Vir Biotechnology and GSK Announce Start of NIH-Sponsored ACTIV-3 Trial Evaluating VIR-7831 in Hospitalized Adults with COVID-19
By Dr. Matthew Watson
– Randomized, placebo-controlled, multicenter, global Phase 3 trial will investigate the safety and efficacy of VIR-7831 in hospitalized adults with COVID-19 –
Continued here:
Vir Biotechnology and GSK Announce Start of NIH-Sponsored ACTIV-3 Trial Evaluating VIR-7831 in Hospitalized Adults with COVID-19
VistaGen Therapeutics Announces Proposed Underwritten Public Offering
By Dr. Matthew Watson
SOUTH SAN FRANCISCO, Calif., Dec. 17, 2020 (GLOBE NEWSWIRE) -- VistaGen Therapeutics, Inc. (NASDAQ: VTGN), a biopharmaceutical company committed to developing a new generation of medicines with potential to go beyond the current standard of care for anxiety, depression and other central nervous system (CNS) disorders, today announced that it commenced an underwritten public offering of units consisting of its common stock, par value $0.001 per share (the “Common Stock”), and its Series D convertible preferred stock (the “Series D Preferred Stock”). All securities to be sold in the offering are to be sold by VistaGen. The offering is subject to market and other conditions, and there can be no assurance as to whether or when the offering may be completed, or as to the actual size or terms of the offering.
See the original post:
VistaGen Therapeutics Announces Proposed Underwritten Public Offering
PRA Health Sciences collaborates with PWNHealth and Fulgent Genetics to provide at-home COVID-19 test capabilities
By Dr. Matthew Watson
PRA’s remote patient monitoring (RPM) solution now offers a suite of COVID-19 tools – diagnostic testing, clinical monitoring, and symptom reporting and management functionality PRA’s remote patient monitoring (RPM) solution now offers a suite of COVID-19 tools – diagnostic testing, clinical monitoring, and symptom reporting and management functionality
See the original post:
PRA Health Sciences collaborates with PWNHealth and Fulgent Genetics to provide at-home COVID-19 test capabilities
Editas Medicine Names Meeta Chatterjee, Ph.D., to Board of Directors
By Dr. Matthew Watson
CAMBRIDGE, Mass., Dec. 17, 2020 (GLOBE NEWSWIRE) -- Editas Medicine, Inc. (NASDAQ: EDIT), a leading genome editing company, today announced that it has appointed Meeta Chatterjee, Ph.D., to its Board of Directors.
Here is the original post:
Editas Medicine Names Meeta Chatterjee, Ph.D., to Board of Directors
Mereo BioPharma and Ultragenyx Announce Collaboration and License Agreement for Setrusumab in Osteogenesis Imperfecta
By Dr. Matthew Watson
Clinical-stage monoclonal antibody in development for rare genetic bone disease that builds on Ultragenyx’s existing bone franchise
Here is the original post:
Mereo BioPharma and Ultragenyx Announce Collaboration and License Agreement for Setrusumab in Osteogenesis Imperfecta
Saniona was informed today that Novartis plans to acquire Cadent Therapeutics, in which Saniona holds an ownership stake of approximately 3%
By Dr. Matthew Watson
PRESS RELEASE
Availability of the Q4 2020 Memorandum for modelling purposes
By Dr. Matthew Watson
To Read More: Availability of the Q4 2020 Memorandum for modelling purposesMesoblast Update on COVID-19 ARDS Trial
By Dr. Matthew Watson
NEW YORK, Dec. 17, 2020 (GLOBE NEWSWIRE) -- Mesoblast Limited (Nasdaq:MESO; ASX:MSB) today provided an update on the randomized controlled trial of remestemcel-L in ventilator-dependent patients with moderate to severe acute respiratory distress syndrome (ARDS) due to COVID-19 infection after the Data Safety Monitoring Board (DSMB) performed a third interim analysis on the trial’s first 180 patients. The trial was powered to achieve a primary endpoint of 43% reduction in mortality at 30 days for treatment with remestemcel-L on top of maximal care in a trial of 300 patients. This projected mortality reduction was based on pilot data observed during the initial stages of the pandemic when control mortality rates were exceedingly high and prior to new evolving treatment regimens that have reduced disease mortality in ventilated patients. The DSMB reported that there were no safety concerns and noted that the trial is not likely to meet the 30-day mortality reduction endpoint at the planned 300 patient enrolment. The DSMB recommended that the trial complete with the currently enrolled 223 patients, and that all be followed-up as planned.
Originally posted here:
Mesoblast Update on COVID-19 ARDS Trial
I Peace, Inc. and Avery Therapeutics announce collaboration to bring iPSC derived cell therapy for heart failure to the clinic – PRNewswire
By daniellenierenberg
Avery Therapeutics is projected to be one of the first companies in the US to seek approval for a clinical trial using iPSC-derived technology for heart failure. The goal of this collaboration is to develop a new off-the-shelf treatment to improve the quality of life of patients suffering from heart failure, a debilitating disease that affects tens of millions of people worldwide.
The iPSCs are manufactured at I Peace's state-of-the-art GMP facility in Kyoto, Japan, under comprehensive validation programs of the facility, equipment, and processes including donor recruiting, screening, blood draw, iPSC generation, storage, and distribution. I Peace has obtained a US-based independent institutional review board (IRB) approval for its process of donor sourcing for commercial-use iPSCs. The facility is designed to be PMDA and USFDA compliant.
As Avery Therapeutics expects to expand the application of its regenerative medicine technology to various types of heart diseases and beyond, iPSCs are the key enabling technology for quality and future scalability. This agreement provides a solid foundation to improve the welfare of those suffering from diseases through advancement of tissue-engineered therapeutics.
"We are thrilled to announce this collaboration with I Peace. It is a big step forward in the development of novel cell-based therapeutics for unmet medical needs. Through this collaboration, I Peace brings deep iPSC development and manufacturing expertise to enable Avery's proprietary MyCardia cell delivery platform technology. Together we hope to positively impact millions of patients worldwide in the near future," Said Jordan Lancaster, PhD, Avery Therapeutics' CEO.
This agreement reflects an innovative collaboration involving multiple locations internationally and marks a significant milestone for both I Peace, Inc. and Avery Therapeutics to pursue one of the first US clinical trials using iPSC technology in the area of heart diseases. Koji Tanabe, PhD, founder and CEO of I Peace stated: "By combining I Peace's proprietary clinical grade iPSC technology and Avery's tissue engineering technology, we can bring the regenerative medicine dream closer to reality. We are very excited by Avery's technology and look forward to continue working together."
About I Peace, Inc
I Peace, Inc. is a global supplier of clinical and research grade iPSCs. It was founded in 2015 in Palo Alto, California, USA by Dr. Tanabe, who earned his doctorate at Kyoto University under Nobel laureate Dr. Shinya Yamanaka. I Peace's mission is to alleviate the suffering of diseased patients and help healthy people maintain a high quality of life by making cell therapy accessible to all. I Peace's state-of-the-art GMP facility and proprietary manufacturing platform enables the fully-automated mass production of discrete iPSCs from multiple donors in a single room. Increasing the available number of clinical-grade iPSC lines allows I Peace customers to take differentiation propensity into account to select the most appropriate iPSC line for their clinical research at significantly reduced cost. I Peace aims to create iPSCs for every individual that become their stem cell for life.
Founder, CEO: Koji TanabeSince: 2015Head Quarter: Palo Alto, CaliforniaJapan subsidiary: I Peace, Ltd. (Kyoto, Japan)Cell Manufacturing Facility: Kyoto, JapanWeb: https://www.ipeace.com
About Avery Therapeutics
Avery Therapeutics is a company developing advanced therapies for patients suffering from cardiovascular diseases. Avery's lead candidate is an allogeneic tissue engineered cardiac graft, MyCardia in development for treatment of chronic heart failure. Using Avery's proprietary manufacturing process MyCardia can be manufactured at scale, cryopreserved, and shipped ready to use. Avery is leveraging its proprietary tissue platform to pursue other cardiovascular indications. For more information visit: AveryThera.com. Follow Avery Therapeutics on LinkedInand Twitter.Since: 2016Headquarter: Tucson, AZWebsite: https://www.AveryThera.com
SOURCE I Peace, Inc.
Flavors added to vaping devices damage the heart, vanilla custard the most toxic of all – Study Finds
By daniellenierenberg
TAMPA, Fla. While health officials and lawmakers continue trying to steer young people away from vaping, the wide variety of enticing flavors added to these products make that a tough task. Although most of the worry over vaping comes from the risk of addiction, lung damage, and threat of switching to conventional cigarettes, a new study finds the flavoring chemicals these products use may be just as harmful as anything else. Researchers from the University of South Florida Health say vaporized flavoring molecules are toxic to the heart and damage the organs ability to beat correctly.
While other studies find that vaping is generally less harmful than smoking traditional tobacco products, the nicotine and other chemicals in e-cigarettes still damages the heart and lungs. Until now however, researchers say the impact of flavoring additives inhaled into the bloodstream remained unclear.
The flavored electronic nicotine delivery systems widely popular among teens and young adults are not harm-free, says principal investigator Dr. Sami Noujaim in a university release. Altogether, our findings in the cells and mice indicate that vaping does interfere with the normal functioning of the heart and can potentially lead to cardiac rhythm disturbances.
Dr. Noujaims study is one of the first to investigate the cardiotoxic effects of flavoring chemicals added to the e-liquids in electronic nicotine delivery systems (ENDS). ENDS include a variety of different vaping products like vape pens, mods, and pods.
Researchers define vaping as inhaling aerosols (tiny droplets) which e-cigarettes create by heating liquid nicotine and solvents like propylene glycol and vegetable glycerin. A vaping devices battery-powered heater converts this liquid into a smoke-like mix, or vapor.
The study tested how three popular e-liquid flavors fruit, cinnamon, and vanilla custard affect cardiac muscle cells (HL-1) of mice. After being exposed to e-vapor in a lab dish, the results reveal all three flavors are toxic to HL-1 cells.
The USF team also examined what happens to cardiac cells grown from human stem cells that are exposed to three types of e-vapors. The first substance containing only solvents interfered with the cells electrical activity and beating rate. The second substance, containing both nicotine and solvents, proved to be even more toxic to the heart cells.
The third substance however, containing nicotine, solvents, and vanilla custard flavoring, caused the most damage to the heart and its ability to spontaneously beat correctly. Researchers also determined that vanilla custard flavoring is the most toxic of the varieties tested.
This experiment told us that the flavoring chemicals added to vaping devices can increase harm beyond what the nicotine alone can do, Dr. Noujaim says.
The study also tested flavored vapings impact on live mice. Researchers implanted each subject with a tiny electrocardiogram device before exposing them to 60 puffs of vanilla-flavored e-vapor five days a week for 10 weeks.
Study authors looked at how this exposure impacted heart rate variability (HRV), which is the change in time intervals between successive heartbeats. The results show that HRV decreased in vaping mice compared to those only exposed to puffs of clean air.
The USF team finds vaping interferes with normal HRV by disrupting the autonomic nervous system and its control over heart rate. Mice exposed to flavored vaping are also more prone to a dangerous heart rhythm problem called ventricular tachycardia.
Researchers say they still have to confirm these results in humans. Dr. Noujaim urges policymakers to continue looking at the growing evidence that vaping is not a particularly safer alternative to smoking.
Our research matters because regulation of the vaping industry is a work in progress, Dr. Noujaim explains. The FDA needs input from the scientific community about all the possible risks of vaping in order to effectively regulate electronic nicotine delivery systems and protect the publics health. At USF Health, in particular, we will continue to examine how vaping may adversely affect cardiac health.
The study appears in the American Journal of Physiology- Heart and Circulatory Physiology.
Understanding Bone Marrow/Stem Cell Transplant | Knight …
By daniellenierenberg
Stem cell transplants from bone marrow or blood offer lifesaving treatment. They are also taxing physically and emotionally.
Its important to know:
What are stem cells?
Blood cells are short-lived and must be replaced. Blood-forming stem cells (hematopoietic cells)divide and multiply. Some mature into one of three blood cell types:
Stem cells are found in bone marrow, in the bloodstream and in umbilical cord blood. In the bloodstream, they are called peripheral blood stem cells (PBSCs). Stem cells from any of these sources can be used in transplants.
What are stem cell transplants?
With a stem cell transplant, a doctor gives you healthy replacementcells that help you fight infection and disease. Doctors most often use stem cell transplants to treat blood disorders and blood cancers that:
A transplant is like a blood transfusion. There are three types:
How stem cell transplants work
Youundergo a process called conditioning. Chemotherapy, radiation therapy or both are used todestroycancer cells and healthy cells that could keep your body from accepting transplanted cells.
New cells are added toyour bloodstream with an IV. The cellscollect in your bone marrow, where they produce new blood cells. Because conditioning leaves your immune system weak, you will need two to three weeks of monitoring.
Who gets a transplant?
At the OHSU Knight Cancer Institute, we consider every person with blood cancer for a stem cell transplant. It might be right for you if your cancer didnt respond to other treatment or if your cancer came back after treatment.
Our providers meet at weekly gatherings called tumor boards to develop the best treatment options for each patient.
Our team considers factors such as your:
Youll want to consider:
What disorders do transplants treat?
Bone marrow/stem cell transplants may be an option to treat:
Leukemias:
Lymphomas:
Other blood cancers and blood disorders:
Other conditions:
Types of stem cell transplants
There are two main types of transplants, each with risks and benefits. OHSU is the only place in Oregon that offers allogeneic transplants.
Autologous transplant
What is it?This type uses your own stem cells. This eliminates the risk of your body rejecting donor cells or of donor cells attacking your body. A relapse may be more likely, though, because you wont have healthy donated cells to attack any diseased cells that remain after conditioning.
How it works:Your care team collects bone marrow using a hollow needle or draws blood and uses a machine to separate out stem cells. The stem cells are frozen. After the conditioning process, the cells are transplanted using anIV drip.
Allogeneic transplant
What is it? We use cells from a donor. Sometimes your own cells are too diseased to collect and reuse. Donor cells are more aggressive in killing any diseased cells left after conditioning. The risk is that they may aggressively target your healthy cells as well, a complication called graft-versus-host disease.
How it works: After the conditioning process, we transplant healthy donor cells using anIV drip. The donor cells help your body rebuild your immune system. A donor can be a relative or someone else whose marrow matches yours.
Allogeneic transplants include:
Bone marrow donors
OHSU has participated in Be The Match: The National Marrow Donor Program since 1996. This program helps people find a lifesaving marrow or PBSC donor. Donors must meet medical guidelinesand should expect to spend 20 to 30 hours in treatment over four to six weeks.
Testing:To find the closest match, doctors will test your blood and a potential donors blood to find their human leukocyte antigen (HLA) type.
HLA markers:Everyone inherits a set of HLA markers from their parents. These markers, contained in almost all of your cells, tell your body which cells belong to you. The more matching markers you and a donor have, the better your chances of a successful transplant. OHSU has success with haploidentical transplants, however, in which as few as half the markers match.
Transplant risks
As with any procedure, transplants involve risks. Your care team will discuss these with you in detail.
Infection: Chemotherapy and radiation therapy weaken your immune system. You are at high risk of infection for up to six weeks until your new cells make healthy blood cells. Your care team will keep you in a safe environment with protection against airborne germs. You will receive safety instructions for going home.
Low platelets:Your platelets will be low for three or more weeks. We will take great care to help you avoid injury or bleeding. Some patients may need a blood transfusion to replace platelets.
Pain:Mouth or throat pain is a common side effect of chemotherapy and radiation therapy. It may cause difficulty eating or swallowing for a few weeks.
Graft failure: Transplant (graft) failure occurs when the body rejects the donor cells. This is rare with stem cell transplants but more common when HLA types are poorly matched.
Graft-versus-host disease:This happens when transplanted cells from the donor attack the recipients tissue and organs. This common complication can range from mild to life-threatening.
Organ damage:Chemotherapy and radiation can leave lasting damage. Well monitor you closely for signs of any problem.
Infertility:The chemotherapy and radiation therapy used before transplants typically result in infertility. OHSU fertility expertscan offer options to preserve your ability to have children before treatment begins.
Physical and emotional effects
Transplants are difficult. They require weeks in or near the hospital, away from work and regular activities. Our cancer social workerscan provide support to you and your family before, during and after treatment:
Read the original here:
Understanding Bone Marrow/Stem Cell Transplant | Knight ...
Physio Logic Brings Cutting-edge Regenerative Treatments for Sport Injuries and Arthritis to New York City – PRNewswire
By daniellenierenberg
NEW YORK, Dec. 17, 2020 /PRNewswire/ -- Physio Logic, a leading provider of integrated health services in New York City and surrounding areas, continues to demonstrate its commitment to excellence in the field of Regenerative Medicine and Stem Cell Therapy by entering into a collaboration with Regenexx, a worldwide network of specially trained physicians providing the world's most advanced, research-driven, regenerative medicine and stem cell therapy treatments. The partnership brings cutting-edge regenerative treatments to New York City residents suffering from sports injuries or degenerative diseases.
The Regenerative Medicine division of Physio Logic is led by Dr. Tanuj Palvia, MD, a specialist in regenerative medicine and interventional orthopedics focused on the treatment of musculoskeletal injuries and degenerative orthopedic conditions.
"Stem Cell Therapy is one of the most innovative treatments available today but, being so new, patients need to know they're receiving the best possible care. As a physician, I hold myself and my practice to the highest standards and, being aligned with Regenexx adds that extra assurance patients need to know they're in good hands. Whether it's a nagging sports injury or slow degeneration, you're going to get the highest quality of integrated care right here at Physio Logic," said Dr. Palvia.
Interventional Orthobiologics is a specialty that focuses on using your body's natural healing agents to treat orthopedic injuries with the goal of reducing pain and improving joint function. The variety of orthobiologics available to Regenexx physicians, such as bone marrow stem cells and platelet-rich plasma (PRP), allow them to create a treatment plan to best support your recovery. It can be used in the treatment of conditions such as arthritis and injury to ligaments, tendons, cartilage, or bone.
"Being selected to represent the Regenexx brand in New York City speaks to the quality of our facility, our providers, and the care we give our patients," said Dr. Rudy Gehrman, CEO & Founder of the Brooklyn based clinic. "Physio Logic is raising the standard of healthcare in New York and our partnership with Regenexx is an extension of the quality, integrative care we provide to every patient that walks through our door."
Regenexx physicians are required to have thousands of hours of experience performing precise, injection-based treatments using image guidance for a range of body parts and injuries. Their strict acceptance criteria means that Regenexx only chooses the most qualified physicians to join their network. Physio Logic's Interventional Pain Specialist, Dr. Tanuj Palvia, MD, is ranked among them.
To learn more about Physio Logic and Regenerative Medicine, go to https://physiologicnyc.com/regenerative-medicine/
About Physio LogicPhysio Logic brings together an expert team of open-minded medical doctors, physical therapists, chiropractors, acupuncturists, massage therapists, nutritionists, health coaches, biohackers, and Pilates instructors. Our unique collaborative approach, coupled with our ability to assess patients holistically, is used to create a custom care plan tailored to patients' needs. For more information on Physio Logic, visit https://physiologicnyc.com or call (718) 260-1000.
About RegenexxRegenexx is a nationwide network of physicians who practice Interventional Orthopedics, a new specialty that focuses on using the most advanced regenerative protocols available as an alternative to many orthopedic surgeries. Regenexx has published roughly half of the research worldwide on the use of orthobiologics for treating orthopedic injuries, and our patented treatment lab-processing and treatment protocols allow us to achieve unmatched results. Our procedures use your body's natural healing agents including blood platelets and bone marrow concentrate to repair damaged bone, muscle, cartilage, tendons and ligaments. For more information on Regenexx, visit https://regenexx.com.
Media contact:Alan Sott[emailprotected](718) 260-1000
SOURCE Physio Logic
Priming the Immune System to Fight Cancer – PRNewswire
By daniellenierenberg
PHILADELPHIA, Dec. 17, 2020 /PRNewswire/ --Immunotherapies, such as checkpoint inhibitor drugs, have made worlds of difference for the treatment of cancer. Most clinicians and scientists understand these drugs act on what's known as the adaptive immune system, the T cells and B cells that respond to specific threats to the body.
New research from a team co-led by Penn Dental Medicine's George Hajishengallis suggests that the innate immune system, which responds more generally to bodily invaders, may be an important yet overlooked component of immunotherapy's success.
Their work, published in the journal Cell, found that "training" the innate immune system with -glucan, a compound derived from fungus, inspired the production of innate immune cells, specifically neutrophils, that were programmed to prevent or attack tumors in an animal model.
"The focus in immunotherapy is placed on adaptive immunity, like checkpoint inhibitors inhibit the interaction between cancer cells and T cells," says Hajishengallis. "The innate immune cells, or myeloid cells, have not been considered so important. Yet our work suggests the myeloid cells can play a critical role in regulating tumor behavior."
The current study builds on earlier work by Hajishengallis and a multi-institutional team of collaborators, which showed that trained immunity, elicited through exposure to the fungus-derived compound -glucan, could improve immune recovery after chemotherapy in a mouse model.
In that previous study, the researchers also showed that the "memory" of the innate immune system was held within the bone marrow, in hematopoietic stem cells that serve as precursors of myeloid cells, such as neutrophils, monocytes, and macrophages.
The team next wanted to get at the details of the mechanism by which this memory was encoded. "The fact that -glucan helps you fight tumors doesn't necessarily mean it was through trained immunity," says Hajishengallis.
To confirm that link, the researchers isolated neutrophils from mice that had received the innate immune training via exposure to -glucan and transferred them, along with cells that grow into melanoma tumors, to mice that had not received -glucan. Tumor growth was significantly dampened in animals that received cells from mice that had been trained.
-glucan is already in clinical trials for cancer immunotherapy, but the researchers say this finding suggests a novel mechanism of action with new treatment approaches.
"This is a breakthrough concept that can be therapeutically exploited for cancer immunotherapy in humans," Hajishengallis says, "specifically by transferring neutrophils from -glucan-trained donors to cancer patients who would be recipients."
Contact: Beth Adams, [emailprotected]
SOURCE Penn Dental Medicine
Read more from the original source:
Priming the Immune System to Fight Cancer - PRNewswire
Creative Medical Technology Stock Price Increased 80.77%: Why It Happened – Pulse 2.0
By daniellenierenberg
The stock price of Creative Medical Technology Holdings Inc (OTCMKTS: CELZ) a company that engages in stem cell research and developing applications to treat male sexual dysfunction and related issues increased by 80.77% yesterday as it went from $0.0026 to $0.0047 per share. One of the biggest triggers for the stock price increase is an announcement about the company announcing the successful application of ImmCelz immunotherapy for treatment of stroke.
In an animal model of ischemia stroke, the middle cerebral artery ligation model, administration of ImmCelz resulted in 34% reduction in infarct volume, whereas control bone marrow mesenchymal stem cells reduced infarct volume by 21%. And there were improvements in functional recovery were observed using the Rotarod test.
At 28 days after induction of stroke the animals receiving ImmCelz had superior running time (92% of non-stroke controls) compared to animals that received bone marrow mesenchymal stem cells (73% of non-stroke control). And animals that received saline had a running time that was 50% of non-stroke controls.
KEY QUOTES:
The regenerative potential of immune cells that have been programmed by stem cells is a fascinating and novel area of research. Conceptual advantages of using reprogrammed T cells include higher migratory ability due to smaller size, as well as ability to replicate and potentially formregenerative memory cells.
Dr.Amit Patel, coinventor of ImmCelz
This data, which is covered by our previous filed patents, such as no. 15/987739,Generation of autologous immune modulatory cells for treatment of neurological conditions, demonstrate that immune modulation via this stem cell based method may be a novel and superior way of addressing the$30 billion dollarmarket for stroke therapeutics. The fact that this technology, which has priority back to 2017, is demonstrating such stunning results, motivates us to consider filing an Investigational New Drug Application for use in stroke.
Dr.Thomas Ichim, coinventor of the patent and Chief Scientific Officer of Creative Medical Technology
While stroke historically has been a major area of unmet medical need, the rise in stroke cases , as well as the fact that younger people are increasingly falling victim to stroke, strongly motivates us to accelerate our developmental programs and to continue to explore participation of Big Pharma in this space. We are eager to replicate the existing experiments start compiling the dossier needed to take ImmCelz into humans using the Investigational New Drug Application (IND) route through the FDA.
Timothy Warbington, President and CEO of Creative Medical Technology
Disclaimer: This content is intended for informational purposes. Before making any investment, you should do your own analysis.
See the original post here:
Creative Medical Technology Stock Price Increased 80.77%: Why It Happened - Pulse 2.0
Our View On Orchard Therapeutics – Seeking Alpha
By daniellenierenberg
Today, we take an in-depth look at an intriguing development concern with one product approved and on the market and more importantly a more lucrative candidate that appears on its way to approval in Europe. A full analysis on this Busted IPO follows in the paragraphs below.
Orchard Therapeutics (ORTX) is a London, United Kingdom-based biopharmaceutical company that IPO'd in 2018. The company is focused on developing gene therapies for rare conditions. In 2018, Orchard acquired GSK's rare disease gene therapy portfolio, which originated from a collaboration between GSK and the San Raffaele Telethon Institute for Gene Therapy. The company's unique approach involves inserting a working copy of the missing or malfunctioning gene into a patient's own blood stem cells. This approach circumvents the need for a bone marrow transplant since it leverages blood stem cells intrinsic capacity to self-renew in a patient's bone marrow and produce new blood cells of all types. The company's overarching goal is to permanently correct genetic disorders via a single treatment.
The company does have one approved product called Strimvelis, which is indicated for patients with severe combined immunodeficiency due to adenosine deaminase deficiency for whom no suitable human leukocyte antigen matched related stem cell donor is available; however, the drug has only been approved by the EMA and not the FDA. The company's pipeline is candidate rich, spanning a variety of indications that are compartmentalized into three categories: neurometabolic/neurodegenerative disorders, immunological disorders, and blood disorders. The company has a couple of late-stage candidates. Orchard Therapeutics has a market capitalization of roughly $450 million and trades for approximately $4.50 a share.
Pipeline
Source: Company Presentation
OTL-200
OTL-200 is an ex vivo autologous gene therapy in development to treat metachromatic leukodystrophy. The drug uses a modified virus to insert an operational copy of the ARSA gene into a patient's cells. OTL-200 has received rare pediatric disease designation from the FDA. MLD is a rare and deadly inherited disease. The disease is characterized by the accumulation of fats called sulfatides, which causes a breakdown in the protective fatty layer surrounding nerves in the central and peripheral nerve systems. It is estimated that 1 in 40,000 to 1 in 160,000 people have the disease worldwide. OTL-200 was developed in partnership with the San Raffaele Telethon Institute for Gene Therapy.
Source: Company Presentation
On October 16th, the company announced that it received a positive CHMP opinion for the drug, which recommended full marketing authorization for the treatment of early-onset metachromatic leukodystrophy patients in the European Union. The positive opinion will now be reviewed by the European Commission. A final decision is expected by the end of 2020. If approved, the company would be targeting a launch in the first half of 2021.
Furthermore, the company is pursuing a regenerative medicine advanced therapy designation, and it filed an investigational new drug application or IND in the U.S., which was accepted by the FDA on November 19th. Orchard has also applied for Regenerative Medicine Advanced Therapy designation for OTL-200 to help facilitate additional dialogue with the FDA
In addition, within the neurometabolic/neurodegenerative disorders category, it was announced in September that the European Medicines Agency has granted Priority Medicines designation to OTL-203 for the treatment of mucopolysaccharidosis type I. This comes not long after 203 received Orphan Drug designation in the U.S.
Source: Company Presentation
OTL-103
OTL-103 is an ex vivo autologous gene therapy in development to treat Wiskott-Aldrich syndrome. The drug uses a modified virus to insert a working copy of the WAS gene into a patient's cells. WAS is a rare, X-linked, recessive, inherited immune disorder, which is characterized by reoccurring severe infections, autoimmunity, eczema and severe bleeding episodes. The company has received Rare Pediatric Disease designation and Regenerative Medicine Advanced Therapy designation from the FDA. OTL-103 is being developed in partnership with the San Raffaele Telethon Institute for Gene Therapy.
Looking ahead, the company is preparing to file a BLA in the U.S. and an MAA in the EU for OTL-103 in WAS in 2021.
Source: Company Presentation
As of September 30th, 2020, Orchard Therapeutics had cash and cash equivalents of $41.1 million compared to $19 million on December 31st, 2019. Research and development expenses for the third quarter were $14.6 million compared to $28.4 million in Q3 of 2019. Selling, general and administrative expenses were $12.9 million in the quarter compared to $14.2 million in the same quarter of 2019. The company did $1.9 million in product revenue for the quarter compared to $1.9 million in Q3 of 2019. Overall, the company reported a net loss of $20.2 million compared to a net loss of $36.7 million in Q3 of 2019. Management stated in the latest quarterly update that it expects its current financial position to cover its anticipated operating and capital expenditure requirements into 2022.
The company is sparsely covered in the United States despite a healthy market cap as our most names in this space domiciled overseas. The most recent recommendation comes from Oppenheimer on September 14th. The firm lowered its price target from $26 a share to $16 a share, but it maintained its overweight rating. The analyst stated that the updated price target reflects a more subdued opinion on the pace of pipeline development for MPS-1 and MPS-IIIA. It reiterated this rating on November 19th.
Both Barclays ($13 price target, down from $15 previously) and Goldman Sachs ($9 price target, down from $13) reiterated Buy ratings on ORTX albeit revising the price targets lower. Finally, on May 22nd, JPMorgan lowered its price target from $26 a share to $17 a share and maintained its overweight rating. The analyst's note did seem upbeat despite the lowered price target in that the analyst thinks that the company's pipeline possesses "broad potential".
Two things prevent Orchard from being considered for a large holding. First, the company looks like it will have to raise additional capital in the very near future. I think the company will raise capital immediately after the next positive news event. Second, overseas biotech concerns don't ever seem to get the attention from analysts or valuation from investors that companies domiciled in the States do. That said, the company has multiple shots on goal and definable potential catalysts on the near-term potential. Add in the possible wildcard of being a potential buyout target at some point, and ORTX would seem worthy of a small "watch item" stake at this time.
Bret Jensen is the Founder of and authors articles for the Biotech Forum, Busted IPO Forum, and Insiders Forum.
Author's note: I present and update my best small-cap Busted IPO stock ideas only to subscribers of my exclusive marketplace, The Busted IPO Forum. Our model portfolio has crushed the return of the Russell 2000 since its launch in the summer of 2017. To join the Busted IPO Forum community, just click on the logo below.
Disclosure: I am/we are long ORTX. I wrote this article myself, and it expresses my own opinions. I am not receiving compensation for it (other than from Seeking Alpha). I have no business relationship with any company whose stock is mentioned in this article.
Originally posted here:
Our View On Orchard Therapeutics - Seeking Alpha
Hip Preservation With Autologous Osteoblast Cell-Based Treatment in Osteonecrosis of the Femoral Head – Healio
By daniellenierenberg
Osteonecrosis of the femoral head (ONFH) is a refractory disease characterized by compromised subchondral microcirculation, bone necrosis, and microfracture accumulation without sustained compensatory remodeling.1 Its complex etiology, variability in location (lateral, medial, or central), intra-bone edema, and inflammation add to the unpredictable prognosis. Although few patients regress spontaneously, the progressive nature and lack of curative treatment for ONFH thus far are the challenges faced in the management of ONFH.
Osteonecrosis of the femoral head typically affects relatively young, active individuals between 20 and 40 years old and follows an unrelenting course resulting in substantial loss of function.2 The Indian Society of Hip and Knee Surgeons' Registry stated that 49% of total hip arthroplasty procedures in India are due to an irreversible stage of ONFH.3 Osteonecrosis of the femoral head is idiopathic in most cases. Steroid and alcohol consumption are the second most common causes.4 The term silent hip refers to an asymptomatic hip in patients with ONFH of the contralateral hip and is at risk of developing ONFH.5
Hip and groin pain and limp when patients walk are primary indicators. Radiography, magnetic resonance imaging (MRI), and computed tomography are tools for diagnosis, prognosis, and decision-making regarding treatment of ONHF. Crescent formation, collapse and anterolateral sequestration on radiographs, and a double line presentation on T2-weighted MRI provide confirmation of ONFH diagnosis.
The Ficat and Arlet staging of ONFH from I to IV indicates the progressive involvement and progression of the femoral head toward arthritis.6 However, it does not allow prediction of the possibility of progression. Ficat and Arlet stage I with extensive involvement of the femoral head will have a high chance of further progression to collapse. Steinberg grades of ONFH allow prediction of the possibility of progression to collapse in a precollapse hip.7 The Association Research Circulation Osseous (ARCO) takes into consideration the location of the crescent, amount of cartilage depression, and the area and volume of the femoral head affected as reliable predictors of prognosis in early stage ONFH and is helpful for identifying a femoral head at risk of progression and collapse.8
The most common surgical intervention in early stage ONFH is core decompression.9 However, core decompression is notable for its lack of effectivity in preventing collapse in cases where progression is most likely to happen (ie, in cases where there is extensive involvement [more than 30%] of the anterolateral region of the femoral head and crescent sign).10 Among other surgical interventions, fibular graft (vascularized or nonvascularized) proximal femoral osteotomy has been described.11
Hernigou and Beaujean12 reported abnormalities in the mesenchymal stem cell pool, which is known for its regenerative potential, following insult to the affected hip. Gangji et al13 later reported qualitative and quantitative abnormalities of osteoblast cells within the proximal femur in ONFH patients. Thus, it is accepted that the regenerative and reparative capacity of bone in ONFH is severely compromised. However, more than two decades of experience using various orthobiologics has not been convincingly satisfying, and many groups have expressed limitations of these therapies.1416
The pathology of ONFH involves ischemic imbalance of bone remodeling due to relatively enhanced osteoclastic action and poor regenerative potential of osteogenic cells in the proximal femur. The supply of differentiated osteogenic cells (osteoblasts) over time would result in arrest of ONFH progression. Core decompression would allow revascularization, and debridement of necrotic bone decreases the time needed for creeping substitution of new bone over dead bone. With this theoretical conviction, the author planned to use and assess the efficacy of autologous bone marrowderived cultured osteoblasts following core decompression and debridement in the treatment of patients diagnosed with ARCO stages II and III ONFH.
The surgeries were conducted at various hospitals. Fifteen patients (13 male and 2 female), with a mean age of 32 years (range, 2161 years), presented with typical ONFH symptoms. Patients were diagnosed with ARCO stage II or III ONFH (9 bilateral and 6 unilateral, for a total of 24 hips) on radiograph and MRI, and were considered for a predesigned treatment protocol that involved implantation of autologous cultured osteoblasts following core decompression and debridement.
Patient consent for inclusion in the study was obtained. The types of ONFH were idiopathic (8 patients), corticosteroid-induced (6 patients), and traumatic (1 patient) (Table 1). Efficacy of the treatment was assessed based on changes on radiograph and MRI and modified Harris Hip Score (mHHS), Oxford Hip Score (OHS), and visual analog scale (VAS) score after treatment. In a few patients, computed tomography also was performed.
Table 1:
Patient Characteristics
Treatment was performed in 2 steps.
Step 1. Percutaneous bone marrow aspiration from the iliac crest was performed and collected in transport media containing anticoagulant. This was transported under temperature-monitored conditions and processed at a good manufacturing practicecertified cell processing facility to obtain a predefined osteoblast culture (4 to 5 weeks).
The ex vivo culture of osteoblasts using bone marrow from the patient involved isolation of osteoprogenitor cells, osteogenic differentiation, and then expansion. Immunophenotypic characterization was performed to ensure the cultured cells tested positive for CD44+ and CD151+ markers. Alizarin red stain test ensured the presence of calcium deposits within the osteoblasts. Alkaline phosphatase test was used as an indicator of ability to form type I collagen.
Thus, ex vivo cultured live osteoblast cells, not less than 45 million, were filled and packed in sterile vials with appropriate transport/culture medium and were made available for individualized treatment. The cell viability was ensured during transport as well as after implant until the cells were integrated.
Step 2. The surgical implantation was planned as per the availability of cultured and expanded osteoblasts (4 to 5 weeks). In the first 3 patients, the osteoblast implant was performed soon after core decompression, whereas for the remaining 12 patients, core decompression was followed by debridement with implantation.
The location of the necrotic zone and its size was approximated on MRI. The patient was placed on a fracture table, and the C-arm was positioned as for routine core decompression. The entry point of the guidewire (2.5 mm) was chosen around the vastus ridge to allow faster healing in the cancellous bone (Figure 1).
Figure 1:
Surgical process details. The arrow indicates the high entry point of the guidewire at the vastus ridge targeting the area of osteonecrosis. A, 1-cm distance from the superior cortex to prevent fracture. B, varus appearance of the proximal femur due to mild flattening of the femoral head in the anterolateral femur in early osteonecrosis of the femoral head. This is the earliest sign observed radiographically and is indicative of stage IIB.
The larger sagittal dimensions of the trochanteric area allowed for a posterior entry point to avoid a possible subtrochanteric fracture due to posterior cortical breaching during or after intervention. Special effort was made to avoid a subtrochanteric entry point. On no occasion was the posterior cortex of the femur violated. The guidewire was passed in the center of the lesion but at least 1 cm from the superior cortex. An 8-mm cannulated core drill (from the dynamic hip screw set) was used over the wire to make a tunnel until the necrotic zone. The steps of the surgical intervention are shown in Figure 2.
Figure 2:
Surgical steps. Anteroposterior C-arm image of the hip with guidewire (A). Lateral C-arm image of the hip with guidewire (B). Drilling with 8-mm dynamic hip screw core drill bit (C). Anteroposterior C-arm image during curettage (D).
The tip of the drill, when removed, showed necrotic bone (Figure 3A), which was later sent for histopathology. Bone curettes of various sizes and angles then were used to curette the sequestrum under imaging guidance. The end point of curettage was the removal of hard sclerotic bone from the femoral head. If there was a bony ridge that was difficult to curette, a reamer was used. The author attempted to leave 1 cm of subchondral bone intact to allow faster revascularization of the femoral head by removing dead sclerotic bone. Curettes were kept at least 1 cm from the joint line.
Figure 3:
Drill bit with debrided live and dead bone (A). Instruments used during surgery (B).
After curettage was complete, the tunnel was plugged using an allograft of appropriate size. All of the instruments used during surgery are shown in Figure 3B. At this point, the patient was tilted to attain a gravity-dependent position of the operative hip to avoid any backflow of the implanted cells. A spinal needle was inserted through the small hole made in the allograft plug, and the osteoblast cell gel mixture was slowly injected in the space within the femoral head. Patients were held in the same position for approximately 10 minutes to allow the cells to settle without spilling.
Postoperatively, patients were partial weight bearing for 4 weeks using a walker. They progressed to using a walking stick by week 6, and then full weight bearing was permitted by week 8. For patients treated for bilateral ONFH, use of a walker was encouraged until week 6. Physical exercises to regain muscle strength and all hip joint movements were encouraged as soon as possible.
All patients underwent regular follow-up during the rehabilitation period and thereafter at 6, 12, and 18 months, with all anteroposterior and lateral radiographs of the hip and magnetic resonance imaging completed at 18 months. Two patients were lost to follow-up thereafter, and 13 patients continued with regular follow-up visits; 3 patients had follow-up of 7 years.
At 18 months after implant, no disease progression was observed on radiographs and MRIs for all patients. Postoperative mHHS, OHS, and VAS scores improved, and all of the patients had resumed normal routine activities and daily chores. Analysis of variance for HHS, OHS, and VAS scores showed a statistically significant difference (individual as well as mean values) from baseline to 18 months after implantation (P<.5; Table 2). Three patients who underwent follow-up for 7 years after implantation were assessed via telephone for HHS and VAS scores. For 1 of these patients, HHS improved from 90 to 95, and VAS score improved from 3 to 1 at 18 months. For another patient, HHS improved from 85 to 95, and VAS score improved from 2 to 1 at 18 months. One of the patients who underwent follow-up for 7 years walked daily for 3 to 4 km.
Table 2:
Pain and Function-Related Scores
One male patient who was treated for bilateral ONFH with follow-up of 5 years showed good improvement in HHS (from 65 to 92.5) at the end of 18 months, and his VAS score improved from 9 at baseline to 3 in both hips at 18 months after treatment. At 5 years postoperatively, he reported pain only after sitting for several hours and was more comfortable using a cane when walking.
Another male patient was diagnosed with ARCO stage III of the right hip. He had extensive involvement of the central and lateral lesion (>50%) with crescent depression less than 2 mm. Although reports for direct comparison were not available at 6 years after treatment, radiographs showed no further progression, with intramedullary changes evident. The joint space was preserved, which is consistent with good clinical function (Figure 4).
Figure 4:
Patient M4. Preoperative magnetic resonance image of Association Research Circulation Osseous stage III of the right hip. Extensive involvement of the central and lateral regions (>50%), with the crescent having less than 2 mm of depression (A, B). Magnetic resonance image at 5 months after treatment (C). Preoperative anteroposterior radiograph (D). Anteroposterior radiograph at 6 years after treatment showing no further progression, with evident intramedullary changes. The joint space is preserved, which is consistent with good clinical function (E).
One female patient had a history of tuberculosis treated with anti-Koch therapyanti-tubercular therapy and corticosteroids for 9 months as the standard care. This patient presented with extensive bilateral femoral head involvement evident on radiograph and computed tomography scan. The crescent depression was 2 to 4 mm. She was diagnosed with ARCO stage II of the right hip and grade III of the left hip. Radiographs at 6 years postoperatively showed arrest of osteonecrosis progression with an otherwise high risk of collapse because the ONFH was steroid induced. Clinically, this patient was able to resume all of her routine activities, including a daily commute to work and regular yoga, floor exercises, and stationary cycling (Figure 5).
Figure 5:
Patient F1. Preoperative anteroposterior radiographs (A, B). Preoperative computed tomography scans. There is extensive bilateral femoral head involvement (>30%), with 2 to 4 mm of depression of the crescent (C, D). Anteroposterior radiographs 6 months after treatment (E, F). Anteroposterior radiograph 6 years after treatment. Both femoral heads show arrest of osteonecrosis progression in a patient at high risk for collapse (G).
One male patient who was receiving long-term steroid treatment had relatively moderate improvement in HHS, from a baseline of 65 to 80 at 18 months after treatment. A female patient with bilateral ONFH had ARCO stage III in the right hip and a small, centrally located lesion (<30%) in the left hip. On radiograph and MRI, the right hip showed more than 90% involvement of the lateral, central, and medial regions but no crescent. The decision was made not to treat the left hip because it was deemed to have minimum possibility of progression. At 6 years after treatment, there was regression of necrosis. The patient has done well clinically and had a successful childbirth (Figure 6).
Figure 6:
Patient F2. Preoperative anteroposterior radiographs of the right hip showing more than 90% involvement of the medial, central, and lateral regions. There is no crescent (A, B). Preoperative magnetic resonance images (C, D). Anteroposterior radiograph at 3 months after treatment (E). Anteroposterior radiograph at 6 years after treatment (F).
Overall, the short-term and long-term results of autologous cultured osteoblast treatment along with routine procedures have been satisfactory. None of the 8 patients who underwent follow-up for 5 to 7 years showed any signs of disease progression, and none of the patients required repeat treatment or total arthroplasty.
Among invasive procedures, core decompression has been the standard of care for early stages of ONFH; however, varying degrees of improvement have been reported. Yoon et al17 and Rajagopal et al18 reported treatment of ONFH with core decompression was viable only in early stages, with the effect lasting for 2 to 3 years.
Among the biologics, platelet-rich plasma, growth factors, and bone marrow aspirate concentrate (BMAC) have been widely used along with conventional techniques such as core decompression or bone grafts.19,20 Several contributions in terms of understanding the clinical application and efficacy of biologics for the treatment of ONFH have been published during the past two decades.2123 Inherent limitations such as the absence of controlled studies, uncertainty, and heterogenicity of the composition of biologics have resulted in inconsistent results, and no treatment option has passed the regulatory approval process.24
In a recent study, Hauzeur et al25 reported obvious inefficacy of BMAC treatment in a randomized clinical trial comparing BMAC and core decompression vs core decompression alone. Their assessment criteria included clinical outcome, pain score, radiology, and the need for total hip arthroplasty.
Untreated bone marrow should be considered first-generation and processed bone marrow second-generation biological treatments for ONFH. The results using first- and second-generation biologics have been variable, and there are no long-term data and no formally approved products. Thus, curative treatment of ONFH, at least prior to the collapse stage, remains challenging.26
Kim et al27 were the first to report the clinical use of cultured osteoblasts in a single patient with bilateral ONFH (Ficat Arlet grade II); they reported a good outcome at 5 years without progression of disease. Later, Gangji et al28 compared the use of BMAC and autologous osteoblast cells in the treatment of avascular necrosis. They reported the group treated with osteoblast cells had twofold higher respondents at 36 months compared with the BMAC-treated group. These patients continued to have reduced pain until the end of the study period. Also, progression of disease from stage III to IV was more than 2 times higher in the BMAC-treated group compared with the osteoblast-treated group.28
The author proposes the evolution of biologics being used as first- and second-generation treatment, and the current modality of using autologous cultured osteoblasts as the latest and third-generation treatment. As such, the latter is the only modality that qualifies as cell-based therapy (Table 3).
Table 3:
Proposed Generations of Orthobiologics
Autologous cultured osteoblast implant is the most novel treatment modality for joint preservation. In the author's experience, 11 patients at 4 years, 6 patients at 5 years, and 3 patients at 7 years after transplant showed arrest of disease. Joint structure, biomechanics, strength, and function were regained in these patients, and they required no repeat treatment. Yet, unlike few other treatments, total arthroplasty still remains viable as a future option.
The assessment of ONFH progression on MRI after core decompression remains a sparsely studied subject. Therefore, radiographic and clinical examination during follow-up is crucial.
Autologous cultured osteoblast implantation is effective and safe for patients with ARCO stages II and III ONFH. This third-generation biologic can be considered a joint-preserving treatment in correctly chosen patients.
Patient Characteristics
Pain and Function-Related Scores
Proposed Generations of Orthobiologics
See the original post here:
Hip Preservation With Autologous Osteoblast Cell-Based Treatment in Osteonecrosis of the Femoral Head - Healio
Research That Saves Lives: Four COVID-19 Therapies Being Tested at UVA – University of Virginia
By daniellenierenberg
Regeneron: Preventing Infection Among Households
Regeneron: A Phase 3, Randomized, Double-Blind, Placebo-Controlled Study Assessing the Efficacy and Safety of Anti-Spike SARS-CoV-2 Monoclonal Antibodies in Preventing SARS-Cov-2 Infection in Household Contacts of Individuals Infected with SARS-CoV-2
In this multisite trial, researchers are working to determine if monoclonal antibodies made by the drug company Regeneron Pharmaceuticals can prevent COVID-19 infection among people who have been exposed by someone in their household, but have not yet developed the disease. The trial is testing the same antibody cocktail given to President Donald Trump when he was hospitalized with COVID-19, though with a different use.
In this case, the antibodies are intended to prevent people from getting sick if they have a household member with COVID, Enfield said. So far, UVA has done a good job with recruitment, which is particularly tricky in this case as you have to find people who have been exposed to COVID in their household, but who do not yet have COVID.
UVA is recruiting 40 participants for the study, each of whom will receive four injections of either the antibodies or a placebo. Participants must have been exposed to COVID-19 by someone in their household within the previous 96 hours and continue to live with that person for a month.
Its been a rapid process, and a testament to the multidisciplinary team involved, from infectious disease clinicians and researchers to cell therapy, pulmonary critical care and several other departments, Sturek said. Its been all-hands-on-deck.
As results from these and other clinical trials continue to come in, Sturek also expressed hope that we will see widespread and effective vaccine distribution sooner, rather than later.
There is a lot on the horizon, from news around vaccines to getting the first wave of vaccines to high-risk people like health care workers, he said. Every day we learn something new, and its important to stay humble, to be able to adapt and change on the fly.
Fighting this pandemic has been a huge, multidisciplinary effort, and so many people joined in to help contribute and bring new treatments to our patients, and bring new research to the field. That doesnt get done without a huge team of nurses, clinical research coordinators, pharmacists, respiratory therapists and many, many others. It is impossible to overstate the importance of all of that teamwork.
See the article here:
Research That Saves Lives: Four COVID-19 Therapies Being Tested at UVA - University of Virginia
Motus GI Announces Clinical Compendium of Pure-Vu System Patient Case Studies As Reported by Several Leading U.S. Hospitals
By Dr. Matthew Watson
FORT LAUDERDALE, Fla., Dec. 16, 2020 (GLOBE NEWSWIRE) -- Motus GI Holdings, Inc., (NASDAQ: MOTS) ("Motus GI" or the "Company"), a medical technology company providing endoscopy solutions that improve clinical outcomes and enhance the cost-efficiency associated with the diagnosis and management of gastrointestinal conditions, announced today that it has collected a series of case studies from several leading U.S. hospitals which highlight the advantages of utilizing its Pure-Vu System to successfully complete emergent or challenging colonoscopies for patients with inadequately prepared colons. The case studies are now available on the Motus GI website (click here).
Read more from the original source:
Motus GI Announces Clinical Compendium of Pure-Vu System Patient Case Studies As Reported by Several Leading U.S. Hospitals
SARS-CoV-2 Viral Genome Sequencing Data Presented from Research Using Pacific Biosciences Technology
By Dr. Matthew Watson
Presentation at the American Society for Microbiology NGS Conference highlights utility of PacBio’s highly accurate long-read sequencing platform in disease surveillance Presentation at the American Society for Microbiology NGS Conference highlights utility of PacBio’s highly accurate long-read sequencing platform in disease surveillance
See original here:
SARS-CoV-2 Viral Genome Sequencing Data Presented from Research Using Pacific Biosciences Technology
Immutep Upscales Efti Manufacturing
By Dr. Matthew Watson
Sydney, AUSTRALIA, Dec. 16, 2020 (GLOBE NEWSWIRE) -- Immutep Limited (ASX: IMM; NASDAQ: IMMP) ("Immutep” or “the Company”), a biotechnology company developing novel immunotherapy treatments for cancer and autoimmune diseases, has prioritised the recommencement of the process of scaling up the manufacturing of its lead product candidate eftilagimod alpha (“efti” or “IMP321”).
Follow this link:
Immutep Upscales Efti Manufacturing