproteinases 2), osteopontin, growth hormone, FGF-BP (bFGF binding protein), and BDNF (brain-derived growth factor; -derived neurotrophic factor) and stimulating proliferation as: TGF- (transforming growth factor ), HGF, EGF (epidermal growth factor), NGF (nerve growth factor; nerve growth factor), bFGF (basic fibroblast growth factor), IGFBP-1, IGFBP-2 (IGFBP; insulin-like growth factor 1 binding protein, IGF-Protein-1 protein) and M-CSF (stimulant factor t molar macrophage colony; macrophage colony-stimulating factor) [68,70,71]. Growth factors secreted by MSCs have also ability to reduce fibrosis of tissues during regeneration. These include KGF (keratinocyte growth factor), HGF, VEGF, and Ang-1 (angiopoietin-1), SDF1, IGF-1, EGF, HGF, NGF, TGF- [71,72]. There are reports about the antibacterial properties and interaction of the MSC secretome with cancer cells. Data on the impact of MSCs on neoplasia are not conclusive, however, it is assumed that both the tumor type and the origin of MSCs are of great importance for the final effect [73]. It was shown that factors enclosed within the MSCs secretome are able to reduce the proliferation, viability and migration of certain types of cancer cells (such as non-small-cell lung carcinoma) [74]. Others have shown that factors released by MSCs may increase motility, invasiveness and the ability to form metastases (including, for example, breast cancer cells) [75]. In response to bacteria, levels of cytokines such as IL- 6, IL-8, CCL5, PGE2, TNF-, IL-1, IL-10, VEGF and SDF-1 secreted by MSCs are subject to change [76]. MSCs contain also substances with antibacterial, anti-parasitic and antiviral activity [77].

The mechanisms mediating MSC-dependent trophic support

Another broad and dynamically developing field in recent years which is related to paracrine MSCs activity is their ability to secrete extracellular vesicles (EVs), which include exosomes, microvesicles and apoptotic bodies. Their composition largely coincides with the components contained in the cells from which they originate. Physiologically they play an important role in the regulation of biological functions, homeostasis and the immune response of the body. It is also postulated that the biological activity of microvesicles is comparable to that of MSCs [78]. Experiments conducted using supernatant derived from in vitro culture of MSCs showed that the factors contained in their secretome are responsible for a large part of the effects exerted by MSCs during the regeneration of the damaged area including the protection of other cells against apoptosis, induction of their proliferation, prevention of excessive fibrosis of tissues, stimulation of the angiogenesis process and immunomodulatory effects, as well as the induction of endogenous stem cells differentiation [65,68,69,7982].

As mentioned above, the ability to differentiate into three types of cells such as: osteocytes, chondrocytes and adipocytes is one of the criterion for MSCs [8]. This phenomenon can be traced in vitro by placing MSCs in a medium containing specific supplements, for the adipogenesis process they are mainly dexamethasone, indomethacin, insulin and isobutylmethylxanthin [83], for chondrogenesis cell culture in DMEM medium (Dulbecco / Vogt Modified Eagles Minimal Essential Medium) supplemented with insulin, transferrin, selenium, linoleic acid, selenium acid, pyruvate, ascorbic phosphate, dexamethasone and TGF- III [84], which may additionally be aided by the addition of IGF-1 and BMP-2 (BMP; bone morphogenetic proteins) [85]. In turn the osteogenesis is induced by the presence of ascorbic acid, -glycerophosphate and dexamethasone [86]. Differentiation of MSCs in the appropriate cell type is assessed by identifying the production of respectively: fat droplets (adipogenesis), proteoglycans and type II collagen synthesis (chondrogenesis) or mineralization of calcium deposits and the increase of alkaline phosphatase expression (osteogenesis). However, many literature reports indicate that by the treatment with appropriate factors MSCs might be also a source of other cell types. Caplan and Dennis in their work from 2006 present a process that they call mesengenesis, in which MSCs give also rise to myoblasts, bone marrow stromal cells, fibroblasts, cells co-creating connective tissue of the body as well as ligaments and tendons [87]. Addition of 5-azacytidine to MSCs allows to obtain muscle cells, including cardiomyocytes and myoblasts having the ability to create multinucleated miotubes and expressing markers such as: -myosin heavy chain, -actin cardiac form and desmin [88]. In addition, in vitro studies have made it possible to obtain from MSCs at least two types of cells derived from the endoderm through their transdifferentiation into hepatocytes and -cells of pancreatic islets. The liver cells are obtained from MSCs in two stages by culturing them in modified Dulbeccos medium supplemented with EGF, bFGF and nicotinamide, and in the next stage with the addition of oncostatin M, dexamethasone, insulin, transferrin and selenium. The resulting cells show the presence of markers typical for hepatocytes such as albumin, -fetoprotein and hepatocyte nuclear factor 4 (HNF-4) [89]. By the treatment with a mixture of growth factors secreted by regenerating cells of the pancreas as well as by the use of acitin A, sodium butyrate, taurine and nicotinamide the pancreatic islets of -cells capable of producing insulin were obtained from MSCs [90,91]. It has also been shown that stimulation with appropriate factors may result in the differentiation of MSCs into cells derived ontogenetically from ectoderm, such as neurons. The use of BME stimulation in vitro (-mercaptoethanol) followed by NGF leads to the differentiation of MSCs into cholinergic nerve cells expressing their typical proteins such as NF-68 neurofilaments (68 kDa Neurofilament protein with 68 kDa molecular mass), NF-200 (neurofilament protein with a molecular weight 200kDa, 200kDa neurofilament protein), NF-160 (neurofilament protein molecular weight 160kDa, 160kDa neurofilament protein), choline acetyltransferase and synapsin I [92]. Other factors mentioned as compounds inducing the transformation of MSCs into nerve cells are insulin, retinoic acid, bFGF, EGF, valproic acid, BME and hydrocortisol [93]. In addition, GNDF (glial cell-derived neurotrophic factor), BDNF (brain-derived neurotrophic factor), retinoic acid, 5-azacytidine, isobutylmethylxanthine and indomethacin stimulate the transformation of MSCs into mature neurons that express markers of nervous systems cells such as: nestin, -III tubulin, microtubule associated protein - MAP2 (microtubule associated protein 2) and neuron-specific enolase (ENO2; enolase 2) [94]. These studies show that under strictly controlled conditions prevailing during in vitro culture, in the presence of chemicals and growth factors, MSCs are able to turn into cells derived from all three embryonic germ layers ().

The differentiation potential of MSCs

It has been more than half a century since the curiosity has been revealed that not only hematopoietic cells, but also those capable of forming connective tissue reside in the bone marrow. Subsequent studies have begun to reveal the increasingly fascinating properties of these cells, which go far beyond forming connective tissue. This, combined with their easy derivation from various tissues, made them an attractive research object. Immunomodulatory properties, aiding repair of various tissues as well as differentiation potential to practically any types of cells stunned a whole host of scientists and established MSCs as a driving force of regenerative medicine and began also to play an increasingly important role in oncology [95]. We are currently observing a flood of clinical trials with the use of MSCs, and their number doubles every few years and currently reaches almost 1000 registered items on the clinicaltrials.gov website.

MSCs compose a negligible fraction of cells derived from in vivo tissues and there is no effective method to capture them directly. Therefore, MSCs need to be subjected to the process of in vitro expansion, which in clinical context is called biomanufacturing and biobanking and both terms are frequently used interchangeably to describe the process from procurement of cell source to deliver cells to the patients bed. The processing of MSCs must be performed according to current Good Manufacturing Practice (cGMP) as any other therapeutic agent and is subjected to extensive regulatory effort. Food and Drug Administration (FDA) is the main authority responsible for acceptance of medical products including those containing living cells such as MSCs in the USA. FDA has issued a perspective on MSC-based product characterization [96] and up-dated it in FDA Grand Round delivered by Steven Bauer, PhD, Chief of Cell and Tissue Therapies Branch at FDA on March 08, 2018. Both sources are an excellent overview of regulatory challenges related to the biobanking of MSCs. In general, any new product must obtain investigational new drug status (INDs) to be used in clinical trial before filing application for marketing, and there were 66 INDs submitted to FDA between 2006 and 2012. Based on that FDA engaged into regulatory research project called MSC consortium to characterize MSC based-products with an output of 16 research papers. The main organ responsible for the regulation of medical market in all Member States is European Medicines Agency (EMA) consisting of seven smaller committees. The MSCs-containing products should be classified as Advanced Therapy Medical Product (ATMP) and in detail considered as Somatic Cell Therapy Medicinal Product (CTMP) [97]. Its release on medical market has to be first accredited by Committee for Advanced Therapies (CAT) which creates the general opinion and evaluates the quality, safety and efficiency of the product. After CAT assessment the final acceptance should be then approved by Committee for the Medicinal Products for Human Use (CHMP). This type of legalization is called Centralized Marketing Authorization and it allows to use ATMP products in all European Union countries. Currently, there is a variety of protocols used for biomanufacturing and biobanking of MSCs, and once the successful stories become strong, the landscape of MSC production will probably solidify with predicted reduction of MSC production approaches due to economic and regulatory pressures.

Summing up, it seems that the MSCs are becoming a powerful global industry, ready to respond to the unmet needs of modern medicine struggling with the proper care and quality of life of rapidly aging societies, which is already affecting not only developed countries, but also very populous developing countries. In conclusion, we are beginning to observe the effect of the snowball in which ever new discoveries related to MSC are increasingly stimulating clinical applications of the MSC, which is beginning to contribute to the transformation of medical care.

Significance Statement

The research on bone marrow-derived stem cells of connective tissue is evolving and continuously expanding with a recent boost of interest in clinical applications reflected by an avalanche of nearly 1000 registered clinical trials. While, the current name: mesenchymal stem cells (MSCs) have been coined as late as early 90-ies, it is important to commemorate of the fiftieth anniversary of research on them and provide a big picture from roots of first paper in 1968, through identification of their various potential therapeutic activities such as immunomodulation, trophic support and capability for differentiation and taking role in cell replacement strategies.

This work was funded by NCR&D grant EXPLORE ME within the STRATEGMED I program and by NIH R01 NS091100-01A1.

Read the rest here:
Mesenchymal stem cells: from roots to boost - PMC

To Read More: Mesenchymal stem cells: from roots to boost – PMC
categoriaCardiac Stem Cells commentoComments Off on Mesenchymal stem cells: from roots to boost – PMC | dataJuly 8th, 2022
Read All

New study allows researchers to more efficiently form human heart cells from stem cells – University of Wisconsin-Madison

By daniellenierenberg

Lab-grown human heart cells provide a powerful tool to understand and potentially treat heart disease. However, the methods to produce human heart cells from pluripotent stem cells are not optimal. Fortunately, a new study out of the University of WisconsinMadison Stem Cell & Regenerative Medicine Center is providing key insight that will aid researchers in growing cardiac cells from stem cells.

The research, published recently in eLife, investigates the role of extracellular matrix (ECM) proteins in the generation of heart cells derived from human pluripotent stem cells (hPSCs). The ECM fills the space between cells, providing structural support and regulating formation of tissues and organs. With a better understanding of ECM and its impact on heart development, researchers will be able to more effectively develop heart muscle cells, called cardiomyocytes, that could be useful for cardiac repair, regeneration and cell therapy.

How the ECM impacts the generation of hPSC-cardiomyocytes has been largely overlooked, says Jianhua Zhang, a senior scientist at the Stem Cell and Regenerative Medicine Center. The better we understand how the soluble factors as well as the ECM proteins work in the cell culture and differentiation, the closer we get to our goals.

Researchers like Zhang have been looking to improve the differentiation of hPSCs into cardiomyocytes, or the ability to take hPSCs, which can self-renew indefinitely in culture while maintaining the ability to become almost any cell type in the human body and turn them into heart muscle cells. To investigate the role of the ECM in promoting this cardiac differentiation of hPSCs, Zhang tested a variety of proteins to see how they impacted stem cell growth and differentiation specifically, ECM proteins including laminin-111, laminin-521, fibronectin and collagen.

Our study showed ECM proteins play significant roles in the hPSC adhesion, growth, and cardiac differentiation. And fibronectin plays an essential role and is indispensable in hPSC cardiac differentiation, says Zhang. By understanding the roles of ECM, this study will help to develop more robust methods and protocols for generation of hPSC-CMs. Furthermore, this study not only helps in the field for cardiac differentiation, but also other lineage differentiation as well.

While the new study provides important insight into heart cell development, it is built upon a 2012 study Zhang led which looked at the most efficient way to develop cardiac differentiation of stem cells.

This study is actually a follow-up paper to the Matrix Sandwich Method that we developed for efficient cardiac differentiation of hPSCs, Zhang says. In order to culture the stem cells, we needed to have an ECM layer on the bottom of the plate. Otherwise, the stem cells would not attach to the plate. We would then add another layer of ECM on top of the growing stem cells, and we found that this helped promote the most effective differentiation.

While it was clear that this layering, or sandwich, method more efficiently and reproducibly differentiated hPSC-cardiomyocytes, researchers did not fully understand why. The new study explains why the ECM layers are crucial and identifies fibronectin as a key ECM protein in the development of hPSC-cardiomyocytes.

The most exciting part of this study is now I understand why the Matrix Sandwich Method worked. We were able to identify the fibronectin and its integrin receptors as well as the downstream signaling pathways in this study, Zhang explains. With a better understanding of ECMs roles in stem cell growth and cardiac differentiation, we now hope to investigate the roles of fibronectin and other ECM proteins in promoting the hPSC-cardiomyocytes transplantation for cell therapy.

The next step could help researchers realize the full potential of using hPSC-cardiomyocytes for disease modeling, drug screening, cardiac regeneration and cell therapy. This is very meaningful to Zhang, who began working in cardiovascular research more than 16 years ago.

I became interested in stem cell and heart research when I began working with the stem cells and saw them turning into heart cells beating in a cell culture dish under a microscope, Zhang says. It was amazing. Ive become more and more dedicated to this research, and I can really see the potential of using the stem cell technologies to cure disease and improve our health.

See original here:
New study allows researchers to more efficiently form human heart cells from stem cells - University of Wisconsin-Madison

To Read More: New study allows researchers to more efficiently form human heart cells from stem cells – University of Wisconsin-Madison
categoriaCardiac Stem Cells commentoComments Off on New study allows researchers to more efficiently form human heart cells from stem cells – University of Wisconsin-Madison | dataJuly 8th, 2022
Read All

Page 106«..1020..105106107108..120130..»


Copyright :: 2025