Evidence Shows Novel Temferon May Have Activity in Glioblastoma – Cancer Network
By daniellenierenberg
Early findings from the phase 1/2a TEM-GBM study presented at the 2022 AACR Annual Meeting displayed potential of temferon to affect the tumor microenvironment of glioblastoma.
Immune system activation and tumor microenvironment alteration were effects observed in patients with glioblastoma treatment with temferon, a genetically modified Tie2-expressing monocyte (TEM) targeting interferon-2 (IFN2), according to early findings of the phase 1/2a TEM-GBM study (NCT03866109) presented in a poster at the American Association for Cancer Research (AACR) 2022 Annual Meeting.
These results provide the initial evidence for on-target activity of Temferon in GBM, said Bernard Gentner, MD, study coauthor and the leader of the translational stem cell and leukemia research unit at San Raffaele Telethon Institute for Gene Therapy in Milan, Italy.
Temferon is an investigational advanced therapy consisting of autologous CD34+-enriched hematopoietic stem and progenitor cells exposed to transduction with a lentiviral vector, driving myeloid-specific IFN2 expression. Genetically modified TEMs target IFN2 expression in the GBM tumor microenvironment.
In order to guarantee stable delivery of genetically engineered TEMs into the tumor, we transduce hematopoietic stem and progenitor cells with a lentiviral vector carrying the IFNa2 transgene transcriptionally regulated by the Tie2 promoter and by post transcriptional elements that guarantee that the transgene is expressed only in myeloid cells that are recruited into the tumor, Gentner said.
TEM-GBM is an open-label, dose-escalation study evaluating the safety and efficacy of Temferon in up to 21 newly diagnosed patients with GBM harboring an unmethylated MGMT promoter. Following surgical resection, up to 15 patients were assigned to 1 of 3 escalating doses of Temferon and 1 of 2 different conditioning regimens in part A of the trial. In Part B, 6 more patients will receive a single dose of Temferon at the recommended phase 2 dose.
Following completion of radiotherapy, patients received a conditioning regimen consisting of carmustine (BCNU) and thiotepa (Tepadina) in cohorts 1 to 4 or busulfan (Busulfex) and thiotepa in cohort 5 prior to administration of Temferon.
In-patient monitoring occurs until hematological recovery, then patients will undergo regular follow-up for up to 720 days. At that point, patients are invited to participate in a long term follow-up study for an additional 6 years.
Eligible adults aged 18 to 70 years must have an ECOG performance score of 0 to 1, a Karnofsky performance score greater than 70%, and adequate cardiac, renal, hepatic, and pulmonary function. Patients with active autoimmune disease or who have received any oral or parenteral chemotherapy or immunotherapy within 2 years of screening are excluded.
The primary end points of the study are Temferon engraftment over the first 90 days, proportion of patients achieving hematologic recovery 30 days after autologous stem cell transplantation, and short-term tolerability of Temferon as defined by stable blood counts, absence of cytopenias, absence of significant organ toxicities greater than grade 2, and absence of Replication Competent Lentivirus.
By the October 15, 2021, data cutoff, the median follow-up was 267 days (range: 60-749). Patients in cohorts 1 to 3 received a dose 0.5-2.0 x 106/kg Temferon with an average vector copy number of 0.70 and a transduction efficiency of 54%. Those in cohorts 4 and 5 received 2.0 x 106/kg Temferon with an average vector copy number of 0.77 and a transduction efficiency of 49%.
Investigators observed increasing proportions of Temferon-derived differentiated cells, as determined by the presence of vector genomes in the DNA of peripheral blood and bone marrow cells, reaching up to 30% at 1 month in the highest treatment cohort (2.0 x 106/kg). Those differentiated cells persisted at lower levels for up to 18 months.
All patients showed in vivo Temferon engraftment, Gentner said. Engraftment was highest at 1 month, and in many patients resembled pretty much the input fraction. Engraftment then decreased, stabilizing at 3 to 6 months around 10%.
Despite the significant proportion of engineered cells, only very low-medium concentrations of interferon alpha were detected in the plasma and in the cerebral spinal fluid, indicating a tight regulation of the vector expression.
Gentner added that Temferon did not delay hemopoietic recovery, and neutrophil and platelet engraftment were similar to standard autologous stem cell procedure.
Investigators did not detect any dose limiting toxicities. Gentner said that, so far, adverse events have been related to progression or the transplant procedure, not to the IFN2 itself.
Gentner B, Finocchiaro G, Farina F, et al. Genetically modified Tie-2 expressing monocytes target IFN-2 to the glioblastoma tumor microenvironment (TME): Preliminary data from the TEM-GBM Phase 1/2a study. Poster presented at: 2022 AACR Annual Meeting; April 8-13, 2022; New Orleans, LA. Abstract 5213.
Here is the original post:
Evidence Shows Novel Temferon May Have Activity in Glioblastoma - Cancer Network
Drug Price Watchdog Calls Bluebird Bio’s $2.1 Million Gene Therapy Cost-Effective – BioSpace
By daniellenierenberg
Courtesy of Pavlo Gonchar/SOPA Images/LightRocket via Getty Images
Drug pricing watchdog ICER, the Institute for Clinical and Economic Review, issued a draft report on bluebird bios gene therapy betibeglogene autotemcel for beta-thalassemia. Despite the proposed price tag of $2.1 million, ICERs not-yet-finalized report supports the therapys cost-effectiveness. This is good news for the recently beleaguered company.
Gene therapies are typically designed to cure a disease by replacing or fixing a damaged gene. Bluebirds therapy, which is listed under the brand name Zynteglo, had been approved in Europe and the UK, where its price is around $1.7 million (U.S.). However, the company pulled the therapy off the market in Europe over what it called a hostile pricing and reimbursement environment.
On April 5, bluebird bio announced it was beginning a comprehensive restructuring in hopes of cutting $160 million in costs over the next two years. It planned to re-focus on near-term catalysts, which include Zynteglo in the U.S., gene therapy for cerebral adrenoleukodystrophy (eli-cel) and a potential biologics license application (BLA) for lovotibeglogene autotemcel (lovo-cel) gene therapy for sickle cell disease. The BLA application is planned for 2023, while the U.S. regulatory decisions are expected this year. The PDUFA date for Zynteglo is Aug.19, 2022, and Sept. 16, 2022, for eli-cel.
As part of the restructuring, the company is cutting its workforce by about 30%.
ICER recommendations arent binding, but they have influence. If ICER says a drug is overpriced, it provides ammunition for payers, such as Medicare and insurers, to push back against proposed prices.
Gene therapies are very expensive. For example,Novartis Zolgensma, the one-time gene therapy onasemnogene abeparvovec for spinal muscular atrophy (SMA), is generally viewed as the most expensive drug with a price tag of $2.1 million. On the other hand, as an apparent cure for a disease that kills children by the age of two, it is very rare. The argument for these therapies, aside from their curative potential for otherwise incurable diseases, is that over the life of the patient, they are cost-effective.
Novartis and Spark Therapeuticss gene therapy Luxturna (voretigene neparvovec) runs about $850,000 per patient in the U.S. The therapy is for inherited retinal dystrophy with RPE65 mutations. It is typically diagnosed in childhood and eventually causes almost total blindness, and the therapy is essentially a cure.
Beta thalassemia is a genetic disease that impairs the ability of red blood cells to manufacture hemoglobin, the molecule in the body that carries oxygen. There are about 40,000 newly diagnosed cases in children each year around the world. People with the most severe form of it develop life-threatening anemia around four to six months of age and have to receive monthly blood transfusions and other treatments, such as iron-chelating drugs. The only other potential cure is hematopoietic stem cell transplantation (HSCT) but requires a donor with a matching human leukocyte antigen (HLA) profile within the appropriate age range.
Bluebirds Zynteglo appears to be another option for a cure, although how long the therapys effects last is something of an open question. The ICER report noted the uncertainties, but concluded that the evidence suggests that beti-cel provides net health benefits to patients with TDT.
The ICER report indicated, per Managed Healthcare Executive, that "patients could be treated without reaching the potential budget impact threshold at three prices (about $1.85 million, $2.11 million and $2.38 million per course of treatment). This analysis was done at several prices to document the percentage of patients who could be treated without crossing a potential budget impact threshold that is aligned with the overall growth in the U.S. economy.
In Phase III trials, 89% of patients who received the therapy became transfusion independent, and in Phase I/II and III trials, those patients remained transfusion-free for at least 42 months. In general, side effects were mild and no deaths were reported. In December 2021, bluebird presented data at the American Society of Hematology meeting from a long-term study (LTF-303) that showed adult and pediatric patients with beta-thalassemia who required regular red blood cell transfusions can produce normal or near-normal levels of total hemoglobin and remain transfusion-free with stable iron markers up to seven years after receiving beti-cel.
A 2017 study published in Blood found that on average, beta-thalassemia patients required 17 transfusions per year, 23 days apart. Mean total healthcare costs for the patients were $128,062, plus or minus $62,260 per year. Total costs were primarily driven by chelation and transfusion costs.
Although the severity of the disease varies, a 2009 study found that people with beta-thalassemia major often die from cardiac complications of iron overload by 30 years of age," making bluebird's new therapy, if it is successful, vital for these patients.
View post:
Drug Price Watchdog Calls Bluebird Bio's $2.1 Million Gene Therapy Cost-Effective - BioSpace
Adding Bispecific Antibody to Natural Killer Cells May Be Effective in Heavily Pretreated Lymphoma – www.oncnursingnews.com/
By daniellenierenberg
The addition of the innate cell engager AMF13 to preactivated and expanded natural killer (NK) cells may represent an effective treatment for pretreated patients with advanced lymphoma, according to findings from a phase 1/2 study (NCT04074746) that were presented during the 2022 AACR Annual Meeting. 1
Results showed that patients experienced a median overall response rate (ORR) of 89.5% (n = 17/19). Overall, 10 patients experienced complete responses (CRs) and 7 experienced partial responses (PRs).2
Lead author Yago Nieto, MD, PhD, a professor of medicine in the Department of Stem Cell Transplantation and Cellular Therapy at the University of Texas MD Anderson Cancer Center, in Houston, discussed the findings during a press conference during the meeting. He said the study team was pleasantly surprised by the quality of tumor responses in patients with resistant lymphomas.
This is the first clinical trial using off the shelf cord blood-derived cytokine-induced memory-likeex vivoexpanded NK cells precomplexed with the innate cell engager AMF13 construct to treat patients with CD30-positive relapsed/refractory Hodgkin lymphoma, he said. We saw very encouraging activity in this population of very heavily pretreated patients.
The current standard of care for relapsed CD30-positive lymphomas is brentuximab vedotin (Adcetris), an antibody-drug conjugate that delivers a toxic cytoskeleton destabilizing agent to cells expressing CD30. However, not all these lymphomas respond to brentuximab vedotin. When that treatment fails, those tumors then become extremely resistant to killing and patients are left with very few effective therapeutic options.
To address the problem, investigators enrolled 22 patients with relapsed or refractory CD30+ lymphoma into this single-center phase 1/2 trial, 20 of whom were diagnosed with Hodgkin lymphoma (HL). All had active progressive disease at enrollment, and none received bridging therapy. Patients were heavily pretreated, with a median of 7 (range, 1-14) prior lines of therapy. Nine underwent autologous stem cell transplantation (SCT) and 5 received allogeneic SCT.
Eligible patients had relapsed/refractory CD30-positive classical HL, B-cell non-Hodgkin lymphoma, anaplastic large-cell lymphoma, or peripheral T-cell lymphoma that was refractory or intolerant to brentuximab vedotin. They needed to have an ECOG performance status of 2 or below, and adequate renal, hepatic, pulmonary, and cardiac function.
The median age was 40 years (range, 20-75). Most patients were white (68.2%) and male 68.1%).
Patients receive 2 cycles of fludarabine/cyclophosphamide, followed by AFM13-CB NK cells at 3 dose levelsDL1 (106NK/gg), DL2 (107NK/kg), and DL3 (108NK/kg)on day 0 plus 3 weekly intravenous infusions of 200 mg AFM13, a CD30/CD16A bispecific antibody. Nineteen patients completed both planned cycles of treatment.
Nieto and colleagues isolated NK cells from cord blood, then used a mixture of cytokines to activate the cells into a memory-like state, making them more persistent and effective. They then expanded the cells in culture and complexed them with AFM13.
At a median follow-up of 11 months, progression-free survival (PFS) and overall survival (OS) rates across all 3 dose levels were 52% and 81%, respectively. Across all dose levels, 53% of patients experienced CR and 37% had PR. Eleven percent had progressive disease.
Expansion of NK cells occurred immediately after infusion and persisted for 3 weeks.
Investigators established DL3 as the recommend phase 2 dose (RP2D). All 13 (100%) patients treated at this dose level responded to therapy, including eight CRs (62%).Five of those patients were in CR after cycle 1, and 3 additional patients converted from PR to CR after cycle 2, Nieto added.
The median PFS was 67% and the median OS was 93% in the RP2D population.
Investigators did not record any cytokine release syndrome or graft vs host disease (GVHD), or neurotoxicity. Our preliminary results show an excellent tolerability profile, Nieto said.
There was no instance of infusion-related reactions (IRRs) associated with AFM13-NK cells across 40 infusions. There was 1 instance of grade 3 IRR and 4 grade 2 IRRs in 108 infusions of AFM13 alone. Investigators observed no dose limiting toxicities.
Never before in mankind have we seen this approach, really leading to pretty staggering results, Timothy Yap, MBBS, PhD, FRCP, a medical oncologist and associate director of translational research in the Institute for Personalized Cancer Therapy at the University of Texas MD Anderson Cancer Center, said. Everyone can see for themselves how impressive these results are. In addition to that, the actual tolerability profile is truly excellent with no instances of cytokine release syndrome, no neurotoxicity, no GVHD. Truly, truly impressive.
References
Read more:
Adding Bispecific Antibody to Natural Killer Cells May Be Effective in Heavily Pretreated Lymphoma - http://www.oncnursingnews.com/
Strategy of Stem Cell Transplantation for Bone Regeneration with Functionalized Biomaterials and Vascularized Tissues in Immunocompetent Mice -…
By daniellenierenberg
The use of human bone marrow mesenchymal stem cells (hBMSCs) to regenerate and repair bone tissue defects is a complex research field of bone tissue engineering; nevertheless, it is a hot topic. One of the biggest problems is the limited survival and osteogenic capacity of the transplanted cells within the host tissue. Even for hBMSCs with their low immunogenicity, the body will still cause a local immune-inflammatory response directed against the allogeneic cells and thereby reduce the activity of the transplanted cells. Even in the case of successful transplantation, the lack of vascularization at the transplantation site makes it difficult for the transplanted cells to exchange nutrients and metabolic wastes that ultimately affects bone regeneration. In this study, we covalently modified alginate with RGD and QK peptides that were injected subcutaneously into immunocompetent mice. Histological analysis, as well as ELISA techniques, proved that this method is able to provide bioactive stem cell transplant beds containing functionalized biomaterials and vascularized surrounding tissues. Inflammation-related factors, such as IL-2, IL-6, TNF-, and IFN-, around the cell graft beds decreased with time and were lowest at the second week. Then, the hBMSCs were injected into the cell transplantation beds intended to form vascularized bonelike tissues that were evaluated by micro-computed tomography (Micro CT), histological, and immunohistochemical analyses. The results showed that the expression of osteogenesis-related proteins RUNX2, COL1A1, and OPN, as well as the expression of angiogenic factor vWF and cartilage-related protein COL2A1 were significantly upregulated in the hBMSC-derived osteogenic tissue. These results suggest that the stem cell transplantation strategy by constructing bioactive cell transplant beds is effective to enhance the bone regeneration capacity of hBMSCs and holds great potential in bone tissue engineering.
See the original post:
Strategy of Stem Cell Transplantation for Bone Regeneration with Functionalized Biomaterials and Vascularized Tissues in Immunocompetent Mice -...
Stem Cells Turn Into Bone When Sound Waves Are Near – TechTheLead
By daniellenierenberg
Share
Share
Share
A breakthrough made by Australian researchers might change the way doctors treat a broken or missing bone. Turns out stem cells can turn into bone if certain conditions are met.
Normally, bone can be made only of mesenchymal stem cells (MSCs) which are biologically found in the bone marrow.
Extracting them from there is a difficult and painful procedure while doing so at scale is beyond tricky.
But this could change any moment now after Australian researchers found that stem cells can be converted into bone when a certain type of sound waves are used.
Tests had previously shown that low frequency vibrations were great at inducing cell differentiation but the process took over a week and the results were mixed at best.
Nobody had bothered to look into high frequency sound waves until now. RMIT researchers took a microchip capable of dispersing sound waves in the Mhz range and turned it at MSCs in silicon oil on a culture plate.
The team noticed that after exposing the cells to 10MhZ signals for 10 minutes daily for five days, the markers indicating the bone conversion appeared.
We can use the sound waves to apply just the right amount of pressure in the right places to the stem cells, to trigger the change process, said Leslie Yeo, co-lead researcher on the study. Our device is cheap and simple to use, so could easily be upscaled for treating large numbers of cells simultaneously vital for effective tissue engineering.
This discovery, detailed in the journalSmall, eliminates the need of drugs to make stem cells behave this way. Moreover, the MSCs can be pulled from a variety of places, like fast tissue, not just bone marrow.
By injecting them into the body in case of an injury or disease, they can start working on a new bone faster and more efficient.
Watch These Goldfish Drive a Wheeled Platform!
Paralyzed Man Sends Tweet With Brain Chip In a Worlds First
Facebook Twitter LinkedIn Reddit WhatsApp
Subscribe to our website and stay in touch with the latest news in technology.
You will soon receive relevant content about the latest innovations in tech.
There was an error trying to subscribe to the newsletter. Please try again later.
See the rest here:
Stem Cells Turn Into Bone When Sound Waves Are Near - TechTheLead
Jasper Therapeutics to Present Updated Data on JSP191 Conditioning in SCID Patients at the 2022 Clinical Immunology Society Annual Meeting – Yahoo…
By daniellenierenberg
Jasper Therapeutics
REDWOOD CITY, Calif., March 31, 2022 (GLOBE NEWSWIRE) -- Jasper Therapeutics, Inc. (NASDAQ: JSPR), a biotechnology company focused on hematopoietic cell transplant therapies, today announced that updated data from the Companys ongoing study of JSP191 as single agent conditioning prior to allogeneic hematopoietic stem cell (HSC) re-transplant in patients with severe combined immunodeficiency (SCID) has been accepted for presentation as a late-breaking poster at the 2022 Clinical Immunology Society (CIS) Annual Meeting, to be held in Charlotte, North Carolina from March 31 to April 3, 2022.
Title: Update: Single-Agent Conditioning with Anti-CD117 Antibody JSP191 Shows Donor Engraftment, Nave Lymphocyte Production, and Clinical Benefit in Patients with Severe Combined Immunodeficiency (SCID)Date and Time: Friday, April 1, 2022, 1:00-2:00 p.m. ET
This updated data indicates that JSP191 at 0.6mg/kg can deplete blood stem cells, leading to long-term donor cell engraftment, immune reconstitution which positively affects the clinical status of SCID patients who suffer from poor T cell and negligible B cell immunity because they failed their first transplant, said Wendy Pang, MD, Ph.D., Senior Vice President of Research and Translational Medicine of Jasper Therapeutics. This population of SCID patients is largely without treatment options and rely on supportive therapies like life long IVIG to provide some level of immune protection. JSP191 based conditioning may provide these patients with the best chance of a safe and successful transplant and reconstituted immune system.
CIS attendees are the primary caregivers for the immune deficient patient population, we are pleased to be able to present this data at the 2022 CIS annual meeting, Ronald Martell, CEO of Jasper. We believe that with our successful clinical efforts, we are one step closer, and uniquely positioned to deliver a targeted non-genotoxic conditioning agent to patients with SCID.
Story continues
About JSP191
JSP191 is a humanized monoclonal antibody in clinical development as a conditioning agent that blocks stem cell factor receptor signaling leading to clearance of hematopoietic stem cells from bone marrow, creating an empty space for donor or genetically modified transplanted stem cells to engraft. To date, JSP191 has been evaluated in more than 100 healthy volunteers and patients. Three clinical trials for myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), severe combined immunodeficiency (SCID) and Fanconi anemia are currently enrolling. The Company plans a new study of JSP191 as a second-line therapeutic in lower risk MDS patients in 2022 as well as to a pivotal study in MDS/AML transplant in early 2023. Enrollment in additional studies are planned in patients with sickle cell disease, chronic granulomatous disease and GATA2 MDS who are undergoing hematopoietic cell transplantation.
About Jasper Therapeutics
Jasper Therapeutics is a biotechnology company focused on the development of novel curative therapies based on the biology of the hematopoietic stem cell. The company is advancing two potentially groundbreaking programs. JSP191, an anti-CD117 monoclonal antibody, is in clinical development as a conditioning agent that clears hematopoietic stem cells from bone marrow in patients undergoing hematopoietic cell transplantation. It is designed to enable safer and more effective curative allogeneic hematopoietic cell transplants and gene therapies. In parallel, Jasper Therapeutics is advancing its preclinical mRNA engineered hematopoietic stem cell (eHSC) platform, which is designed to overcome key limitations of allogeneic and autologous gene-edited stem cell grafts. Both innovative programs have the potential to transform the field and expand hematopoietic stem cell therapy cures to a greater number of patients with life-threatening cancers, genetic diseases and autoimmune diseases than is possible today. For more information, please visit us at jaspertherapeutics.com.
Forward-Looking Statements
Certain statements included in this press release that are not historical facts are forward-looking statements for purposes of the safe harbor provisions under the United States Private Securities Litigation Reform Act of 1995. Forward-looking statements are sometimes accompanied by words such as believe, may, will, estimate, continue, anticipate, intend, expect, should, would, plan, predict, potential, seem, seek, future, outlook and similar expressions that predict or indicate future events or trends or that are not statements of historical matters. These forward-looking statements include, but are not limited to, statements regarding the potential long-term benefits of hematopoietic stem cells (HSC) engraftment following targeted single-agent JSP191 conditioning in the treatment of severe combined immunodeficiency (SCID) and Jaspers ability to potentially deliver a targeted non-genotoxic conditioning agent to patients with SCID. These statements are based on various assumptions, whether or not identified in this press release, and on the current expectations of Jasper and are not predictions of actual performance. These forward-looking statements are provided for illustrative purposes only and are not intended to serve as, and must not be relied on by an investor as, a guarantee, an assurance, a prediction or a definitive statement of fact or probability. Actual events and circumstances are difficult or impossible to predict and will differ from assumptions. Many actual events and circumstances are beyond the control of Jasper. These forward-looking statements are subject to a number of risks and uncertainties, including general economic, political and business conditions; the risk that the potential product candidates that Jasper develops may not progress through clinical development or receive required regulatory approvals within expected timelines or at all; risks relating to uncertainty regarding the regulatory pathway for Jaspers product candidates; the risk that clinical trials may not confirm any safety, potency or other product characteristics described or assumed in this press release; the risk that Jasper will be unable to successfully market or gain market acceptance of its product candidates; the risk that Jaspers product candidates may not be beneficial to patients or successfully commercialized; patients willingness to try new therapies and the willingness of physicians to prescribe these therapies; the effects of competition on Jaspers business; the risk that third parties on which Jasper depends for laboratory, clinical development, manufacturing and other critical services will fail to perform satisfactorily; the risk that Jaspers business, operations, clinical development plans and timelines, and supply chain could be adversely affected by the effects of health epidemics, including the ongoing COVID-19 pandemic; the risk that Jasper will be unable to obtain and maintain sufficient intellectual property protection for its investigational products or will infringe the intellectual property protection of others; and other risks and uncertainties indicated from time to time in Jaspers filings with the SEC. If any of these risks materialize or Jaspers assumptions prove incorrect, actual results could differ materially from the results implied by these forward-looking statements. While Jasper may elect to update these forward-looking statements at some point in the future, Jasper specifically disclaims any obligation to do so. These forward-looking statements should not be relied upon as representing Jaspers assessments of any date subsequent to the date of this press release. Accordingly, undue reliance should not be placed upon the forward-looking statements.
Contacts:John Mullaly (investors)LifeSci Advisors617-429-3548jmullaly@lifesciadvisors.com
Jeet Mahal (investors)Jasper Therapeutics650-549-1403jmahal@jaspertherapeutics.com
MicroRNA-631 deriving from bone marrow mesenchymal stem cell exosomes facilitates the malignant behavior of non-small cell lung cancer via modulating…
By daniellenierenberg
This article was originally published here
Bioengineered. 2022 Apr;13(4):8382-8395. doi: 10.1080/21655979.2022.2036891.
ABSTRACT
The exosomes (Exo) had always been considered as transport vectors for microRNA (miRNA). An increasing number of data had clarified the influence of Exo on the cell progression of non-small cell lung cancer (NSCLC). Nevertheless, its specific mechanism had not yet been verified. This work was to explore the potential mechanism of Exo-derived miR-631 targeting and regulating E2F family of transcription factor 2 (E2F2) to repress the malignant behavior of NSCLC cells. Test of microRNA (miR)-631 and E2F2 in NSCLC was performed. BMSCs-Exo that altered miR-631 was co-cultured with NSCLC cells. Detection of the cloning and progression of NSCLC cells was performed. Testification of the targeting of miR-631 with E2F2 was conducted. In vivo experiments were performed to verify the results in vitro. In short, elevation of miR-631 Exo repressed the advancement and phosphatidylinositol 3-kinase/Akt activation of NSCLC cells, while silence of miR-631 was in the opposite. In terms of mechanism, miR-631 exerted the influence via targeting E2F2. The coincident results were obtained in animal models. In brief, BMSC-Exo mediated E2F2 via delivering miR-631 to NSCLC cells to modulate the malignant behavior of NSCLC.
PMID:35353027 | DOI:10.1080/21655979.2022.2036891
See the original post:
MicroRNA-631 deriving from bone marrow mesenchymal stem cell exosomes facilitates the malignant behavior of non-small cell lung cancer via modulating...
Rheumatoid Arthritis Stem Cell Therapy Market Assessment, With Major Top Companies Analysis, Geographic Analysis, Growing Opportunities Data By…
By daniellenierenberg
Prophecy Market Research delivered a business report on the Rheumatoid Arthritis Stem Cell Therapy which is the best creation of trust and skill. The report is a top to bottom assessment of the different attributes and future development possibilities during the figure time frame. To uncover every doable way, our examiners applied different strategies. It contains every one of the overall significant organizations to help our clients in understanding their thorough strategies and cutthroat climate.
The noticeable players in the worldwide Rheumatoid Arthritis Stem Cell Therapy are
Mesoblast Ltd., Roslin Cells, Regeneus Ltd, ReNeuron Group plc, International Stem Cell Corporation, TiGenix and others
Our investigator have partitioned the report into segments so you might become familiar with the overall market undiscovered possibility in every one.
Get Sample Copy of This Report @ https://www.prophecymarketinsights.com/market_insight/Insight/request-sample/4815
The market elements are analyzed inside and out in the outline segment. This part is an unquestionable requirement perused for anybody settling on information driven choices. It talks about how Rheumatoid Arthritis Stem Cell Therapy functions, as well as market size and volume. The report is coordinated in straightforward organizations and incorporates outlines, tables, and charts to inspect the information and uncover the secret example in the numbers. Besides, the report incorporates verifiable deals and income data as well as guage designs for the following not many years.
The development and limiting elements are given their own fragment to help our clients in observing the Rheumatoid Arthritis Stem Cell Therapy touch spots and problem areas. The ends attracted this part depend on trustworthy and more significant position sources. Our specialists have utilized an assortment of market projection ways to deal with furnish our clients with reliable outcomes.
The Rheumatoid Arthritis Stem Cell Therapy is isolated into different groupings in the division segment. The fragment is an inside and out assessment of every classification, which is grouped by its qualities and expansiveness. Weve recorded every one of the measurements along with subjective clarifications to assist clients with appreciating the expected broadness of each class before very long. To dispose of errors in current realities and discoveries, the report utilizes an assortment of measurable methodologies. Moreover, an assortment of pattern projection approaches are utilized to uncover future development angles and prospects.
By Product Type (Allogeneic Mesenchymal Stem Cells, Bone Marrow Transplant and Adipose Tissue Stem Cells)
By End-User (Hospitals, Ambulatory Surgical Centers and Specialty Clinics)
By Region (North America, Europe, Asia Pacific, Latin America, and Middle East & Africa)
Mesoblast Ltd., Roslin Cells, Regeneus Ltd, ReNeuron Group plc, International Stem Cell Corporation, TiGenix and others
Promising Regions & Countries Mentioned In The Rheumatoid Arthritis Stem Cell Therapy Report:
The local review area inspects all potential market scenes in specific areas before very long. Its an exhaustive assessment of the Rheumatoid Arthritis Stem Cell Therapy possible districts. The examination additionally remembers a contextual investigation for significant market members to help shoppers distinguish and understand powerful techniques in the overall Rheumatoid Arthritis Stem Cell Therapy , as well as likely boundaries. Our master experts checked the data and endeavored to protect the most ideal degree of exactness.
Segmentation Overview:
By Product Type (Allogeneic Mesenchymal Stem Cells, Bone Marrow Transplant and Adipose Tissue Stem Cells)
By End-User (Hospitals, Ambulatory Surgical Centers and Specialty Clinics)
By Region (North America, Europe, Asia Pacific, Latin America, and Middle East & Africa)
Download PDF Brochure for report overview @ https://www.prophecymarketinsights.com/market_insight/Insight/request-pdf/4815
Purposes Behind Buying Rheumatoid Arthritis Stem Cell Therapy Report-
openings both developed and arising regions.
Understanding the tactics that support marketable interest in terms of products, segmentation, and assiduity verticals can help you make better opinions.
Get In-depth TOC @ https://www.prophecymarketinsights.com/market_insight/Global-Rheumatoid-Arthritis-Stem-Cell-Therapy-Market-4815
Why Buy From Us?
Prophecy Market Insights is particular statistical surveying, investigation, promoting/business technique, and arrangements that offers vital and strategic help to clients for settling on very much informed business choices and to distinguish and accomplish high-esteem valuable open doors in the objective business region. We likewise assist our clients with tending to business challenges and give the most ideal answers for conquer them and change their business.
Contact Us:
Mr. Alex (Sales Manager)
Prophecy Market Insights
Phone: +1 860 531 2701
Email: [emailprotected]
Read more from the original source:
Rheumatoid Arthritis Stem Cell Therapy Market Assessment, With Major Top Companies Analysis, Geographic Analysis, Growing Opportunities Data By...
Effect of oxidative stress-induced autophagy on proliferation and apoptosis of hMSCs – Newswise
By daniellenierenberg
Abstract:
Background:
Objective:To observe the effect of H2O2 induced oxidative stress on autophagy and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs).
Method: The hBMSCs were separated and cultured by density gradient centrifugation combined with adherence method. They were divided into blank group (with medium only), 3-MA (autophagy inhibitor) pretreatment group (with 2 ml of 5 mM 3-MA medium), H2O2 Intervention group (add 2ml medium containing 0.05mM H2O2), H2O2+3-MA treatment group (add 2ml medium containing 5mM 3-MA, then add 2ml medium containing 0.05mM H2O2). DCFH-DA staining was used to detect cellular reactive oxygen species (ROS) levels,and CCK-8 analysis was used to detect the effects of different concentrations (0,50,100,200,400mol/L) of H2O2 on the proliferation of hBMSCs; Monodansylcadaverine(MDC) Fluorescent amine probe staining, Lysosome Red Fluorescent Probe (Lyso-Tracker Red) staining to observe the level of autophagy; Immunofluorescence staining to detect the expression of LC3A/B; Flow cytometry (Annexin V/PI) to detect cell apoptosis Circumstances; Protein chip detection of autophagy-related proteins; Western blot detection of Beclin1, mTOR, p-mTOR, LC3A/B, and Cleaved caspase-3 protein expression.
Result: After treating hBMSCs with different concentrations of H2O2 (0,50,100,200,400mol) for 24h ,48h, and 72h, with the increase of H2O2 concentration, the cell proliferation ability decreased; while with the extension of time, the cell proliferation ability increased not significantly; 50mol cell proliferation ability is the strongest. Compared with the blank group and 3-MA group, the H2O2 intervention group increased the level of intracellular ROS, increased autophagosomes, and significantly decreased the apoptosis rate; up-regulated Beclin1, mTOR, LC3A/B and Cleaved caspase-3 protein expression, and down-regulated p-mTOR Protein expression level. Compared with the autophagy inhibitor 3-MA group, the H2O2+3-MA group increased the level of intracellular ROS, increased autophagosomes, and did not significantly increase the apoptosis rate; up-regulated the protein expression of Beclin1, mTOR, LC3A/B and Cleaved caspase-3 Down-regulate the expression of p-mTOR protein.
Conclusion: H2O2 can induce hMSCs to produce oxidative stress response. Under oxidative stress conditions, hMSCs can promote protective autophagy and reduce cell apoptosis or the level of apoptosis caused by excessive autophagy.
See more here:
Effect of oxidative stress-induced autophagy on proliferation and apoptosis of hMSCs - Newswise
Personalized Cell Therapy Market Size by Applications, Company Profiles, Product Types, Revenue and Forecast to 2026 ChattTenn Sports – ChattTenn…
By daniellenierenberg
The latest study of the Personalized Cell Therapy MarketStatistics2022Report providesan elaborative analysis of the market size, industry share, growth, development, and competitive landscape. The report also provides a comprehensive analysis of the sales volume, revenue, gross margin, and price growth in the Personalized Cell TherapyMarket. Many key points covered in the report, include recent development in the global market, such as mergers and acquisitions, SWOT analysis, competitive landscape, industry trends, and company profiles.
Leading Key Players Covered in the GlobalPersonalized Cell Therapy Market Research Report:
Novartis AG, Vericel Corporation, Bellicum Pharmaceuticals, MolMed SpA, Cytori Therapeutics Inc, Gilead Sciences, Inc, Celgene Corporation, Bluebird Bio, Aurora Biopharma Inc, Saneron CCEL TherapeuticsInc, Kuur Therapeutics, MediGene AG, Sangamo Therapeutics
Get a Sample PDF of the Report @ https://www.alexareports.com/report-sample/2856089
Market Segment by Types:
By Cell Type, Hematopoietic Stem Cell, Skeletal Muscle Stem Cell/Mesenchymal Stem Cells/Lymphocytes, By Technique, Platelet Transfusions/Bone Marrow Transplantation/Packed Red Cell Transfusions/Organ Transplantation
Market Segment by Applications:
Cardiovascular Diseases, Neurological Disorders, Inflammatory Diseases, Diabetes, Cancer
Market Segment by Regions:
Table of Contents
Section 1 Personalized Cell Therapy Market Overview
Section 2 Global Personalized Cell Therapy Market Key Players Share
Section 3 Key PlayersPersonalized Cell Therapy Business Introduction
Section 4 Global Personalized Cell Therapy Market Segmentation (By Region)
Section 5 Global Personalized Cell Therapy Market Segmentation (by Product Type)
Section 6 Global Personalized Cell Therapy Market Segmentation (by Application)
Section 7 Global Personalized Cell Therapy Market Segmentation (by Channel)
Section 8 Personalized Cell Therapy Market Forecast 2021-2026
Section 9 Personalized Cell Therapy Application and Client Analysis
Section 10 Personalized Cell Therapy Manufacturing Cost of Analysis
Section 11 Conclusion
Section 12 Methodology and Data Source
If any customization or requirements in the research study, please let us know Alexa Reportsoffer the report as you want.
Customized Report @ https://www.alexareports.com/send-an-enquiry/2856089
About Us:
Alexa Reports is a globally celebrated premium market research service provider, with a strong legacy of empowering businesses with years of experience. We help our clients by implementing a decision support system through progressive statistical surveying, in-depth market analysis, and reliable forecast data.
Contact Us:
Alexa Reports
8829 Applegate St.
Los Angeles, CA 90042
United States
Ph no: +1-408-844-4624
Email: [emailprotected]
See the original post:
Personalized Cell Therapy Market Size by Applications, Company Profiles, Product Types, Revenue and Forecast to 2026 ChattTenn Sports - ChattTenn...
Neurona Therapeutics Presents Preclinical Data at the American Academy of Neurology (AAN) Annual Meeting from Lead Cell Therapy Candidate, NRTX-1001,…
By Dr. Matthew Watson
SAN FRANCISCO, April 01, 2022 (GLOBE NEWSWIRE) -- Neurona Therapeutics, a clinical-stage biotherapeutics company advancing regenerative cell therapies for the treatment of neurological disorders, announced the presentation of preclinical data from its lead inhibitory neuron cell therapy candidate, NRTX-1001. NRTX-1001 is being evaluated in a Phase 1/2 clinical trial in people with drug-resistant mesial temporal lobe epilepsy. The data are being presented at the annual meeting of the American Academy of Neurology (AAN) held April 2-7, 2022 in Seattle, WA.
See the original post here:
Neurona Therapeutics Presents Preclinical Data at the American Academy of Neurology (AAN) Annual Meeting from Lead Cell Therapy Candidate, NRTX-1001,...
Phathom Pharmaceuticals to Present at the 21st Annual Needham Virtual Healthcare Conference
By Dr. Matthew Watson
FLORHAM PARK, N.J., April 01, 2022 (GLOBE NEWSWIRE) -- Phathom Pharmaceuticals, Inc. (Nasdaq: PHAT), a late clinical-stage biopharmaceutical company focused on developing and commercializing novel treatments for gastrointestinal diseases, announced today that members of the management team will participate in a fireside chat at the 21st Annual Needham Virtual Healthcare Conference on Tuesday, April 12, 2022 at 9:30 a.m. ET.
Excerpt from:
Phathom Pharmaceuticals to Present at the 21st Annual Needham Virtual Healthcare Conference
Fortress Biotech Announces Virtual Two-Day R&D Summit Hosted by B. Riley Securities on Tuesday, April 5 and Wednesday, April 6, 2022
By Dr. Matthew Watson
MIAMI, April 01, 2022 (GLOBE NEWSWIRE) -- Fortress Biotech, Inc. (NASDAQ: FBIO) (“Fortress”), an innovative biopharmaceutical company focused on efficiently acquiring, developing and commercializing or monetizing promising therapeutic products and product candidates, today announced a two-day summit hosted by the B. Riley Securities’ Healthcare Equity Research team, that will feature multiple programs from Fortress’ diversified pipeline. The events will be held virtually on Tuesday, April 5, and Wednesday, April 6, 2022, beginning at 1:00 p.m. ET each day.
Originally posted here:
Fortress Biotech Announces Virtual Two-Day R&D Summit Hosted by B. Riley Securities on Tuesday, April 5 and Wednesday, April 6, 2022
BioCorRx Provides 2021 Year-End Business Update
By Dr. Matthew Watson
ANAHEIM, CA, April 01, 2022 (GLOBE NEWSWIRE) -- via NewMediaWire -- BioCorRx Inc. (OTCQB: BICX) (the “Company”), a developer and provider of innovative treatment programs for substance abuse and related disorders, today provided a year-end business update for 2021 and reported on recent corporate developments.
Visit link:
BioCorRx Provides 2021 Year-End Business Update
Longboard Pharmaceuticals to Present Phase 1 Data for LP352 at the American Academy of Neurology Annual Meeting
By Dr. Matthew Watson
SAN DIEGO, April 01, 2022 (GLOBE NEWSWIRE) -- Longboard Pharmaceuticals, Inc. (Nasdaq: LBPH), a clinical-stage biopharmaceutical company focused on developing novel, transformative medicines for neurological diseases, today announced that single ascending dose and multiple ascending dose data from the Phase 1 study evaluating LP352 in healthy volunteers will be presented at the American Academy of Neurology (AAN) Annual Meeting being held in person April 2–7, 2022, in Seattle, WA, and virtually April 24–26, 2022.
See original here:
Longboard Pharmaceuticals to Present Phase 1 Data for LP352 at the American Academy of Neurology Annual Meeting
Fulcrum Therapeutics® Announces Multiple Presentations on FSHD at the American Academy of Neurology’s Annual Meeting
By Dr. Matthew Watson
Presentations highlight potential of losmapimod to slow or stop progression of FSHD
Go here to see the original:
Fulcrum Therapeutics® Announces Multiple Presentations on FSHD at the American Academy of Neurology’s Annual Meeting
Healthy Extracts Reports Fourth Quarter and Full Year 2021 Results
By Dr. Matthew Watson
LAS VEGAS, April 01, 2022 (GLOBE NEWSWIRE) -- Healthy Extracts Inc. (OTCQB: HYEX), a leading innovator of clinically proven plant-based products for heart and brain health, reported results for the fourth quarter and full year ended December 31, 2021.
Go here to read the rest:
Healthy Extracts Reports Fourth Quarter and Full Year 2021 Results
Praxis Precision Medicines to Present Data from PRAX-944 for Essential Tremor at 2022 American Academy of Neurology Annual Meeting
By Dr. Matthew Watson
BOSTON, April 01, 2022 (GLOBE NEWSWIRE) -- Praxis Precision Medicines, Inc. (NASDAQ: PRAX), a clinical-stage biopharmaceutical company translating genetic insights into the development of therapies for central nervous system (CNS) disorders characterized by neuronal excitation-inhibition imbalance, today announced that data from its PRAX-944 essential tremor (ET) program will be presented at the upcoming 2022 American Academy of Neurology (AAN) Annual Meeting, which will take place in Seattle, Washington from April 2 – 7, 2022 and virtually from April 24 – 26, 2022. Abstracts can be accessed on the AAN meeting website.
Continued here:
Praxis Precision Medicines to Present Data from PRAX-944 for Essential Tremor at 2022 American Academy of Neurology Annual Meeting
Y-mAbs Announces Submission of Omburtamab Biologics License Application to FDA
By Dr. Matthew Watson
NEW YORK, April 01, 2022 (GLOBE NEWSWIRE) -- Y-mAbs Therapeutics, Inc. (the “Company” or “Y-mAbs”) (Nasdaq: YMAB) a commercial-stage biopharmaceutical company focused on the development and commercialization of novel, antibody-based therapeutic products for the treatment of cancer, today announced that on March 31, 2022, the Company completed the resubmission of its Biologics License Application (“BLA”) for 131I-omburtamab (“omburtamab”) to the FDA.
Here is the original post:
Y-mAbs Announces Submission of Omburtamab Biologics License Application to FDA
Tricida to Present at the Needham Virtual Healthcare Conference
By Dr. Matthew Watson
SOUTH SAN FRANCISCO, Calif., April 01, 2022 (GLOBE NEWSWIRE) -- Tricida, Inc. (Nasdaq: TCDA) announced today that it will present at the 21st Annual Needham Virtual Healthcare Conference on Monday, April 11, 2022 at 10:30 am Pacific Time / 1:30 pm Eastern Time. Tricida will provide a company overview, business update and progress on its key initiatives.
Read the original post:
Tricida to Present at the Needham Virtual Healthcare Conference