Ocuphire Granted New U.S. Patent for Late-Stage Oral Drug Candidate APX3330 for Use in Diabetics and Announces New Peer-Reviewed APX3330 Publication
By Dr. Matthew Watson
Newly Issued Patent Broadens Medical Uses of Oral APX3330 Therapy in Patients with Diabetes and Extends Expiry Thru 2038
See original here:
Ocuphire Granted New U.S. Patent for Late-Stage Oral Drug Candidate APX3330 for Use in Diabetics and Announces New Peer-Reviewed APX3330 Publication
Resolutions passed at the Annual General Meeting
By Dr. Matthew Watson
Orphazyme A/SCompany announcementNo. 33/2022 www.orphazyme.comCompany Registration No. 32266355
Read the original here:
Resolutions passed at the Annual General Meeting
Lexicon Announces Positive Top-Line Results From Phase 2 Proof-Of-Concept Study Of LX9211 In Painful Diabetic Neuropathy
By Dr. Matthew Watson
Study Supports Translation of Potential New Mechanism of Action for Neuropathic Pain and Advancement of LX9211 Development in Painful Diabetic Neuropathy
See the original post here:
Lexicon Announces Positive Top-Line Results From Phase 2 Proof-Of-Concept Study Of LX9211 In Painful Diabetic Neuropathy
Angion Announces Discontinuation of Phase 2 Trial of ANG-3070 in Patients with Primary Proteinuric Kidney Disease
By Dr. Matthew Watson
UNIONDALE, N.Y., June 29, 2022 (GLOBE NEWSWIRE) -- Angion Biomedica Corp. (NASDAQ:ANGN), a biopharmaceutical company focused on the discovery, development, and commercialization of novel small molecule therapeutics to address fibrotic diseases, today announced the discontinuation of JUNIPER, its Phase 2 dose-finding trial of ANG-3070, an oral tyrosine kinase inhibitor (TKI), in patients with primary proteinuric kidney diseases, specifically focal segmental glomerulosclerosis (FSGS) and immunoglobulin A nephropathy (IgAN). This trial, which began enrolling patients in December 2021, is being discontinued in the interest of patient safety based upon a reassessment of the risk/benefit profile of ANG-3070 in patients with established serious kidney disease.
Originally posted here:
Angion Announces Discontinuation of Phase 2 Trial of ANG-3070 in Patients with Primary Proteinuric Kidney Disease
Avid Bioservices Reports Financial Results for Fourth Quarter and Full Fiscal Year Ended April 30, 2022 and Recent Developments
By Dr. Matthew Watson
-- Recorded Fourth Quarter and Full Fiscal Year Revenue of $31 Million and $120 Million, Respectively ---- Signed $44 Million in Net New Business Orders and Ended the Quarter with a Record High Backlog of $153 Million --
Avadel Pharmaceuticals Provides Corporate Update
By Dr. Matthew Watson
DUBLIN, Ireland, June 29, 2022 (GLOBE NEWSWIRE) -- Avadel Pharmaceuticals plc (Nasdaq: AVDL), a biopharmaceutical company focused on transforming medicines to transform lives, today announced the steps it is taking to explore every available pathway to accelerate the decision by the U.S. Food and Drug Administration (FDA) to grant final approval of its lead drug candidate, FT218, prior to June 2023. Concurrent with this strategy, Avadel has received and agreed upon what is expected to be a final label and is completing the last edits of the Risk Evaluation and Mitigation Strategy (“REMS”) with FDA and expects to receive tentative approval of FT218.
See the rest here:
Avadel Pharmaceuticals Provides Corporate Update
Apexigen Announces Board Appointment and New Chair
By Dr. Matthew Watson
Meenu Chhabra Karson appointed to Board succeeding Dr. Kenneth Fong as Chair of the Board Meenu Chhabra Karson appointed to Board succeeding Dr. Kenneth Fong as Chair of the Board
Read more from the original source:
Apexigen Announces Board Appointment and New Chair
Pfizer and BioNTech Announce New Agreement with U.S. Government to Provide Additional Doses of COVID-19 Vaccine
By Dr. Matthew Watson
NEW YORK and MAINZ, GERMANY, JUNE 29, 2022 — Pfizer Inc. (NYSE: PFE) and BioNTech SE (Nasdaq: BNTX) today announced a new vaccine supply agreement with the U.S. government to support the continued fight against COVID-19. Under the agreement, the U.S. government will receive 105 million doses (30 µg, 10 µg and 3 µg). This may include adult Omicron-adapted COVID-19 vaccines, subject to authorization from the U.S. Food and Drug Administration (FDA). The doses are planned to be delivered as soon as late summer 2022 and continue into the fourth quarter of this year.
Originally posted here:
Pfizer and BioNTech Announce New Agreement with U.S. Government to Provide Additional Doses of COVID-19 Vaccine
MediciNova Announces Extension of BARDA Contract to Develop MN-166 (ibudilast) as a Medical Countermeasure Against Chlorine Gas-induced Lung Injury
By Dr. Matthew Watson
LA JOLLA, Calif., June 29, 2022 (GLOBE NEWSWIRE) -- MediciNova, Inc., a biopharmaceutical company traded on the NASDAQ Global Market (NASDAQ: MNOV) and the JASDAQ Market of the Tokyo Stock Exchange (Code Number: 4875), today announced a modification to its contract with the Biomedical Advanced Research and Development Authority (BARDA), part of the Office of the Assistant Secretary for Preparedness and Response at the U.S. Department of Health and Human Services, to repurpose MN-166 (ibudilast) as a potential medical countermeasure (MCM) against chlorine gas-induced lung damage such as acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). The contract was amended to extend the period of performance until March 2023.
MedMira Reports Third Quarter Results FY2022
By Dr. Matthew Watson
HALIFAX, Nova Scotia, June 29, 2022 (GLOBE NEWSWIRE) -- MedMira Inc. (MedMira) (TSXV: MIR), reported today on its financial results for the quarter ended April 30, 2022.
Here is the original post:
MedMira Reports Third Quarter Results FY2022
What New Advances are there in 3D Bioprinting Tissues? – AZoM
By daniellenierenberg
A paper recently published in the journal Biomaterials reviewed the new advances in three-dimensional bioprinting (3DBP) for regenerative therapy in different organ systems.
Study:Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Image Credit:luchschenF/Shutterstock.com
Organ/tissue shortage has emerged as a significant challenge in the medical field due to patient immune rejections and donor scarcity. Moreover, mimicking or predicting the human disease condition in the animal models is difficult during preclinical trials owing to the differences in the disease phenotype between animals and humans.
3DBP has gained significant attention as a highly-efficient multidisciplinary technology to fabricate 3D biological tissue with complex composition and architecture. This technology allows precise assembly and deposition of biomaterials with donor/patients cells, leading to the successful fabrication of organ/tissue-like structures, preclinical implants, and in vitro models.
In this study, researchers reviewed the 3DBP strategies currently used for regenerative therapy in eight organ systems, including urinary, respiratory, gastrointestinal, exocrine and endocrine, integumentary, skeletal, cardiovascular, and nervous systems. Researchers also focused on the application of 3DBP to fabricate in vitro models. The concept of in situ 3DBP was discussed.
In this extensively used low-cost bioprinting method, rotating screw gear or pressurized air is used without or with temperature to extrude a continuous stream of thermoplastic or semisolid material. Different materials can be printed at a high fabrication speed using this technology. However, low cell viability and the need for post-processing are the major drawbacks of extrusion bioprinting.
In this method, liquid drops are ejected on a substrate by acoustic or thermal forces. High fabrication speed, small droplet volume, and interconnected micro-porosity gradient in the fabricated 3D structures are the main advantages of this technique. However, limited printed materials and clogging are the biggest drawbacks of inkjet bioprinting.
A laser is used to induce the forward transfer of biomaterials on a solid surface in the laser-assisted bioprinting method. High cell viability and nozzle-free noncontact process are the biggest advantages of laser-assisted bioprinting, while metallic particle contamination and the time-consuming nature of the printing process are the major disadvantages.
Several studies were performed involving the development of neuronal tissues using the 3DBP method. The pressure extrusion/syringe extrusion (PE/SE) bioprinting technique was used for central nervous tissue (CNS) tissue replacement. The layered porous structure was fabricated using glial cells derived using human induced pluripotent stem cell (iPSC) and a novel bioink based on agarose, alginate, and carboxymethyl chitosan (CMC) formed synaptic networks and displayed a bicuculline-induced enhanced calcium response.
Similarly, stereolithography (SLA) was used to fabricate a 3D scaffold for CNS and the viability of the scaffold was evaluated for regenerative medicine application. Layered linear microchannels were printed using poly(ethylene glycol) diacrylate-gelatin methacrylate (PEGDA-GelMA) and rat E14 neural progenitor cells (NPCs). The 3D scaffold restored the synaptic contacts and significantly improved the functional outcomes. Cyclohexane was used to bond polystyrene fibers to matrix bundle terminals during crosslinking.
Multiphoton excited 3-dimensional printing (MPE-3DP) was employed for the regeneration of myocardial tissue. A layer-by-layer structure was fabricated using GelMA/ sodium 4-[2-(4-morpholino)benzoyl-2-dimethylamino]-butylbenzenesulfonate (MBS) and human hciPSC-derived cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs). The crosslinking was performed by photoactivation. The structure promoted electromechanical coupling and improved cell proliferation, vascularity, and cardiac function.
Fused deposition modeling (FDM) and PE/SE bioprinting method were used for complex tissue and organ regeneration. A micro-fluid network heart shape structure was fabricated using polyvinyl alcohol (PVA), agarose, sodium alginate, and platelet-rich plasma and rat H9c2 cells and human umbilical vein endothelial cells (HUVECs). 2% calcium dichloride was used during the crosslinking mechanism. The fabricated structure possessed a valentine heart with hollow mechanical properties and a self-defined height.
SE printing was utilized to fabricate a capillary-like network using collagen type1/ xanthan gum and human fibroblasts and ECs for applications in blood vessels. The fabricated network possessed endothelial networks and sprouting between the fibroblast layers.
Bone, cartilage, and skeletal muscle tissue can be repaired and regenerated using the 3DBP technique. For instance, FDM printing was used to print multifunctional therapeutic scaffolds for the treatment of bone. Filopodial projections were fabricated using polylactic acid (PLA) platform loaded with hyaluronic acid (HA)/ iron oxide nanoparticles (IONS)/ minocycline and human MG-63 and human bone marrow stromal cells (hBMSCs), which improved the osteogenic stimulation of the IONS and HA.
PE/SE method was used to fabricate disks and cuboid-shaped scaffolds using - tricalcium phosphate (TCP) microgel and human fetal osteoblast (hFOB) and bone marrow-derived mesenchymal stem cell (BM-MSC) for bone repair, multicellular delivery, and disease model. The fabricated structures promoted osteogenesis.
PE/SE bioprinting was also utilized to fabricate complex porous layered cartilage-like structures using alginate/gelatin/HA, rat bone marrow mesenchymal stem cells (BMSCs), and cow cardiac progenitor cells (CPCs) for hyaline cartilage regeneration. The CPCs upregulated gene expression of proteoglycan 4 (PRG4), SRY-box transcription factor 9 (SOX9), and collagen II.
PE/SE printing was also used to fabricate multinucleated, highly-aligned myotube structures using polyurethane (PU), poly(-caprolactone) (PCL), and mouse C2C12 myoblasts and NIH/3T3 fibroblasts for in-situ expansion and differentiation of skeletal muscle tendon. The fabricated constructs demonstrated more than 80% cell viability with initial tissue differentiation and development.
SLA bioprinting technique was used to fabricate bi-layered epidermis-like structure using collagen type I, mouse NIH 3T3 fibroblast cells, and human keratinocyte cells for tissue model and engineering. The fabricated constructs effectively imitated the tissue functions.
Similarly, PE was employed to fabricate microporous structures using human amniotic mesenchymal stem cells (AFSCs) and heparin-HA-PEGDA for wound healing. The construct improved the wound closure and reepithelialization, increased extracellular matrix synthesis and vascularization, and prolonged the cell paracrine activity.
PE technique was utilized to prepare a multilayered cornea-like structure using human keratocytes and methacrylated collagen (ColMA)-alginate. The cell viability of the keratocytes decreased from 90% to 83% after printing.
PE/SE bioprinting was utilized to bioprint multilayered liver-like structures using GeIMA and human HepG2/C3A for liver tissue engineering. Similarly, hepatocytes were also bioprinted to fabricate multiple organ precursors with branching vasculature. A small intestine model with improved intestinal function and high cell proliferation was fabricated using caco-2 cell-loaded polyethylene vinyl acetate (PEVA) scaffold.
Spheroids of mesenchymal stem cells (MSCs) and chondrocytes and lung endothelial cells were utilized to fabricate scaffold-free tracheal transplant. After implantation in the rat model, the matured spheroids displayed excellent vasculogenesis, chondrogenesis, and mechanical strength. FDM technique was used to fabricate a glomerular structure for kidneys using human iPSCs and hydrogel and a hollow porous network using poly(lactic-co-glycolic acid (PLGA)/PCL/tumor-associated endothelial cells (TECs) for the urethra.
In in-situ bioprinting, the tissue is directly printed on the specific defect or wound site in the body for regenerative and reparative therapy. This method provides a well-defined structure and reduces the gap between host-implant interfaces. In-situ bioprinting is better than in vitro bioprinting techniques as the patients body, as a natural bioreactor, provides a natural microenvironment.
Several studies have evaluated this technique for tissue regeneration. For instance, PE/SE method was used for skin tissue regeneration in pigs and mice using fibrin/collagen/HA and human fibroblast cells. Skin-laden sheets of consistent composition, thickness, and width were formed upon rapid crosslinking of biomaterial. PE/SE technique was also used for neural tissue regeneration in mice using agarose/CMC/alginate and human iPSCs.
In vitro models provide significant assistance in understanding the mechanism of therapeutics and disease pathophysiology. Recently, in vitro models of human tissues and organs were engineered using 3DBP technology for safety assessment and drug testing.
In the 3DBP of organs and tissues, biomaterials play a crucial role in maintaining cellular viability, providing support, and long-term acceptance. Specifically, bioinks must possess unique properties, such as cell growth promotion and structural stability, that can be optimized for clinical use. Additionally, bioinks must be compatible with printers for high-precision rapid prototyping.
Bioinks fulfilling all of these requirements are yet to be identified. Moreover, managing the time during the bioprinting of the constructs is another major challenge, as the time required to fabricate them is often more than the survival time of cells. A bioreactor platform that supports organoid growth and provides time for tissue remodeling can be used to overcome this challenge. Ethical challenges and issues are also a hurdle since fabricating internal tissues/organs can lead to liability and biosafety concerns.
In the future, 3DBP can provide novel solutions to engineer organs/tissues and revolutionize modern healthcare and medicine if these challenges can be addressed.
More from AZoM: Building Durable and Sustainable Futures with [emailprotected]
Jain, P., Kathuria, H., Dubey, N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials 2022. https://www.sciencedirect.com/science/article/abs/pii/S0142961222002794?via%3Dihub
Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.
Read more:
What New Advances are there in 3D Bioprinting Tissues? - AZoM
Technical Advancements & Innovative Products Likely to Expand Application of Surgical Meshes in Untapped Domains, States Fact.MR – BioSpace
By daniellenierenberg
Global Surgical Mesh Market Is Estimated To Be Valued At US$ 1.29 Bn In 2022, And Is Forecast To Surpass US$ 2.2 Bn Valuation By The End Of 2032
Sales of surgical meshes are expected to account for more than 21 Mn units by 2032-end, owing to their increasing application in untapped markets, says a Fact.MR analyst.
Fact.MR A Market Research and Competitive Intelligence Provider: The global surgical mesh market is estimated to exceed a valuation of US$ 1.29 Bn in 2022, and expand at a significant CAGR of 5.5% by value over the assessment period (2022-2032).
The availability of surgical meshes in absorbable and non-absorbable forms has expanded their application for temporary as well as permanent reinforcement. In recent years, demand for surgical meshes has escalated in aiding breast reconstruction as they reduce the exposure risk of the implant. Increasing health literacy in North America and Europe will create ample opportunities for surgical mesh manufacturers over the coming years.
Sedentary lifestyle and increasing obesity among the population have resulted in several chronic health issues. The consequent weakening of the muscles extends space for organ prolapse and hernia. Putting these organs back in place by stitching the muscles together can result in muscle tearing and the recurrence of prolapse. However, reinforcing the weakened muscles with the help of a surgical mesh has shown to decrease recurrence and increase the longevity of the repair.
For more insights into the Market, Get A Sample of this Report!
https://www.factmr.com/connectus/sample?flag=S&rep_id=6632
Key Takeaways from Market Study
Winning Strategy
To attract new customers, market players are focusing on portfolio enhancement. Robust investments in R&D are driving product innovation for key market players. Meshes inhibiting the growth of bacterial films and preventing tissue adhesions are luring new consumers. Collaboration of manufacturers with scientific personnel and operating surgeons have enabled bespoke designing of meshes to best fit patients needs.
Manufacturers are also aiming for portfolio expansion through acquisition and partnerships. Partnering with companies that offer a well-aligned portfolio has significantly increased consumer penetration for key manufacturers. However, augmenting relations with local players and operating surgeons will be a key determinant of the products commercial success.
For Comprehensive Insights Ask An Analyst Here
https://www.factmr.com/connectus/sample?flag=AE&rep_id=6632
Scientific collaborations and robust R&D investments have also guided product innovation and became a common strategic approach adopted by leading surgical mesh manufacturing companies to upscale their market presence.
For instance:
Surgical Mesh Industry Research by Category
Surgical Mesh Market by Product Type:
Surgical Mesh Market by Nature:
Surgical Mesh Market by Surgical Access:
Surgical Mesh Market by Use Case:
Surgical Mesh Market by Raw Material:
Surgical Mesh Market by Region:
Get Customization on this Report for Specific Research Solutions
https://www.factmr.com/connectus/sample?flag=RC&rep_id=6632
More Valuable Insights on Offer
Fact.MR, in its new offering, presents an unbiased analysis of the global surgical mesh market, presenting historical market data (2017-2021) and forecast statistics for the period of 2022-2032.
The study reveals essential insights on the basis of product type (synthetic, biosynthetic, biologic, hybrid/composite), nature of mesh (absorbable, non-absorbable, partially absorbable), surgical access (open surgery, laparoscopic surgery), use case (hernia repair, pelvic floor disorder treatment, breast reconstruction, others), and raw material (polypropylene, polyethylene terephthalate, expanded polytetrafluoroethylene, polyglycolic acid, decellularized dermis/ECM, others), across seven major regions (North America, Latin America, Europe, East Asia, South Asia & ASEAN, Oceania, MEA).
Fact. MRs Domain Knowledge in Healthcare Division
Expert analysis, actionable insights, and strategic recommendations of the highly seasoned healthcare team at Fact.MR helps clients from across the globe with their unique business intelligence needs
With a repertoire of over thousand reports and 1 million-plus data points, the team has analysed the healthcare domain across 50+ countries for over a decade. The team provides unmatched end-to-end research and consulting services.
Check out more studies related to Healthcare Industry, conducted by Fact.MR:
Induced Pluripotent Stem Cell (iPSC) Market - Induced Pluripotent Stem Cell (iPSC) Market Analysis, By Cell Type (Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells), By Research Method (Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering), By Application (Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine) - Global Market Insights 2022 to 2026
Newborn Screening Market -Newborn Screening Market by Product (Newborn Screening Instruments, Consumables), by Test Type (Dry Blood Spot Tests, Hearing Tests, Critical Congenital Heart Disease (CCHD) Screening Tests), by Technology (Immunoassays & Enzymatic Screening Tests, Tandem Mass Spectrometry, Molecular Assays, Hearing Screening Technologies, Pulse Oximetry, Others), by End User (Clinical Laboratories, Hospitals) and by Region- 2022 to 2032
Doxorubicin Market - Doxorubicin Market Analysis, By Formulation (Lyophilized Doxorubicin Powder, Doxorubicin Solution), By Cancer Type (Breast Cancer, Prostate Cancer, Ovarian Cancer, Lung Cancer, Bladder Cancer, Stomach Cancer, Leukemia), By Distribution Channel (Hospital Pharmacies, Retail Pharmacies, e-Commerce) - Global Market Insights 2022 to 2026
Microplate Systems Market - Microplate Systems Market By Product (Readers, Pipetting Systems & Dispensers, Washers), By End User (Biotechnology & Pharmaceuticals, Hospitals & Diagnostic Laboratories, Research Institutes, Academic Institutes) & Region - Global Market Insights 2022 to 2026
Drug Discovery Services Market - Drug Discovery Services Market Analysis by Process (Target Selection, Target Validation, Hit-To-Lead Identification, Lead Optimization and Candidate Validation), by Type (Medicinal Chemistry, Biology Services, Drug Metabolism and Pharmacokinetics) Region Forecast- 2022-2032
Lab Automation Market - Lab Automation Market by Product (Equipment, Microplate Readers, Software & Informatics, Automated ELISA Systems, Automated Nucleic Acid Purification Systems), by Application (Drug Discovery, Clinical Diagnostics, Genomics Solutions, Proteomics Solutions), & Region - Forecast to 2021-2031
Animal Model Market - Animal Model Market Analysis by Species (Rats, Mice, Guinea Pig, Rabbits, Monkeys, Dogs, Pigs, Cats, and Other Species), by Application (Basic & Applied Research and Drug Discovery/Development) and Region Forecast- 2022-2032
Blood Flow Measurement Devices Market - Blood Flow Measurement Devices Market Analysis by Product (Ultrasound - Doppler Ultrasound, Transit time Flow Meters (TTFM), Laser Doppler), Application (Non-invasive - Cardiovascular Disease, Diabetes, Dermatology, Invasive - CABG, Microvascular Surgery), by Region - Global Forecast 2022-2032
Contrast Media Injectors Market - Contrast Media Injectors Market by Product (Consumables, Injector Systems, Accessories), Application (Radiology, Interventional Radiology, Interventional Cardiology), End-User (Hospitals, Diagnostic Imaging Centers), & Regional Analysis till 2032
Preclinical Imaging Market - Preclinical Imaging Market Analysis By Product (Modality, and Reagents), and Region Forecast- 2022-2032
About Us:
Market research and consulting agency with a difference! Thats why 80% of Fortune 1,000 companies trust us for making their most critical decisions. While our experienced consultants employ the latest technologies to extract hard-to-find insights, we believe our USP is the trust clients have on our expertise. Spanning a wide range from automotive & industry 4.0 to healthcare & retail, our coverage is expansive, but we ensure even the most niche categories are analyzed. Our sales offices in United States and Dublin, Ireland. Headquarter based in Dubai, UAE. Reach out to us with your goals, and well be an able research partner.
Contact:
Mahendra SinghUS Sales Office:11140 Rockville PikeSuite 400Rockville, MD 20852Email: sales@factmr.comTel: +1 (628) 251-158
Read this article:
Technical Advancements & Innovative Products Likely to Expand Application of Surgical Meshes in Untapped Domains, States Fact.MR - BioSpace
Liso-cel Approval Provides Earlier, Expanded Access to CAR T-cell Therapy in Second-line LBCL – OncLive
By daniellenierenberg
Second-line lisocabtagene maraleucel (liso-cel; Breyanzi) provides an earlier CAR T-cell treatment option that improves survival outcomes and produces a manageable safety profile in patients with relapsed/refractory large B-cell lymphoma (LBCL), including those who are older and have comorbidities, according to Nilanjan Ghosh, MD, PhD.
On June 24, 2022, the FDA approved liso-cel in the second line for patients with relapsed/refractory LBCL, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified, primary mediastinal LBCL, follicular lymphoma grade 3B, and high-grade B-cell lymphoma. This approval was supported by data from the phase 3 TRANSFORM trial (NCT03575351) and the phase 2 TRANSCEND-PILOT-017006 study (NCT03483103).
Liso-cel is a fantastic option, because it has a great efficacy profile and is also a safe product amongst the available CAR T-cell products, with a relatively low incidence of cytokine release syndrome [CRS] and neurological events [NEs], the majority of which are low grade, Ghosh said.
In an interview with OncLive, Ghosh, director of the Lymphoma Program at the Levine Cancer Institute of Atrium Health, discussed the significance of the liso-cel approval in this patient population. He also highlighted how liso-cel will influence current treatment sequencing, which patients might derive the most benefit from this therapy, and the adverse effects (AEs) to be aware of and try to mitigate when prescribing liso-cel.
Ghosh: This approval is highly significant. The majority of patients with primary refractory DLBCL and early relapsed DLBCL do not derive benefit from standard-of-care [SOC] salvage chemotherapy followed by ASCT [autologous stem cell transplant], [which had been the best option until now].
The data from the TRANSFORM study showed liso-cel to be superior to high-dose salvage chemotherapy and ASCT. This approval will allow earlier access to CAR T-cell therapy for this group of patients.
Most patients with LBCL receive frontline therapy in the community setting. In addition to making our community aware of this indication, we need to educate our community about the time it takes to receive CAR T-cell therapy. The process includes many steps, such as gaining financial clearance and setting a date for T-cell collection, or leukapheresis. This date must be acceptable to both the institution [providing the treatment] and the company manufacturing the CAR T cells. [We also need to factor in] the time spent manufacturing the CAR T cells, often known as the vein-to-vein time. This entire process can take 6 weeks or more.
We often focus on just the vein-to-vein time, but there are many other steps even before leukapheresis. These patients are also refractory or have early relapsed disease that must be controlled while they are waiting to receive CAR T-cell therapy. Early referral to a CAR T-cell center is crucial to get the process going while discussing with the referring physician ways and means to control the disease in the interim. Those might include strategies like bridging therapy, which was allowed on the TRANSFORM study.
Insome patients, liso-cel may end up being a third-line therapy, despite its indication as a second-line therapy, because you may have to give another therapy to control the disease while the patients are waiting to receive CAR T cells. That discussion would best be done with the treating center and the referring physician, because some treatments can be toxic to lymphocytes, and you may want to avoid those kinds of treatments prior to collecting the lymphocytes. At the same time, we must make sure we control the disease so the patients can receive the treatment they may benefit from in the future.
Many factors must be taken into account before giving liso-cel. We look at the ECOG performance status [PS], as well as cardiac function and renal function.
Looking at comorbidities, fortunately, the TRANSCEND-PILOT-017006 trial included patients with comorbidities who were not considered good candidates for ASCT. To enroll in the study, the investigators needed to verify that the patients were not good candidates for transplant. [They also needed to meet at least 1 of the criteria], which included being over 70 years of age, having impaired renal function, having impaired cardiac function, or having a decrease in [diffusing capacity of the lungs for carbon monoxide], which is reflective of pulmonary function. The investigators also looked at hepatic function.
The outcomes of this study were good. The bottom line is that patients who are going to receive liso-cel need not only be candidates you would otherwise consider for ASCT. The eligibility for liso-cel is much broader than standard transplanteligibility in terms of age, comorbidities, and disease status. That is the most important thing. A patient who is older, has some comorbidities, and has relapsed or refractory LBCL can still benefit from liso-cel with high efficacy and low toxicity, which is what liso-cel offers in this patient population.
TRANSFORM was a randomized study of patients with DLBCL not otherwise specified, which includes de novo DLBCL and those who have transformed from indolent non-Hodgkin lymphoma; high-grade B cell lymphoma, which includes double-hit and triple-hit lymphoma; follicular lymphoma grade 3B; primary mediastinal B-cell lymphoma; and T-cell or histiocyte-rich DLBCL. Eligible patients needed to have either developed refractory disease from frontline therapy or relapsed within 12 months after frontline therapy. The frontline therapy should have included an anthracycline anda CD20 agent, which is the SOC. In addition, these patients should have been otherwise considered to be eligible for ASCT and had an ECOG PS of 0 to 1.
Eligible patients underwent leukapheresis and then were randomized to receive liso-cel or SOC, which was salvage chemotherapy followed by ASCT for those who responded to salvage chemotherapy. Importantly, this study included crossover from the SOC arm to the liso-cel arm. This was allowed for those who failed to respond to SOC by 9 weeks post-randomization, those who progressedat any time, or those who started a new antineoplastic therapy after transplant.
The primary end point was event-free survival [EFS]. Events were defined as death from any cause, progressive disease, failure to achieve complete response [CR] or partial response by 9 weeks post randomization, or the start of an antineoplastic therapy, whichever occurred first. The median EFS with liso-cel was 10.1 months compared with 2.3 months with SOC. At 12 months, the EFS rates were 44.5% with liso-cel and 23.7% with SOC. That was a significant margin of benefit.
In terms of responses, in this recent population, were most interested in CR. A total of 66% of the patients who received liso-cel achieved a CR compared with 39% of those who received SOC.
Progression-free survival [PFS] was also a secondary end point. The median PFS was 14.8 months with liso-cel and 5.7 months with SOC. Efficacy-wise, liso-cel hit all the marks. Overall survival [OS] data is maturing, so well need some longer follow-up, but we are starting to see trends in the right direction.
We have to remember that this study included crossover. Of the 91 patients in the SOC arm, 50 [crossed over to receive] CAR T-cell therapy with liso-cel. Those data will affect the OS data, but even so, were starting to see some separation of the OS curves in the TRANSFORM study.
The TRANSCEND-PILOT-017006 study is a little different because its a single-arm study. It was not intended for patients who would be otherwise considered transplant candidates. These patients did not need to relapse within 1 year [of frontline therapy], and they could have relapsed or refractory disease. A total of 25% of patients had late relapses as well, which was not the case in TRANSFORM. Otherwise, they all had 1 prior line of therapy, [like in TRANSFORM].
This is also a second-line study but in a different population of patients. This was an elderly population. Compared with the TRANSFORM study, the median age in the TRANSCEND-PILOT-017006 study was 74 years, with the oldest patient being 84 years of age. In total, 33% of patients in this study had double-hit and triple-hit disease, which I want to highlight because this is the toughest group of patients to treat. A total of 54% of the patients had primary refractory disease, [and many patients had comorbidities].
Additionally, 44% of the patients had an HCT-CI [Hematopoietic Cell Transplantation-Specific Comorbidity Index] score of 3 or more. We dont know the relevance [of this score] for CAR T-cell therapy, but outcomes are typically poor in patients who have an HCT-CI score of 3 or higher who undergoallogeneic transplant or ASCT.
[In this trial], the overall response rate was great, at 80%, with 54% achieving CR. Responses were seen in all prespecified subgroups, including patients with high-risk features, with no notable differences in efficacy or safety outcomes based on HCT-CI score. Investigators did separate out patients who had scores of less than 3 vs 3 or higher, and they didnt see any differences.
The median duration of response [DOR] was [11.2 months in patients with an HCT-CI score under 3, and not reached in patients with an HCT-CI score of 3 or higher].In patients who achieved a CR, the median DOR was 21.7 months.
The median PFS was [7.4 months in patients with an HCT-CI score under 3, and NR in patients with an HCT-CI score of 3 or higher]. The median OS was not reached.
Importantly, 32.8% of the patients were monitored as outpatients in this study, and 35% of those needed to be hospitalized for concerns of CRS and neurotoxicity after receiving liso-cel. Most of the patients who received liso-cel as outpatients did not need hospitalization within 3 days of receiving it. These results support liso-cel as a second-line treatment in patients with LBCL in whom transplant is not intended.
In general, the acute AEs that occur with any CAR T-cell therapy, but which are much lower with liso-cel, are CRS and NEs. These occur immediately post-CAR T-cell therapy, within days.
However, the incidence of CRS and NEs was low in both [TRANSFORM and TRANSCEND-PILOT-017006]. Most CRS events were grade 1 or grade 2. In total, 1 patient in each study had grade 3 CRS, and there were no instances of grade 4 CRS [in either study].
The incidence of neurotoxicity was also quite low. [A total of 4% of patients in the TRANSFORM study and 5% of patients in the TRANSCEND-PILOT-017006 study experienced] grade 3 neurotoxicity. Most of the neurotoxicity that was seen was grade 1 or grade 2. Importantly, the utilization of tocilizumab [Actemra] and steroids was also low [in both trials].
However, there are other AEs which we need to monitor. For example, by the time a patient is out of that CRS and neurotoxicity window and thinking of going back to their referring physician, they may still [be at risk for AEs such as] prolonged cytopenias, [which some patients exhibited in these trials]. In the [TRANSFORM] study, prolonged cytopenias were defined as [grade 3 cytopenias that persisted] at day 35 or beyond. [In the TRANSCEND-PILOT-017006 study, prolonged cytopenias were defined as grade 3 or higher cytopenias that persisted at day 29 or beyond.]
We should also monitor for hypogammaglobulinemia. This is important because if a patient has hypogammaglobulinemia or lymphopenia, and neutropenia, they are more prone to infection. Preventing infection, providing supportive care, and giving treatment medications [as early as possible] is important, and monitoring AEs is crucial.
The field of LBCL has exploded with new treatments over the past few years, including what we saw recently in the frontline setting. CAR T-cell therapy, in general, is a huge advancement within this field.
Having said that, its important to be aware of and monitor the AEs. A question that comes up is: How accessible are CAR T-cell therapies going to be? We need to work as a community to make them more accessible to patients, cut down the time from when we first consider CAR T-cell therapy to when we deliver it, and make that process more efficient, so more patients can benefit from it.
We also need to be aware of the many other treatments that have come out in the space, such as bispecific antibodies that are in development and antibody-drug conjugates. Over the next few years, we need to figure out how to sequence thesetherapies so that we can maximize the benefits and help our patients who still have unmet needs. We do have to recognize that even though CAR T-cell therapy has excellent outcomes, there are many patients who are still refractory to CAR T-cell therapy and relapse after CAR T-cell therapy. [We need to find] the best way to sequence the other treatments that are out there to help these patients. Thats an area of active investigation.
I hope we are in a much better place in the years to come. However, weve made huge strides in the past several years, and its been great to be a part of that research.
See original here:
Liso-cel Approval Provides Earlier, Expanded Access to CAR T-cell Therapy in Second-line LBCL - OncLive
Stem cells: Sources, types, and uses – Medical News Today
By daniellenierenberg
Cells in the body have specific purposes, but stem cells are cells that do not yet have a specific role and can become almost any cell that is required.
Stem cells are undifferentiated cells that can turn into specific cells, as the body needs them.
Scientists and doctors are interested in stem cells as they help to explain how some functions of the body work, and how they sometimes go wrong.
Stem cells also show promise for treating some diseases that currently have no cure.
Stem cells originate from two main sources: adult body tissues and embryos. Scientists are also working on ways to develop stem cells from other cells, using genetic reprogramming techniques.
A persons body contains stem cells throughout their life. The body can use these stem cells whenever it needs them.
Also called tissue-specific or somatic stem cells, adult stem cells exist throughout the body from the time an embryo develops.
The cells are in a non-specific state, but they are more specialized than embryonic stem cells. They remain in this state until the body needs them for a specific purpose, say, as skin or muscle cells.
Day-to-day living means the body is constantly renewing its tissues. In some parts of the body, such as the gut and bone marrow, stem cells regularly divide to produce new body tissues for maintenance and repair.
Stem cells are present inside different types of tissue. Scientists have found stem cells in tissues, including:
However, stem cells can be difficult to find. They can stay non-dividing and non-specific for years until the body summons them to repair or grow new tissue.
Adult stem cells can divide or self-renew indefinitely. This means they can generate various cell types from the originating organ or even regenerate the original organ, entirely.
This division and regeneration are how a skin wound heals, or how an organ such as the liver, for example, can repair itself after damage.
In the past, scientists believed adult stem cells could only differentiate based on their tissue of origin. However, some evidence now suggests that they can differentiate to become other cell types, as well.
From the very earliest stage of pregnancy, after the sperm fertilizes the egg, an embryo forms.
Around 35 days after a sperm fertilizes an egg, the embryo takes the form of a blastocyst or ball of cells.
The blastocyst contains stem cells and will later implant in the womb. Embryonic stem cells come from a blastocyst that is 45 days old.
When scientists take stem cells from embryos, these are usually extra embryos that result from in vitro fertilization (IVF).
In IVF clinics, the doctors fertilize several eggs in a test tube, to ensure that at least one survives. They will then implant a limited number of eggs to start a pregnancy.
When a sperm fertilizes an egg, these cells combine to form a single cell called a zygote.
This single-celled zygote then starts to divide, forming 2, 4, 8, 16 cells, and so on. Now it is an embryo.
Soon, and before the embryo implants in the uterus, this mass of around 150200 cells is the blastocyst. The blastocyst consists of two parts:
The inner cell mass is where embryonic stem cells are found. Scientists call these totipotent cells. The term totipotent refer to the fact that they have total potential to develop into any cell in the body.
With the right stimulation, the cells can become blood cells, skin cells, and all the other cell types that a body needs.
In early pregnancy, the blastocyst stage continues for about 5 days before the embryo implants in the uterus, or womb. At this stage, stem cells begin to differentiate.
Embryonic stem cells can differentiate into more cell types than adult stem cells.
MSCs come from the connective tissue or stroma that surrounds the bodys organs and other tissues.
Scientists have used MSCs to create new body tissues, such as bone, cartilage, and fat cells. They may one day play a role in solving a wide range of health problems.
Scientists create these in a lab, using skin cells and other tissue-specific cells. These cells behave in a similar way to embryonic stem cells, so they could be useful for developing a range of therapies.
However, more research and development is necessary.
To grow stem cells, scientists first extract samples from adult tissue or an embryo. They then place these cells in a controlled culture where they will divide and reproduce but not specialize further.
Stem cells that are dividing and reproducing in a controlled culture are called a stem-cell line.
Researchers manage and share stem-cell lines for different purposes. They can stimulate the stem cells to specialize in a particular way. This process is known as directed differentiation.
Until now, it has been easier to grow large numbers of embryonic stem cells than adult stem cells. However, scientists are making progress with both cell types.
Researchers categorize stem cells, according to their potential to differentiate into other types of cells.
Embryonic stem cells are the most potent, as their job is to become every type of cell in the body.
The full classification includes:
Totipotent: These stem cells can differentiate into all possible cell types. The first few cells that appear as the zygote starts to divide are totipotent.
Pluripotent: These cells can turn into almost any cell. Cells from the early embryo are pluripotent.
Multipotent: These cells can differentiate into a closely related family of cells. Adult hematopoietic stem cells, for example, can become red and white blood cells or platelets.
Oligopotent: These can differentiate into a few different cell types. Adult lymphoid or myeloid stem cells can do this.
Unipotent: These can only produce cells of one kind, which is their own type. However, they are still stem cells because they can renew themselves. Examples include adult muscle stem cells.
Embryonic stem cells are considered pluripotent instead of totipotent because they cannot become part of the extra-embryonic membranes or the placenta.
Stem cells themselves do not serve any single purpose but are important for several reasons.
First, with the right stimulation, many stem cells can take on the role of any type of cell, and they can regenerate damaged tissue, under the right conditions.
This potential could save lives or repair wounds and tissue damage in people after an illness or injury. Scientists see many possible uses for stem cells.
Tissue regeneration is probably the most important use of stem cells.
Until now, a person who needed a new kidney, for example, had to wait for a donor and then undergo a transplant.
There is a shortage of donor organs but, by instructing stem cells to differentiate in a certain way, scientists could use them to grow a specific tissue type or organ.
As an example, doctors have already used stem cells from just beneath the skins surface to make new skin tissue. They can then repair a severe burn or another injury by grafting this tissue onto the damaged skin, and new skin will grow back.
In 2013, a team of researchers from Massachusetts General Hospital reported in PNAS Early Edition that they had created blood vessels in laboratory mice, using human stem cells.
Within 2 weeks of implanting the stem cells, networks of blood-perfused vessels had formed. The quality of these new blood vessels was as good as the nearby natural ones.
The authors hoped that this type of technique could eventually help to treat people with cardiovascular and vascular diseases.
Doctors may one day be able to use replacement cells and tissues to treat brain diseases, such as Parkinsons and Alzheimers.
In Parkinsons, for example, damage to brain cells leads to uncontrolled muscle movements. Scientists could use stem cells to replenish the damaged brain tissue. This could bring back the specialized brain cells that stop the uncontrolled muscle movements.
Researchers have already tried differentiating embryonic stem cells into these types of cells, so treatments are promising.
Scientists hope one day to be able to develop healthy heart cells in a laboratory that they can transplant into people with heart disease.
These new cells could repair heart damage by repopulating the heart with healthy tissue.
Similarly, people with type I diabetes could receive pancreatic cells to replace the insulin-producing cells that their own immune systems have lost or destroyed.
The only current therapy is a pancreatic transplant, and very few pancreases are available for transplant.
Doctors now routinely use adult hematopoietic stem cells to treat diseases, such as leukemia, sickle cell anemia, and other immunodeficiency problems.
Hematopoietic stem cells occur in blood and bone marrow and can produce all blood cell types, including red blood cells that carry oxygen and white blood cells that fight disease.
People can donate stem cells to help a loved one, or possibly for their own use in the future.
Donations can come from the following sources:
Bone marrow: These cells are taken under a general anesthetic, usually from the hip or pelvic bone. Technicians then isolate the stem cells from the bone marrow for storage or donation.
Peripheral stem cells: A person receives several injections that cause their bone marrow to release stem cells into the blood. Next, blood is removed from the body, a machine separates out the stem cells, and doctors return the blood to the body.
Umbilical cord blood: Stem cells can be harvested from the umbilical cord after delivery, with no harm to the baby. Some people donate the cord blood, and others store it.
This harvesting of stem cells can be expensive, but the advantages for future needs include:
Stem cells are useful not only as potential therapies but also for research purposes.
For example, scientists have found that switching a particular gene on or off can cause it to differentiate. Knowing this is helping them to investigate which genes and mutations cause which effects.
Armed with this knowledge, they may be able to discover what causes a wide range of illnesses and conditions, some of which do not yet have a cure.
Abnormal cell division and differentiation are responsible for conditions that include cancer and congenital disabilities that stem from birth. Knowing what causes the cells to divide in the wrong way could lead to a cure.
Stem cells can also help in the development of new drugs. Instead of testing drugs on human volunteers, scientists can assess how a drug affects normal, healthy tissue by testing it on tissue grown from stem cells.
Watch the video to find out more about stem cells.
There has been some controversy about stem cell research. This mainly relates to work on embryonic stem cells.
The argument against using embryonic stem cells is that it destroys a human blastocyst, and the fertilized egg cannot develop into a person.
Nowadays, researchers are looking for ways to create or use stem cells that do not involve embryos.
Stem cell research often involves inserting human cells into animals, such as mice or rats. Some people argue that this could create an organism that is part human.
In some countries, it is illegal to produce embryonic stem cell lines. In the United States, scientists can create or work with embryonic stem cell lines, but it is illegal to use federal funds to research stem cell lines that were created after August 2001.
Some people are already offering stem-cells therapies for a range of purposes, such as anti-aging treatments.
However, most of these uses do not have approval from the U.S. Food and Drug Administration (FDA). Some of them may be illegal, and some can be dangerous.
Anyone who is considering stem-cell treatment should check with the provider or with the FDA that the product has approval, and that it was made in a way that meets with FDA standards for safety and effectiveness.
More here:
Stem cells: Sources, types, and uses - Medical News Today
Hematopoietic Stem Cells | Hematopoiesis | Properties & Functions
By daniellenierenberg
Hematopoietic Stem Cells: In living organisms, a specialized system that consist of blood and its progenitors are referred to as the hematopoietic system.
In particular, this system is made up of cells with specialized functions such as the red blood cells (for carrying oxygen to tissues), white blood cells (for immune defense against pathogens, and foreign agents), platelets (for blood clotting), macrophages and lymphocytes (also for immune defense).
However, many of the said blood cells are temporary and need to be replaced with new ones continuously. But fret not because a single cell can solve the problem!
Every day, almost billions of new blood cells are synthesized within the body with each coming from a specific progenitor cell called the hematopoietic stem cell.
How to pronounce Hematopoietic Stem Cells?
What is Hematopoiesis?
The formation of all kinds of blood cells including creation, development, and differentiation of blood cells is commonly known as Hematopoiesis or Haemopoiesis.
All types of blood cells are generated from primitive cells (stem cells) that are pluripotent (they have the potential to develop into all types of blood cells).
Also referred to as hemocytoblasts, hematopoietic cells are the stem cells that give rise to blood cells in hematopoiesis.
Where Does Hematopoiesis Occur?
In a healthy adult, hematopoiesis occurs in the bone marrow and lymphatic tissues, where 1000+ new blood cells (all types) are generated from the hematopoietic stem cells to main the steady-state levels.
Where Are Hematopoietic Stem Cells Found?
They can also be found in the umbilical cord and in the blood from the placenta.
Who Discovered Hematopoietic Stem Cells?
It was long believed that the majority of hematopoiesis occurs during ontogeny (origination and development of organism) and that the mammalian hematopoietic system originated from the yolk sac per se.
Functions of Hematopoietic Cells
As alluded to earlier, blood cells and blood cell components are formed in a process called hematopoiesis.
Coming from the Greek words hemato and poiesis which mean blood and to make respectively, hematopoiesis occurs in the bone marrow and is responsible not only for the synthesis but also the multiplication, and differentiation of blood cells.
Shown below is a diagrammatic illustration of the different blood cell types that hematopoietic cells can give rise to:
Clinical uses of Hematopoietic Stem Cells
The mammalian blood system showcases the equilibrium between the functions of hematopoietic stem cells. Intensive studies have already shown the structures and molecules that control these stem cells, but the exact picture of the underlying molecular mechanisms is still unclear.
Above everything else, it is important to note that such issues are not just of academic interest but can also be relevant in devising future novel methods of diagnosing and treating various diseases associated with cells.
Key References
Read the rest here:
Hematopoietic Stem Cells | Hematopoiesis | Properties & Functions
Hair Regeneration Requires Regulatory T Cells Signal Skin Stem Cells – Genetic Engineering & Biotechnology News
By daniellenierenberg
Alopecia is an autoimmune disorder where immune cells attack and destroy hair follicles, causing hair loss. Uncovering a molecular target of a common treatment for alopecia in a new study, scientists at the Salk Institute claim regulatory T cells (Tregs) and glucocorticoids do not just suppress the immune system, they also make hair grow.
Originally discovered as a specialized subset of T lymphocytes that suppress excessive immune response and maintain balance in immune functions, recent studies have shown Tregs also play a role in tissue repair and regeneration.
First author of the study, Zhi Liu PhD, a research associate at Salk Institute said, We were fascinated by Tregs non-traditional function in tissue repair and the way they communicate with tissue stem cells to facilitate tissue regeneration.
Balance in tissue niches depends on communications between stem cells and supporting cells. That Tregs communicate with stem cells and play a critical role in balancing self-renewal and differentiation in stem cell niches has been reported in earlier studies. Yet, how Tregs sense signals in tissue microenvironments and communicate with stem cells has been unclear until now.
Liu said, Our study identified the glucocorticoid hormone as the upstream signal that alerts Tregs, and the growth factor TGF-beta3 as the downstream signal that promotes stem cell activation and hair regeneration. These signals could be potentially conserved in other tissue injury and repair processes.
The study, led by Ye Zheng, PhD, an associate professor at Salk Institute for Biological Studies in La Jolla, California, was published on June 23, 2022, in an article in the journal Nature Immunology titled Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem-cell niche. The findings explain how Tregs interact with stem cells in the skin using the steroid hormone glucocorticoid as a messenger to generate new hair follicles and promote hair growth. This regenerative role of Treg cells is independent of its immunosuppressive functions.
Zhengs team was initially interested in uncovering the role of Tregs and glucocorticoids in autoimmune dysfunctions such as multiple sclerosis, Crohns disease, and asthma. However, they detected no functional significance of glucocorticoids or Tregs in these diseases. They then focused on the skin because here Tregs express high levels of glucocorticoid receptors.
The researchers shaved hair off the back of adult mice that lacked the gene encoding the glucocorticoid receptor in their Tregs or had a normal set of genes. After two weeks, the normal mice grew back their hair, but the mice without glucocorticoid receptors barely could, said Liu. It was very striking, and it showed us the right direction for moving forward.
The findings indicated a glucocorticoid-mediated communication between Tregs and stem cells in hair follicles that need to be activated for hair regeneration. Moreover, the authors showed lack of the glucocorticoid receptor in Tregs blocked hair regeneration without affecting immune balance.
After hair loss, skin cells stained blue, from a normal mouse can activate hair follicle stem cells, stained red [left], whereas skin cells in mice without glucocorticoid receptors in their regulatory T cells cannot activate hair follicle stem cells [right] (Salk Institute).The authors found glucocorticoids instruct Tregs to activate hair follicle stem cells (HFSCs), which leads to hair growth. This crosstalk between the T cells and the stem cells depends on a mechanism whereby glucocorticoid receptors cooperate with a regulatory protein in Tregs called Foxp3, to induce a growth factor called transforming growth factor beta3 (TGF-beta3), which then activates the signaling molecules Smad2/3 in HFSCs to stimulate stem cell proliferation and differentiation into new hair follicles, promoting hair growth. The authors uncovered Tregs dont usually produce TGF-beta3, as they do in the skin. Databases analysis revealed this phenomenon occurs in injured muscle and heart tissue, similar to how hair removal simulated a skin tissue injury in this study.
In acute cases of alopecia, immune cells attack the skin tissue, causing hair loss. The usual remedy is to use glucocorticoids to inhibit the immune reaction in the skin, so they dont keep attacking the hair follicles, said Zheng. Applying glucocorticoids has the double benefit of triggering the regulatory T cells in the skin to produce TGF-beta3, stimulating the activation of the hair follicle stem cells.
In future studies, Zheng and his team would like to explore whether compromised glucocorticoid signaling in Tregs of the skin can cause alopecia. Zheng said, It will be interesting to see if skin Treg cells can be targeted for the treatment of alopecia patients.
Beyond the regeneration of hair follicles, Zheng would like to build upon studies that have shown Tregs help repair and regenerate multiple tissue types. They will study other injury models and isolate Tregs from injured tissues to monitor increased levels of TGF-beta3 and other growth factors.Wed like to explore whether glucocorticoids function as a universal signal to trigger Tregs non-traditional function to promote tissue regeneration.
Secrets of Permanent Blindness Revealed by Stem-cell Research – The Epoch Times
By daniellenierenberg
Research into the retina and optic nerve using stem-cell models has unveiled specific genetic markers of glaucomathe worlds leading cause of permanent blindness possibly opening up new treatments for the condition.
Glaucoma is a blanket term describing a group of eye conditions that do damage to the retinal ganglion cellsneurons near the inner eye that make up the optic nerve. The optic nerve is the part of the eye that receives light and transmits it to the brain; thus, the damage that glaucoma does leads to permanent blindness. Thecondition is predicted to affect around 80 million people by 2040, yet treatments are extremely limited.
This study linked 97 genetic clusters to the damage done by the most common form of glaucoma, primary open-angle glaucoma or POAG, revealing important genetic components that control the way the condition attacks. POAG is a genetically complicated condition that is likely hereditary and, at the moment, cannot be stopped or reversed. The only treatment of POAG available involves releasing pressure on the eye, and this will only slow down the condition.
The research project was led jointly by the Garvan Institute of Medical Research, the University of Melbourne, and the Centre for Eye Research Glaucoma.
We saw how the genetic causes of glaucoma act in single cells, and how they vary in different people, said joint lead author of the study and Melbourne University academic, Prof. Joseph Powell, in a Garvan Institutemedia release.
Current treatments can only slow the loss of vision, but this understanding is the first step towards drugs that target individual cell types, Powell said.
The research behind the discoverywas published in the journalCell Genomicsand wasthe result of a lengthy collaboration between Australian medical research centres involving the investigation of complicated diseases and their underlying genetic causes, using stem-cell modelling; which the researchers said demonstrated the success of this study and the power of this approach.
Previously, glaucoma research was limited because samples of the optic nerve could not be obtained from participants in a non-invasive fashion. However, stem-cell modelling addressed this issue as it allowed researchers to develop optic nerve samples from skin, a much easier part of the body to extract.
The team administered skin biopsies on183 participants, 91 of whom had advanced primary open-angle glaucoma, to gather skin cells that they could reprogram to revert into stem cells and then guide into becoming retinal cells. Of the 183 samples collected, 110 samples, 54 from participants with POAG, were successfully converted from skin cells into retinal, and over 200,000 of these converted cells were sequenced to generate molecular signatures.
The researchers of this study employedsingle-cell RNA genetic sequencing in order to study individual cells. This form of sequencing creates an incredibly detailed genetic map, which looks for genetic variations that affect the expressionthe process of turning instructions from DNA into functional products like proteins of one or more genes. Through identifying these key genes, further deductions on the influence that genetic variations have on glaucoma can be made.
The signatures of those with and without glaucoma were compared to establish key genetic components that control the way that glaucoma attacks the retina.
The researchers first identified, using the signatures of both those with and without glaucoma,312 genetic variants associated with the ganglion cells that eventually degenerate in a person living with POAG. Further analysis of the genes associated with POAG linked the 97 clusters mentioned above to the damage done by glaucoma.
Another joint-lead author of the paper and Melbourne University professor, Alice Pebay, said that by studying glaucoma in retinal cells, a context-specific profile of the disease was created.
We wanted to see how glaucoma acts in retinal cells specificallyrather than in a blood sample, for instanceso we can identify the key genetic mechanisms to target, Pebay said.
Equally, we need to know which genetic variations are healthy and normal, so we can exclude them from a treatment.
To improve the understanding of complex conditions such as glaucoma, researchers noted it was important to establish a profile of the disease which promotesthe understanding of causes, risks and fundamental mechanisms of diseases. Furthermore, genetic investigations are critical to drug development and pre-clinical trials because they assist in constructing complete human models of diseases.
University of Tasmania professor and a third joint-lead author of the paper,Alex Hewitt said that the findings of this study set up future research into novel glaucoma treatments.
Not only can scientists develop more tailored drugs, but we could potentially use the stem-cell models to test hundreds of drugs in pre-clinical assays, said Hewitt.
This method could also be used to assess drug efficacy in a personalised manner to assess whether a glaucoma treatment would be effective for a specific patient.
Go here to read the rest:
Secrets of Permanent Blindness Revealed by Stem-cell Research - The Epoch Times
Youve got skin in the game protect it from summer sun damage – Boston Herald
By daniellenierenberg
This is the season to soak up the warm, wonderful sun and show off our glowing skin in shorts, tanks and bathing suits.
But this time of year can be most treacherous for skin we can get blasted by everything from poison ivy and mosquitoes to sunburns if were not careful. And even just a little bit of extra sun means we should be doubling down on our hydration and moisturizing, and pulling out the big-gun products to help keep our skin safe.
One of my new favorite products is Lancme Rnergie H.C.F. Triple Serum ($135 on Lancome-usa.com) Its a triple-dose serum that targets volume loss, wrinkles and dark spots, and helps prevent damage with hyaluronic acid, vitamin C+, niacinamide and ferulic acid. That means its a gel, a cream and an emulsion a combo that results in both hydration and moisturizing (the first adds water; the second softens dry skin, so theyre not the same things, and we do indeed need both).
And if the aforementioned glowing is on your summer skin to-do list, then reach for Pat McGrath Labs Divine Skin: Rose 001 The Essence ($86 on Patmcgrath.com). It boosts moisture big-time, illuminates, softens and smooths with natural floral ingredients. Apply it to your face in between cleansing and moisturizing every morning to nourish and replenish the skin barrier, There are zero silicone, parabens, sulfates, gluten, mineral oil and phthalates.
Onto sunscreens. For starters, make SPF a year-round thing, if you havent already. Its your safeguard against hyperpigmentation, inflammation, fine lines and, yes, skin cancer. Use it on your face all year, and then on your body too, especially this time of year. Get one with broad-spectrum coverage (to shield you from both UVB rays that cause burning and UVA rays that cause lasting damage) and with an SPF of 30 or higher. And choose one that smells good, if you have the option. On that front, Chanels UV Essentiel ($55 on chanel.com) is as light in texture as it is in its fragrance a delicate floral that smells fresh as can be.
For anyone with acne-prone skin, non-oily formulas are imperative. Look for liquid sunscreens instead of thick creams that clog pores. A great choice is TIZO 2 Non-Tinted Facial Mineral Sunscreen SPF 40 ($43 on amazon.com).
And if youre in the opposite situation and concerned about dry skin instead go in big for moisturizing and hydration, with EleVen by Venus Williams: Natural Unrivaled Sun Serum ($50 on elevenbyvenuswilliams.com). Its a lightweight mineral protection, SPF 35 and is safe for reefs (so wear it on any beach you like before swimming), cruelty-free, and vegan. It also blends in incredibly well, has a velvety finish, and contains prickly pear extract, to hydrate and soothe inflamed skin in case youve gotten a sunburn.
For sunburns, an RX treatment may be in order. At my day spa, GSpa at Foxwoods, we offer a Soothing Facial ($175 for 50 minutes at foxwoods.com) that uses antioxidants, peptides and botanical stem cells. Each of those ingredients protects the skin from free radical damage and restores hydration soothing and refreshing dry and sensitive skin.
See the original post here:
Youve got skin in the game protect it from summer sun damage - Boston Herald
Experts offer hope to vitiligo patients – The New Indian Express
By daniellenierenberg
Express News Service
BENGALURU: Vitiligo, a skin de-pigmentation disorder which affects 0.1 to 8% of population, is a cause of worry especially for women as it mainly affects face, neck and hands. It relapses in 40% of patients, within a year after stopping treatment. But Mesenchymal stem cell-based therapy can be a hope, experts say.
On World Vitiligo Day on Saturday, dermatologist, Aster R V Hospital, Dr Sunil Prabhu said the disorder is affecting at least 2.16% of children/adolescents. Vitiligo is a long-term condition, where pale white patches develop on the skin due to lack of melanin pigment. According to Dr Praveen Bharadwaj, dermatology consultant, Manipal Hospital, Whitefield, vitiligo is a condition in which the patients immune system weakens which affects the normal functioning of melanin producing cells.
Dr Bharadwaj explained, Mesenchymal stem cells, which are multi-potent adult stem cells, are found in bone marrow, fat tissues, umbilical cord and human foreskin. They are promising agents for therapy for the re-pigmentation of skin in vitiligo. This therapy reduces the main trigger of vitiligo that is immune-mediated melanocyte degeneration (stopping the immune destruction of melanocytes which produces melanin), promotes melanocytes and prevents relapse of the condition, he said.
Read the original post:
Experts offer hope to vitiligo patients - The New Indian Express
What Is Vegan Collagen? And the 6 Best Products to Try – VegNews
By daniellenierenberg
Collagenits the fountain-of-youth protein that makes skin smooth and plump by stimulating tissue growth. But as the body ages and slows down its own collagen production, many turn to supplements for a fix. The downside? Theyre usually made using animal bones, skin, and cartilage. Gross. Thankfully, vegan alternatives that boost our bodys natural collagen production or actually replicate the amino acids in animal-derived collagen are totally in fashion.
Collagen is a protein the body makes naturally that can be found in hair, skin, nails, and bones. The protein is vital for keeping bones strong and skin looking wrinkle-free, and as you age, your body naturally slows down the production of collagen. The much-buzzed-about beauty trend usually refers to the intake of animal-sourced collagen that typically comes animal bones, skin, and cartilage.
There are many ways to boost your bodys collagen by eating foods high in vitamin C, zinc, and copper. These nutrients can be found in foods such as beans, oranges, broccoli, and tomatoes. As demand for plant-based collagen grows, brands are stepping up to create completely vegan collagen using genetically modified yeast and bacteria. Other innovative brands like Geltor are also utilizing high-tech methods to create vegan collagen that will be more widely available in the future. Geltors Type 21 collagen begins with a set of microbes that naturally produce proteins, which are programmed to make collagen without sourcing it cruelly from animals. Its first protein product, Collume, launched in 2018 for use in skincare formulations.
In the meantime, weve rounded up six products thatll give you the best beauty bang for your buck.
Andalou Naturals
Using a first-of-its-kind, bio-designed vegan collagen from tech company Geltor, this nourishing eye cream boasts unparalleled improvement in skin moisture. Apply day and night to let the collagen, hyaluronic acid, and fruit stem cells work their magic to revitalize tired under-eyes.Learn more here
Pacifica Beauty
A mascara that keeps lashes looking thicker and healthier after taking it off may seem too good to be true, but not when vegan beauty brand Pacifica is on the case. Formulated with vegan collagen and plant-based fibers, this glossy, black formula is a must-have for your beauty bag.Learn more here
Moon Juice
For those looking to preserve their natural collagen, why not drink it with your morning cup o joe? With this three-ingredient coffee creamer, supple skin and minimized fine lines are just a sip away thanks to a powerful combination of rice bran, silver ear mushroom, and salt of hyaluronic acid.Learn more here
Follain
A concentrated blend of niacinamide, bakuchiol (a plant-derived retinol alternative), and a peptide complex work together to bring out smoother, firmer skin and tackle signs of aging in this velvety-soft serum. Layer under moisturizer every morning and night to reap the benefits.Learn more here
Carrot & Stick
With a powerful formulation of plant proteins, vitamins, amino-collagen, and alpine rose stem cell extract, this lightweight antioxidant moisturizer nourishes skin to help smooth lines and wrinkles without any unwanted sulfates, parabens, or phthalates.Learn more here
Sourse
Chocolate and beautycould there be a better combo? An infusion of skin-boosting collagen powder and detoxifying spirulina in this low-sugar, functional dark chocolate means were just two heavenly bites away from improved skin texture and elasticity.Learn more here
For more on vegan beauty, read:The VegNews Vegan Beauty AwardsThe 8 Best Vegan Hydrating Skincare ProductsThe 10 Colorful, Vegan Makeup Products for Summer
Aruka Sanchir(@ruukes) is the Beauty & Style Editor at VegNews who is always looking for exciting new vegan products to test out.
JUST LAUNCHED! Get our 10 Easy Vegan Summer Meals recipe book as a FREE instant download.
Get the Guide
JUST LAUNCHED! Get our 10 Easy Vegan Summer Meals recipe book as a FREE instant download.
Get the Guide
Read the rest here:
What Is Vegan Collagen? And the 6 Best Products to Try - VegNews