Page 174«..1020..173174175176..180190..»

RAPT Therapeutics to Present at the 10th Annual SVB Leerink Global Healthcare Conference

By Dr. Matthew Watson

SOUTH SAN FRANCISCO, Calif., Feb. 19, 2021 (GLOBE NEWSWIRE) -- RAPT Therapeutics, Inc. (Nasdaq: RAPT), a clinical-stage, immunology-based biopharmaceutical company focused on discovering, developing and commercializing oral small molecule therapies for patients with significant unmet needs in oncology and inflammatory diseases, today announced that Brian Wong, M.D., Ph.D., President and Chief Executive Officer, will present at the 10th Annual SVB Leerink Global Healthcare Conference on Friday, February 26, 2021 at 12:00 pm Eastern Time.

See more here:
RAPT Therapeutics to Present at the 10th Annual SVB Leerink Global Healthcare Conference

To Read More: RAPT Therapeutics to Present at the 10th Annual SVB Leerink Global Healthcare Conference
categoriaGlobal News Feed commentoComments Off on RAPT Therapeutics to Present at the 10th Annual SVB Leerink Global Healthcare Conference | dataFebruary 19th, 2021
Read All

Assembly Bio Announces Upcoming Investor Events

By Dr. Matthew Watson

SOUTH SAN FRANCISCO, Calif., Feb. 19, 2021 (GLOBE NEWSWIRE) -- Assembly Biosciences, Inc. (Nasdaq: ASMB), a clinical-stage biotechnology company developing innovative therapeutics targeting hepatitis B virus (HBV), today announced two upcoming investor events:

Read the original post:
Assembly Bio Announces Upcoming Investor Events

To Read More: Assembly Bio Announces Upcoming Investor Events
categoriaGlobal News Feed commentoComments Off on Assembly Bio Announces Upcoming Investor Events | dataFebruary 19th, 2021
Read All

Yield10 Bioscience Announces Warrant Exercises for Proceeds of $3.8 million

By Dr. Matthew Watson

WOBURN, Mass., Feb. 19, 2021 (GLOBE NEWSWIRE) -- Yield10 Bioscience, Inc. (Nasdaq:YTEN), an agricultural bioscience company, today announced that it has received proceeds of approximately $3.8 million from the exercise of 472,099 warrants exercised between January 1, 2021 and February 16, 2021, and the Company has issued to investors 472,099 shares of common stock in exchange for the exercised warrants. The warrants were issued to investors pursuant to a public offering that closed on November 19, 2019. Since November 19, 2019, a total of 679,395 warrants issued in the public offering have been exercised for total proceeds of $5.4 million. The Series A and Series B warrants issued in the November 2019 public offering are exercisable at $8.00 per share and have expiration dates of May 19, 2022 and May 19, 2027, respectively.

View original post here:
Yield10 Bioscience Announces Warrant Exercises for Proceeds of $3.8 million

To Read More: Yield10 Bioscience Announces Warrant Exercises for Proceeds of $3.8 million
categoriaGlobal News Feed commentoComments Off on Yield10 Bioscience Announces Warrant Exercises for Proceeds of $3.8 million | dataFebruary 19th, 2021
Read All

Atea Pharmaceuticals Announces Chugai In-License of AT-527 from Roche for the Treatment of COVID-19 in Japan

By Dr. Matthew Watson

Chugai obtains exclusive development and marketing rights for AT-527 in Japan from Roche, who has ex-US rights for the treatment of COVID-19 Chugai obtains exclusive development and marketing rights for AT-527 in Japan from Roche, who has ex-US rights for the treatment of COVID-19

See original here:
Atea Pharmaceuticals Announces Chugai In-License of AT-527 from Roche for the Treatment of COVID-19 in Japan

To Read More: Atea Pharmaceuticals Announces Chugai In-License of AT-527 from Roche for the Treatment of COVID-19 in Japan
categoriaGlobal News Feed commentoComments Off on Atea Pharmaceuticals Announces Chugai In-License of AT-527 from Roche for the Treatment of COVID-19 in Japan | dataFebruary 19th, 2021
Read All

CEO of Longeveron Inc. to Present at the Intercontinental Summit on Aging & Gerontology

By Dr. Matthew Watson

MIAMI, Feb. 19, 2021 (GLOBE NEWSWIRE) -- Longeveron Inc. (NASDAQ: LGVN) ("Longeveron" or "Company"), a clinical stage biotechnology company developing cellular therapies for chronic aging-related and life-threatening conditions, today announced that Geoff Green, Chief Executive Officer of Longeveron, has been invited to give a presentation titled “A Regenerative Medicine Approach to Aging Frailty” at the Intercontinental Summit on Aging & Gerontology being held virtually on March 8, 2021. He will discuss Longeveron’s ongoing clinical research program in Aging Frailty and Alzheimer’s disease, in addition to the regenerative medicine investigational clinical research field in general for diseases and conditions associated with aging.

See the original post here:
CEO of Longeveron Inc. to Present at the Intercontinental Summit on Aging & Gerontology

To Read More: CEO of Longeveron Inc. to Present at the Intercontinental Summit on Aging & Gerontology
categoriaGlobal News Feed commentoComments Off on CEO of Longeveron Inc. to Present at the Intercontinental Summit on Aging & Gerontology | dataFebruary 19th, 2021
Read All

Agile Therapeutics to Host Fourth Quarter and Full Year 2020 Financial Results Conference Call and Provide Corporate and Twirla Commercial Updates on…

By Dr. Matthew Watson

Live Conference Call and Webcast at 4:30 p.m. ET

View original post here:
Agile Therapeutics to Host Fourth Quarter and Full Year 2020 Financial Results Conference Call and Provide Corporate and Twirla Commercial Updates on...

To Read More: Agile Therapeutics to Host Fourth Quarter and Full Year 2020 Financial Results Conference Call and Provide Corporate and Twirla Commercial Updates on…
categoriaGlobal News Feed commentoComments Off on Agile Therapeutics to Host Fourth Quarter and Full Year 2020 Financial Results Conference Call and Provide Corporate and Twirla Commercial Updates on… | dataFebruary 19th, 2021
Read All

Information expressed in the public domain by the Repharm Group is deceptive and contradictory

By Dr. Matthew Watson

Today, on February 19, information has arrived in the public domain that the company from Repharm Group will acquire the shares of JSC “Olainfarm” directly and indirectly owned by Anna Emilija Maligina.

Visit link:
Information expressed in the public domain by the Repharm Group is deceptive and contradictory

To Read More: Information expressed in the public domain by the Repharm Group is deceptive and contradictory
categoriaGlobal News Feed commentoComments Off on Information expressed in the public domain by the Repharm Group is deceptive and contradictory | dataFebruary 19th, 2021
Read All

Y-mAbs to Announce 2020 Financial and Operating Results on February 25, 2021

By Dr. Matthew Watson

NEW YORK, Feb. 19, 2021 (GLOBE NEWSWIRE) -- Y-mAbs Therapeutics, Inc. (the “Company” or “Y-mAbs”) (Nasdaq: YMAB) today announced that it will report its financial results for the fiscal year ended December 31, 2020 on Thursday, February 25, 2021, after the close of the U.S. financial markets. The announcement will be followed by a conference call and webcast with the investment community on Friday, February 26, 2021, at 9 a.m. ET. Participating on the call from Y-mAbs will be Thomas Gad, founder, Chairman and President; Dr. Claus Moller, Chief Executive Officer; and Bo Kruse, Chief Financial Officer.

Here is the original post:
Y-mAbs to Announce 2020 Financial and Operating Results on February 25, 2021

To Read More: Y-mAbs to Announce 2020 Financial and Operating Results on February 25, 2021
categoriaGlobal News Feed commentoComments Off on Y-mAbs to Announce 2020 Financial and Operating Results on February 25, 2021 | dataFebruary 19th, 2021
Read All

Ayala Pharmaceuticals Announces $25 Million Strategic Financing

By Dr. Matthew Watson

Funding Extends Cash Runway through Multiple Expected Value Drivers Into 2023

Read more:
Ayala Pharmaceuticals Announces $25 Million Strategic Financing

To Read More: Ayala Pharmaceuticals Announces $25 Million Strategic Financing
categoriaGlobal News Feed commentoComments Off on Ayala Pharmaceuticals Announces $25 Million Strategic Financing | dataFebruary 19th, 2021
Read All

Stem Cells Market to Inspire a Growth up to US$ 18289.9 Million at a 9.1% CAGR by 2027 – PharmiWeb.com

By daniellenierenberg

Stem cells are undifferentiated cells which are capable of differentiating into any type of cell that make-up the human body and thus, are capable of producing non-regenerative cells such as neural and myocardial cells.

Statistics:

The global stem cells market is estimated to account forUS$ 9,941.2 Mnin terms of value in2020and is expected to reachUS$ 18,289.9 Mnby the end of2027.

For More Information, Request a sample copy of the Business Report: https://www.coherentmarketinsights.com/insight/request-sample/4222

GlobalStem CellsMarket: Drivers

Approval and launch of new products is expected to propel growth of the global stem cells market over the forecast period. For instance, in December 2019, BioRestorative Therapies, Inc. received a Notice of Allowance on its patent application for a method of generating brown fat stem cells from Israeli Patent Office.

Moreover, increasing number of stem cell banking resource centers is also expected to aid in growth of the market. For instance, in March 2020, Stemlife Berhad, a cord blood bank in Malaysia, started a Stem Cell Banking Resource Center in Jerudong Park Medical Center, Brunei.

Quick Buy Stem Cells Market Research Report: https://www.coherentmarketinsights.com/insight/buy-now/4222

Statistics:

Adult stem cells held dominant position in the global stem cells market in 2019, accounting for81.2%share in terms of value, followed by Human Embryonic Stem Cells and Induced Pluripotent Stem Cells, respectively

Figure 1. GlobalStem CellsMarket Share (%), by Value, by Cell Type, 2019.

GlobalStem CellsMarket: Restraints

High cost of stem cell therapy is expected to hinder growth of the global stem cells market. For instance, Bioinformant a research firm engaged in stem cell research, reported that the cost of stem cell therapy ranges between US$ 5,000-8,000 per patient and in some cases it may rise as much as US$ 25,000 or more depending on the complexity of the procedure.

Moreover, restrictions on research activities related to stem cells had hampered the growth of embryonic stem cells historically and resulted in its meager share in the total market in spite of its advantages over adult stem cells.

Got any Query? Feel free to ask us at : https://www.coherentmarketinsights.com/insight/talk-to-analyst/4222

GlobalStem CellsMarket: Opportunities

R&D in stem cell donation is expected to offer lucrative growth opportunities for players in the global stem cells market. For instance, in March 2020, researchers from Dankook University and Catholic University, South Korea, reported investigation of the types and degrees of physical and psychological discomfort experienced by hematopoietic stem cell donors before, during, and after the donation process.

Moreover, adoption of online distribution channel is also expected to aid in growth of the global stem cells market. For instance, The US Direct-to-Consumer Marketplace for Autologous Stem Cell Interventions, published in the journal Perspectives in Biology and Medicine, in 2018, the number of new stem cell businesses with websites doubled on average every year between 2009 and 2014, in the U.S.

The global stem cells market was valued atUS$ 9,112.0 Mnin2019and is forecast to reach a value ofUS$ 18,289.9 Mnby2027at aCAGR of 9.1%between2020 and 2027.

Figure 2. GlobalStem CellsMarket Value (US$ Mn), and Y-o-Y Growth (%), 2019-2027

Market Trends/Key Takeaways

Adoption of stem cells for the treatment of various diseases is expected to propel growth of the global stem cells market. For instance, in January 2020, researchers at University of Houston developed biologic cardiac pacemaker-like cells by taking fat stem cells and reprogramming them as an alternative treatment for heart conditions such as conduction system disorders and heart attacks.

Moreover, increasing investment in stem cell therapies is also expected to aid in growth of the market. For instance, in July 2018, the Emory Orthopaedics & Spine Center, in collaboration with Sanford Health, Duke University, Andrews Institute, and Georgia Institute of Technology, received US$ 13 million grant from the Marcus Foundation for a multicenter clinical trial studying stem cell options for treating osteoarthritis. The Phase 3 trial was initiated in March 2019, and is expected to complete by December 2021.

GlobalStem CellsMarket: Competitive Landscape

Major players operating in the global stem cells market include Advanced Cell Technology, Inc., Angel Biotechnology Holdings PLC, Bioheart Inc., Lineage Cell Therapeutics., BrainStorm Cell Therapeutics, Inc., California Stem Cell Inc., Celgene Corporation, Takara Bio Europe AB, Cellular Engineering Technologies, Cytori Therapeutics Inc., Osiris Therapeutics, and STEMCELL Technologies Inc.

View Press Release For More Information @ https://www.coherentmarketinsights.com/press-release/stem-cells-market-3491

GlobalStem CellsMarket: Key Developments

Major players in the market are focused on adopting collaboration and partnership strategies to expand their product portfolio. For instance, in September 2018, STEMCELL Technologies signed an exclusive license agreement with Brigham and Womens Hospital for rights to commercialize technologies for the generation of human pluripotent stem cell-derived kidney organoids.

Coherent Market Insights is a global market intelligence and consulting organization focused on assisting our plethora of clients achieve transformational growth by helping them make critical business decisions. We are headquartered in India, having office at global financial capital in the U.S. and sales consultants in United Kingdom and Japan. Our client base includes players from across various business verticals in over 150 countries worldwide. We pride ourselves in catering to clients across the length and width of the horizon, from Fortune 500 enlisted companies, to not-for-profit organization, and startups looking to establish a foothold in the market. We excel in offering unmatched actionable market intelligence across various industry verticals, including chemicals and materials, healthcare, and food & beverages, consumer goods, packaging, semiconductors, software and services, Telecom, and Automotive. We offer syndicated market intelligence reports, customized research solutions, and consulting services.

To know more about us, please visit our website http://www.coherentmarketinsights.com

Contact:

Coherent Market Insights1001 4th Ave, #3200 Seattle, WA 98154, U.S.Email:sales@coherentmarketinsights.comUnited States of America: +1-206-701-6702United Kingdom: +44-020-8133-4027Japan: +050-5539-1737India: +91-848-285-0837

Follow this link:
Stem Cells Market to Inspire a Growth up to US$ 18289.9 Million at a 9.1% CAGR by 2027 - PharmiWeb.com

To Read More: Stem Cells Market to Inspire a Growth up to US$ 18289.9 Million at a 9.1% CAGR by 2027 – PharmiWeb.com
categoriaCardiac Stem Cells commentoComments Off on Stem Cells Market to Inspire a Growth up to US$ 18289.9 Million at a 9.1% CAGR by 2027 – PharmiWeb.com | dataFebruary 19th, 2021
Read All

The Untapped Potential of Cell and Gene Therapy – AJMC.com Managed Markets Network

By daniellenierenberg

We can absolutely cut the number of cancer deaths down so that one day in our lifetimes it can be a rare thing for people to die of cancer, said Patrick Hwu, MD, president and CEO of Moffitt Cancer Center in Florida and among gene therapys pioneers. It still may happen here and there, but itll be kind of like people dying of pneumonia. Its like, He died of pneumonia? Thats kind of weird. I think cancer can be the same way.

The excitement returned in spades in 2017 when the FDA signed off on a gene-therapy drug for the first time, approving the chimeric antigen receptor (CAR) T-cell treatment tisagenlecleucel (Kymriah; Novartis) for the treatment of B-cell precursor acute lymphoblastic leukemia. At last, scientists had devised a way to reprogram a persons own T cells to attack tumor cells.

Were entering a new frontier, said Scott Gottlieb, MD, then the FDA Commissioner, in announcing the groundbreaking approval.

Gottlieb wasnt exaggerating. The growth in CAR T-cell treatments is exploding. Although only a handful of cell and gene therapies are on the market, FDA officials predicted in 2019 that the agency will receive more than 200 investigational new drug applications per year for cell and gene therapies, and that by 2025, it expects to have accelerated to 10 to 20 cell and gene therapy approvals per year.1

Essentially, you can kill any cancer cell that has an antigen that is recognized by the immune cell, Hwu said. The key to curing every single cancer, which is our goal, is to have receptors that can recognize the tumor but dont recognize the normal cells. Receptors recognizing and then attacking normal cells is what can cause toxicity.

Cell therapy involves cultivating or modifying immune cells outside the body before injecting them into the patient. Cells may be autologous (self-provided) or allogeneic (donor-provided); they include hematopoietic stem cells and adult and embryonic stem cells. Gene therapy modifies or manipulates cell expression. There is considerable overlap between the 2 disciplines.

Juliette Hordeaux, PhD, senior director of translational research for the University of Pennsylvanias gene therapy program, is cautious about the FDAs predictions, saying shed be thrilled with 5 cell and/or gene therapy approvals annually.

For monogenic diseases, there are only a certain number of mutations, and then well plateau until we reach a stage where we can go after more common diseases, Hordeaux said.

Safety has been the main brake around adeno-associated virus vector (AAV) gene therapy, added Hordeaux, whose hospitals program has the institutional memory of both Jesse Gelsingers tragic death during a 1999 gene therapy trial as well as breakthroughs by Carl June, MD, and others in CAR T-cell therapy.

Sometimes there are unexpected toxicity [events] in trials.I think figuring out ways to make gene therapy safer is going to be the next goal for the field before we can even envision many more drugs approved.

In total, 3 CAR T-cell therapies are now on the market, all targeting the CD19 antigen. Tisagenlecleucel was the first. Gilead Sciences received approval in October 2017 for axicabtagene ciloleucel (axi-cel; Yescarta), a CAR T-cell therapy for adults with large B-cell non-Hodgkin lymphoma. Kite Pharma, a subsidiary of Gilead, received an accelerated approval in July 2020 for brexucabtagene autoleucel (Tecartus) for adults with relapsed or refractory mantle cell lymphoma.

On February 5, 2021, the FDA approved another CD19-directed therapy for relapsed/refractory large B-cell lymphoma, lisocabtagene maraleucel (liso-cel; JCAR017; Bristol Myers Squibb). The original approval date was missed due to a delay in inspecting a manufacturing facility (see related article).

Idecabtagene vicleucel (ide-cel; bb2121; Bristol Myers Squibb) is under priority FDA review, with a decision expected by March 31, 2021. The biologics license application seeks approval for ide-cel, a B-cell maturation antigendirected CAR therapy, to treat adult patients with multiple myeloma who have received at least 3 prior therapies.2

The number of clinical trials evaluating CAR T-cell therapies has risen sharply since 2015, when investigators counted a total of 78 studies registered on the ClinicalTrials.gov website. In June 2020, the site listed 671 trials, including 357 registered in China, 256 in the United States, and 58 in other countries.3

Natural killer (NK) cells are the research focus of Dean Lee, MD, PhD, a physician in the Division of Hematology and Oncology at Nationwide Childrens Hospital. He developed a method for consistent, robust expansion of highly active clinical-grade NK cells that enables repeated delivery of large cell doses for improved efficacy. This finding led to several first-in-human clinical trials evaluating adoptive immunotherapy with expanded NK cells under an FDA Investigational New Drug application. He is developing both genetic and nongenetic methods to improve tumor targeting and tissue homing of NK cells. His eff orts are geared toward pediatric sarcomas.

The biggest emphasis over the past 20 to 25 years has been cell therapy for cancer, talking about trying to transfer a specific part of the immune system for cells, said Lee, who is also director of the Cellular Therapy and Cancer Immunology Program at Nationwide Childrens Hospital, at The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital, and at the Richard J. Solove Research Institute.

The Pivot Toward Treating COVID-19 and Other Diseases

However, Lee said, NKs have wider potential. This is kind of a natural swing back. Now that we know we can grow them, we can reengineer them against infectious disease targets and use them in that [space], he said.

Lee is part of a coronavirus disease 2019 (COVID-19) clinical trial, partnering with Kiadis, for off-the-shelf K-NK cells using Kiadis proprietary platforms. Such treatment would be a postexposure preemptive therapy for treating COVID-19. Lee said the pivot toward treating COVID-19 with cell therapy was because some of the very early reports on immune responses to coronavirus, both original [SARS-CoV-2] and the new [mutation], seem to implicate that those who did poorly [overall] had poorly functioning NK cells.

The revolutionary gene editing tool CRISPR is making its initial impact in clinical trials outside the cancer area. Its developers, Jennifer Doudna, PhD, and Emmanuelle Charpentier, PhD, won the Nobel Prize in Chemistry 2020.

For patients with sickle cell disease (SCD), CRISPR was used to reengineer bone marrow cells to produce fetal hemoglobin, with the hope that the protein would turn deformed red blood cells into healthy ones. National Public Radio did a story on one patient who, so far, thanks to CRISPR, has been liberated from the attacks of SCD that typically have sent her to the hospital, as well from the need for blood transfusions.4

Its a miracle, you know? the patient, Victoria Gray of Forest, Mississippi, told NPR.

She was among 10 patients with SCD or transfusion-dependent beta-thalassemia treated with promising results, as reported by the New England Journal of Medicine.5 Two different groups, one based in Nashville, which treated Gray,5 and another based at Dana-Farber Cancer Institute in Boston,6 have reported on this technology.

Stephen Gottschalk, MD, chair of the department of bone marrow transplantation and cellular therapy at St Jude Childrens Research Hospital, said, Theres a lot of activity to really explore these therapies with diseases that are much more common than cancer.

Animal models use T cells to reverse cardiac fibrosis, for instance, Gottschalk said. Using T cells to reverse pathologies associated with senescence, such as conditions associated with inflammatory clots, are also being studied.

Hordeaux said she foresees AAV being used more widely to transmit neurons to attack neurodegenerative diseases.

The neurons are easily transduced by AAV naturally, she said. AAV naturally goes into neurons very efficiently, and neurons are long lived. Once we inject genetic matter, its good for life, because you dont renew neurons.

Logistical Issues

Speed is of the essence, as delays in producing therapies can be the difference between life and death, but the approval process takes time. The process of working out all kinks in manufacturing also remains a challenge. Rapid production is difficult, too, because of the necessary customization of doses and the need to ensure a safe and effective transfer of cells from the patient to the manufacturing center and back into the patient.7

Other factors that can slow down launches include insurance coverage, site certification, staff training, reimbursement, and patient identification. The question of how to reimburse has not been definitively answered; at this point, insurers are being asked to issue 6- or even 7-figure payments for treatments and therapies that may not work.8

CAR T, I think, will become part of the standard of care, Gottschalk said. The question is how to best get that accomplished. To address the tribulations of some autologous products, a lot of groups are working with off -the-shelf products to get around some of the manufacturing bottlenecks. I believe those issues will be solved in the long run.

References

1. Statement from FDA Commissioner Scott Gottlieb, MD, and Peter Marks, MD, PhD, director of the Center for Biologics Evaluation and Research on new policies to advance development of safe and effective cell and gene therapies. News release. FDA website. January 15, 2019. https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-peter-marks-md-phd-director-center-biologics. Accessed January 13, 2021.

2. Bristol Myers Squibb provides regulatory update on lisocabtagene maraleucel (liso-cel). News release. Bristol Myers Squibb; November 16, 2020. Accessed January 11, 2021. https://news.bms.com/news/details/2020/Bristol-Myers-Squibb-Provides-Regulatory-Update-on-Lisocabtagene-Maraleucel-liso-cel/default.aspx

3. Wei J, Guo Y, Wang Y. et al. Clinical development of CAR T cell therapy in China: 2020 update. Cell Mol Immunol. Published online September 30, 2020. doi:10.1038/s41423-020-00555-x

4. Stein R. CRISPR for sickle cell diseases shows promise in early test. Public Radio East. November 19, 2019. Accessed January 11, 2021. https://www.publicradioeast.org/post/crisprsickle-cell-disease-shows-promise-early-test

5. Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and -Thalassemia. N Engl J Med. Published online December 5, 2020. DOI: 10.1056/NEJMoa2031054

6. Esrick EB, Lehmann LE, Biffi A, et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med. Published online December 5, 2020. doi:10.1056/NEJMoa2029392

7. Yednak C. The gene therapy race. PwC. February 5, 2020. Accessed January 11, 2021. https://www.pwc.com/us/en/industries/healthindustries/library/gene-therapy-race.html

8. Gene therapies require advanced capabilities to succeed after approval. PwC website. Accessed January 11, 2021. https://www.pwc.com/us/en/industries/health-industries/library/commercializing-gene-therapies.html

Read more here:
The Untapped Potential of Cell and Gene Therapy - AJMC.com Managed Markets Network

To Read More: The Untapped Potential of Cell and Gene Therapy – AJMC.com Managed Markets Network
categoriaCardiac Stem Cells commentoComments Off on The Untapped Potential of Cell and Gene Therapy – AJMC.com Managed Markets Network | dataFebruary 19th, 2021
Read All

Grayson-Jockey Club Research Foundation Board approves record funding for Equine Research – Past The Wire

By daniellenierenberg

LEXINGTON, Ky. Board of directors of Grayson-Jockey Club Research Foundation announced today that it has authorized expenditure of $1,638,434, the most that the foundation has ever allocated in a year, to fund 12 new projects at 12 universities, 12 continuing projects, and two career development awards worth $20,000 each. This marks the seventh straight year that more than $1 million has been approved. The 2021 slate of research brings Grayson-Jockey Club Research Foundations totals since 1983 to more than $30.6million to underwrite 396 projects at 45 universities.

We are heartened by the continued commitment of universities to supporting equine veterinary research throughout these difficult times and that we are able to distribute more funding than ever before, enabling us to help horses of all breeds and disciplines, said Dell Hancock, chair of Grayson.

Despite a challenging year, Grayson-Jockey Club was excited to receive 51 grant applications from a variety of veterinary institutions in North America as well as five other countries, said Dr. Stephen M. Reed, chair of Graysons research advisory committee. The subject matter is diverse and ranges from identifying new methods to treat and prevent infectious disease to development of computational models using big data to investigation of novel imaging techniques to prevent orthopedic injuries.

Below is an alphabetical list by school of the new projects:

Passive Immunization of Foals with RNA-AB against R Equi

Jeroen Pollet, Baylor College of Medicine

By inhalation therapy, we intend to deliver the genetic code for a protective antibody against Rhodococcus equi into the lung cells of newborn foals, to rapidly protect them against infection.

Hyperthermia and Acidosis in Exertional Muscle Damage

Michael Davis,Oklahoma State University

This project will identify an underlying cause of exercise-associated muscle fatigue and soreness and allow trainers to more precisely condition horses with fewer training days lost to muscle soreness.

Developing an Improved Serological Test for Strangles

Noah Cohen, Texas A&M

We propose to develop a more accurate blood test to identify horses infected with the bacterium that causes strangles to improve control and prevention of strangles.

Mitigation of Equine Recurrent Uveitis through SOCS

Joseph Larkin, University of Florida

We seek to design a topical eye drop, using a natural protein, which helps to prevent pain and blindness associated with equine recurrent uveitis.

Environmental Origins of Equine Antimicrobial Resistance

Brandy Burgess, University of Georgia

This study will elucidate how antimicrobial resistance and virulence determinants are shared among horses and hospital environment, as well as the role antimicrobial exposure plays at this interface.

Treatment of Joint Injury with Mesenchymal Stromal Cells

Thomas Koch, University of Guelph

Evaluation of equine umbilical cord blood-derived mesenchymal stromal cells to treat joint injuries in horses.

Optimizing Bone Growth to Reduce Equine Fracture

Mariana Kersh, University of Illinois UrbanaChampaign

Reduction in distal limb fractures through exercise in young horses would have a significant positive impact on horse welfare and the economics and public perception of the horse industry.

New Generation Equine Influenza Bivalent VLP Vaccine

Thomas Chambers, University of Kentucky

We propose to create a novel, safe and effective vaccine for equine influenza based on the 21st-century technology of noninfectious virus-like particles produced in plants.

Injury Prediction from Stride Derived Racing Load

Chris Whitton, University of Melbourne

By studying patterns in bone fatigue accrual over time in racehorses, we will better, and earlier, identify horses at risk of limb injury, facilitating timely evidence based preventative strategies.

Predicting Exercising Arrhythmias with Resting ECGs

Molly McCue, University of Minnesota

We will use at rest ECGs to identify horses with irregular heart rhythms at exercise that can cause sudden cardiac death (SCD), allowing for increased monitoring and improved understanding of SCD.

Understanding and Preventing Supporting Limb Laminitis

Andrew Van Eps,University of Pennsylvania

We aim to make supporting limb laminitis preventable through analysis of archived model tissues, a multi-center limb motion study of horses at risk, and development of a prototype therapeutic device.

Diagnosis of Incipient Condylar Stress Fracture

Peter Muir,University of Wisconsin-Madison

This study will save the lives of racehorses by establishing screening using fetlock CT for diagnosis of horses with a high risk of imminent serious injury for personalized clinical care.

The Storm Cat Career Development Award, inaugurated in 2006, grants $20,000 to an individual considering a career in equine research.This years recipient is Dr. Callum G. Donelly of the University of California, Davis. Dr. Donelly has completed his residency program and is in a research training position under the mentorship of Dr. Carrie Fino. His project, Proteomic Investigation of Equine Spinal Ataxia, is expected to identify novel protein biomarkers that differentiate normal horses from those with spinal ataxia, with high sensitivity and specificity.

The Elaine and Bertram Klein Career Development Award was first awarded in 2015 and grants $20,000 to a prospective equine researcher. This years recipient is Dr. Aileen Rowland of Texas A&M University. Dr. Rowlands research focuses on the efficacy of xenogeny-free mesenchymal stem cells for osteoarthritis.

We are pleased to continue our funding of two career development awards to support individuals passionate about equine research, said Dr. Johnny Mac Smith, consultant to the research advisory committee. Dr. Donelly and Dr. Rowland are worthy recipients of these grants, and I look forward to seeing how their current and future projects contribute to improving equine health in the future.

Details on the new projects are available at the following link:grayson-jockeyclub.org/default.asp?section=2&area=Research&menu=2.

Grayson-Jockey Club Research Foundation is traditionally the nations leading source of equine research funding. The projects it supports enhance the health and safety of horses of all breeds. Additional information about the foundation is available atgrayson.jockeyclub.org.

Press Release

Link:
Grayson-Jockey Club Research Foundation Board approves record funding for Equine Research - Past The Wire

To Read More: Grayson-Jockey Club Research Foundation Board approves record funding for Equine Research – Past The Wire
categoriaCardiac Stem Cells commentoComments Off on Grayson-Jockey Club Research Foundation Board approves record funding for Equine Research – Past The Wire | dataFebruary 19th, 2021
Read All

Astellas and Seagen Announce Submission of Two Supplemental Biologics License Applications to the US FDA for PADCEV (enfortumab vedotin-ejfv) in…

By daniellenierenberg

TOKYOand BOTHELL, Wash., Feb. 18, 2021 /PRNewswire/ --Astellas Pharma Inc. (TSE: 4503, President and CEO: Kenji Yasukawa, Ph.D., "Astellas") and Seagen Inc. (Nasdaq:SGEN) today announced completion of submissions for two supplemental Biologics License Applications (sBLAs) to the U.S. Food and Drug Administration (FDA) for PADCEV (enfortumab vedotin-ejfv). One submission, based on the phase 3 EV-301 trial, seeks to convert PADCEV's accelerated approval to regular approval. The second submission, based on the pivotal trial EV-201's second cohort, requests an expansion of the current label to include patients with locally advanced or metastatic urothelial cancer who have been previously treated with a PD-1/L1 inhibitor and are ineligible for cisplatin.

The FDA is reviewing both applications under the Real-Time Oncology Review (RTOR) pilot program. The RTOR program aims to explore a more efficient review process to ensure that safe and effective treatments are available to patients as early as possible.

"The FDA's review of our applications under Real-Time Oncology Review supports our efforts to expand PADCEV's availability as a treatment option for more patients as quickly as possible," said Andrew Krivoshik, M.D., Ph.D., Senior Vice President and Oncology Therapeutic Area Head, Astellas. "Locally advanced or metastatic urothelial cancer is an aggressive disease with limited treatment options."

The sBLA for regular approval of PADCEV in the U.S. is supported by data from the global EV-301 phase 3 confirmatory trial, which compared PADCEV to chemotherapy in adult patients with locally advanced or metastatic urothelial cancer who were previously treated with platinum-based chemotherapy and a PD-1/L1 inhibitor. The trial's primary endpoint was overall survival of patients treated with PADCEV vs. chemotherapy, and full results were presented at the 2021 American Society of Clinical Oncology Genitourinary Cancers Symposium (ASCO GU) and published in the New England Journal of Medicine.[1]

The second submission, for a label expansion in the U.S., is based on results from the second cohort of EV-201, a pivotal phase 2 clinical trial evaluating PADCEV in patients with locally advanced or metastatic urothelial cancer who had received prior immunotherapy treatment but were not eligible for cisplatin. The trial's primary endpoint was objective response rate, and full results were presented at ASCO GU.[2]

"Advanced bladder cancer patients urgently need more treatment options," said Roger Dansey, M.D., Chief Medical Officer, Seagen. "Based on recently presented clinical trial results, PADCEV could address a significant unmet need for more patients with advanced urothelial cancer after initial immunotherapy treatment."

In 2019 PADCEV received accelerated approval in the U.S. for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received a PD-1/L1 inhibitor and a platinum-containing chemotherapy before (neoadjuvant) or after (adjuvant) surgery in a locally advanced or metastatic urothelial cancer setting. PADCEV is currently only approved for use in the U.S.

About the EV-301 TrialThe EV-301 trial (NCT03474107) is a global, multicenter, open-label, randomized phase 3 trial designed to evaluate enfortumab vedotin versus physician's choice of chemotherapy (docetaxel, paclitaxel or vinflunine) in approximately 600 patients with locally advanced or metastatic urothelial cancer who were previously treated with a PD-1/L1 inhibitor and platinum-based therapies. The primary endpoint is overall survival and secondary endpoints include progression-free survival, overall response rate, duration of response and disease control rate, as well as assessment of safety/tolerability and quality-of-life parameters.

About the EV-201 TrialThe EV-201 trial (NCT03219333) is a single-arm, dual-cohort, pivotal phase 2 clinical trial of enfortumab vedotin for patients with locally advanced or metastatic urothelial cancer who have been previously treated with a PD-1 or PD-L1 inhibitor, including those who have also been treated with a platinum-containing chemotherapy (cohort 1) and those who have not received a platinum-containing chemotherapy in this setting and who are ineligible for cisplatin (cohort 2). The trial enrolled 128 patients in cohort 1 and 91 patients in cohort 2 at multiple centers internationally. The primary endpoint is confirmed objective response rate per blinded independent central review. Secondary endpoints include assessments of duration of response, disease control rate, progression-free survival, overall survival, safety and tolerability.

About Urothelial CancerUrothelial cancer is the most common type of bladder cancer (90 percent of cases) and can also be found in the renal pelvis (where urine collects inside the kidney), ureter (tube that connects the kidneys to the bladder) and urethra.[3] Globally, approximately 549,000 new cases of bladder cancer and 200,000 deaths are reported annually.[4]

About PADCEV (enfortumab vedotin-ejfv)PADCEV was approved by the U.S. Food and Drug Administration (FDA) in December 2019 and is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received a programmed death receptor-1 (PD-1) or programmed death-ligand 1 (PD-L1) inhibitor, and a platinum-containing chemotherapy before (neoadjuvant) or after (adjuvant) surgery or in a locally advanced or metastatic setting. PADCEV was approved under the FDA's Accelerated Approval Program based on tumor response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.[5]

PADCEV is a first-in-class antibody-drug conjugate (ADC) that is directed against Nectin-4, a protein located on the surface of cells and highly expressed in bladder cancer.5,[6] Nonclinical data suggest the anticancer activity of PADCEV is due to its binding to Nectin-4 expressing cells followed by the internalization and release of the anti-tumor agent monomethyl auristatin E (MMAE) into the cell, which result in the cell not reproducing (cell cycle arrest) and in programmed cell death (apoptosis).5 PADCEV is co-developed by Astellas and Seagen.

PADCEV Important Safety Information

Warnings and Precautions

Adverse ReactionsSerious adverse reactions occurred in 46% of patients treated with PADCEV. The most common serious adverse reactions (3%) were urinary tract infection (6%), cellulitis (5%), febrile neutropenia (4%), diarrhea (4%), sepsis (3%), acute kidney injury (3%), dyspnea (3%), and rash (3%). Fatal adverse reactions occurred in 3.2% of patients, including acute respiratory failure, aspiration pneumonia, cardiac disorder, and sepsis (each 0.8%).

Adverse reactions leading to discontinuation occurred in 16% of patients; the most common adverse reaction leading to discontinuation was peripheral neuropathy (6%). Adverse reactions leading to dose interruption occurred in 64% of patients; the most common adverse reactions leading to dose interruption were peripheral neuropathy (18%), rash (9%) and fatigue (6%). Adverse reactions leading to dose reduction occurred in 34% of patients; the most common adverse reactions leading to dose reduction were peripheral neuropathy (12%), rash (6%) and fatigue (4%).

The most common adverse reactions (20%) were fatigue (56%), peripheral neuropathy (56%), decreased appetite (52%), rash (52%), alopecia (50%), nausea (45%), dysgeusia (42%), diarrhea (42%), dry eye (40%), pruritus (26%) and dry skin (26%). The most common Grade 3 adverse reactions (5%) were rash (13%), diarrhea (6%) and fatigue (6%).

Lab AbnormalitiesIn one clinical trial, Grade 3-4 laboratory abnormalities reported in 5% were: lymphocytes decreased (10%), hemoglobin decreased (10%), phosphate decreased (10%), lipase increased (9%), sodium decreased (8%), glucose increased (8%), urate increased (7%), neutrophils decreased (5%).

Drug Interactions

Specific Populations

For more information, please see the full Prescribing Information for PADCEV here.

About Astellas Astellas Pharma Inc. is a pharmaceutical company conducting business in more than 70 countries around the world. We are promoting the Focus Area Approach that is designed to identify opportunities for the continuous creation of new drugs to address diseases with high unmet medical needs by focusing on Biology and Modality. Furthermore, we are also looking beyond our foundational Rx focus to create Rx+ healthcare solutions that combine our expertise and knowledge with cutting-edge technology in different fields of external partners. Through these efforts, Astellas stands on the forefront of healthcare change to turn innovative science into value for patients. For more information, please visit our website athttps://www.astellas.com/en.

About Seagen Seagen Inc. is a global biotechnology company that discovers, develops and commercializes transformative cancer medicines to make a meaningful difference in people's lives. Seagen is headquartered in the Seattle, Washington area, and has locations in California, Canada, Switzerland and the European Union. For more information on our marketed products and robust pipeline, visit http://www.seagen.com and follow @SeagenGlobal on Twitter.

About the Astellas and Seagen CollaborationAstellas and Seagen are co-developing enfortumab vedotin under a collaboration that was entered into in 2007 and expanded in 2009.

Astellas Cautionary NotesIn this press release, statements made with respect to current plans, estimates, strategies and beliefs and other statements that are not historical facts are forward-looking statements about the future performance of Astellas. These statements are based on management's current assumptions and beliefs in light of the information currently available to it and involve known and unknown risks and uncertainties. A number of factors could cause actual results to differ materially from those discussed in the forward-looking statements. Such factors include, but are not limited to: (i) changes in general economic conditions and in laws and regulations, relating to pharmaceutical markets, (ii) currency exchange rate fluctuations, (iii) delays in new product launches, (iv) the inability of Astellas to market existing and new products effectively, (v) the inability of Astellas to continue to effectively research and develop products accepted by customers in highly competitive markets, and (vi) infringements of Astellas' intellectual property rights by third parties.

Information about pharmaceutical products (including products currently in development), which is included in this press release is not intended to constitute an advertisement or medical advice.

Seagen Forward Looking StatementsCertain statements made in this press release are forward looking, such as those, among others, relating to the potential conversion of PADCEV's current accelerated approval in the U.S. to regular approval and the potential expansion of the current PADCEV label to include patients with locally advanced or metastatic urothelial cancer who have been previously treated with a PD-1/L1 inhibitor and are ineligible for cisplatin, and the therapeutic potential of PADCEV, including its efficacy, safety and therapeutic uses. Actual results or developments may differ materially from those projected or implied in these forward-looking statements. Factors that may cause such a difference include, without limitation, the possibility that the sBLA submissions based on the EV-301 and EV-201 second cohort clinical trials may not be accepted for filing by, or ultimately approved by, the FDA in a timely manner or at all; that the results of the EV-301 clinical trial may not be sufficient to convert PADCEV's accelerated approval in the U.S. to regular approval and that the results of the second cohort of the EV-201 clinical trial may not be sufficient to support the requested label expansion; that, even if PADCEV receives regular approval and even if the PADCEV label is expanded based on the results of the second cohort of the EV-201 clinical trial, the product labeling may not be as broad or desirable as requested or anticipated; and that setbacks in the development and commercialization of PADCEV could occur as a result of the difficulty and uncertainty of pharmaceutical product development, the risk of adverse events or safety signals, the failure of ongoing and subsequent clinical trials to establish sufficient efficacy, or as a result of adverse regulatory actions. More information about the risks and uncertainties faced by Seagen is contained under the caption "Risk Factors" included in the company's Annual Report on Form 10-K for the year ended December 31, 2020 filed with the Securities and Exchange Commission. Seagen disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

[1]Powles T, Rosenberg J, Sonpavde G, et al. Primary Results of EV-301: A Phase 3 Trial of Enfortumab Vedotin vs Chemotherapy in Patients With Previously Treated Locally Advanced or Metastatic Urothelial Carcinoma. ASCO Meeting Library 2021. https://meetinglibrary.asco.org/record/194738/abstract. Accessed February 11, 2021.[2] Balar AV, McGregor B, Rosenberg J, et al. EV-201 Cohort 2: Enfortumab vedotin in cisplatin-ineligible patients with locally advanced or metastatic urothelial cancer who received prior PD-1/PD-L1 inhibitors. ASCO Meeting Library 2021. https://meetinglibrary.asco.org/record/194731/abstract. Accessed February 11, 2021.[3]American Society of Clinical Oncology. Bladder cancer: introduction (5-2019). https://www.cancer.net/cancer-types/bladder-cancer/introduction. Accessed January 27, 2021.[4]Cancer today: data visualization tools for exploring the global cancer burden in 2020. https://gco.iarc.fr/today/home. Accessed January 27, 2021.[5]PADCEV [package insert] Northbrook, IL: Astellas Pharma Inc.[6]Challita-Eid P, Satpayev D, Yang P, et al. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res 2016;76(10):3003-13.

SOURCE Astellas Pharma Inc.

http://www.us.astellas.com

Link:
Astellas and Seagen Announce Submission of Two Supplemental Biologics License Applications to the US FDA for PADCEV (enfortumab vedotin-ejfv) in...

To Read More: Astellas and Seagen Announce Submission of Two Supplemental Biologics License Applications to the US FDA for PADCEV (enfortumab vedotin-ejfv) in…
categoriaCardiac Stem Cells commentoComments Off on Astellas and Seagen Announce Submission of Two Supplemental Biologics License Applications to the US FDA for PADCEV (enfortumab vedotin-ejfv) in… | dataFebruary 19th, 2021
Read All

Tissue regeneration: Reserve or reverse? – Science Magazine

By daniellenierenberg

A cross section of mouse small intestine, showing intestinal crypts and villi, is visualized with immunofluorescence microscopy (nuclei in red, and F-actin, which marks the cytoskeleton, in blue). Intestinal stem cells reside at the base of crypts, where they maintain cell turnover.

Tissues with high intrinsic turnover, such as the skin and intestinal lining, rely on resident stem cells, which generate all native cell types. Intestinal stem cells (ISCs) are highly sensitive to damage, although they recover quickly. It is unclear whether this recovery (i.e., regeneration) occurs from less sensitive pools of reserve stem cells (1) or whether ISC progeny undergo reverse differentiation into stem cells (2). Recent studies in diverse organs highlight that dedifferentiation of specified cell types is a pervasive and dominant means for tissue regeneration. The findings have broad implications because all tissues experience some cell attrition over a lifetime, and knowing how tissues replenish those losses may help in preventing or treating organ failure. Moreover, it remains unclear whether incomplete differentiation, a common feature of cancer, reflects normal tissue plasticity, and it is unclear whether stem cells that arise by dedifferentiation may spawn cancers.

ISCs expressing leucine-rich repeatcontaining G proteincoupled receptor 5 (Lgr5) lie at the bottom of small bowel crypts (3). In the course of homeostatic tissue turnover, their immediate progeny adopt alternative enterocyte or secretory fates, then fill the crypts with replicating progenitors that migrate away from ISCs. Cell division ceases at the crypt tops, where postmitotic cells begin a 3- to 5-day journey along intestinal villi. When ISCs sustain irreparable damage, some source in the crypt must regenerate new ISCs. Other adult epitheliasuch as airways, prostate, and liverare organized differently from the intestine and from each other (see the figure). These epithelia also restore cells lost by damage or attrition, even though at rest they turn over at least a hundred times more slowly than the intestinal lining.

Airway epithelial structure varies from trachea to small bronchioles, and distinct progenitors in different segments produce assorted secretory and ciliated cell types. In the lining of human and mouse upper airways, flat basal cells lie beneath a layer of columnar differentiated cells and adjacent to submucosal myoepithelial glands. Stem cell activity in normal tissue turnover maps to a subpopulation of keratin 5 (Krt5)expressing basal cells (4). The trachea and bronchi are vulnerable to diverse injuries, including targeted destruction of Krt5+ stem cells and pervasive mucosal damage from noxious inhalants or viruses.

Adult human and mouse prostate glands also contain columnar luminal and flat KRT5+ basal cells. Distinct unipotent progenitors maintain both populations, and castration induces massive luminal cell loss. Androgen reexposure restores prostate mass within weeks, which implies the presence of castration-resistant progenitors. However, an unequivocal stem cell pool has not been identified. The liver also has notable regenerative abilities after chemical or surgical injury. The emerging consensus is that this organ lacks a dedicated stem cell compartment and recovers from damage through dedifferentiation of mature hepatocytes and biliary cells (5, 6).

Stem cell activity in vivo is demonstrated most persuasively by introducing into a tissue a permanent color or fluorescent label whose expression depends on Cre recombinasemediated excision of a STOP cassette. When Cre activity is restricted to stem cells, all the progeny of those cells exclusively carry the label. ISCs and tracheal stem cells were thus identified because targeted Cre activity in LGR5+ or KRT5+ mouse cells labeled the respective full lineages (3, 4). Investigation of tissue regeneration requires ablation of a stem cell compartment, followed by tracking of the restored ability to produce sufficient numbers of all native stem cell progeny. The canon of tissue repair rests heavily on such lineage-tracing experiments, but one limitation is that Cre recombinase is not often confined to a single defined cell type. This challenge lies at the heart of competing models for tissue recovery after lethal cell injuries.

Dividing cells take up labels such as [3H]thymidine or fluorescent histone 2B and shed these labels as they replicate further or their daughters die. In the intestine, however, rare cells located near the fourth tier from the crypt base retain [3H]thymidine for weeks. Given once-popular ideas that stem cells must be few in number and retain one immortal DNA strand when they replicate, +4 label-retaining cells (LRCs) were described as ISCs. In support of that idea, lineage tracing from Bmi1, a locus thought to be restricted to nonreplicating +4 LRCs, elicited an ISC-like response in vivo (7).

Physiologic cell turnover and recovery from injury occur from different cellular sources in diverse epithelia (intestine, upper airway, and prostate gland). Homeostatic turnover is driven by the stem cell pool, and tissue restoration from injury occurs through transient expansion and dedifferentiation of specified mature cells.

To reconcile the evidence for ISC properties in both LGR5+ crypt base columnar cells (CBCs) and +4 LRCs, researchers postulated that abundant CBCs serve as frontline ISCs, whereas the smaller +4 LRC population contains dedicated reserves. Indeed, intestinal turnover is unperturbed when LGR5+ CBCs are ablated because other crypt cells' progeny continue to repopulate villi and an LGR5+ ISC compartment is soon restored (1). Multiple candidate markers of +4 LRCs that regenerate ISCs after injury have been proposed (8). Although these cells are too few to explain the typical scale and speed of ISC restoration, the prospect of two stem cell pools carried the additional allure of a sound adaptive strategy in a tissue that requires continuous self-renewal.

ISC differentiation is, however, not strictly unidirectional. Cre expression in absorptive or secretory cell types tags those cells selectively, but upon ablation of LGR5+ CBCs, the label appears throughout (9). These observations imply that differentiated daughter cells have reverted into ISCs. Moreover, Bmi1 expression was found to mark differentiated crypt endocrine cells (10), and putative +4 markers are expressed in many crypt cells including LGR5+ CBCs. Accordingly, when Cre is expressed from these loci, the traced lineage might simply reflect CBC activity in resting animals and reverse differentiation of crypt cells after ISC ablation. But is dedifferentiation a rare and physiologically inconsequential event or the predominant mode of stem cell recovery? Dedifferentiation may obviate the need to invoke a dedicated reserve population, or it is possible that ISC recovery may reflect both dedifferentiation and contributions from a reserve stem cell population.

To investigate these issues, researchers activated a fluorescent label in LGR5+ CBCs and waited for this label to pass into progeny cells before ablating CBCs (11). Thus, only the CBCs that recover by dedifferentiation should be labeled, and any cells arising from reserve ISCs should not. Nearly every restored crypt and CBC was fluorescent, with substantial contributions from both enterocytes and secretory cells (11). Cells captured early in the restorative process coexpressed mature-cell and ISC genes, which is compatible with recovery by dedifferentiation. Another study found that damaged ISCs are reconstituted wholly by the progeny of LGR5+ CBCs (8). Thus, dedifferentiation would seem to be the principal mode of ISC regeneration, and prior conclusions about +4 ISCs likely reflect unselective Cre expression.

Different tissues might deploy distinct regenerative strategies, and recent studies in mouse airway, prostate, intestinal, and liver epithelia provide insightful lessons. After ablation of KRT5+ airway stem cells, specified secretory and club cell precursors were found to undergo clonal multilineage expansion and accounted for up to 10% of restored KRT5+ cells in vivo (12). Chemical or viral damage was subsequently reported to induce migration and dedifferentiation of submucosal gland myoepithelial cells into the basal layer to reconstitute the surface lining, including KRT5+ stem cells (13). Thus, dedifferentiation into native stem cells occurs upon injury to both airway and intestinal linings in mice.

Single-cell RNA sequencing (scRNA-seq) analysis of mouse prostate glands recently revealed distinct gene expression profiles in 3% of luminal cells, which are more clonogenic than others, express putative stem cell markers, and hence qualify as a pool enriched for native stem-like cells (14). After androgen reexposure following castration, however, the scale and distribution of cell replication and the location of restored clones were incompatible with an origin wholly within that small pool. Rather, the principal source of gland reconstitution in vivo, including new KRT5+ basal cells, was the dominant population of differentiated luminal cells (14). These observations parallel those in the liver, where recovery of organ mass after tissue injury occurs by renewed proliferation of mature resting hepatocytes (5), abetted by expansion of bile duct cells that transdifferentiate into hepatocytes (6). Cell plasticity is thus widespread, whether tissues have or lack native stem cell compartments.

Reverse differentiation in the intestine, airways, and prostate gland was generally observed after near-total elimination of resident stem or luminal cells, an extreme and artificial condition. However, several observations suggest that this dedifferentiation reflects a physiologic process designed to maintain a proper cell census. Contact with a single KRT5+ airway stem cell prevents secretory and club cell dedifferentiation in vitro (12), and tracheal submucosal glands exhibit limited stem cell activity even in the absence of injury (13). Live imaging of intestinal crypts reveals continuous and stochastic exit from and reentry into the ISC compartment (15), implying that barriers for differentiation or dedifferentiation are inherently low. However, the primary purpose of dedifferentiating airway, intestinal, liver, and prostate cells is not to enable tissue recovery. Therefore, they should be regarded as facultative stem cells; that is, they have other physiologic functions and realize a latent stem cell capacity only under duress.

This distinction from reserve stem cells is not merely semantic. Emphasis in regenerative therapy research belongs on any cell population with restorative potential; in vivo findings now direct attention away from putative reserve cells and toward dedifferentiation as a common means for tissue recovery. The absence of dedicated reserves and the inherent cellular ability to toggle between stem and differentiated states also inform cancer biology. Because mutations realize oncogenic potential only in longlived cells, both frontline and reserve stem cells represent candidate sources of cancer, in contrast to differentiated cells, which are generally short-lived. However, oncogenic mutations that arise in differentiated cells could become fixed upon dedifferentiation, thus enabling tumor development.

Notably, stem cell properties and interconversion with their progeny are not stereotypic. ISCs divide daily into two identical daughters, whereas hematopoietic stem cell replication is infrequent and asymmetric. Severe loss of blood stem cells does not elicit substantial dedifferentiation and is rescued only by adoptive stem cell transfer. Immature secretory precursors dedifferentiate more readily than terminally mature airway cells (12), whereas fully differentiated cells fuel liver and prostate regeneration. Cell plasticity in each case is determined by local signals. Unknown factors from KRT5+ tracheal stem cells, for example, suppress secretory cell dedifferentiation (12), and specific factors secreted from the prostate mesenchyme stimulate luminal cell dedifferentiation (14). The intestinal mesenchyme probably senses ISC attrition to trigger tissue recovery, but the spatial and molecular determinants remain unknown. Outstanding challenges are to identify the signaling pathways that ensure a stable cell census and to harness diverse regenerative responses to ameliorate acute tissue injuries or prevent organ failure. Knowing the cellular basis for stem cell recovery in different contexts brings us closer to those goals.

Read the rest here:
Tissue regeneration: Reserve or reverse? - Science Magazine

To Read More: Tissue regeneration: Reserve or reverse? – Science Magazine
categoriaSkin Stem Cells commentoComments Off on Tissue regeneration: Reserve or reverse? – Science Magazine | dataFebruary 19th, 2021
Read All

Heres why natural ingredients and science-backed formulations are the perfect combination – Vogue India

By daniellenierenberg

Heres a fun fact about rosehip oil: it does not smell like roses. It does, however, heal. Known as the Himalayan musk rose, this wild flowering plant has only five petals, says Roshni Laura George, who discovered the elusive bloom during her honeymoon in Kashmir, as she was researching medicinal plants through the country in the remotest parts of the valley. Every May, the musk rose bushes burst into bloom, covering trees, tumbling over cliffs and blanketing the earth with their heady scent. The hip, a powerhouse of essential nutrients, is what is left once the petals fall. Thats where the oil is extracted from, explains George, who preserved this juice in Timekeeper, a vivid amber face oil that launched her skincare brand, Rasula. We do not bleach, colour or deodorise our rosehip oil as this would deplete its natural goodness. The oil is hardly oily, the red lingers for just a few seconds before your skin drinks it up, and its nutty smell is so distinct that you can only assume it came from the roses hip. George promised it would become my one-step skincare routine (followed by sunscreen in the day, of course) and my combination-dehydrated- acne-prone-moody skin might agree.

Rosehip oil can handle the fussiest skin types. Two reasons: vitamin F and beta carotene. Vitamin F is an essential fatty acid, rich in omega-6, which produces ceramide 1, a key part of a healthy skin barrier. Beta carotene is an antioxidant that gives the oil its rich orange hue. It can neutralise free radicals from the environment, protect against UVA damage, reduce oxidative stress, and enhance the appearance of skin. Essential fatty acids in the rosehip oil are absorbed by the skin to regenerate collagen and elastin fibres that keep the skin firm and youthful, explains George. In short, it helps your skin fight for itself.

George aimed to create category-defining natural skincare for photo-aged skin. Three years of research working closely with leading institutions like IIM Jammu and the Council of Scientific and Industrial Research in Bengaluru, led to Rasula, a clean beauty brand that comes without parabens, SLS, and artificial fragrance, among other nasties. Rasulas products are handcrafted and packed by hand in recyclable glassware, and its rosehip is hand-picked from the Himalayan Range by the local women of Kashmir. While common extraction practices include cold-pressing, George took a more expensive, environmentally friendly approach to ensure her oil was more concentrated, cleaner and superior, with a longer shelf life. We flush supercritical CO2 under high pressure through the seeds, which gently removes the oil, explains George. And if youre still not convinced, know this: rosehip oil is the most inclusive ingredient in skincare. Suitable for all skin types and age groups, including pregnant women and children, the oil helps eradicate a host of skin issuesscars, burns, fine lines, stretch marks, acne, dryness, sensitivity, sun damage, uneven skin tone, age spots, eczema and more. Most importantly, it is gender-neutral, says George.

See more here:
Heres why natural ingredients and science-backed formulations are the perfect combination - Vogue India

To Read More: Heres why natural ingredients and science-backed formulations are the perfect combination – Vogue India
categoriaSkin Stem Cells commentoComments Off on Heres why natural ingredients and science-backed formulations are the perfect combination – Vogue India | dataFebruary 19th, 2021
Read All

Trupure Organics Is First 50-Plus Brand Devoted to That Market’s Distinct Needs – PRNewswire

By daniellenierenberg

CLEVELAND, Feb. 19, 2021 /PRNewswire/ -- Paulette Kaplan noticed something different as she entered into her 50s. Her skin was now dryer, and looked older than just a couple years earlier. Looking at her cabinet full of products that were supposed to work, she thought, "Nothing really works well."

As a skincare advocate, she began to consider creating her own line exclusively for the needs of the 50-plus.

In an industry obsessed with youth, Paulette found there to be a tremendous lack of skincare products made for this market.

According to an AARP national survey, "Women over age 50 make a big investment of time and money on beauty and personal grooming products, spending a whopping $22 billion annually, yet they still think that the beauty industry ignores them as they age."

Paulette was determined and began her search and discovered that some ingredients could be damaging to how skin looks and cause inflammation that works against the skin's ability to heal.

She did not want to make more 'anti-aging' potions. Or use unhealthy ingredients but to offer a clean and nourishing age perfect skincare line that would strengthen mature skin.

Trupure Organics was born with the help of scientists, chemists, and multiple formulas. A100% natural plant-based line using stem cells, bio-retinol, extracts, peptides, oils and juices. Their TruPurity promise excludes ingredients like chemicals, fragrances, dyes, parabens, GMOs, and phthalates.

What are the key goals? Provide continuous moisture, soothe, firm, protect, lift, strengthen, plump, smooth, and nourish with specific delivery systems.

Paulette explains her 50-plus line, "The focus isn't to put yourself under a magnifying glass, but actually celebrate your age by focusing on healthier radiant skin. Because when skin is healthy, it naturally looks beautiful."

Retinol is a common ingredient in skincare products because of how well it can promote collagen production. Trupure Organics No More Crepe Neck and Dcolletage Cream ($65) uses a different approach through a plant-based bio-retinol. Itwon't cause peeling, irritation, itching, or make skin considerably more sensitive to sunlight like standard retinol.

This same kind of approach is used in formulating all their plant-based products for mature skin. Visit trupureorganics.com to view the full collection of serums and creams.

References

Women 50 and Older Feel Overlooked by the Beauty Industry

Contact:

Paulette Kaplan Founder and CEO, Trupure Organics216.702.0345[emailprotected]http://www.trupureorganics.com

SOURCE Trupure Organics

Continued here:
Trupure Organics Is First 50-Plus Brand Devoted to That Market's Distinct Needs - PRNewswire

To Read More: Trupure Organics Is First 50-Plus Brand Devoted to That Market’s Distinct Needs – PRNewswire
categoriaSkin Stem Cells commentoComments Off on Trupure Organics Is First 50-Plus Brand Devoted to That Market’s Distinct Needs – PRNewswire | dataFebruary 19th, 2021
Read All

The ultimate path to skin rejuvenation – Philstar.com

By daniellenierenberg

MANILA, Philippines Breach. Reanimate. Create. This is the mantra behind La Prairies Platinum Rare Haute Rejuvenation Protocol, a new anti-aging product that is the Swiss luxury skincare brands most groundbreaking innovation yet.

La Prairie sought to go beyond skin renewal, and for the first time, we will create new skin tissue, says Dr. Daniel Stangl, La Prairies director of innovation.

This ultimate path to rejuvenation has been designed to work in three steps: breach the skin barrier, reanimate cells, and create new skin tissue.

As the first step, and in analogy to (La Prairie founder) Dr. Paul Niehans cellular therapy, the formula temporarily softens the skin barrier in order to optimally deliver the active ingredients into the skin and enhance the full potential, Stangl says.

In the second step, Platinum Rare Haute Rejuvenation Protocol reanimates cells in all skin layers, specifically stem cells and differentiated cells, which make up the majority of skin cells.

To reanimate these cells, the formula of the serum contains an exclusive platinum multi-peptide combined with two essential growth factors and La Prairies exclusive Cellular Complex. These highly potent active ingredients reanimate stem cells to produce new cells and differentiated cells to synthesize a new extracellular matrix, including fibers of collagen and elastin, as well as the hyaluronic acid, Stangl continues.

Thirdly, as a result of breaching the skins barrier and reanimating cells, La Prairie creates new skin tissue. The creation of new skin tissue in all skin layers is the fundamental process of rejuvenation, Stangl says. It literally infuses the skin with youth, improving all signs of aging as never seen before.

The product is designed as a month-long protocol, consisting of three vials. One vial is used for 10 days, day and night. After this month-long phase of intense rejuvenation, the skin needs time to re-equilibrate, notes Stangl. We therefore recommend using it for one month, four times a year.

The unique packaging includes a mini pedestal on which you put the jewel-toned vial and twist it, releasing clouds of product that you then shake to mix into a fresh serum. It displays La Prairies merging of art and science at its finest, giving its clientele the most luxurious, magical experience.

La Prairies Platinum Rare Haute Rejuvenation Protocol will be on counter at Rustans The Beauty Source on Feb. 25.

Light and cooling: Kiehls Ultra Facial Oil-free Gel Cream

One of Kiehls hero products has always been its Ultra Facial moisturizer, which can hydrate even the driest of skins. In the tropical Philippines, however, that formula might be too rich, especially for people with oily, acne-prone skin.

So now Kiehls has formulated Ultra Facial as an oil-free gel cream, a lightweight, cooling moisturizer thats perfect for our humid weather, especially in the coming summer months. Glacial glycoprotein Antarcticine hydrates skin for 24 hours, while Micronized Amino Acid helps regulate excess oil for shine control, so its suited to those with oily and combination skin who have a tendency to break out with maskne, like I do. I also love that its fragrance-, alcohol- and paraben-free.

He hearts her: Nars Claudette Collection was inspired by Francois Nars mother and first muse.

Nars limited-edition Claudette Collection is Francois Nars tribute to his mother and very first muse, Claudette, and the bohemian spirit of Paris Rive Gauche (Left Bank) in the 70s. The prints on the packaging were inspired by the prints on the dresses his mom used to wear.

Claudettes eyeshadow palette, St. Germain Des Prs, is filled with six warm, neutral shades in matte, satin and shimmer finishes. You cant go wrong with the neutrals in this palette, which are so subtle and wearable youll always end up with an elegant look, no matter which color or combination you use.

Nars cult-favorite satin Audacious lipstick comes in four shades named after his mom Claudette is a striking rust red and the other inspiring women in his life, grandmothers La and Ginette.

New to Audacious is a Sheer Matte formula with a soft-focus finish and medium-sheer coverage: Sandrine is a scarlet red; Sylvie is a berry red, and they feel so comfy and soft on the lips.

The Claudette Collection is available at Nars boutiques and Rustans The Beauty Source.

Dress your lips: Rouge Dior comes in 75 shades and new, refillable logo cases.

Christian Diors most iconic lipsticks have been released in modern, refillable packaging, and ultra-flattering finishes.

Rouge Dior 999 Velvet is a crimson-red born from the first two lipsticks launched by Christian Dior 9 and 99 and 100 Nude Look, a reinterpretation of the greige new look of 1947. (The other two icons are 080 Red Smile, one of the first reds Dior created in 1950 thats been reinvented as an intensely luminous red; and 525 Chrie, a rosewood nude whose name conveys Diors love of women and his muses.)

The legendary fashion designer not only wanted to dress women but also their smiles, so he created his first couture lipstick in 1953, eventually releasing it in over a thousand shades. Ever the visionary, Rouge Dior was already sustainable back then, as the lipsticks came in refillable cases.

Today, Peter Philips, the creative and image director for Dior Makeup, has resurrected 75 shades in new, refillable logo cases, and satin, matte, velvet and metallic finishes to flatter all skin tones.

Flowers always inspired Dior, so the formula has been enriched with floral, lip-care ingredients like red peony and pomegranate blossom extract.

Rouge Dior is available at Dior boutiques and SM Makati.

Beauty bargains: Get discounts on beloved brands at Shopee Beauty.

I love Shopee for its amazing deals and steals, so I was really excited to learn that the e-tailer has launched Shopee Beauty, a one-stop online destination for the best deals from top makeup and skincare brands.

You can find well-established, beloved brands such as Dove, TRESemm, and Cream Silk, as well as exciting finds from up-and-coming brands like Face Republic, Beauty Avenue, Teviant, and Seoul White Korea.

Brands will curate based on the latest makeup trends, and recommend products based on your needs. Youll also get fun tutorials from their favorite Shopee KOLs, product reviews, makeup tips, and giveaways on Shopee Live.

But face it: we love the bargains, right? Aside from free shipping vouchers, limited-time deals and exclusive product launches, until March 24 theyre giving discounts of up to 90 percent off on their go-to lippies, mascaras, and skincare brands.

See the original post:
The ultimate path to skin rejuvenation - Philstar.com

To Read More: The ultimate path to skin rejuvenation – Philstar.com
categoriaSkin Stem Cells commentoComments Off on The ultimate path to skin rejuvenation – Philstar.com | dataFebruary 19th, 2021
Read All

Mouth Sores from Chemo: Symptoms, Causes, and Treatments – Healthline

By daniellenierenberg

While youre receiving treatment for cancer, some of the drugs you take can cause painful sores to develop inside your mouth. You can also get them if youve had a bone marrow (stem cell) transplant as part of your cancer care.

Although they often heal on their own, these mouth sores can make it uncomfortable to eat and talk. Well discuss what you can do to relieve the pain and prevent them from getting worse.

Mouth sores can be a common side effect of cancer treatment. The condition, known as stomatitis or mucositis, is an inflammation of the tissues inside your mouth.

Whitish, ulcer-like sores can form on your cheeks, gums, lips, tongue, or on the roof or floor of your mouth. Even if you dont develop mouth ulcers, you may have patches that feel inflamed and painful, as if theyve been burned.

Anyone who is receiving chemotherapy, radiation therapy, or a bone marrow (stem cell) transplant can develop mouth sores as a side effect of these treatments.

If you have dry mouth or gum disease, or if your teeth and gums are not well taken care of, you may be at a higher risk of getting mouth sores during your treatment. Women and people who smoke or drink alcohol are also at a higher risk, according to the Oral Cancer Foundation.

If youre receiving chemotherapy, the sores could begin forming anywhere from 5 days to 2 weeks after your treatment. Depending on the specific cause, the sores could go away on their own in a few weeks, or they could last longer.

Its important to find ways to manage your pain and to watch for signs of an infection. Cancer-related mouth sores can lead to weight loss, dehydration, and other serious complications.

Cancer cells can grow very quickly. The aim of cancer treatment is to stop or slow down that growth. The cells in the mucous membranes lining your mouth are also fast-growing cells, so cancer treatments affect them, too.

Cancer treatments also keep the cells in your mouth from being able to repair themselves efficiently when theyre damaged.

Radiation therapy can also damage the glands in your mouth that make saliva. A dry mouth is more susceptible to infections that cause mouth sores.

Chemotherapy and radiation can both change the microbiome in your mouth, upsetting the balance between good and bad bacteria. The growth of harmful bacteria in your mouth can also lead to mouth sores.

Sometimes cancer treatments suppress your immune system, which may make it more likely that youll get a bacterial, viral, or fungal infection that causes mouth sores. An older infection (such as the herpes simplex virus) can also suddenly flare up again.

If youve had a bone marrow (stem cell) transplant, sores may be a sign that youve developed a condition known as graft-versus-host disease (GVHD).

When this happens, the cells in your body are attacking the transplanted cells as though they were an unhealthy invader. According to research published in Journal of Clinical and Experimental Dentistry, short-term (acute) GVHD occurs in 50 to 70 percent of stem cell transplant cases and longer-term (chronic) GVHD is seen in 30 to 50 percent of cases.

The form of GVHD that causes mouth sores is usually mild, and doctors often treat it with corticosteroid medications.

Its important to talk with your doctor if you develop mouth sores after a stem cell transplant, as some kinds of GVHD can turn serious if left untreated.

There is a good chance that youll experience mouth sores at some point during your cancer treatment. Researchers estimate that 20 to 40 percent of those who have chemotherapy and 80 percent of those who have high-dose chemotherapy will develop mucositis afterward.

Still, there are steps you and your cancer care team can take to lower your risk, reduce the severity of the sores, and promote faster healing.

About a month before your cancer treatment begins, schedule an appointment with your dentist to make sure your teeth and gums are healthy. If you have cavities, broken teeth, or gum disease, its important to come up with a dental treatment plan to take care of these conditions so they dont lead to infections later, when your immune system may be vulnerable.

If you wear braces or dentures, ask your dentist to check the fit and remove any part of the device you dont need during your treatment.

Its very important to maintain good oral hygiene practices throughout your treatment to lower your risk of infection. Brush and floss gently but regularly, avoiding any painful areas. You can also ask your dentist whether a mouth rinse with fluoride is advisable in your case.

For certain kinds of chemotherapy (bolus 5fluorouracil chemotherapy and some high-dose therapies), your healthcare team may give you ice chips to chew for 30 minutes before your treatment. This type of cold therapy can lower your risk of getting mouth sores later.

During treatment of some blood cancers, doctors may give you injections of palifermin, also known as human keratinocyte growth factor-1 (KGF-1), to prevent mouth sores.

If youre scheduled to receive high-dose chemotherapy or radiotherapy, your cancer care team may prepare your mouth using low-level laser therapy beforehand to keep you from getting mouth sores.

For people who have radiation therapy for head and neck cancers, doctors may prescribe this medicated mouthwash to minimize mouth sores.

The length of time your mouth sores may last depends on the specific cancer treatment youve had. Here are some estimates broken down by treatment:

You may notice symptoms anywhere between a few days and a few weeks after your cancer treatment. Heres what you may see and feel as mucositis develops:

You may notice that the sores become slightly crusty as they heal. Its important to keep track of your symptoms and let your oncologist know if the sores arent healing on their own.

Contact your doctor right away if you:

Untreated mouth sores can lead to malnutrition, dehydration, and life-threatening infections.

There are a few different ways that you can help mouth sores heal and avoid prolonger pain or an infection.

While the sores are healing, its very important to keep the inside of your mouth clean to prevent an infection from developing.

The National Cancer Institute recommends that you gently clean your teeth every 4 hours and just before you go to sleep at night. Here are a few tips to consider:

If the pain from mouth sores is interfering with your ability to eat and drink, your doctor may treat the condition with a opioid mouthwash or one containing doxepin or lidocaine.

To ease discomfort and keep your mouth from feeling dry, you may want to try rinsing with a mild saltwater or baking soda solution. Heres how to make each of them:

Your cancer care team may recommend that you use a lubricating liquid (artificial saliva) to moisten the inside of your mouth if dryness is a problem. These liquids are usually gel-like. They coat your mouth with a thin film to help ease discomfort and promote healing.

Some people have found it useful to rinse with a blend of medications called the magic mouthwash. Formulas for this mouthwash vary, but most of them include a combination of medications to treat different symptoms, including:

Magic or miracle mouthwash solutions usually have to be prescribed by a doctor and prepared by a pharmacist, although some people mix up an over-the-counter version at home.

There isnt enough research to say for sure whether magic mouthwash works. If you think youd like to try it, talk with your oncologist or a healthcare professional about whether its a good idea for you.

Here are a few more things you can try at home that may help ease pain from mouth sores:

Mouth sores are one of the most common side effects of cancer treatment. Shortly after chemotherapy, radiation, or transplant treatments, painful, ulcer-like sores can form on the inside of your mouth.

These sores may go away on their own. If they dont, its important to seek medical treatment for them because they can lead to very serious complications.

Before you start cancer treatments, visit a dentist to make sure your teeth and gums are healthy. Keeping up good dental hygiene practices during and after cancer treatment will help limit mouth sores.

If the sores are keeping you from eating and drinking, talk with your oncologist about medications could relieve the pain and speed up the healing process, so you can enjoy a better quality of life during treatment.

Its really important to keep track of any sores in your mouth so you can reach out to your healthcare team if they dont improve. Sores that deepen or worsen can lead to serious even life-threatening complications.

View post:
Mouth Sores from Chemo: Symptoms, Causes, and Treatments - Healthline

To Read More: Mouth Sores from Chemo: Symptoms, Causes, and Treatments – Healthline
categoriaSkin Stem Cells commentoComments Off on Mouth Sores from Chemo: Symptoms, Causes, and Treatments – Healthline | dataFebruary 19th, 2021
Read All

Initiation of Post-Primary Tuberculosis of the Lungs: Exploring the Secret Role of Bone Marrow Derived Stem Cells – DocWire News

By daniellenierenberg

This article was originally published here

Front Immunol. 2021 Jan 21;11:594572. doi: 10.3389/fimmu.2020.594572. eCollection 2020.

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative organism of pulmonary tuberculosis (PTB) now infects more than half of the world population. The efficient transmission strategy of the pathogen includes first remaining dormant inside the infected host, next undergoing reactivation to cause post-primary tuberculosis of the lungs (PPTBL) and then transmit via aerosol to the community. In this review, we are exploring recent findings on the role of bone marrow (BM) stem cell niche in Mtb dormancy and reactivation that may underlie the mechanisms of PPTBL development. We suggest that pathogens interaction with the stem cell niche may be relevant in potential inflammation induced PPTBL reactivation, which need significant research attention for the future development of novel preventive and therapeutic strategies for PPTBL, especially in a post COVID-19 pandemic world. Finally, we put forward potential animal models to study the stem cell basis of Mtb dormancy and reactivation.

PMID:33584661 | PMC:PMC7873989 | DOI:10.3389/fimmu.2020.594572

Link:
Initiation of Post-Primary Tuberculosis of the Lungs: Exploring the Secret Role of Bone Marrow Derived Stem Cells - DocWire News

To Read More: Initiation of Post-Primary Tuberculosis of the Lungs: Exploring the Secret Role of Bone Marrow Derived Stem Cells – DocWire News
categoriaBone Marrow Stem Cells commentoComments Off on Initiation of Post-Primary Tuberculosis of the Lungs: Exploring the Secret Role of Bone Marrow Derived Stem Cells – DocWire News | dataFebruary 17th, 2021
Read All

Cord Blood Banking Services Market projected to expand at a CAGR of 10.9% from 2019 to 2027 KSU | The Sentinel Newspaper – KSU | The Sentinel…

By daniellenierenberg

Transparency Market Research (TMR) has published a new report titled, Cord Blood Banking Services Market Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 20192027. According to the report, the globalcord blood banking services marketwas valued atUS$ 25.8 Mnin2018and is projected to expand at a CAGR of10.9%from2019to2027.

Overview

Request Brochure for Report https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=1741

High Incidence of genetic disorders and rise in hematopoietic stem cell transplantation rates to Drive Market

Request for Analysis of COVID19 Impact on Cord Blood Banking Services Market https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=1741

Private Cord Blood Bank Segment to Dominate Market

Buy Cord Blood Banking Services Market Report

https://www.transparencymarketresearch.com/checkout.php?rep_id=1741&ltype=S

North America to Dominate Global Market

Competitive Landscape

Contact

Transparency Market Research,

90 State Street, Suite 700,

Albany, NY 12207

Tel: +1-518-618-1030

USA Canada Toll Free: 866-552-3453

Website: https://www.transparencymarketresearch.com/

Go here to read the rest:
Cord Blood Banking Services Market projected to expand at a CAGR of 10.9% from 2019 to 2027 KSU | The Sentinel Newspaper - KSU | The Sentinel...

To Read More: Cord Blood Banking Services Market projected to expand at a CAGR of 10.9% from 2019 to 2027 KSU | The Sentinel Newspaper – KSU | The Sentinel…
categoriaBone Marrow Stem Cells commentoComments Off on Cord Blood Banking Services Market projected to expand at a CAGR of 10.9% from 2019 to 2027 KSU | The Sentinel Newspaper – KSU | The Sentinel… | dataFebruary 17th, 2021
Read All

Page 174«..1020..173174175176..180190..»


Copyright :: 2025