ThermoGenesis : The History of Cell and Gene Therapy – marketscreener.com
By daniellenierenberg
Cell and gene therapies are overlapping fields of research and treatments. While both aim to treat and potentially cure diseases, they have slightly differing approaches and have different historical backgrounds. Due to growing interest surrounding this field, the general public still has much to learn and understand about each of these potentially life-saving therapies.
Below, we provide a general overview and brief historical context for each type of therapy.
Cell therapyis the process of replacing damaged or dysfunctional cells with new, healthy ones by transferring live cells into a patient. These can be autologous (also known as self-to-self, using cells from the patient receiving the treatment) or allogeneic (using cells from a donor for the treatment). While this field of treatment has recently begun to expand, some forms of cell therapy like the cancer-treating hematopoietic stem cell transplantation(HSCT) have been in practice for decades.
While many people have heard of bone marrow transplants, few realize that this procedure is a stem cell therapy. While stem cells can be derived from many sources, such as umbilical cord blood and mobilized peripheral blood, bone marrow derived stem cell therapy is the most commonly used today and has been for more than 50 years.
The first transfusion of human bone marrow was given to a patient with aplastic anemia in 1939. After World War II researchers diligently worked to restore bone marrow function in aplasia patients caused by exposure to radiation produced by the atomic bomb. After a decade of work they were able to show, in a mouse model, that aplasia could be overcome by bone marrow treatment.
The first allogeneic HSCT, which led the way to current protocols, was pioneered by E. Donnall Thomas and his team at the Fred Hutchinson Cancer Research Center and reported in the New England Journal of Medicine in 1957. In this study six patients were treated with radiation and chemotherapy and then received intravenous infusion of bone marrow rich stem cells from a normal donor to reestablish the damaged or defective cells. Since then the field has evolved and expanded worldwide. While almost half of HSCT are allogeneic, the majority of HSCT are autologous, the patient's own stem cells are used for treatment, which carries less risk to the patient.
In 1988, scientists discovered that they could derive stem cells from human embryos and grow the cells in a laboratory. These newly derived stem cells, referred to as embryonic stem cells (hESCs), were found to be pluripotent, meaning they can give rise to virtually any other type of cell in the body. This versatility allows hESCs cells to potentially regenerate or repair diseased tissue and organs. Two decades after they were discovered, treatments based on hESCs have been slow in coming because of controversy over their source and concerns that they could turn into tumours once implanted. Only recently, testing has begun as a treatment for two major diseases: heart failure and type 1 diabetes.
In 2006, researchers made a groundbreaking discovery by identifying conditions that would allow some cells to be 'reprogrammed' genetically. This new type of stem cell became known as induced pluripotent stem cells (iPSCs). Since this discovery, the field has expanded tremendously in the past two decades. Stem cell therapies have expanded in use and have been used to treat diseases such as type 1 diabetes, Parkinson's and even spinal cord injuries.
There has also been a growing focus on using other immune cells to treat cancer. Therapies such as CAR T-cellare dependent upon a patient's T-cells, which play a critical role in managing the immune response and killing cells affected by harmful pathogens. These cells are then reengineered to target and kill certain cancerous cells. Several CAR T-cell therapies have been FDA approved, with the first approval being given in 2017 for Yescarta and Kymriah, to be used for the treatment of B-cell leukemia in children and young adults.
Gene therapyis a process that modifies the expression of a gene or alters the biological process of living cells for therapeutic use. This process can take the form of replacing a disease-causing gene with a new, healthy one, inactivating the mutated gene, or introducing a new gene to help the patient's body fight a disease.
While the use of gene therapy to treat humans is fairly new, the science behind it has been used in science for decades. Farmers and geneticists have collaborated for years on crop improvement using cross pollination, genetic engineering and microinjection techniques to create stronger, more resilient crops.
The first human patient to be treated with gene therapy was a four-year old girlsuffering from severe combined immunodeficiencyin 1990. She received treatment for a congenital disease called adenosine deaminase (ADA). Since then, gene therapies have been used to treat diseases such as cancer, cystic fibrosis and hemophilia.In 2017, the FDA gave its first approval of a gene therapy called Luxturna, which is used to treat patients with established genetic vision loss that may result in blindness. Gene therapies are still being studied and developed, with over 1,000 clinical trialscurrently underway.
ThermoGenesis Holdings Inc., is a pioneer and market leader in the development and commercialization of automated cell processing technologies for the cell and gene therapy fields. We market a full suite of solutions for automated clinical biobanking, point-of-care applications and large-scale cell processing and manufacturing with a special emphasis on the emerging CAR-T immunotherapy market. We are committed to making the world a healthier place by creating innovative solutions for those in need.
For more information on the CAR-TXpress multi-system platform, please contact our Sales team.
Disclaimer
Thermogenesis Holdings Inc. published this content on 13 April 2021 and is solely responsible for the information contained therein. Distributed by Public, unedited and unaltered, on 13 April 2021 07:10:03 UTC.
See more here:
ThermoGenesis : The History of Cell and Gene Therapy - marketscreener.com
Stem cell treatment needed to fight the good fight – Victoria Lookout
By daniellenierenberg
LCol Laura Laycock on deployment.
LCol Laura Laycock
It was Oct. 7, 2019, and life was not just good, it was amazing.
My career in the Royal Canadian Air Force was going great. I loved my job and was getting promoted. Throughout my Canadian Armed Forces career of over 20years, I had represented Canada around the world with NORAD, NATO and the UN. I had married the most incredible man. We relocated to Ottawa, started to travel the world together, and were ready to start a family.
Then, on Oct. 8, 2019, everything changed.
I was diagnosed with Chronic Myeloid Leukemia(CML) after blood work for vertigo showed extremely elevated white blood cell counts. CML is a blood cancer where the bone marrow overproduces white blood cells, which eventually impairs the development of white and red blood cells and platelets. Its usually caused by a spontaneous mutation in DNA, which contains our genetic code.
LCol Laycock
Twenty years ago, researchers developed a new line of drugs that combat this overproduction of white blood cells. These targeted oral chemotherapy pills have been revolutionary in the fight against CML. Most people who take them do so for the rest of their lives and have good survival rates; however, a stem cell transplant remains the only actual cure. But its risky and not needed for most people.
Its now been about 17months since my diagnosis and my body has not tolerated this targeted chemotherapy. I fall into that small fraction of people who get debilitating or life-threatening side effects from this medication. My doctors are discussing other treatment options, one of which is a stem cell transplant, but my mixed ethnicity (European/Middle Eastern) has made it difficult to find a donor match.
My journey since my diagnosis has been to slow down and educate myself so that I can heal and advocate for my care; to appreciate every little moment of joy; and to do my best to overcome each challenge that arises. I have found strength in the extraordinary support Ive received from my family, my friends and my community, both old and new.
With the help of family and friends, I recently began a social media campaign to increase stem cell donor education and registration in Canada and around the world. Many people are unaware of the potentially lifesaving role they can play by registering to become stem cell donors. Stem cell transplants are vital treatment options for people with a range of medical conditions including spinal cord injuries, heart disease, diabetes, and some cancers.
The process to donate is simple. First, you register online with Canadian Blood Services or Hma-Qubec and do a mail-in cheek swab., and then you wait. It could be months or years before you are identified as a match. During this waiting period, you should update your contact information with the registry if it changes.
When you are matched, you will be contacted to continue with the donation process. This process is similar to giving blood, but it has its differences. The cells are usually collected intravenously from peripheral blood in a non-surgical procedure but, in rare cases, they are collected directly from the bone marrow in a surgical procedure. In either case, the risks associated with donating are minor.
In Canada, individuals aged17 to 35 can register to become stem cell donors (ages18 to 35 in Quebec). Both CBS and Hma-Qubec are part of an international network of donor registries from over 50countries. This network has a pool of over 38million donors but, unfortunately, matches are rare.
Your stem cells could potentially help others around the world, and throughout this process donor privacy is assured at all times.
LCol Laycock on her wedding day.
Stem cell matching relies on Human Leukocyte Antigen typing, which is highly influenced by ethnicity. This means that a patients best chance of finding a matching donor is from those who share similar ethnic backgrounds. Research conducted by Gragert et al.(2014) has shown that the likelihood of finding a match for certain ethnic groups can be as low as 16 percent and as high as 75 percent for others. This disparity highlights the need for more ethnically diverse stem cell donors in our registries.
Today, I am calling on my DND and CAF families to register as stem cell donors to help people, like me, who are fighting for our lives. If you arent able to register, please share this call with those who can. You, or someone you know, could be the match that saves a life a simple swab is all it takes to be a hero.
See original here:
Stem cell treatment needed to fight the good fight - Victoria Lookout
Global Autologous Stem Cell Based Therapies Market Survey Report, 2020-2027 KSU | The Sentinel Newspaper – KSU | The Sentinel Newspaper
By daniellenierenberg
From an insight perspective, this research report has focused on various levels of analysis industry trends analysis, top players analysis, company profiles, which discuss the basic views on the competitive landscape, emerging and high-growth segments of Autologous Stem Cell Based Therapies market, and high-growth regions. Besides, drivers, restraints, challenges, and opportunities pertaining to Autologous Stem Cell Based Therapies market are also predicted in this report.
Get Sample Copy of Autologous Stem Cell Based Therapies Market Report at:https://www.globalmarketmonitor.com/request.php?type=1&rid=643098
Major Participators LandscapeThese market players enjoyed broad industry coverage, outstanding operational ability, and strong financial resources. Manufacturers are focusing on product innovation, brand extension, and the introduction of new brands to cater to the preferences of consumers. Some of them will be endowed with vital future while others will show a weak growth during the prospective timeframe.Major market participators covered in our report are:US STEM CELL, INC. Med cell Europe Pluristem Therapeutics Inc Mesoblast Tigenix Brainstorm Cell Therapeutics Regeneus
To Get More Information on The Regional Analysis Of Autologous Stem Cell Based Therapies Market, Click Here:https://www.globalmarketmonitor.com/reports/643098-autologous-stem-cell-based-therapies-market-report.html
Autologous Stem Cell Based Therapies Application AbstractThe Autologous Stem Cell Based Therapies is commonly used into:Neurodegenerative Disorders Autoimmune Diseases Cardiovascular Diseases
Autologous Stem Cell Based Therapies Type AbstractBased on the basis of the type, the Autologous Stem Cell Based Therapies can be segmented into:Embryonic Stem Cell Resident Cardiac Stem Cells Umbilical Cord Blood Stem Cells
Table of Content1 Report Overview1.1 Product Definition and Scope1.2 PEST (Political, Economic, Social and Technological) Analysis of Autologous Stem Cell Based Therapies Market2 Market Trends and Competitive Landscape3 Segmentation of Autologous Stem Cell Based Therapies Market by Types4 Segmentation of Autologous Stem Cell Based Therapies Market by End-Users5 Market Analysis by Major Regions6 Product Commodity of Autologous Stem Cell Based Therapies Market in Major Countries7 North America Autologous Stem Cell Based Therapies Landscape Analysis8 Europe Autologous Stem Cell Based Therapies Landscape Analysis9 Asia Pacific Autologous Stem Cell Based Therapies Landscape Analysis10 Latin America, Middle East & Africa Autologous Stem Cell Based Therapies Landscape Analysis 11 Major Players Profile
Ask for a Report Sample at:https://www.globalmarketmonitor.com/request.php?type=3&rid=643098
Major countries of North America, Europe, Asia Pacific, and the rest of the world are all exhaustive analyzed in the report. Apart from this, policy mobilization, social dynamics, development trends, and economic development in these countries are also taken into consideration.
Target Audience for this Report Autologous Stem Cell Based Therapies manufacturers Autologous Stem Cell Based Therapies traders, distributors, and suppliers Autologous Stem Cell Based Therapies industry associations Product managers, Autologous Stem Cell Based Therapies industry administrator, C-level executives of the industries Market Research and consulting firms Research & Clinical Laboratories
Report SpotlightsDetailed overview of marketChanging market dynamics in the industryIn-depth market segmentationHistorical, current and projected market size in terms of volume and valueRecent industry trends and developmentsCompetitive landscapeStrategies of key players and products offeredPotential and niche segments, geographical regions exhibiting promising growthA neutral perspective on market performanceMust-have information for market players to sustain and enhance their market footprints
About Global Market MonitorGlobal Market Monitor is a professional modern consulting company, engaged in three major business categories such as market research services, business advisory, technology consulting.We always maintain the win-win spirit, reliable quality and the vision of keeping pace with The Times, to help enterprises achieve revenue growth, cost reduction, and efficiency improvement, and significantly avoid operational risks, to achieve lean growth. Global Market Monitor has provided professional market research, investment consulting, and competitive intelligence services to thousands of organizations, including start-ups, government agencies, banks, research institutes, industry associations, consulting firms, and investment firms.ContactGlobal Market MonitorOne Pierrepont Plaza, 300 Cadman Plaza W, Brooklyn,NY 11201, USAName: Rebecca HallPhone: + 1 (347) 467 7721Email: info@globalmarketmonitor.comWeb Site: https://www.globalmarketmonitor.com
Guess You May Like:Football Pads Market Reporthttps://www.globalmarketmonitor.com/reports/543403-football-pads-market-report.html
Bullet Surveillance Cameras Market Reporthttps://www.globalmarketmonitor.com/reports/637115-bullet-surveillance-cameras-market-report.html
Urea-SCR System Market Reporthttps://www.globalmarketmonitor.com/reports/496464-urea-scr-system-market-report.html
L-3,5-DIFLUOROPHE Market Reporthttps://www.globalmarketmonitor.com/reports/514397-l-3-5-difluorophe-market-report.html
Motorized Industrial Cable Reels Market Reporthttps://www.globalmarketmonitor.com/reports/627399-motorized-industrial-cable-reels-market-report.html
Brake Override System Market Reporthttps://www.globalmarketmonitor.com/reports/562356-brake-override-system-market-report.html
See the original post here:
Global Autologous Stem Cell Based Therapies Market Survey Report, 2020-2027 KSU | The Sentinel Newspaper - KSU | The Sentinel Newspaper
Durable B-ALL Control With Allogeneic Transplant After CAR T-Cell Therapy – Cancer Therapy Advisor
By daniellenierenberg
Children and young adults who underwent an allogeneic hematopoietic stem cell transplant (alloHSCT) after achieving complete response with CD19 CAR T-cell therapy experienced durable B-cell acute lymphoblastic leukemia (B-ALL) control, according to the results of a phase 1 trial (ClinicalTrials.gov Identifier: NCT01593696) published in the Journal of Clinical Oncology.
Although a proportion of patients who undergo CAR T-cell therapy go on to receive alloHSCT, the study authors stated that The role for [alloHSCT] following CD19-CAR T-cell therapy to improve long-term outcomes in [children and young adults] has not been examined.
The phase 1 trial evaluated 50 children and young adults with B-ALL who received CD19.28 CAR T-cell therapy. The primary objective was to determine the maximum tolerated dose of CAR T cells, toxicity, and feasibility of generating CAR T cells in the study population. In addition, this analysis retrospectively evaluated the effect of alloHSCT on survival after CAR T-cell therapy.
Continue Reading
At baseline, the median age was 13.5 years (range, 4.3-30.4), and 40 (80%) of the patients were male. The median number of prior regimens was 4 (range, 4.3-30.4); 22 (44%) patients had at least 1 prior HSCT, 2 (4%) had prior CD19-targeted therapy, and 5 (10%) of the patients had prior treatment with blinatumomab.
Complete response was achieved in 31 (62%) of the patients. Among these patients, 28 (90.3%) were negative for minimal residual disease. Higher rates of complete response were associated with primary refractory disease, fewer prior lines of therapy, M1 marrow, or fludarabine/cytarabine-based lymphodepletion. The median overall survival was 10.5 months (95% CI, 6.3-29.2) during a median follow-up of 4.8 years.
Of the 28 patients who achieved complete response, 21 (75%) proceeded to undergo consolidative alloHSCT. The median overall survival for these patients was 70.2 months (95% CI, 10.4-not estimable), with an event-free survival not yet reached. The rate of relapse after alloHSCT was 4.8% (95% CI, 0.3-20.3) at 12 months and 9.5% (95% CI, 1.5-26.8) at 24 months.
Any grade cytokine release syndrome (CRS) developed among 35 (70%) patients, with 9 (18%) experiencing grade 3 to 4 CRS. Of the 10 patients (20%) who developed neurotoxicity, 4 cases were severe. One cardiac arrest occurred during CRS. All patients with CRS, neurotoxicity, and cardiac arrest recovered.
The authors concluded that CD19.28 CAR T cells followed by a consolidative alloHSCT can provide long-term durable disease control in [children and young adults] with relapsed or refractory B-ALL.
Disclosure: Please see the original reference for a full disclosure of authors affiliations.
Reference
Shah NN, Lee DW, Yates B, et al. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. J Clin Oncol. Published online March 25, 2021. doi:org/10.1200/JCO.20.02262c
Go here to read the rest:
Durable B-ALL Control With Allogeneic Transplant After CAR T-Cell Therapy - Cancer Therapy Advisor
Kaytlyn Gerbin is blazing trails in cell science and as an ultrarunner who has conquered Mount Rainier – GeekWire
By daniellenierenberg
Kaytlyn Gerbin, left, runs the Wonderland Trail around Mount Rainier. She completed the 93-mile loop in just under 19 hours. Her friend Tara Fraga helped with pacing between miles 30-55. (Ryan Thrower Photo)
When Kaytlyn Gerbin moved to Seattle 10 years ago to attend graduate school at the University of Washington, a friend took her to Kerry Park in the Queen Anne neighborhood on her first visit. The celebrated viewpoint offered Gerbin a glimpse of Mount Rainier that ignited an ongoing passion.
At the time, I had absolutely no idea there was a trail all the way around it, and didnt know the first thing that went into climbing to the summit or running even a few miles on the trails, Gerbin said. Since then, Ive climbed Rainier 10 times, and spent countless hours on the mountain and trails in that park.
Along with her drive to get to know Washington states most famous landmark more intimately, Gerbin achieved her PhD in bioengineering at UW, where her research was focused on the therapeutic and regenerative potential of cardiac cells. For the past four years shes been a scientist at Allen Institute for Cell Science, where she studies stem cells and cardiomyocytes, or cardiac muscle cells.
Our latest Geek of the Week, Gerbin is an accomplished ultrarunner, and she now knows a lot more about that trail that encircles Mount Rainier.
With COVID-19 lockdowns impacting her international race season last summer, Gerbin, a sponsored athlete for The North Face, went after the fastest known time, or FKT, for a run around the Wonderland Trail. Together with teammate Dylan Bowman of Portland and a small crew of local filmmakers, they made Summer of Wonder, a short film about the experience, which you can watch in full here:
The average thru-hiker takes 10-14 days to complete the 93-mile Wonderland Trail, with its 24,000 feet of elevation gain. Gerbin did it in 18 hours, 41 minutes, 53 seconds, and the film is a breathtaking look at her endurance feat.
Gerbins passion for running started with 3-mile commutes back and forth between her apartment, her research lab, and campus during grad school. Eventually she started trail running,essentially as a life hack to see if she could squeeze a five-day backpacking route into a weekend between experiments.
It turned out I was actually pretty good at that, and that opened up opportunities to start racing at some of the most competitive trail races in the U.S. and Europe, Gerbin said.
Shes since raced with Team USA at the Trail World Championships, reached the podium at the iconic Western States 100, and won races such as the Canary Islands Transgrancanaria and Cascade Crest 100 in Washington. She also still holds the womens self-supported FKT for the Rainier Infinity Loop (set in 2019), which combines the Wonderland Trail with two summits and descents of Mount Rainier.
Her preferred racing distance is anything between 50-100 miles long, the more elevation gain and technical the trail, the better. During peak training, Gerbin is usually hitting between 70-90 miles with over 20,000 feet of elevation gain each week. She calls the Pacific Northwest the best outdoor playground there is.
Although I love running fast, Im also really excited about pushing myself on more challenging terrain. So many of my other FKT goals and route ideas are along these lines, with more technical traveling than actual running, she said.
COVID permitting, her highest race priority this year is Ultra Trail du Mont Blanc, which is the most competitive world-stage for ultrarunning, at the end of August. The race circumnavigates Mont Blanc, passing through France, Italy, and Switzerland and covering around 105 miles and 33,000 feet of elevation gain.
While Gerbins experience as a scientist does inform her appreciation for what shes putting her body through during ultrarunning, shes equally passionate in the lab. At the Allen Institute shes seeking answers to broad questions about how cells work, including how single cells and all of their components are integrated into a functional system, while using imaging to build predictive models of cell behavior.
I get the opportunity to work with a multidisciplinary team of badass scientists, biologists, and engineers on really cool problems in cell biology, she said.
Learn more about our latest Geek of the Week, Kaytlyn Gerbin:
What do you do, and why do you do it? Science and ultrarunning for me have always come down to problem solving.
As a scientist, problem solving is inherent to experimental design, data analysis, and interpreting results. By asking hard questions, Im interested in pushing the field of cell biology forward, and challenging the current way of thinking.
As an ultrarunner, its a different kind of problem solving, but I lean on the same mindset to figure out how to push my athletic limits further and faster.
One thing that always amazes me is how adaptable the human body is. My training in cell science gives me context for how all of these stressors and inputs were putting on our bodies are fundamentally happening at the single cell level, and it keeps me thinking about the cells response to external cues in my research.
Whats the single most important thing people should know about your field? Yes, I do think about science and when Im running, and no, I do not geek out on heart rate monitors and training zones and all those numbers when Im running.
Where do you find your inspiration? Im inspired by brilliant women that are pushing whats possible in both science and in sports. I think we often set boundaries for ourselves about what we think is possible, without ever letting ourselves really hit that limit. Im inspired by women who set bold goals and bring others up and along for the ride, redefining whats possible.
Whats the one piece of technology you couldnt live without, and why? My Garmin 935. I use this watch daily to track miles run, elevation gain, etc. The battery life has lasted me for 100 miles of running and ~24 hrs, but its small enough to wear every day.
Whats your workspace like, and why does it work for you? Prior to 2020, I was splitting my time between the tissue culture hood (passaging cells, differentiating cardiomyocytes, setting up experiments), conference rooms (team science and collaboration means a lot of group discussions!), and my computer for writing and analysis. Since then, Ive shifted my work to be more remote while I work on a few different manuscripts. I have an office set up at home with a window, some good tunes, plenty of coffee, and a chair for my dog to wait impatiently on.
Your best tip or trick for managing everyday work and life. (Help us out, we need it.) I have always been a to-do list person. Most mornings start with me listing out tasks (and breaking those down into many sub-tasks). I feel productive as I cross things off, and it also helps me prioritize and plan ahead to make sure I can also fit my training runs in.
Mac, Windows or Linux? Mac as a personal preference, Windows for my work computer (I do work at the Paul Allen Institute 🙂
Transporter, Time Machine or Cloak of Invisibility? Transporter. I just promise not to use it in races.
Greatest game in history: Lode Runner. I havent played it since I was a kid, but the memories of yelling at the computer with my sister frantically hitting up-down-up-down arrows make me feel like it was just yesterday.
Best gadget ever: Garmin inReach mini satellite messaging and SOS call, all in a device small enough to throw in the bottom of a pack (or shorts pocket) and forget its there. I bring this with me anytime Im headed out into the wilderness/mountains, but I hope I never need to use it.
First computer: iMac G3.
Current phone: iPhone 11.
Favorite app: I have a love/hate relationship with Strava. Ive also been using DuoLingo during the pandemic and have a strong daily streak going!
Most important technology of 2021: COVID vaccines!!
Most important technology of 2023: Advancements in remote/low-resource medical care.
Final words of advice for your fellow geeks: Most problems can be solved with more snacks and some time (works for science and running).
Twitter: @kaytlyn_gerbin
LinkedIn: Kaytlyn Gerbin
Continued here:
Kaytlyn Gerbin is blazing trails in cell science and as an ultrarunner who has conquered Mount Rainier - GeekWire
The Physiological Challenges of Spaceflight – Cambridge Wireless
By daniellenierenberg
By Guest Blogger Rich Whittle, Bioastronautics & Human Performance Lab at Texas A&M UniversityThe recent landing of the probe Perseverance on Mars, and the excitement generated by the high-resolution images currently being broadcast back to Earth, has inevitably started people thinking about human exploration of the Red Planet. However, the challenges faced by a manned journey to Mars are much more than just technical, but reflect some fundamental aspects of human physiology. In this guest article, Rich Whittle of the Bioastronautics and Human Performance Lab at Texas A&M University, reflects on some of the key issues.
NASA has ambitious plans to begin manned exploration of Mars, although its current focus is on sending the next man and first woman to the Moon as part of the Artemis programme, which will establish a permanent human presence there in the coming decade. A key part of this latter objective is to place a spaceship called Gateway in orbit around the Moon, from which landers will take astronauts to the surface and support their activities. Gateway will also conduct a wide variety of human and scientific missions, and in particular study the physiological effects of long journeys into space, in preparation for that first manned voyage to Mars.
The human body has evolved over hundreds of thousands of years to flourish on the surface of the Earth, and it is perhaps not surprising that the stresses of spaceflight pose unique physiological and medical problems. In fact, many of the basic issues associated with spaceflight, such as hypoxia, dysbarism, acceleration, and thermal support, have been well studied through aviation and diving medicine in the years prior to spaceflight. But while the last 50 years of manned space exploration have shown that humans can adapt to space, remaining productive for up to 1 year and possibly longer, there are still many problems associated with the prolonged exposure to a unique combination of stressful stimuli including acceleration, radiation, and weightlessness. The latter condition is a critical feature of spaceflight and has significant effects on human physiology, many of which were quite unexpected at the beginning of space exploration.
Scientists have known for a long time that the human body responds in specific ways to the microgravity environment of spaceflight. For example, a person who is inactive for an extended period loses overall strength, as well as muscle and bone mass. Unsurprisingly spaceflight has a similar effect, resulting in loss of bone mineral density (BMD), and increasing the risk of bone fractures in astronauts. It is predicted that a third of astronauts will be at risk for osteoporosis during a predicted 7-month long human mission to Mars. It is however possible to compensate for this loss of muscle and bone mass using resistive exercise devices that NASA has developed to allow for more intense workouts in zero gravity.
Overall, the pathophysiological adaptive changes that occur during spaceflight, even in well-trained, highly selected, and healthy individuals, have been likened to an accelerated aging process, and are being studied in research groups around the world. My own research at Texas A&M focuses on changes to the cardiovascular system caused by the microgravity environment of spaceflight. In an upright position under the Earths standard 1G gravity, arterial blood pressure is lower above the heart and higher below the heart. But in a weightless environment the body experiences a uniform arterial pressure, which decreases the cardiac workload, and reduces the need for blood pressure regulatory mechanisms. As a result, the muscles of the heart and blood vessels begin to atrophy, and consequently some astronauts experience orthostatic intolerance, the difficulty or inability to stand because of light headedness after return to Earth. During spaceflight, cardiovascular changes are noticeable immediately after the onset of weightlessness, with astronauts exhibiting characteristically puffy faces, stuffed noses, and chicken legs, as approximately 2L of fluid is shifted from the legs towards the head.
These fluid shifts affect not only the cardiovascular system but also the brain, eyes, and other neurological functions. The apparent increase in fluid within the skull is potentially linked to a collection of pathologies of the eye known as Spaceflight Associated Neuro-ocular Syndrome (SANS). This is principally manifested through a hyperopic shift in visual acuity, which in some cases does not resolve on return to Earth.
We believe that many of these problems can be overcome through effective countermeasures during spaceflight, and are often reversible after landing. Physical exercise programs are the main countermeasure used during spaceflight to protect the cardiovascular system. The technology involved has advanced from a rowing ergometer used in the early Skylab missions, through a motorized treadmill used in the ISS. This has been recently joined by a device for performing resistive exercise, and now rowing ergometers are once again being looked at for longer duration missions to Mars due to their small footprint.
However, some astronauts have returned from the ISS with unexpectedly stiff arteries, of a magnitude expected from 10 20 years of normal aging. Arterial stiffening is often linked to an increased blood pressure and elevated risk for cardiovascular disease. Additionally, other studies have suggested that insulin resistance occurs during spaceflight, possibly due to reduced physical activity, which could lead to increased blood sugar and increased risk of developing type 2 diabetes. These results suggest that the astronauts exercise routine did not always counteract the effect of the microgravity environment and indicated that further countermeasures might be needed to help maintain astronaut health. Here at Texas A&M we are looking at both lower body negative pressure (LBNP) and artificial gravity generated through short radius centrifugation as exciting new countermeasures that could be used in long duration spaceflight.
As we begin to further understand the effects of spaceflight on human physiology, scientists are now starting to study some of the underlying cellular mechanisms using model organisms, cell cultures, organs on a chip and stem cells. And because many of the observed changes seen in space, such as cardiovascular dysfunction due to inflammation, lack of exercise, intracranial hypertension, and hormonal and metabolic changes, resemble those caused by aging or illnesses, the research we conduct may have important applications on Earth. Hopefully, our push for manned exploration of the planets of the solar system will lead to tangible benefits to the health and well-being of humans on our home planet.
More:
The Physiological Challenges of Spaceflight - Cambridge Wireless
5 Novel Therapies Using Synthetic Biology – Nanalyze
By daniellenierenberg
The 1997 film Gattaca promised a future where humans would be free of disease and babies born on demand with the latest upgrades, including enhanced speed, intelligence, and beauty. Much like a new Tesla Roadster. However, despite the technological predictions offered by Hollywood moviemakers, were still living in a time when synthetic biology is working hard to make a dent in the world. No designer babies in sight. And stem cell technology promised so many radical breakthroughs back in the late 1990s, including growing organs for transplants and regenerating whole body parts, but the challenge of growing whole organs has been shown to be more complex than previously believed, including technologies like 3D bioprinting and xenotransplantation.
Despite the challenges and setbacks, investors believe were living in a different time, with more money pouring into the space over the last few years:
Indeed, the science and technology behind manipulating biological matter are still promising when it comes to health and medicine, especially with the rise of CRISPR gene editing. The idea that we could potentially switch on or off genes that cause disease using a cocktail of enzymes is just fantastical. While inserting CRISPR enzymes into a live human being is a bit challenging, there are regions of the body that are easily accessible, such as the eye. In a landmark clinical trial approved by the FDA and led by Editas Medicine (EDIT) and Allergan, now owned by AbbVie (ABBV), a CRISPR-Cas9 gene therapy was administered directly to patients to remove rare mutations that can cause childhood blindness.
McKinsey is calling this emerging technological renaissance the next Bio Revolution, with advances in biological sciences being accelerated by automation and artificial intelligence. The speed at which scientists and researchers were able to sequence the genome of the Rona virus is a testament to the power of these converging technologies. McKinsey predicts that synthetic biology could have a direct economic impact of $4 trillion per year, nearly half of which will be in the domain of human health.
Lets take a look through five companies that are harnessingthe revolutionary power of synthetic biology to design new therapies and treathuman diseases.
Founded in 2017 and headquartered in Alameda, California, Scribe Therapeutics is a biotechnology startup that is producing therapeutics using custom-engineered CRISPR enzyme technology. The company has raised a whopping $120 million from the likes of Andreessen Horowitz to build out a suite of CRISPR technologies designed to treat genetic diseases. Scribe Therapeutics was co-founded by Dr. Jennifer Doudna, the UC Berkeley biochemist who discovered and developed CRISPR gene-editing technology and won the Nobel Prize in Chemistry in 2020 for her pioneering work.
The team at Scribe Therapeutics has designed its XEditing (XE) technology by evolving the native CRISPR gene-editing enzymes available to us to redesign and engineer them to suit different needs. More specifically, they want to be able to modify or silence the genes of live humans to treat genetic diseases such as Huntingtons, Parkinsons, Sickle Cell Anemia, and Amyotrophic Lateral Sclerosis (ALS). Anything your parents unwittingly handed down to you, Scribe Therapeutics is looking to treat it. The research team tests thousands of redesigned enzymes and selects those with greater editing ability, specificity, and stability compared to current enzymes. Scribe Therapeutics is starting with a pipeline of therapeutics to treat neurodegenerative diseases and has its sights set on other, less common genetic conditions down the road.
Canadian biotechnology startup Notch Therapeutics was founded in 2018 and has raised $86 million to develop immune cell therapies against pre-cancer cells. The companys cell therapies are based on induced pluripotent stem cells (iPSC), which are pre-differentiated cells with the limited capacity to transform into different mature cell lines. Based on its Engineered Thymic Niche (ETN) platform, the company is developing universally compatible stem cell-derived immune cell therapies.
Normally, human immune cells only recognize othercells found in the same individual and will target cells from other individuals,which appear foreign to the immune system. Thats why donor organs can sometimesbe rejected by the recipients body the immune system sees the organ as a foreignobject. Notch Therapeutics is designing a system where the immune cellsproduced from the stem cells will be universally recognizable by allindividuals, bypassing the need to create immune cells from pluripotent stemcells derived from each recipient. These manufactured immune cells, whichinclude T cells or natural killer cells, can be programmed to target cancercells and eliminate them from the patient.
Founded in 2016, Massachusetts-based bit.bio is a synthetic biology startup thats working on merging the world of coding with biology. The company has secured $42 million after a Series A round that was completed in June 2020. A spinout of Cambridge University, bit.bio is looking to commercialize its proprietary platform, opti-ox, which can reprogram human stem cells to do its bidding cure diseases. Touted as the Cell Coding Company, bit.bio was founded by Dr. Mark Kotter, a neurosurgeon at the University of Cambridge who studied regenerative medicine and stem cell technology.
While the ability to program mammalian stem cells has been around since 1981, the company claims it can consistently reprogram human adult cells into pluripotent stem cells, and then transform them into other mature human cells within days. Currently, stem cell technology produces a statistical mixed bag of mature, differentiated cells, some of which can have potential side effects. opti-ox uses a precise combination of transcription factors to ensure stem cells mature into cardiac, muscle, liver, kidney, or lung cells with high efficiency. The holy grail for the company is to be able to produce every cell in the human body for any cell therapy safely, on-demand, and with purities approaching 100%. And well be here, waiting for that stem cell therapy for erectile dysfunction promised by the medical community.
Founded in 2020, Delonix Bioworks is a Shanghai-based synthetic biology company designing therapeutic solutions against infectious diseases. The startup received $14 million from a Seed round just back in March. The Delonix Bioworks team is focusing its initial efforts on anti-microbial resistant (AMR) infections. The emergence of resistance in some bacteria species against common antimicrobial compounds, so has led to an increasing number of infections that are difficult to treat with conventional strategies. These superbug strains are mostly spread in hospital or clinical settings due to the overuse of antibiotics.
The company is engineering attenuated, live bacteria thatcan act as vaccines against these types of infections. By introducing reprogrammed,but weakened, bacteria to express specific antigens on the surface of theirmembrane that match those of the strains that cause AMR infections into anindividual, the individuals immune system can recognize those antigens andrespond to future infections with greater speed. Its no different from how antiviralvaccines are designed, except most vaccines introduce an attenuated or inactivatedvirus to activate the immune system instead. And for those of you who skipped highschool biology, no, this is not a mind-control scheme orchestrated by biotech companies.
Founded in 2018, Octarine Bio is a Danish synthetic biology company thats building out a pipeline for high-potency cannabinoids and psilocybin derivatives for the pharmaceutical industry. Octarine Bio has brought in $3 million after a Seed round that was also completed in March. Medical studies on psychotropic compounds have been shown to help reduce anxiety, depression, and pain, and may have the potential to serve as novel psychiatric medications. A few companies have recently emerged to commercialize existing psychedelics. Octarine Bio believes it can do better by harnessing the power of synthetic biology to engineer microorganisms to produce these psychotropic compounds with better pharmacokinetic and therapeutic effects.
Normally, natural products are produced by plant and fungal species as an ill-defined mixture. The psychoactive properties of these compounds primarily stem from only a handful of compounds because their natural concentration is much higher than other derivatives in the organic material. For example, tetrahydrocannabinol (THC) is the main psychoactive agent in marijuana while psilocybin is the one found in mushrooms from the Psilocybe and other psilocybin-producing genera. However, these are just a few out of hundreds of potential psychoactive derivatives produced by these species.
Molecular derivatives may be produced at too low of concentration to test and analyze, or the plant or mushroom may have a deactivated metabolic pathway that could lead to a superior compound. By tweaking the molecular structure of the product compounds using both synthetic biology and traditional organic chemistry, the team at Octarine Bio is creating a platform to discover new potential therapeutics that may not have been available before. Magic mushrooms are about to get an upgrade for an extra potent trip.
Much like what was said about software by Marc Andreessen back in 2011, synthetic biology is starting to eat the world. While were a long way away from a dystopian future where babies are engineered with supernatural talents, were already seeing the potential side-effects of using CRISPR on the Chinese twin girls originally to immunize them from HIV, including enhanced cognition and memory. The cure for stupid is possibly lurking in the vaults of this pioneering technology. For now, well wait and see how synthetic biology and CRISPR gene editing shape up as potential therapeutics for real diseases.
Tech investing is extremely risky. Minimize your risk with The Nanalyze Disruptive Tech Portfolio Report to find out which tech stocks you should avoid. Become a Nanalyze Premium member and find out today!
Continued here:
5 Novel Therapies Using Synthetic Biology - Nanalyze
Australian scientists discover secret switch for the heart to heal itself – The New Daily
By daniellenierenberg
Cut off a piece of a zebrafish heart, and the little creature wont be at the top of its game for a few days.
But after a month, the heart will grow back to normal and life goes on as normal.
Given that a heart attack in humans known as a myocardial infarction is akin to losing a piece of your heart (because tissue dies), scientists for years have been trying to understand how zebrafish heal themselves, with a view to replicating the process in people.
Now, scientists at the Victor Chang Cardiac Research Institute have identified the genetic switch in zebrafish that prompts heart cells to divide and multiply after a heart attack, resulting in the complete regeneration and healing of damaged heart muscle in these fish.
Dr Kazu Kikuchi, who led the research, published in Science on Friday, said he was astonished by the findings.
Our research has identified a secret switch that allows heart muscle cells to divide and multiply after the heart is injured, Dr Kikuchi said in a statement.
data-s="video/mp4">
It kicks in when needed and turns off when the heart is fully healed. In humans where damaged and scarred heart muscle cannot replace itself, this could be a game changer.
The researchers investigated a critical gene known as Klf1, which previously had only been identified in red blood cells.
They discovered Klf1 plays a vital role in healing damaged hearts.
The gene works by making uninjured heart muscle cells called cardiomyocytes more immature and changing their metabolic wiring, a process called dedifferentiation.
This allows them to divide and make new cells
Cardiomyocytes are the heart cells primarily involved in the contractile function of the heart that enables the pumping of blood around the body.
Ordinarily, adult mammalian hearts have a limited ability to generate new cardiomyocytes whereas zebrafish will keep making new cells until their hearts are completely healed.
Its been known for more than a decade that cardiomyocytes become more youthful in order to regenerate and Dr Kikuchi was one of the researchers to demonstrate this.
What wasnt known was how this was made to happen.
Our new paper suggests it is Klf1 which triggers this, Dr Kikuchi said.
This isnt the same as stem cell technology. In fact, dedifferentiating cardiomyocytes has proved to be a more effective healing process than stem cells.
It all comes down to that genetic switch.
Dr Kikuchi said that when the gene was removed, the zebrafish heart lost its ability to repair itself after an injury such as a heart attack, which pinpointed it as a crucial self-healing tool.
Professor Bob Graham, head of the Institutes Molecular Cardiology and Biophysics Division, says this world-first discovery made in collaboration with the Garvan Institute of Medical Research may well transform the treatment of heart attack patients and other heart diseases.
The team has been able to find this vitally important protein that swings into action after an event like a heart attack and supercharges the cells to heal damaged heart muscle. Its an incredible discovery, Professor Graham said.
The gene may also act as a switch in human hearts. We are now hoping further research into its function may provide us with a clue to turn on regeneration in human hearts, to improve their ability to pump blood around the body.
Importantly, the team also found the Klf1 gene played no role in the early development of the heart and that its regenerative properties were only switched on after a heart injury.
Read the original post:
Australian scientists discover secret switch for the heart to heal itself - The New Daily
Synthego Launches Eclipse Platform to Accelerate Research and Development of Next-generation Medicines – The Scientist
By daniellenierenberg
Synthego, the genome engineering company, today announced the launch of Eclipse, a new high-throughput cell engineering platform designed to accelerate drug discovery and validation by providing highly predictable CRISPR-engineered cells at scale through the integration of engineering, bioinformatics, and proprietary science. The launch of this unique CRISPR-based platform is driving the companys growing impact in biopharma R&D, reinforcing Synthegos position as the genome engineering leader.
CRISPR-engineered cells have a wide range of applications in research and development across disease areas, including in neuroscience and oncology. Synthego created the Eclipse Platform to enhance disease modeling, drug target identification and validation, and accelerate cell therapy manufacturing.
"By industrializing cell engineering, Synthegos Eclipse Platform will enable economies of scale, turning a historically complex process into one that is flexible, reliable, and affordable, said Bill Skarnes, Ph.D., professor and director of Cellular Engineering at The Jackson Laboratory and Synthego advisory board member. Offering CRISPR edits at scale, similar to what Synthego did with sgRNA reagents, puts researchers on the cusp of being able to study thousands of genes, and examine hundreds of variants of those genes. This will allow scientists to more faithfully model the complexity of a human disease, which could lead to the development of therapeutic drugs or next-generation gene therapies for many serious diseases.
To ensure the success of any type of edit, Eclipse uses machine learning to apply experience from several hundred thousand genome edits across hundreds of cell types. With this machine learning, combined with automation, the new platform can reduce costs and increase the scalability of engineered cell production. The Eclipse Platform is modular in design, allowing for fast deployment of upgrades or add-ons. It is engineered to use a cell-type agnostic process and immediately benefit researchers working with induced pluripotent stem (iPS) cells and immortalized cell lines.
We are living in a new era of life sciences innovation one that has added to DNA sequencing and being able to read out of biology, now being able to write into and engineer biology. We created our Eclipse Platform at the convergence of science and technology to make genome editing more precise, scalable, and accessible, said Paul Dabrowski, CEO and co-founder of Synthego. We are excited to expand our impact on advancing the life sciences innovation with the launch of this unique CRISPR-based platform.
Go here to read the rest:
Synthego Launches Eclipse Platform to Accelerate Research and Development of Next-generation Medicines - The Scientist
The Google Play video app will leave Roku, Vizio, LG and Samsung’s TV platforms – Yahoo Canada Finance
By daniellenierenberg
Google is discontinuing the Google Play Movies and TV app for Samsung, LG and Vizio smart TVs, as well as Roku devices. Come June 15th, 2021, you wont be able to access the software on those platforms anymore. Instead, youll need to go through YouTube to watch any content youve bought in the past. Any Google Play credits associated with your account will still be there, allowing you to buy new movies and TV shows. However, your Watchlist wont transfer over, and support for family sharing is more limited.
Google shared the news last month, but it went mostly unnoticed until after websites like Liliputing and 9to5Google published stories on the shutdown earlier today following an email the company sent to users. To be clear, Play Movies and TV itself isnt joining the Google graveyard on June 15th. Google plans to eventually merge the app with its new Google TV software, but that's an ongoing process with the former still available to download on Android and iOS.
Read the original post:
The Google Play video app will leave Roku, Vizio, LG and Samsung's TV platforms - Yahoo Canada Finance
Fulgent Genetics to Announce First Quarter 2021 Financial Results on Thursday May 6, 2021
By Dr. Matthew Watson
TEMPLE CITY, Calif., April 16, 2021 (GLOBE NEWSWIRE) -- Fulgent Genetics, Inc. (NASDAQ: FLGT) (“Fulgent Genetics” or the “company”), a technology company providing comprehensive testing solutions through its scalable technology platform, today announced that it will release its first quarter 2021 financial results after the market closes on Thursday May 6, 2021. The company’s Chairman and Chief Executive Officer Ming Hsieh, Chief Financial Officer Paul Kim and Chief Commercial Officer Brandon Perthuis will host a conference call for the investment community the same day at 4:30 PM ET (1:30 PM PT) to discuss the results and answer questions.
The rest is here:
Fulgent Genetics to Announce First Quarter 2021 Financial Results on Thursday May 6, 2021
Zogenix Presents New Data from a Study Highlighting the Impact of Treatment with FINTEPLA® (Fenfluramine) Oral Solution on Dravet Syndrome Patients,…
By Dr. Matthew Watson
EMERYVILLE, Calif., April 16, 2021 (GLOBE NEWSWIRE) --  Zogenix (NASDAQ: ZGNX), a global biopharmaceutical company developing rare disease therapies, today announced new findings from an investigator-initiated study designed to assess caregivers’ perspectives on the long-term seizure- and non-seizure-related benefits of FINTEPLA® (fenfluramine) on patients with Dravet syndrome, a rare, severe epilepsy, and on their caregivers and families. Data from the study is being presented during the virtual American Academy of Neurology (AAN) Annual Meeting, April 17-22, 2021.
See original here:
Zogenix Presents New Data from a Study Highlighting the Impact of Treatment with FINTEPLA® (Fenfluramine) Oral Solution on Dravet Syndrome Patients,...
Adverum Biotechnologies to Present New Data from the OPTIC Trial of ADVM-022 Intravitreal Gene Therapy for Wet AMD at ARVO 2021Â
By Dr. Matthew Watson
-- Adverum to host webcast with key opinion leaders on Sunday, May 2, 2021 at 7:00 AM PT -- REDWOOD CITY, Calif., April 16, 2021 (GLOBE NEWSWIRE) -- Adverum Biotechnologies, Inc. (Nasdaq: ADVM), a clinical-stage gene therapy company targeting unmet medical needs in ocular and rare diseases, today announced the presentation of additional clinical data for Cohorts 1-4 in the OPTIC clinical trial of ADVM-022 intravitreal (IVT) injection gene therapy in wet age-related macular degeneration (wet AMD) during the Association for Research in Vision and Ophthalmology (ARVO) 2021 Virtual Meeting. Preclinical data on ADVM-062, a novel IVT gene therapy that also utilizes Adverum’s proprietary vector capsid AAV.7m8, in blue cone monochromacy will also be presented.
Read the original here:
Adverum Biotechnologies to Present New Data from the OPTIC Trial of ADVM-022 Intravitreal Gene Therapy for Wet AMD at ARVO 2021Â
Vistin Pharma ASA: Invitation to Q1 2021 conference call
By Dr. Matthew Watson
Oslo, Norway, 16 April 2021
See original here:
Vistin Pharma ASA: Invitation to Q1 2021 conference call
Aprea Therapeutics to Host Virtual R&D Day on April 22, 2021
By Dr. Matthew Watson
BOSTON, April 16, 2021 (GLOBE NEWSWIRE) -- Aprea Therapeutics, Inc. (Nasdaq: APRE), a biopharmaceutical company focused on developing and commercializing novel cancer therapeutics that reactivate the mutant tumor suppressor protein, p53, today announced that it will host a virtual R&D Day at 1:00 p.m. ET on Thursday, April 22, 2021.
Originally posted here:
Aprea Therapeutics to Host Virtual R&D Day on April 22, 2021
Cosmos Holdings Reports Revenue Growth of 40% to a Record $55.4 Million and Achieves Profitability for 2020
By Dr. Matthew Watson
CHICAGO, April 16, 2021 (GLOBE NEWSWIRE) -- Cosmos Holdings, Inc. (“the Company") (OTCQX: COSM), a vertically integrated, international pharmaceutical company with a proprietary line of branded and generic pharmaceuticals, nutraceuticals, OTC medications and an extensive, established European Union distribution network, today provided a business update and reported financial results for the full year ended December 31, 2020.
Continued here:
Cosmos Holdings Reports Revenue Growth of 40% to a Record $55.4 Million and Achieves Profitability for 2020
Brickell Biotech Announces Presentation of US Phase 3 Open-Label Long-Term Safety Study Results for Sofpironium Bromide Gel at the Late-Breaking…
By Dr. Matthew Watson
BOULDER, Colo., April 16, 2021 (GLOBE NEWSWIRE) -- Brickell Biotech, Inc. (“Brickell” or the “Company”) (Nasdaq: BBI), a clinical-stage pharmaceutical company focused on developing innovative and differentiated prescription therapeutics for the treatment of debilitating skin diseases, today announced that results from the US Phase 3 open-label long-term (12-month) safety study of sofpironium bromide gel, 5% and 15% were selected for an oral presentation at the Late-Breaking Research Program during the American Academy of Dermatology’s (AAD) 2021 Virtual Meeting Experience (VMX) being held April 23– 25, 2021. Also, as one of the top twelve late-breaking research abstracts, Brickell has been invited to participate in a live Q&A session on April 24th from 2:00 PM – 3:00 PM CT.
Read this article:
Brickell Biotech Announces Presentation of US Phase 3 Open-Label Long-Term Safety Study Results for Sofpironium Bromide Gel at the Late-Breaking...
Sanofi completes Kiadis acquisition
By Dr. Matthew Watson
This is a joint press release by Sanofi Foreign Participations B.V. (the “Offeror”), Sanofi (“Sanofi”) and Kiadis Pharma N.V. (“Kiadis”) in connection with the public offer by the Offeror for all the issued and outstanding ordinary shares in the capital of Kiadis (the “Offer”). This announcement does not constitute an offer, or any solicitation of any offer, to buy or subscribe for any securities. Any offer will be made only by means of the offer memorandum dated 10 February 2021 (the “Offer Memorandum”), approved by the Dutch Authority for the Financial Markets (Autoriteit Financiële Markten) on 10 February 2021 and recognized by the Belgian Authority for the Financial Markets (Autoriteit voor Financiële Diensten en Markten) on 11 February 2021. This announcement is not for release, publication or distribution, in whole or in part, in or into, directly or indirectly, any jurisdiction in which such release, publication or distribution would be unlawful. Terms not defined in this press release will have the meaning as set forth in the Offer Memorandum.
Continued here:
Sanofi completes Kiadis acquisition
Virbac : Declaration of the number of shares and voting rights March 2021
By Dr. Matthew Watson
DECLARATION OF THE NUMBER OF SHARES AND VOTING RIGHTS
See the rest here:
Virbac : Declaration of the number of shares and voting rights March 2021