Page 206«..1020..205206207208..220230..»

Apellis Pharmaceuticals Announces Inducement Grants Under Nasdaq Listing Rule 5635(c)(4)

By Dr. Matthew Watson

WALTHAM, Mass., Dec. 04, 2020 (GLOBE NEWSWIRE) -- Apellis Pharmaceuticals, Inc. (Nasdaq: APLS), a global biopharmaceutical company and leader in targeted C3 therapies, today announced that the company approved the grant of equity awards to two new employees with grant date of December 1, 2020, as equity inducement awards outside of the company's 2017 Stock Incentive Plan (but under the terms of the 2020 Inducement Stock Incentive Plan) and material to the employees’ acceptance of employment with the company. The equity awards were approved on October 27, 2020 and November 16, 2020, in accordance with Nasdaq Listing Rule 5635(c)(4).

See the original post:
Apellis Pharmaceuticals Announces Inducement Grants Under Nasdaq Listing Rule 5635(c)(4)

To Read More: Apellis Pharmaceuticals Announces Inducement Grants Under Nasdaq Listing Rule 5635(c)(4)
categoriaGlobal News Feed commentoComments Off on Apellis Pharmaceuticals Announces Inducement Grants Under Nasdaq Listing Rule 5635(c)(4) | dataDecember 5th, 2020
Read All

How to Minimize Inflammation and Prevent Your Skin from Inflammaging – Coveteur

By daniellenierenberg

Were all familiar with the usual culprits that lead to skin aging, like not wearing a daily SPF, smoking, lack of hydration, genetics, stress, etc. But in the realm of internal and external factors that can zap your skin of its youthful bounce and glow, theres one important factor that isnt discussed nearly enough: inflammation.

While you might think of this condition only as it relates to a sprained ankle or a particularly aggressive zit, inflammation actually touches our daily lives in a multitude of ways. Its the result of those well-known aging factors (again, like stress and UV rays), but its not always a singular response, like redness or irritation. Says board-certified dermatologist Dr. Joshua Zeichner, Inflammation leads to free-radical damage in the skin, activation of matrix metalloproteinases, and [recruitment of] inflammatory blood cells. Collectively, this leads to damage to skin cells themselves along with destruction of supporting tissue like collagen and elastin. This explains why chronic inflammation can lead to weakening of the skin, premature wrinkling, and sagging.

Brands are starting to take note of how inflammation plays a central role in the aging process, particularly as it relates to the look and feel of our skin, and have dubbed this sequence of events as inflammaging. The beauty industry loves a trendy marketing term, sure, but in this case, there is some real data to back it up.

As Amir Nobakht, MD, MBA, and co-founder of Heraux, explains, Inflammation is supposed to be a temporary response to stress, activating stem cells to regenerate the skin after stress and injuries. However, if inflammation persists, the increased burden on stem cells accelerates the aging process as they are constantly in overdrive. This link between chronic inflammation and aging is referred to as inflammaging.

Together with his business partner Ben Van Handel, PhD, and a stem cell biologist at the University of Southern California, they founded their brand Heraux (which consists of a singular targeted serum with their proprietary molecule, HX-1) to address the signs and symptoms of this detrimental process and modulate the inflammatory pathway in the skin. Full disclosure: This editor has used their serum for as long as its been available, with no plans to stop anytime soon.

So why is this inflammation issue notable if you already know that things like smoking and tanning are bad for you? Well, unfortunately, inflammation is a rather stealthy foe, which can pop up in your skin without any visible indication that its happening. Dr. Nobakht emphasizes, Once [inflammation] is visible on the skin, that indicates a more severe response. This can include redness, rough texture, irritation, and even a burning sensation (think post-sunburn). Again, your skin is experiencing inflammation by its very nature as a barrier between the external and internal in our body. Inflammaging occurs when your skins ability to buffer inflammation is exceeded by the stressors present.

Essentially, the aging process is a slow, silent onethis we knowbut is exacerbated and accelerated by all the choices we make and the inflammatory responses they generate. Once your skin has weathered years and years of this type of inflammation, your defenses are weakened, and those signs of aging, like fine lines, hyperpigmentation, and sagging, inevitably appear.

As bleak as this may sound, there are things you can do to help slow the overall inflammaging progression and prevent premature signs of skin aging. Dr. Zeichner recommends a healthy lifestyle with a balanced diet and plenty of exercise to start, followed by a skin-care routine that incorporates daily sunscreen, gentle cleansers, antioxidant-rich products (think of antioxidants like fire extinguishers that put out inflammation caused by free radicals), a generous helping of moisturizer (particularly at night), and products that promote collagen production like retinoids and bakuchiol.

Advertisement

See original here:
How to Minimize Inflammation and Prevent Your Skin from Inflammaging - Coveteur

To Read More: How to Minimize Inflammation and Prevent Your Skin from Inflammaging – Coveteur
categoriaSkin Stem Cells commentoComments Off on How to Minimize Inflammation and Prevent Your Skin from Inflammaging – Coveteur | dataDecember 5th, 2020
Read All

Reversing vision loss by turning back the aging clock – FierceBiotech

By daniellenierenberg

Aging has implications for a wide range of diseases. Researchers have been looking for ways to halt the aging process for millennia, but such methods remain elusive. Scientists at Harvard Medical School have now offered a glimmer of hope that the aging clock in the eye could be reversedat least in animals.

By reprogramming the expression of three genes, the Harvard team successfully triggered mature nerve cells in mice eyes to adopt a youthful state. The method reversed glaucoma in the mice and reversed age-related vision loss in elderly mice, according to results published in Nature.

Accelerate Biologics, Gene and Cell Therapy Product Development partnering with GenScript ProBio

GenScript ProBio is the bio-pharmaceutical CDMO segment of the worlds leading biotech company GenScript, proactively providing end-to-end service from drug discovery to commercialization with professional solutions and efficient processes to accelerate drug development for customers.

If further studies prove out the concept, they could pave the way for therapies that employ the same approach to repair damagein other organs and possibly treat age-related diseases in humans, the team said.

The researchers focused on the Yamanaka factors, which are four transcription factorsOct4, Sox2, Klf4 and c-Myc. In a Nobel Prize-winning discovery, Shinya Yamanaka found that the factors can change the epigenomehow genes are turned on or offand can thereby transform mature cellsback to a stem cell-like state. It has been hypothesized that changes to the epigenome drive cell aging, especially a process called DNA methylation, by which methyl groups are tagged onto DNA.

Past researches have tried to use the four Yamanaka factorsto turn back the age clock in living animals, but doing so caused cells to adopt unwanted new identities and induced tumor growth.

RELATED:Restoring eyesight with genetically engineered stem cells

To test whether the approach works in living animals, the scientists used adeno-associated virus to deliver the three genes into the retina of mice with optic nerve injuries. The treatment led to a two-fold increase in the number of retinal ganglion cells, which are neurons responsible for receiving and transmitting visual information. Further analysis showed that the injury accelerated DNA methylation age, while the gene cocktail counteracted that effect.

Next the scientists tested whether the gene therapy could also work in disease settings. In a mouse model of induced glaucomawhich is a leading cause of age-related blindness in peoplethe treatment increased nerve cell electrical activity and the animals visual acuity.

But can the therapy also restore vision loss caused by natural aging? In elderly, 12-month-old mice, the gene therapy also restored ganglion cells electrical activity as well as visual acuity, the team reported.

By comparing cells from the treated micewith retinal ganglion cells from young, 5-month-old mice, the researchers found that mRNA levels of 464 genes were altered during aging, and the gene therapy reversed 90% of those changes. The scientists also noticed reversed patterns of DNA methylation, which suggests that DNA methylation is not just the marker but rather the driver behind aging.

What this tells us is the clock doesn't just represent timeit is time. If you wind the hands of the clock back, time also goes backward, the studys senior author, David Sinclair, explained in a statement.

The study marks the first time that glaucoma-induced vision loss was reversednot just slowedin living animals, according to the team.

RELATED:Reprogrammed skin cells restore sight in mouse models of retinal disease

Other researchers are also studying regenerative approaches to treating eye diseases. A research group at the Centre for Genomic Regulation in Barcelona just showed that by modifying mesenchymal stem cells to express chemokine receptors Ccr5 and Cxcr6, retinal tissue could be saved from degeneration.

The idea of reversing age-related decline in humans by epigenetic reprogramming with a gene therapy is exciting, Sinclair said. The Harvard researchers intend to do more animal work that could allow them to start clinical trials in people with glaucoma in about two years.

Our study demonstrates that it's possible to safely reverse the age of complex tissues such as the retina and restore its youthful biological function, Sinclair said. If affirmed through further studies, these findings could be transformative for the care of age-related vision diseases like glaucoma and to the fields of biology and medical therapeutics for disease at large.

Read more from the original source:
Reversing vision loss by turning back the aging clock - FierceBiotech

To Read More: Reversing vision loss by turning back the aging clock – FierceBiotech
categoriaSkin Stem Cells commentoComments Off on Reversing vision loss by turning back the aging clock – FierceBiotech | dataDecember 5th, 2020
Read All

Clinical Trials Offer Opportunities to Change Practice to Improve Prevention and Treatment of Blood Disorders – PRNewswire

By daniellenierenberg

WASHINGTON, Dec. 4, 2020 /PRNewswire/ --Four studies being presented during the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition present opportunities to improve care for patients with a variety of blood disorders. Together, the studies provide support for new clinical approaches such as alternate treatment delivery methods, updated uses for existing therapies, and earlier referrals to specialty care.

"These are very practical trials with real-world implications," said press briefing moderator Lisa Hicks, MD, of St. Michael's Hospital and the University of Toronto. "They address important questions relevant to everyday practice in the clinic."

The first study supports administering the monoclonal antibody daratumumab for multiple myeloma via a quick injection instead of an intravenous infusion, an approach that could save significant time for patients and clinics.

The second study found that, despite being routinely used in practice, the clot stabilizer tranexamic acid does not prevent bleeding when used prophylactically for patients undergoing treatment for blood cancers, although it leaves open the possibility that the drug may be an effective treatment for these patients when bleeding occurs.

The third study reports the drug ruxolitinib can offer relief for patients with chronic graft-versus-host disease (GVHD) after a stem cell transplant, suggesting ruxolitinib is a viable second-line treatment for patients whose symptoms are not fully resolved with corticosteroids.

Finally, the fourth study supports referring older patients with myelodysplastic syndromes to transplant centers for allogeneic hematopoietic cell transplantation, an important shift from current practice that could offer many more patients the potential for a cure.

This press briefing will take place on Friday, December 4, at 9:30 a.m. Pacific time on the ASH annual meeting virtual platform.

Study Bolsters Case for Delivering Daratumumab Subcutaneously for Multiple Myeloma412: Apollo: Phase 3 Randomized Study of Subcutaneous Daratumumab Plus Pomalidomide and Dexamethasone (D-Pd) Versus Pomalidomide and Dexamethasone (Pd) Alone in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM)

A new study suggests the monoclonal antibody daratumumab has similar benefits when delivered via subcutaneous injection as it does when delivered intravenously to individuals with multiple myeloma which persists or recurs after first-line treatments. Patients given subcutaneous daratumumab along with the immunomodulator pomalidomide and the anti-inflammatory steroid dexamethasone were 37% less likely to die or have their disease worsen compared to patients who received pomalidomide and dexamethasone alone in the phase III trial.

"This is an effective combination with a predictable safety profile that allows for the use of subcutaneous daratumumab along with oral pomalidomide and dexamethasone for patients who have received at least one prior line of therapy that included lenalidomide and a proteasome inhibitor," said senior study authorMeletios A. Dimopoulos, MD,of National and Kapodistrian University of Athens in Athens, Greece. "Subcutaneous daratumumab is much easier for the patient and reduces the time they need to spend at the outpatient chemotherapy unit."

The combination of intravenous daratumumab and pomalidomide with dexamethasone has been widely adopted in the U.S. as a second-line therapy for patients whose multiple myeloma does not respond durably to lenalidomide and proteasome inhibitors. However, delivering daratumumab intravenously typically requires patients to spend a full day at the clinic for each infusion. Administering the therapy via a five-minute subcutaneous injection can substantially reduce the burden for patients and clinics, Dr. Dimopoulos said.

The researchers enrolled 304 patients in 12 European countries. Half were randomly assigned to receive daratumumab plus pomalidomide with dexamethasone and half only received pomalidomide with dexamethasone. Patients underwent 28-day treatment cycles until their disease worsened or they experienced unacceptable side effects.

About one-third of patients died during the trial's median follow-up period of about 17 months. The study met its primary endpoint, showing a significantly higher rate of progression-free survival at 12 months among patients receiving the combination therapy. Participants receiving the daratumumab-pomalidomide combination were treated for a median of nearly 12 months, substantially longer than the median treatment duration of less than seven months among those receiving pomalidomide alone.

Patients receiving daratumumab experienced adverse events at a rate consistent with previous studies, raising no new safety concerns. Dr. Dimopoulos said the findings suggest the combination therapy can be a good option for patients who have not experienced lasting benefits from lenalidomide and proteasome inhibitors, particularly those whose cancer is resistant to lenalidomide. He noted that the study suggested a slight trend toward increased survival in the daratumumab arm, but additional follow-up is necessary to assess any survival benefit.

Meletios A. Dimopoulos, MD,National and Kapodistrian University of Athens, will present this study in an oral presentation on Sunday, December 6, at 12:00 noon Pacific time on the ASH annual meeting virtual platform.

Tranexamic Acid Not Found to Prevent Bleeding in Patients with Blood Cancers 2: Effects of Tranexamic Acid Prophylaxis on Bleeding Outcomes in Hematologic Malignancy: The A-TREAT Trial

The clot stabilizer tranexamic acid performed no better than placebo when administered prophylactically to prevent bleeding in patients with blood cancers who also received routine prophylactic platelet transfusions. Researchers cautioned that the study's focus is different from other situations in which tranexamic acid has been found effective, such as its use in treating bleeding related to childbirth, surgery, or inherited blood disorders.

"Clearly patients with low platelet counts and blood cancers have a different kind of bleeding than the bleeding experienced by patients who have suffered some kind of trauma or surgery," said senior study author Terry B. Gernsheimer, MD, of the University of Washington School of Medicine. "Their bleeding likely is due to endothelial damage damage to the lining of blood vessels that tranexamic acid would not treat. To prevent bleeding in these patients, we may need to look at ways to speed the healing of the endothelium that occurs with chemotherapy, radiation, and graft-versus-host disease in patients receiving a transplant."

Between 48% and 70% of patients undergoing treatment for blood cancers experience bleeding complications of World Health Organization grade 2 or higher. Though not life-threatening, grade 2 bleeding for example, a nosebleed lasting more than 30 minutes can be concerning. Bleeding of grade 3 or 4 can be life-threatening and warrant blood transfusions. Most patients undergoing treatment for blood cancers are routinely given platelet transfusions to prevent bleeding, but many continue to experience bleeding episodes, nevertheless.

Tranexamic acid works by slowing the process by which blood clots naturally break down. To determine whether tranexamic acid could help to further reduce bleeding in these patients, the researchers enrolled 327 patients undergoing treatment for blood cancers at three U.S. medical centers. Half were randomly assigned to receive tranexamic acid and half received a placebo, administered either orally or intravenously three times a day until they recovered their platelet count, or for up to 30 days. Researchers regularly followed up with participants to assess bleeding events both in and outside of the hospital.

The results revealed no significant differences among the study groups in terms of the number of bleeding events, the number of red blood cell transfusions, or the number of platelet transfusions patients required during the treatment period and for up to 14 days afterward. Patients receiving tranexamic acid had a significantly higher rate of occlusions in their central venous line (a catheter placed in a large vein commonly used for delivering cancer drugs) which required clearing with a clot-dissolving drug, but there was no difference in the occurrence of clots in patients' veins or arteries.

Dr. Gernsheimer noted that other studies could help elucidate whether the drug may be helpful for specific subgroups of patients with blood cancers or as a treatment for bleeding, rather than as a preventive measure in these patients. It may also be useful to prevent or treat bleeding in patients with other causes of low platelet counts.

Terry B. Gernsheimer, MD, University of Washington School of Medicine, will present this study in a plenary presentation on Sunday, December 6, 2020 at 7:00 a.m. Pacific time on the ASH annual meeting virtual platform.

Researchers Report First Successful Second-Line Treatment for Chronic Graft-Versus-Host Disease77: Ruxolitinib (RUX) Vs Best Available Therapy (BAT) in Patients with Steroid- Refractory/Steroid-Dependent Chronic Graft-Vs-Host Disease (cGVHD): Primary Findings from the Phase 3, Randomized REACH3 Study

The drug ruxolitinib brought relief from the debilitating effects of chronic graft-versus-host disease (GVHD) at twice the rate of the best available therapy in a phase III trial. The findings represent a major step forward for patients with chronic GVHD that is not resolved by taking corticosteroids, said researchers. There is currently no approved second-line therapy for chronic forms of the disease.

"This is the first multicenter randomized controlled trial for chronic, steroid-refractory or steroid-dependent GVHD that is positive," said senior study authorRobert Zeiser, PhD,of University Medical Center, Freiburg Im Breisgau, Germany. "It shows a significant advantage for ruxolitinib. It is likely that this trial will lead to approval for this indication and change the guidelines for the treatment of this disease."

GVHD is a complication of allogeneic hematopoietic (stem) cell transplantation, a therapy used to treat blood cancers. It occurs when T cells (the graft) received from a donor through the transplant see the patient's healthy cells and tissue (the host) as foreign and start to attack them. Roughly half of patients undergoing a stem cell transplant develop GVHD. About half of these patients are able to resolve their symptoms with a temporary course of corticosteroids, a class of drugs that lower inflammation in the body. The remaining patients either do not respond to steroids, cannot take them, or must take them continuously to stave off symptoms.

Ruxolitinib is designed to block a molecular signal involved in triggering inflammation. A previous trial, REACH2, found that ruxolitinib offered benefits for patients with acute GVHD, a severe form of GVHD with a mortality rate of 80%. The new trial, REACH3, aimed to determine whether the drug could bring similar benefits for the much larger number of patients affected by chronic GVHD. While chronic GVHD is not nearly as deadly as acute GVHD, its symptoms, which include weight loss, skin stiffness, and multiple disabilities, can severely and permanently affect patients' quality of life.

Researchers enrolled 329 patients with moderate-to-severe chronic GVHD. Half were randomly assigned to receive ruxolitinib for six 28-day cycles. The other half received one of nine alternative treatments, representing the best available therapy, at the discretion of their physician. At the end of the six treatment cycles, researchers assessed symptoms of 125 patients who had completed the full course of treatment to which they were assigned.

The trial met its primary endpoint, showing a clear and substantial improvement in the overall response to treatment among patients taking ruxolitinib. Of the 125 patients assessed, 50% of those receiving ruxolitinib had at least some reduction in symptoms, compared to only 25% among those receiving best available therapy. Seven percent of those taking ruxolitinib saw their symptoms resolve completely, compared to only 3% among those receiving best available therapy.

Participants in both arms of the study experienced similar rates of adverse events, which aligned with the health challenges commonly faced by patients with chronic GVHD, suggesting ruxolitinib has an acceptable safety profile in these patients, according to Dr. Zeiser.

Robert Zeiser, PhD, University Medical Center, Freiburg Im Breisgau, Germany, will present this study in an oral presentation on Saturday, December 5, at 8:00 a.m. Pacific time on the ASH annual meeting virtual platform.

Curative Transplant Improves Survival for Older Adults with Myelodysplastic Syndrome75: A Multi-Center Biologic Assignment Trial Comparing Reduced Intensity Allogeneic Hematopoietic Cell Transplantation to Hypomethylating Therapy or Best Supportive Care in Patients Aged 50-75 with Advanced Myelodysplastic Syndrome: Blood and Marrow Transplant Clinical Trials Network Study 1102

Allogeneic hematopoietic cell transplantation nearly doubled the rate of survival among patients 50 to 75 years old with myelodysplastic syndrome (MDS) in a trial conducted by the Blood and Marrow Transplant Clinical Trials Network. Despite being the only known cure for MDS, this therapy is typically only offered to younger patients because its benefits for older adults have not previously been proven. Researchers say the study offers the most definitive evidence to date that this type of stem cell transplantation significantly improves the outlook for older adults who would otherwise face a high likelihood of dying.

"Transplantation has been underutilized, historically, in this patient group," said senior study author Corey Cutler, MD, MPH,of Dana-Farber Cancer Institute. "Based on our findings, all patients should at least be referred to a transplant center so that those who are eligible and who have a suitable donor can undergo transplant and have better survival. It is important to refer these patients early so that the transplant center can work on finding an optimal donor right from the get-go."

Allogeneic hematopoietic (stem) cell transplantation is a process to replace a recipient's stem cells and immune system with cells from a healthy donor. It is the only known method to cure patients with MDS. The Centers for Medicare and Medicaid Services (CMS) covers transplantation for MDS as part of a Coverage with Evidence Development program. CMS approved the design of the trial and is expected to consider the findings when determining future payment policies.

Researchers from the Blood and Marrow Transplant Clinical Trials Network enrolled 384 patients treated for MDS at 34 U.S. medical centers. Patients were referred to transplant centers, which searched for suitable stem cell donors. The 260 patients who were matched with a donor within 90 days were assigned to receive a stem cell transplant; the other 124 patients with no suitable donor received standard supportive care. Participants were followed for roughly three years from their date of enrollment.

Overall survival was much higher in patients assigned to receive a stem cell transplant (47.9%) compared to those who were not (26.6%) at three years from treatment assignment. Leukemia-free survival was also higher in those assigned to receive a transplant (35.8%) than those who were not (20.6%). The researchers observed no significant differences among subgroups and no differences in quality of life between the two study arms.

Dr. Cutler noted that starting the transplantation process as early as possible can increase a patient's chance of finding a suitable donor and successfully proceeding with a transplant.

This study was co-funded by the National, Heart, Lung and Blood Institute (NHLBI) and the National Cancer Institute (NCI), both part of the National Institutes of Health.

Corey Cutler, MD, MPH, Dana-Farber Cancer Institute, will present this study in an oral presentation on Saturday, December 5, at 7:30 a.m. Pacific time on the ASH annual meeting virtual platform.

Additional press briefings will take place throughout the meeting on health disparities, genome editing and cellular therapy, COVID-19, and late-breaking abstracts. For the complete annual meeting program and abstracts, visit http://www.hematology.org/annual-meeting. Follow ASH and #ASH20 on Twitter, Instagram, LinkedIn, and Facebook for the most up-to-date information about the 2020 ASH Annual Meeting.

The American Society of Hematology (ASH) (www.hematology.org) is the world's largest professional society of hematologists dedicated to furthering the understanding, diagnosis, treatment, and prevention of disorders affecting the blood. For more than 60 years, the Society has led the development of hematology as a discipline by promoting research, patient care, education, training, and advocacy in hematology. ASH publishes Blood (www.bloodjournal.org), the most cited peer-reviewed publication in the field, and Blood Advances (www.bloodadvances.org), an online, peer-reviewed open-access journal.

SOURCE American Society of Hematology

http://www.hematology.org

View post:
Clinical Trials Offer Opportunities to Change Practice to Improve Prevention and Treatment of Blood Disorders - PRNewswire

To Read More: Clinical Trials Offer Opportunities to Change Practice to Improve Prevention and Treatment of Blood Disorders – PRNewswire
categoriaSkin Stem Cells commentoComments Off on Clinical Trials Offer Opportunities to Change Practice to Improve Prevention and Treatment of Blood Disorders – PRNewswire | dataDecember 5th, 2020
Read All

Cancer center is a contributor to 49 research studies at the 62nd American Society of Hematology Annual Meeting – Newswise

By daniellenierenberg

Newswise Researchers from The University of Kansas Cancer Center are involved in the presentation of nearly 50 research studies at the 62ndAmerican Society of Hematology (ASH) Annual Meeting, to be held virtually Dec. 5-8 because of the COVID-19 pandemic. With more than 18,000 members from nearly 100 countries, the ASH is the world's largest professional society serving both clinicians and scientists around the world who are working to conquer blood diseases.

The KU Cancer Center is one of only 71 cancer centers designated by the National Cancer Institute because they meet rigorous standards for transdisciplinary, state-of-the-art research focused on developing new and better approaches to preventing, diagnosing and treating cancer. Its catchment area includes the state of Kansas as well as western Missouri.

These 49 research studies represent the hard work of our many researchers focused on blood diseases, said Roy Jensen, M.D., director of the KU Cancer Center. This includes innovations in immunotherapy, advances in leukemia and significant work in stem cell transplants. While the conference is virtual this year, the KU Cancer Center will be well represented.

While a full list of abstracts involving KU Cancer Center researchers can be found online, three of the most significant are listed below.

# # #

About The University of Kansas Cancer Center:

The University of Kansas Cancer Center is transforming cancer research and clinical care by linking an innovative approach to drug discovery, delivery and development to a nationally-accredited patient care program. Our consortium center includes cancer research and health care professionals associated with the University of Kansas Medical Center and The University of Kansas Health System; the University of Kansas, Lawrence; The Stowers Institute for Medical Research; Childrens Mercy; and in partnership with members of the Masonic Cancer Alliance.

About the University of Kansas Medical Center:

The University of Kansas Medical Centers mission is to educate exceptional health care professionals through a full range of undergraduate, graduate, professional, postdoctoral and continuing education programs in the schools of Medicine, Nursing and Health Professions. KU Medical Center also advances the health sciences through world-class research programs; provides compassionate and state-of-the-art patient care in an academic medical center environment; and works with communities in every Kansas county to improve the health of Kansans.

View original post here:
Cancer center is a contributor to 49 research studies at the 62nd American Society of Hematology Annual Meeting - Newswise

To Read More: Cancer center is a contributor to 49 research studies at the 62nd American Society of Hematology Annual Meeting – Newswise
categoriaBone Marrow Stem Cells commentoComments Off on Cancer center is a contributor to 49 research studies at the 62nd American Society of Hematology Annual Meeting – Newswise | dataDecember 5th, 2020
Read All

Outlook on the Multiple Myeloma Drugs Global Market to 2025 – by Therapy, Drug Type, End-user, Distribution Channel and Region -…

By daniellenierenberg

DUBLIN--(BUSINESS WIRE)--Dec 4, 2020--

The "Multiple Myeloma Drugs Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2020-2025" report has been added to ResearchAndMarkets.com's offering.

The global multiple myeloma drugs market grew at a CAGR of around 9% during 2014-2019. Looking forward, the publisher expects the market to witness moderate growth during the next five years.

Multiple myeloma, or Kahler's disease, refers to a form of blood cancer that primarily affects the plasma cells. Some of the most common types of multiple myeloma drugs include chemotherapeutic agents, corticosteroids and immunomodulatory agents. These pharmaceutical drugs aid in promoting bone healing, prevent hypercalcemia, bone fracture, spinal cord compression and anemia, while minimizing the need for chemotherapy. The chemotherapeutic agents include various anthracycline antibiotics and alkylating agents, such as melphalan, doxorubicin, vincristine and liposomal doxorubicin. The targeted therapy drugs include proteasome inhibitor, such as bortezomib, and various other compounds, including dexamethasone, prednisone and thalidomide.

Significant developments in the healthcare sector, along with the increasing prevalence of hematological cancer, is one of the key factors driving the growth of the market. Multiple myeloma is usually caused by specific genetic abnormalities, and the treatment of this disease involves drugs that modulate the immune system and aid in enhancing the efficiency of chemotherapies, radiation therapies, stem cell transplants and platelet transfusion.

Furthermore, rising consumer awareness regarding the benefits of biologic therapy drugs, which utilize the body's immune system to identify and attack the myeloma cells, is also providing a boost to the market growth. Additionally, various technological advancements, such as the development of microRNA therapeutics and nanomedicines for the treatment of multiple myeloma, is acting as another growth-inducing factor. These medicines are used to facilitate the delivery of macromolecular agents into the bone marrow and catalyze antitumor responses. Other factors, including the rising healthcare expenditures and extensive research and development (R&D) activities in the field of medical sciences, are projected to drive the market further.

Companies Mentioned

Key Questions Answered in This Report:

Key Topics Covered:

1 Preface

2 Scope and Methodology

2.1 Objectives of the Study

2.2 Stakeholders

2.3 Data Sources

2.3.1 Primary Sources

2.3.2 Secondary Sources

2.4 Market Estimation

2.4.1 Bottom-Up Approach

2.4.2 Top-Down Approach

2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

4.1 Overview

4.2 Key Industry Trends

5 Global Multiple Myeloma Drugs Market

5.1 Market Overview

5.2 Market Performance

5.3 Market Forecast

6 Market Breakup by Therapy

6.1 Targeted Therapy

6.1.1 Market Trends

6.1.2 Market Forecast

6.2 Biologic Therapy

6.2.1 Market Trends

6.2.2 Market Forecast

6.3 Chemotherapy

6.3.1 Market Trends

6.3.2 Market Forecast

6.4 Others

6.4.1 Market Trends

6.4.2 Market Forecast

7 Market Breakup by Drug Type

7.1 Immunomodulatory Drugs

7.1.1 Market Trends

7.1.2 Market Forecast

7.2 Proteasome Inhibitors

7.2.1 Market Trends

7.2.2 Market Forecast

7.3 Histone Deacetylase Inhibitors

7.3.1 Market Trends

7.3.2 Market Forecast

7.4 Monoclonal Antibody Drugs

7.4.1 Market Trends

7.4.2 Market Forecast

7.5 Steroids

7.5.1 Market Trends

7.5.2 Market Forecast

7.6 Others

7.6.1 Market Trends

7.6.2 Market Forecast

8 Market Breakup by End-User

8.1 Men

8.1.1 Market Trends

8.1.2 Market Forecast

8.2 Women

8.2.1 Market Trends

8.2.2 Market Forecast

9 Market Breakup by Distribution Channel

9.1 Hospital Pharmacies

9.1.1 Market Trends

9.1.2 Market Forecast

9.2 Retail Pharmacies

9.2.1 Market Trends

9.2.2 Market Forecast

9.3 Online Pharmacies

9.3.1 Market Trends

9.3.2 Market Forecast

9.4 Others

9.4.1 Market Trends

9.4.2 Market Forecast

10 Market Breakup by Region

10.1 North America

10.2 Asia Pacific

10.3 Europe

10.4 Latin America

10.5 Middle East and Africa

11 SWOT Analysis

12 Value Chain Analysis

13 Porters Five Forces Analysis

14 Price Indicators

15 Competitive Landscape

15.1 Market Structure

15.2 Key Players

15.3 Profiles of Key Players

For more information about this report visit https://www.researchandmarkets.com/r/8yriem

View source version on businesswire.com:https://www.businesswire.com/news/home/20201204005505/en/

CONTACT: ResearchAndMarkets.com

Laura Wood, Senior Press Manager

press@researchandmarkets.com

For E.S.T Office Hours Call 1-917-300-0470

Read more here:
Outlook on the Multiple Myeloma Drugs Global Market to 2025 - by Therapy, Drug Type, End-user, Distribution Channel and Region -...

To Read More: Outlook on the Multiple Myeloma Drugs Global Market to 2025 – by Therapy, Drug Type, End-user, Distribution Channel and Region -…
categoriaBone Marrow Stem Cells commentoComments Off on Outlook on the Multiple Myeloma Drugs Global Market to 2025 – by Therapy, Drug Type, End-user, Distribution Channel and Region -… | dataDecember 5th, 2020
Read All

Not All Patients With Relapsed DLBCL Referred for CAR T in Community Setting – Targeted Oncology

By daniellenierenberg

Hematologists and oncologists working in the community setting encounter multiple obstacles when prescribing chimeric antigen receptor (CAR) T-cell therapy to patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL). The challenges involve matters of processes, treatment cost, and access to treatment.

To further understand the issues and the solutions needed for physicians who treat relapsed/refractory DLBCL, researchers at Cardinal Health conducted 2 live survey sessions to collect information from clinicians. A total of 114 oncologists and hematologists from community practices and hospital settings participated in the survey. The population of hematologists/oncologists see roughly 20 patients per day, and the majority have been in practice for 11 to 20 years. Overall, 46% of the clinicians who attended the first live survey session, and 26% of those who attended the second reported that they had not referrer any patient for CAR T-cell therapy, and of those who did refer patients 32% and 22% of patients, respectively had not yet been infused with CAR T cells.1

The results of the survey revealed that while the use of CAR T-cell therapy increased in community practices over the past year, there remain issues with high cost and toxicity of treatment. It was also reported that the processing of insurance was a barrier to getting patients treated. These challenges continue to limit the number of clinicians who recommend CAR T-cell therapy to their patients.

In an interview withTargeted Oncology, Ajeet Gajra, MD, FACP, vice president, Cardinal Health, discussed the ongoing challenges community oncologists face with prescribing CAR T-cell therapy to patients with relapsed/refractory DLBCL.

TARGETED ONCOLOGY: Can you explain the overall prognosis for patients with DLBCL? What are outcomes generally like with existing standard of care therapy?

Gajra: The outlook for DLBCL improved with the advent of chemoimmunotherapy, better risk stratification, and improved supportive care. Recent studies demonstrate that despite aggressive biology, over 60% of patients with DLBCL treated with chemoimmunotherapy achieve long-term remissions and cures. However, the improvements reached a plateau in the past decade, especially for patients who relapse after initial chemoimmunotherapy. These patients typically have poor prognostic features as defined by the International Prognostic Index (IPI) with high likelihood of relapse and death. Patients with relapsed or refractory disease are typically treated with salvage immunochemotherapy such as rituximab, ifosfamide, carboplatin and etoposide (RICE) or rituximab, cisplatin high dose Ara-C and dexamethasone (RDHAP), and those with chemotherapy-sensitive disease receive autologous stem cell transplant (ASCT). Using this approach, complete response (CR) rates are 35% to 40%, and in a recent study the 3-year event-free survival (EFS) and overall survival (OS) were 31% and 50%, respectively. Outcomes with ASCT are much worse for patients with refractory DLBCL as demonstrated in the SCHOLAR trial wherein the objective response rate was 26% (CR rate, 7%) with a median OS of 6.3 months and only 20% of patients were alive at 2 years.

Thus, prior to 2017 when the first CAR T therapy was approved in DLBCL with progression after 2 prior lines of therapy, there had been a significant unmet need for patients with relapsed DLBCL. The approval of 2 CAR-T therapies, axicabtagene ciloleucel (axi-cel) in October of 2017 and tisagenlecleucel (Kymriah; tisa-cel) in May 2018, in the treatment of large-cell lymphoma (LBCL), has ushered in a new mode of treatment which offers the potential of long-term remission in what was essentially a fatal disease.

TARGETED ONCOLOGY: What has been your observation experience with using CAR T cell therapy in patients with DLBCL by US community oncologists?

Gajra: Axi-cel and tisa-cel are both CD19-directed, genetically modified autologous T cell immunotherapy agents. Since the process of obtaining CAR T therapy for an individual patient is quite complex, we sought to assess the uptake of these agents among United States community oncologists. We conducted a study of community oncologists at two time points to assess perceptions and use of approved CAR T therapies in relapsed DLBCL. At each time point over 50 distinct oncologists participated. At the early timepoint, 46% of participants indicated that they had not referred any patients for CAR T therapy but at the later timepoint, this number decreased to 29% suggesting increasing use over the course of the 10-month interval. Of those participants who had referred patients for CAR T therapy, 32% at the early timepoint reported that none of their patients had yet received the CAR T infusion but the percentage of non-receipt decreased to 22% at the later timepoint again suggesting improved uptake and utilization.

TARGETED ONCLOGY: How do patient characteristics factor into how oncologists select patients to administer CAR T cells to? What are the barriers to CAR-T use?

Gajra: CAR T therapies approved in DLBCL have limitations as defined by the FDA approval and are to be used in adult patients with relapsed or refractory large B-cell lymphoma, including DLBCL, after 2 or more lines of systemic therapy. Neither agent is approved for the use of CNS lymphoma. As with the pivotal trials for the 2 agents, patients must have good ECOG performance status, adequate organ function including marrow, hepatic, cardiac and renal function, no active infection and no CNS involvement. Both agents carry black box warnings for neurotoxicity and cytokine release syndrome (CRS) which can be potentially fatal. Thus, the patients selected need to have good physiologic reserve and be willing to accept risks associated with the therapies. With the approval of a new CD19-directed monoclonal antibody, tafasitamab, it is not clear if patients exposed to that agent can still benefit from CAR T therapies.

In addition to patient specific factors, CAR T therapy represents a complex manufacturing process that is unlike traditional drug therapy or stem cell transplant. After identification of a potential patient with relapsed LBCL who has received at least two prior systemic therapies, a benefits verification and referral to a designated CAR T-cell therapy center is required. If deemed appropriate by the CAR T center, the patient undergoes apheresis for T-cell collection. The cells are then transported to the manufacturers facility where they are isolated, activated and undergo gene transfer, creating the chimeric cells which go through a process of expansion to generate the numbers needed for therapeutic effect. This process takes from 10 days to a few weeks. The CAR T cells are then cryopreserved and transferred back to the CAR T facility and reinfused into the patient. Thus, it is critical to maintain vein to vein integrity. Thus, unlike traditional cytotoxic or monoclonal antibody products, these agents are patient specific, living cell products that have a complex process for their manufacture, storage and shipping, leading to high costs to the healthcare system and the patient.

Given this information, not surprisingly, the oncologists surveyed identified the high cost of therapy as a major barrier to uptake and utilization at both time points respectively. Over half the participants identified cumbersome logistics of administering therapy and following patients as another major barrier. Further exploration of logistical issues identified barriers encountered during the referral process could be attributed to the payer or the CAR T center.

The payer specific challenges identified include slow approval process by 27% of payers (and high rates of denials by in 13% of payers. The challenges specific to the CAR-T center include slow intake process by 23% of CAR T centers lack of a CAR T center in geographic vicinity in 13%. CAR T center choosing stem cell transplant rather than CAR T for the patient was also seen 10% of the time. Other commonly encountered clinical challenges reported by the participants included deterioration of the patient prior to CAR T administration, and the need to administer bridging chemotherapy while awaiting manufacture of CAR T therapy. The lack of communication from the CAR T center during the process was identified by a minority as an impediment to recommending CAR T therapies, including lack of instructions to the primary oncologist and the patient.

TARGETED ONCOLOGY: Can you discuss the toxicities observed with CAR T cell therapy in this patient population? Do you haveany insight into toxicities observed in the real-world setting?

Gajra: As stated, both approved products carry black box warnings for CRS and neurotoxicity, now called Immune Effector Cell Associated Neurologic Syndrome (ICANS). CRS is an acute systemic inflammatory syndrome characterized by fever, hypotension, tachycardia, hypoxia and multiple organ dysfunction. ICANS is a neuropsychiatric complex manifested by encephalopathy, headache, tremor, dizziness, aphasia, delirium, insomnia and anxiety. The treating team needs to maintain a high index of suspicion for these potentially life-threatening agents and patients need to have access to facilities with advanced critical care. Tumor debulking ahead of CAR T infusion and prophylactic use of tocilizumab may reduce the risk of CRS. Use of corticosteroids early can alleviate the severity and duration of ICANS.

The scientific team at Cardinal Health has studied the real-world adverse events (AEs) to CAR T agents in DLBCL.2 We analyzed the postmarketing case reports from the FDA, AEs reporting system involving axicel and tisa-cel for large B-cell lymphomas were analyzed. Of 804 AE cases identified 67% of axi-cel cases and 26% of tisa-cel cases reported neurological AEs. Compared with cases without neurological AEs, significant associations were observed between neurological AEs and use of axi-cel, age 65 years, CRS and the outcome of hospitalization. These findings and those of other investigators suggest that there may be differences in neurological toxicity based on the agent used.

TARGETED ONCOLOGY: Can you provide background on how this web-based survey can about at Cardinal Health Specialty Solutions? What is the overall goal with it?

Gajra: We are continuously engaged in research with healthcare providers, including medical oncologists/hematologists, to assess their perspectives on issues they face in their day-to-day practice, including the impact of new therapies on patient care. We share our research findings with healthcare stakeholders through peer-reviewed manuscripts and abstracts, as well as through our Oncology Insights report, which is published twice a year.

TARGETED ONCOLOGY:How can the information obtained from this survey impact practice? Where are you in the process of response collect and obtaining results?

Gajra: Our research on CAR-T therapy, collected via web-based and in-person surveys, has helped us identify the challenges to the use of these therapies encountered by community oncologists. Given that over 50% of cancer care is rendered in the community setting, it is important to identify these barriers with a goal of mitigating them and facilitating timely access to these potentially life-saving therapies for patients. With a new CAR-T approval in mantle cell lymphoma this year and other potential approvals in newer indications on the horizon, streamlining access to CAR-T therapies will continue to be a priority.

We have a follow-up to this paper that will be presented at ASH 2020 where additional research with community oncologists in early 2020 has revealed that the rate of non-receipt of CAR-T therapies in DLBCL is relatively constant at around 30%. In addition, we are exploring interest and uptake of CAR-T therapies in the outpatient setting as oncologists gain more confidence in preventing, minimizing and managing the toxicity of CAR-T therapies.

References:

1. Gajra A, Jeune-Smith Y, Yeh T, et al. Perceptions of community hematologists/oncologists on barriers to chimeric antigen receptor T-celltherapy for the treatment of diffuse large B-cell lymphoma. Immunotherapy. 202012(10);725-732. doi: 10.2217/imt-2020-0118

2. Gajra A, Zettler ME, Phillips EG Jr, Klink AJ, Jonathan K Kish, Fortier S, Mehta S, Feinberg BA. Neurological adverse events following CAR T-cell therapy: a real-world analysis. Immunotherapy. 2020 Oct;12(14):1077-1082. doi: 10.2217/imt-2020-0161

Read more here:
Not All Patients With Relapsed DLBCL Referred for CAR T in Community Setting - Targeted Oncology

To Read More: Not All Patients With Relapsed DLBCL Referred for CAR T in Community Setting – Targeted Oncology
categoriaCardiac Stem Cells commentoComments Off on Not All Patients With Relapsed DLBCL Referred for CAR T in Community Setting – Targeted Oncology | dataDecember 3rd, 2020
Read All

3D Cardiac Mapping Systems Market Key Vendors, Analysis by Growth and Revolutionary Opportunities by 2028 – Murphy’s Hockey Law

By daniellenierenberg

Global 3D Cardiac Mapping Systems Market: Overview

Cardiac mapping is a special type of technique which helps in gathering and displaying the information from cardiac electrograms. Such technique is mainly used in the diagnosis of heart rhythms. Therefore, cardiac mapping technique has gained immense popularity in case of arrhythmia. The cardiac mapping procedure involves the percutaneous insertion of catheter into the heart chamber and recording the cardiac electrograms sequentially. Such procedure helps in correlating the cardiac anatomy with the electrograms. The latest 3D cardiac mapping systems provide the three dimensional model of hearts chamber, which further helps in tracking the exact location of the catheter. Such advantages are majorly driving the global 3D cardiac mapping systems market.

Get Sample Copy of the Report @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=5324

From the perspective of technology, the global 3D cardiac mapping systems market is segmented into basket catheter mapping, electroanatomical mapping, and real-time positional management (Cardiac pathways) EP system. Among these segments, electroanatomical mapping segment accounts for the maximum share in the global 3D cardiac mapping systems market. This mapping are extensively used in several healthcare industry due to its potential in increasing the safety, accuracy, and efficiency of catheter. A research report by TMR Research (TMR) thoroughly explains the new growth opportunities in the global 3D cardiac mapping systems market. Additionally, the report also provides a comprehensive analysis of the markets competitive landscape.

Global 3D Cardiac Mapping Systems Market: Notable Developments

Some of the recent developments are contouring the shape of the global 3D cardiac mapping systems market in a big way:

Key players operating in the global 3D cardiac mapping systems market include BioScience Webster, Boston Scientific Corporation, and Abbott.

Global 3D Cardiac Mapping Systems Market: Key Growth Drivers

Rising Number of Patients with Cardiac Disorders and Arrhythmia Fillips Market

The global 3D cardiac mapping systems market has grown steadily over the years, owing to the convenience it provides to the patients with heart problem. Growing number of people with cardiovascular diseases and rising cases of arrhythmia are the major factors fueling growth in the global 3D cardiac mapping systems market. Along with this, increasing pressure for reducing diagnosis errors and rapidly rising healthcare expenditure are also responsible for boosting the global 3D cardiac mapping systems market. However, above all such factors, the global 3D cardiac mapping systems market is majorly fueled by the accuracy and patient safety provided through real-time monitoring. Such 3D cardiac mapping systems are mainly designed to improve the resolution. This system also helps in gaining prompt of cardiac activation maps. All such advantages are also providing impetus to the growth of the global 3D cardiac mapping systems market.

Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=5324

Furthermore, rising ageing population who are prone to heart-attack and several chronic heart disorders and increasing diagnosis rate of cardiac illness are the factors stoking demand in the global 3D cardiac mapping systems market. Moreover, this 3D cardiac mapping helps in reducing the diagnosis time. Such factor is also contributing to the growth of the global 3D cardiac mapping systems market.

Global 3D Cardiac Mapping Systems Market: Regional Outlook

On the regional front, North America is leading the global 3D cardiac mapping systems market as the region has seen rapid growth in healthcare industry. Along with this, increasing prevalence of heart attacks, rising healthcare expenditure, and burgeoning population is also responsible for fueling growth in the 3D cardiac mapping systems market in this region.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Read this article:
3D Cardiac Mapping Systems Market Key Vendors, Analysis by Growth and Revolutionary Opportunities by 2028 - Murphy's Hockey Law

To Read More: 3D Cardiac Mapping Systems Market Key Vendors, Analysis by Growth and Revolutionary Opportunities by 2028 – Murphy’s Hockey Law
categoriaCardiac Stem Cells commentoComments Off on 3D Cardiac Mapping Systems Market Key Vendors, Analysis by Growth and Revolutionary Opportunities by 2028 – Murphy’s Hockey Law | dataDecember 3rd, 2020
Read All

Repairing the Brain With Stem Cells? A Conversation With Prof. Jack Price – Being Patient

By daniellenierenberg

Groundbreaking research in stem cells has propelled scientists understanding of neurodegenerative diseases, including Parksinsons. Could stem cell therapies one day help cure Alzheimers?

Clinical trials of stem cell therapies are now underway to repair the damaged cells of people with Parkinsons disease and age-related macular degeneration. Being Patient spoke with Jack Price, professor of developmental neurobiology at Kings College London and author of the book The Future of Brain Repair, about the potential and challenges of repairing the brain with stem cell therapy.

Being Patient: What is stem cell therapy?

Prof. Jack Price: Its the transplantation of stem cells, either directly into the brain or in a way that gives them access to the brain and influence the brain, to bring about a therapeutic effect.

Being Patient: Are there stem cells in the brain?

Prof. Jack Price: For many years, neuroscientists didnt think there were stem cells in the brain. We now know there are. We know about a population [of stem cells] thats become very important in our understanding of Alzheimers disease and in mood disorders like anxiety and depression. These are stem cells that are found in a part of the brain called the hippocampus.

But by and large, the brain doesnt have stem cells, unlike skin and other tissues in the body. The blood is the classic [example]: Theres a population of stem cells in the bone marrow that regenerates blood all the time.

Being Patient: What makes stem cells so special and why are they a focus of research?

Prof. Jack Price: The definition of stem cells is a population of cells that gives rise to other types of cells. In neural stem cells, precursor cells can make adult brain cells, nerve cells, glial cells, all the different cell types that make up the brain. If you have a disease like Alzheimers or any other neurodegenerative disease, where we know the key pathology is the loss of nerve cells, your brain doesnt normally have the ability to replace those lost brain cells. The idea was [that] if you put stem cells where the loss of brain cells has taken place, maybe those stem cells would replace the lost cells.

Being Patient: What is the potential of stem cell therapy in treating neurodegenerative diseases?

Prof. Jack Price: Theres a piece of absolutely brilliant stem cell science that was done by Shinya Yamanaka in Kyoto in 2006. He showed you could effectively take any cell through a very straightforward genetic manipulation that he discovered, [and] turn them into what we call pluripotent stem cells, which are cells that can make any cell type in the body. They also have an ability that other stem cells generally dont: They can build tissue. If you grow them in a little culture dish, they can start to make little pieces of brain called organoids or cerebroids. This was a groundbreaking technology.

In Parkinsons disease, theres enormous progress and clinical trials are underway now. We know more about the pathology of Parkinsons disease [than in Alzheimers]. The pathology of Alzheimers turns out to be quite complex, and weve had, over the years, quite a few ideas about how it worked. But [turning] those into actual therapies hasnt quite worked as we expected, and we keep having to go back and rethink whats going on in Alzheimers.

The pathology of Parkinsons disease is also difficult. Its not trivial. But at the same time, one thing is clear: a lot of the pathology is associated with the loss of a particular population of nerve cells the midbrain dopaminergic cells. We can start with these pluripotent stem cells and make them make precisely the right type of dopaminergic cell that we know is lost in Parkinsons disease.

This is built on 30 [to] 40 years of research of people trying to find exactly the right cell type to work [with] in Parkinsons disease. They had some early success and fell backwards. But this technology looks much more precise than everything anybodys ever tried before.

In age-related macular degeneration, the disease of the eye where you lose your retinal photoreceptors, there are very clever strategies now where people are using these pluripotent stem cells to make a thing called a retinal pigment epithelium. It lies behind the retina, but its what supports the photoreceptors. It turns out, thats what goes wrong in age-related macular degeneration.

Being Patient: Are there any stem cell therapy approved to treat brain disorders?

Prof. Jack Price: There are no licensed stem cell therapy for any brain disorders anywhere in the world for the simple reason [that] nobody has shown one works. There are a lot of stem cell clinics in the U.S. and somewhat fewer elsewhere who are offering cell therapies that are untested. Theyll put stem cells into you for any disorder youve got. Those cell therapies do not work.

A lot of genuine companies are trying to get these cell therapies to work in clinical trials and falling flat on their face quite often, despite their best efforts. 90% of clinical trials fail, and thats clinical trials of conventional drugs by drug companies that know what theyre doing.

What do you suppose is the chance with a stem cell therapy [that] we dont really understand how it works, [that] we dont quite know how to manufacture it properly, [and that] we dont quite know what cells we really want, of working? The chance is almost zero. These companies know that, which is why theyre not going to clinical trials.

The interview has been edited for length and clarity.

Contact Nicholas Chan at nicholas@beingpatient.com

Follow this link:
Repairing the Brain With Stem Cells? A Conversation With Prof. Jack Price - Being Patient

To Read More: Repairing the Brain With Stem Cells? A Conversation With Prof. Jack Price – Being Patient
categoriaBone Marrow Stem Cells commentoComments Off on Repairing the Brain With Stem Cells? A Conversation With Prof. Jack Price – Being Patient | dataDecember 3rd, 2020
Read All

Treatment to restore vision by injecting stem cells into the eye could help people with damaged eyesight – iNews

By daniellenierenberg

An effective new treatment to restore vision is on the horizon that works by injecting genetically modified stem cells into the eye to mend the damaged retina.

Researchers found that the cells of damaged retinas send out a rescue signal to attract the stem cells that repair eye damage.

The i newsletter latest news and analysis

They identified two of these cell signals known as Ccr5 and Cxcr6 and then genetically engineered the stem cells to make them more sensitive to those signals.

When these modified stem cells were transplanted back into mice and human tissue samples in the lab they flocked to the retina cells in much greater numbers, keeping the tissue of the damaged retina alive and functioning.

The technique holds promise for improving sight in people with poor vision and potentially even to cure blindness altogether but the researchers cautioned that any such development was some years away and required much bigger studies to confirm their findings.

One of the main hurdles in using stem cells to treat damaged eyesight is low cell migration and integration in the retina, says Pia Cosma, at the Centre for Genomic Regulation in Barcelona.

After the cells are transplanted they need to reach the retina and integrate through its layers. Here we have found a way to enhance this process using stem cells commonly found in the bone marrow, but in principle can be used with any transplanted cells, Dr Cosma said.

There is still considerable work to be done, but our findings could make stem cell transplants a feasible and realistic option for treating visual impairment and restoring eyesight, she said.

Retinal damage, which is currently incurable, inevitably leads to visual disabilities and in most cases blindness. With a growing and ageing population, the number of people affected by retinal damage is estimated to increase dramatically over the next few decades.

Stem cell therapies have been touted as one way of treating degenerative retinal conditions. Stem cells can be transplanted into the eye, releasing therapeutic molecules with neuroprotective and anti-inflammatory properties that promote the survival, proliferation and self-repair of retinal cells. The stem cells can also generate new retinal cells, replacing lost or damaged ones.

The researchers used mesenchymal stem cells, which are found in bone marrow and can differentiate into lots of types of cells, including retinal cells that respond to light.

Mesenchymal stem cells can also be easily grown outside an organism, providing abundant starting material for transplantation compared to other cell sources such as hematopoietic stem cells.

The study is published in the journal Molecular Therapy.

Here is the original post:
Treatment to restore vision by injecting stem cells into the eye could help people with damaged eyesight - iNews

To Read More: Treatment to restore vision by injecting stem cells into the eye could help people with damaged eyesight – iNews
categoriaBone Marrow Stem Cells commentoComments Off on Treatment to restore vision by injecting stem cells into the eye could help people with damaged eyesight – iNews | dataDecember 3rd, 2020
Read All

Sphingosine 1-phosphate Receptor Modulator ONO-4641 Regulates Trafficking of T Lymphocytes and Hematopoietic Stem Cells and Alleviates Immune-Mediated…

By daniellenierenberg

This article was originally published here

J Pharmacol Exp Ther. 2020 Nov 30:JPET-AR-2020-000277. doi: 10.1124/jpet.120.000277. Online ahead of print.

ABSTRACT

ONO-4641 is a second-generation sphingosine 1-phosphate (S1P) receptor modulator that exhibits selectivity for S1P receptors 1 and 5. Treatment with ONO-4641 leads to a reduction in magnetic resonance imaging disease measures in patients with relapsing-remitting multiple sclerosis. The objective of this study was to explore the potential impact of ONO-4641 treatment based on its immunomodulatory effects. Severe aplastic anemia is a bone marrow (BM) failure disease, typically caused by aberrant immune destruction of blood progenitors. Although the T helper type-1-mediated pathology is well described for aplastic anemia, the molecular mechanisms driving disease progression remain undefined. We evaluated the efficacy of ONO-4641 in a mouse model of aplastic anemia. ONO-4641 reduced the severity of BM failure in a dose-dependent manner, resulting in higher blood and BM cell counts. By evaluating the mode of action, we found that ONO-4641 inhibited the infiltration of donor-derived T lymphocytes to the BM. ONO-4641 also induced the accumulation of hematopoietic stem cells in the BM of mice. These observations indicate, for the first time, that S1P receptor modulators demonstrate efficacy in the mouse model of aplastic anemia and suggest that treatment with ONO-4641 might delay the progression of aplastic anemia. Significance Statement ONO-4641 is a second-generation sphingosine 1-phosphate (S1P) receptor modulator selective for S1P receptors 1 and 5. In this study, we demonstrated that ONO-4641 regulates the trafficking of T lymphocytes along with hematopoietic stem and progenitor cells leading to alleviation of pancytopenia and destruction of bone marrow in a bone marrow failure-induced mouse model mimicking human aplastic anemia.

PMID:33257316 | DOI:10.1124/jpet.120.000277

See the article here:
Sphingosine 1-phosphate Receptor Modulator ONO-4641 Regulates Trafficking of T Lymphocytes and Hematopoietic Stem Cells and Alleviates Immune-Mediated...

To Read More: Sphingosine 1-phosphate Receptor Modulator ONO-4641 Regulates Trafficking of T Lymphocytes and Hematopoietic Stem Cells and Alleviates Immune-Mediated…
categoriaBone Marrow Stem Cells commentoComments Off on Sphingosine 1-phosphate Receptor Modulator ONO-4641 Regulates Trafficking of T Lymphocytes and Hematopoietic Stem Cells and Alleviates Immune-Mediated… | dataDecember 3rd, 2020
Read All

IN8bio announces first-in-human Phase 1 trial Update from The University of Kansas Cancer Center using INB-100, IN8bios Gamma Delta T-cell product…

By daniellenierenberg

NEW YORK, Dec. 03, 2020 (GLOBE NEWSWIRE) -- IN8bio, Inc., a clinical-stage biotechnology company focused on developing innovative allogeneic, autologous and genetically modified gamma-delta T cell therapies for the treatment of cancers (IN8bio or the Company), today announced an upcoming presentation that provides an update of the ongoing Phase I clinical trial of their product candidate INB-100 at the 62nd American Society of Hematology Annual Meeting & Exposition (ASH), which will take place virtually from December 5 to 8, 2020. INB-100 is designed for the treatment of patients with leukemia undergoing hematopoietic stem cell transplantation with haploidentical donors.

The poster and accompanying narrated slide presentation is titled, First-in-Human Phase I Trial of Adoptive Immunotherapy with Ex Vivo Expanded and Activated gamma delta T-Cells Following Haploidentical Bone Marrow Transplantation and Post-BMT Cyclophosphamide and reviews the study design and provides a brief update on enrollment and patient status.

The company reported that, as of abstract submission, three female subjects with acute leukemia had been enrolled in the INB-100 Phase 1 trial, of whom two had been dosed, and that no treatment-related adverse events had been recorded. The trial is continuing to enroll and treat patients. The abstract for the presentation can be found at https://ash.confex.com/ash/2020/webprogram/Paper142876.html.

The poster and slide presentation are jointly authored by the scientific and physician investigators from IN8bio and The University of Kansas Cancer Center (KU Cancer Center), and will be presented by the studys Principal Investigator, Dr. Joseph McGuirk, Schutte-Speas Professor of Hematology-Oncology, Division Director of Hematological Malignancies and Cellular Therapeutics and Medical Director, Blood and Marrow Transplant at KU Cancer Center.

This preliminary data report from KU Cancer Center with our allogeneic product candidate, INB-100, demonstrates the absence of significant GvHD in these initial patients, said William Ho, Chief Executive Officer of IN8bio. This suggests that gamma delta T-cells delivered as an off-the-shelf allogeneic cell therapy may be well tolerated and have significant potential to treat patients with serious and life-threatening cancers.

Story continues

Dr. McGuirk, commented, Potentially curative stem cell transplants using partially matched donors -- called haploidentical transplants have greatly expanded access to stem cell transplantation. The infusion of donor-derived gamma delta T-cells from the stem cell donor, offers the hope of diminishing this risk of relapse and curing more patients.

About IN8bioIN8bio is a clinical-stage biotechnology company focused on developing novel therapies for the treatment of cancers, including solid tumors, by employing allogeneic, autologous and genetically modified gamma-delta T cells. IN8bios technology incorporates drug-resistant immunotherapy (DRI), which has been shown in preclinical studies to function in combination with therapeutic levels of chemotherapy. IN8bio is currently conducting two investigator-initiated Phase 1 clinical trials for its lead gamma-delta T cell product candidates: INB-200 for the treatment of newly diagnosed glioblastoma, which is a difficult to treat brain tumor that progresses rapidly, and INB-100 for the treatment of patients with acute leukemia undergoing hematopoietic stem cell transplantation. For more information about the Company and its programs, visit http://www.IN8bio.com.

Forward Looking StatementsCertain statements herein concerning the Companys future expectations, plans and prospects, including without limitation, the Companys current expectations regarding the curative potential of its product candidates, constitute forward-looking statements. The use of words such as may, might, will, should, expect, plan, anticipate, believe, estimate, project, intend, future, potential, or continue, the negative of these and other similar expressions are intended to identify such forward looking statements. Such statements, based as they are on the current expectations of management, inherently involve numerous risks and uncertainties, known and unknown, many of which are beyond the Companys control. Consequently, actual future results may differ materially from the anticipated results expressed in such statements. Specific risks which could cause actual results to differ materially from the Companys current expectations include: scientific, regulatory and technical developments; failure to demonstrate safety, tolerability and efficacy; final and quality controlled verification of data and the related analyses; expense and uncertainty of obtaining regulatory approval, including from the U.S. Food and Drug Administration; and the Companys reliance on third parties, including licensors and clinical research organizations. Do not place undue reliance on any forward-looking statements included herein, which speak only as of the date hereof and which the Company is under no obligation to update or revise as a result of any event, circumstances or otherwise, unless required by applicable law.

Contact:IN8bio, Inc.Kate Rochlin, Ph.D.+1 646.933.5605info@IN8bio.com

Investor Contact:Julia Balanova+ 1 646.378.2936jbalanova@soleburytrout.com

Media Contact:Ryo Imai / Robert Flamm, Ph.D.Burns McClellan, Inc.212-213-0006 ext. 315 / 364Rimai@burnsmc.com / rflamm@burnsmc.com

See original here:
IN8bio announces first-in-human Phase 1 trial Update from The University of Kansas Cancer Center using INB-100, IN8bios Gamma Delta T-cell product...

To Read More: IN8bio announces first-in-human Phase 1 trial Update from The University of Kansas Cancer Center using INB-100, IN8bios Gamma Delta T-cell product…
categoriaBone Marrow Stem Cells commentoComments Off on IN8bio announces first-in-human Phase 1 trial Update from The University of Kansas Cancer Center using INB-100, IN8bios Gamma Delta T-cell product… | dataDecember 3rd, 2020
Read All

Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate Safety and Therapeutic Efficacy of Angiogenesis Induced by Intraarterial Autologous…

By daniellenierenberg

This article was originally published here

J Vasc Interv Radiol. 2020 Nov 25:S1051-0443(20)30769-7. doi: 10.1016/j.jvir.2020.09.003. Online ahead of print.

ABSTRACT

PURPOSE: To evaluate safety and efficacy of angiogenesis induced by intraarterial autologous bone marrow-derived stem cell (BMSC) injection in patients with severe peripheral arterial disease (PAD).

MATERIALS AND METHODS: Eighty-one patients with severe PAD (77 men), including 56 with critical limb ischemia (CLI) and 25 with severe claudication, were randomized to receive sham injection (group A) or intraarterial BMSC injection at the site of occlusion (group B). Primary endpoints included improvement in ankle-brachial index (ABI) of > 0.1 and transcutaneous pressure of oxygen (TcPO2) of > 15% at mid- and lower foot at 6 mo. Secondary endpoints included relief from rest pain, > 30% reduction in ulcer size, and reduction in major amputation in patients with CLI and > 50% improvement in pain-free walking distance in patients with severe claudication.

RESULTS: Technical success was achieved in all patients, without complications. At 6 mo, group B showed more improvements in ABI of > 0.1 (35 of 41 [85.37%] vs 13 of 40 [32.50%]; P < .0001) and TcPO2 of > 15% at the midfoot (35 of 41 [85.37%] vs 17 of 40 [42.50%]; P = .0001] and lower foot (37 of 41 [90.24%] vs 19 of 40 [47.50%]; P < .0001). No patients with CLI underwent major amputation in group B, compared with 4 in group A (P = .0390). No significant difference was observed in relief from rest pain or > 30% reduction in ulcer size among patients with CLI or in > 50% improvement in pain-free walking distance among patients with severe claudication.

CONCLUSIONS: Intraarterial delivery of autologous BMSCs is safe and effective in the management of severe PAD.

PMID:33248918 | DOI:10.1016/j.jvir.2020.09.003

Follow this link:
Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate Safety and Therapeutic Efficacy of Angiogenesis Induced by Intraarterial Autologous...

To Read More: Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate Safety and Therapeutic Efficacy of Angiogenesis Induced by Intraarterial Autologous…
categoriaBone Marrow Stem Cells commentoComments Off on Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate Safety and Therapeutic Efficacy of Angiogenesis Induced by Intraarterial Autologous… | dataDecember 3rd, 2020
Read All

Gut bacteria can help rebuild the immune system – Medical News Today

By daniellenierenberg

For the first time, researchers have demonstrated how the gut microbiome the community of microorganisms living in the gut can influence the immune system in humans. Their work could lead to new treatments for immune-related conditions.

The researchers at Memorial Sloan Kettering Cancer Center in New York, NY, tracked the recovery of patients gut microbiota and immune system after bone marrow transplants (BMTs) following treatment for blood cancers.

Healthcare professionals use chemotherapy and radiation therapy to destroy cancerous blood cells in conditions such as leukemia and lymphoma. After completion of the treatment, which also kills healthy immune cells, specialists inject patients with stem cells from a donors blood or bone marrow.

These donated cells slowly restore patients ability to make their own blood cells.

However, patients have to take antibiotics in the first few weeks after the transplant because they are still vulnerable to infections. These upset the balance of their gut microbiota, killing friendly bacteria and allowing dangerous strains to thrive.

Once patients immune systems are strong enough, they can stop taking the antibiotics, which allows their gut microbiota to recover.

The researchers at Sloan Kettering used this unique opportunity to study how the microbiota affects the immune system.

The scientific community had already accepted the idea that the gut microbiota was important for the health of the human immune system, but the data they used to make that assumption came from animal studies, explains systems biologist Joao Xavier, who is co-senior author of the paper with his former postdoc Jonas Schluter.

The parallel recoveries of the immune system and the microbiota, both of which are damaged and then restored, gives us a unique opportunity to analyze the associations between these two systems, says Dr. Schluter, who is now an assistant professor at NYU Langone Health in New York, NY.

Using blood and fecal samples from more than 2,000 patients treated at the cancer center between 20032019, the researchers were able to track daily changes in their gut microbiota and the number of immune cells in their blood.

Our study shows that we can learn a lot from stool biological samples that literally would be flushed down the toilet, says Dr. Xavier. The result of collecting them is that we have a unique dataset with thousands of data points that we can use to ask questions about the dynamics of this relationship.

The researchers used a machine-learning algorithm to identify patterns in the data, which included information about patients medications and the side effects they experienced.

One of the findings was that the presence of three types of gut bacteria called Faecalibacterium, Ruminococcus 2, and Akkermansia was associated with increased blood concentrations of immune cells called neutrophils.

By contrast, two types called Rothia and Clostridium sensu stricto 1, were associated with reduced numbers of these immune cells.

Computer simulations by the researchers predicted that enriching microbiota with the three friendly genera would speed up the recovery of patients immune systems.

This research could eventually suggest ways to make BMTs safer by more closely regulating the microbiota, says co-author Marcel van den Brink.

The study appears in Nature.

Concluding their paper, the authors write:

Our demonstration that the microbiota influences systemic immunity in humans opens the door toward an exploration of potential microbiota-targeted interventions to improve immunotherapy and treatments for immune-mediated and inflammatory diseases.

A previous study found that having a greater diversity of bacterial species in the gut is associated with a better chance of survival after a stem cell transplant. This research also found that a low diversity of bacteria increased the likelihood of potentially fatal graft-versus-host disease, when the donor immune cells attack the recipients tissues.

In 2018, the Sloan Kettering researchers published results from a clinical trial in which they used fecal transplants to restore patients microbiota after treatment for blood cancer.

They used the patients own fecal matter, which had been collected and frozen before the bone marrow transplant and antibiotic treatment disrupted their gut microbiota.

See original here:
Gut bacteria can help rebuild the immune system - Medical News Today

To Read More: Gut bacteria can help rebuild the immune system – Medical News Today
categoriaBone Marrow Stem Cells commentoComments Off on Gut bacteria can help rebuild the immune system – Medical News Today | dataDecember 3rd, 2020
Read All

Trends Of Hematopoietic Stem Cell Transplantation (HSCT) Market Reviewed For 2020 With Industry Outlook To 2027 – The Market Feed

By daniellenierenberg

DataIntelo, a prominent market research firm, has published a detailed report on Global Hematopoietic Stem Cell Transplantation (HSCT) Market. This market research report provides comprehensive and in-depth analysis on the market which can possibly help an enterprise to identify lucrative opportunities and assist them with fabricating creative business strategies. The market report provides information about the current market scenario regarding the global supply and demand, key market trends and opportunities in the market, and challenges and threats faced by the industry players.

The Hematopoietic Stem Cell Transplantation (HSCT) market report talks about the competitive scenario among the industry players and imparts aspiring and emerging industry players with the future market insights in a detailed manner. This market report includes crucial data and figures which are structured out in a concise yet understandable manner. The research report covers the updates on the government regulations and policies which illustrates key opportunities and challenges of the market. DataIntelo has been monitoring the market since few years and collaborated with eminent players of the industry to give better insights on the market. It has conducted vigorous research and implied robust methodology to provide accurate predictions about the market.

You can buy the complete report on @ https://dataintelo.com/checkout/?reportId=127246

Impacts of Advancements and COVID-19 on the market.

Amidst the COVID-19, few segments of the market have witnessed a disruption due to the gap in supply and demand which has impacted the growth of the Hematopoietic Stem Cell Transplantation (HSCT) market. Along with this, the latest advancements have changed the market dynamics of the market. This research report covers the wide-range analysis of the COVID-19 impact to the industry and gives out insights on the change in the market scenario due to the advancements.

Request A Free Sample Report @ https://dataintelo.com/request-sample/?reportId=127246

Market Segmentation

Some of the major companies that are covered in the report.

Regen Biopharma IncChina Cord Blood CorpCBR Systems IncEscape Therapeutics IncCryo-Save AGLonza Group LtdPluristem Therapeutics IncViaCord Inc

Note: Additional companies

Based on the type, the market is segmented into

AllogeneicAutologous

Based on the application, the market is segregated into

Peripheral Blood Stem Cells Transplant (PBSCT)Bone Marrow Transplant (BMT)Cord Blood Transplant (CBT)

Based on the geographical location, the market is segregated into

Asia Pacific: China, Japan, India, and Rest of Asia PacificEurope: Germany, the UK, France, and Rest of EuropeNorth America: The US, Mexico, and CanadaLatin America: Brazil and Rest of Latin AmericaMiddle East & Africa: GCC Countries and Rest of Middle East & Africa

DataIntelo provides yearly updates on the Hematopoietic Stem Cell Transplantation (HSCT) market that assist the clients to stay ahead in the competitive space.

Why one should buy this Hematopoietic Stem Cell Transplantation (HSCT) Report?

The market research report provides all valuable constituents of the market such as revenue growth, product pricing & analysis, growth potential, and guidelines to tackle the challenges in the market. The report covers all the crucial mergers & acquisitions, partnerships, and collaborations that created further created opportunities or in some cases, challenges for the industry players.

This report includes latest product news, advancements, and updates from the prominent player of the industry that has leveraged their position in the market. It also provides business strategies implemented by the key players and yardstick to arrive on informed business decisions. Moreover, it gives insights on the consumer behavior patterns that can help the enterprise to curate the business strategies accordingly.

DataIntelo bestows the clients with the specialized customized options related to the regional analysis, company analysis, and product analysis, among others.

Complete Table Content of the Market

Executive Summary

Assumptions and Acronyms Used

Research Methodology

Hematopoietic Stem Cell Transplantation (HSCT) Market Overview

Hematopoietic Stem Cell Transplantation (HSCT) Supply Chain Analysis

Hematopoietic Stem Cell Transplantation (HSCT) Pricing Analysis

Global Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast by Type

Global Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast by Application

Global Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast by Sales Channel

Global Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast by Region

North America Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast

Latin America Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast

Europe Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast

Asia Pacific Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast

Asia Pacific Hematopoietic Stem Cell Transplantation (HSCT) Market Size and Volume Forecast by Application

Middle East & Africa Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast

Competition Landscape

If you have any questions on this report, please reach out to us @ https://dataintelo.com/enquiry-before-buying/?reportId=127246

About the Company

DataIntelo is the largest aggregator of the market research report in the industry with more than 800 global clients. The company has extensively invested in the research analysts training and programs to keep the analyst tapped with the best industry standards and provide the clients with the&utmost experience. Our dedicated team has been collaborating with the industry experts to give out the precise data and figures related to the industry. It conducts primary research, secondary research, and consumer surveys to provide an in-depth analysis of the market. The market research firm has worked in several business verticals and has been successful to earn high credentials over the time.

Contact Info:

Name: Alex Mathews

Address: 500 East E Street, Ontario,

CA 91764, United States.

Phone No: USA: +1 909 545 6473

Email:[emailprotected]

Website:https://dataintelo.com

Follow this link:
Trends Of Hematopoietic Stem Cell Transplantation (HSCT) Market Reviewed For 2020 With Industry Outlook To 2027 - The Market Feed

To Read More: Trends Of Hematopoietic Stem Cell Transplantation (HSCT) Market Reviewed For 2020 With Industry Outlook To 2027 – The Market Feed
categoriaBone Marrow Stem Cells commentoComments Off on Trends Of Hematopoietic Stem Cell Transplantation (HSCT) Market Reviewed For 2020 With Industry Outlook To 2027 – The Market Feed | dataDecember 3rd, 2020
Read All

Coronavirus Updates: The Latest Treatments and Vaccines – GovTech

By daniellenierenberg

(TNS) - Scientists at Bay Area universities, laboratories, biotechnology companies and drug manufacturers are fashioning drug concoctions out of blood plasma, chimpanzee viruses and cells taken from bone marrow in the race to rid the world of COVID-19.

The microbial treasure hunt is not just to find a cure which may not be possible but to control the debilitating health problems caused by the coronavirus.

Major progress has been made this year. The antiviral drug remdesivir, produced in Foster City, has improved recovery times, and the steroid dexamethasone has cut the number of deaths in severely ill patients.

What follows is a list of some of the most promising medications and vaccines with ties to the Bay Area:

Antibodies

and Immunity

Mesenchymal stem cells / UCSF and UC Davis Medical Center:

UCSF Dr. Michael Matthay is leading a study of whether a kind of stem cell found in bone marrow can help critically ill patients with severe respiratory failure, known as ARDS. Matthay hopes the stem cells can help reduce the inflammation associated with some of ARDS' most dire respiratory symptoms, and help patients' lungs recover.

In all, 120 patients are being enrolled at UCSF Medical Center, Zuckerberg San Francisco General Hospital, the UC Davis Medical Center in Sacramento and hospitals in Oregon and Texas. He said the trial, which includes a small number of ARDS patients who don't have COVID-19, should have results by summer or fall 2021. So far, 28 patients are enrolled in San Francisco.

Lambda-interferon / Stanford University:

Lambda-interferon is a manufactured version of a naturally occurring protein that had been used to treat hepatitis, and researchers hoped it would help patients in the early stages of COVID-19.

Stanford researchers completed their trial of lambda-interferon and found that it did not boost the immune system response to coronavirus infections.

"That trial did not find any difference in outcomes between the treatment and placebo," said Yvonne Maldonado, chief of pediatric infectious diseases at Lucile Packard Children's Hospital at Stanford, where 120 patients were enrolled in the trial. "It didn't work."

Antiviral drugs

Remdesivir / Gilead Sciences ( Foster City):

Remdesivir, once conceived as a potential treatment for Ebola, was approved by the Food and Drug Administration in October for use on hospitalized COVID-19 patients.

Trademarked under the name Veklury, the drug interferes with the process through which the virus replicates itself. It was one of the drugs given to President Trump and has been used regularly in hospitals under what is known as an emergency use authorization.

It was approved after three clinical trials showed hospitalized coronavirus patients who received remdesivir recovered five days faster on average than those who received a placebo. Patients who required oxygen recovered seven days faster, according to the studies.

Gilead now plans to conduct clinical trials to see how remdesivir works on pediatric patients, from newborns to teenagers, with moderate to severe COVID-19 symptoms. Remdesivir is also being studied with steroids and other drugs to see if it works better as part of a medicinal cocktail. An inhalable form of the drug is also being developed.

Favipiravir / Fujifilm Toyama Chemical ( Stanford University):

This antiviral drug, developed in 2014 by a subsidiary of the Japanese film company to treat influenza, is undergoing numerous clinical studies worldwide, including a trial involving 180 patients at Stanford University.

Stanford epidemiologists are testing favipiravir to see if it prevents the coronavirus from replicating in human cells, halts the shedding of the virus and reduces the severity of infection. Unlike remdesivir, it can be administered orally, so it can be used to treat patients early in the disease, before hospitalization is necessary.

The Stanford study has so far enrolled about 90 patients, who are given the drug within 72 hours of when they were first diagnosed with COVID-19. Half of them get a placebo. People can enroll by emailing treatcovid@stanford.edu.

Monoclonal antibodies

REGN-COV2 / Regeneron Pharmaceuticals / Stanford School of Medicine:

The REGN-COV2 cocktail is the same one Trump received, and Stanford is one of dozens of locations nationwide where clinical trials are being held. Two separate trials are under way at Stanford one for hospitalized patients, the other for outpatients. A third trial is about to begin for people who aren't sick but are in contact with carriers of the virus.

Regeneron halted testing on severely ill patients requiring high-flow oxygen or mechanical ventilation after the independent Data and Safety Monitoring Board determined that the drug was unlikely to help them.

The drug is a combination of two monoclonal antibodies lab-made clones of the antibodies produced naturally in people who have recovered from COVID-19. The antibodies bind to the virus' spike protein and block the virus' ability to enter cells.

Dr. Aruna Subramanian, professor of infectious diseases at Stanford and lead investigator for the inpatient trial, said the 21 hospitalized patients in the study receive a high dose like Trump, a lower dose or a placebo. Subramanian plans to expand the inpatient trial to 45 patients. The outpatient study has enrolled a little more than 40 of the 60 patients researchers intend to sign up.

"There's enough promising evidence that it helps people early in the infection," Subramanian said. "What we don't know is whether it helps people who are pretty sick but not critically ill."

Bamlanivimab / Eli Lilly / Stanford and UCSF:

Stanford and UCSF are testing the Eli Lilly monoclonal antibodies on outpatients after the pharmaceutical company halted trials on hospitalized COVID-19 patients because of adverse results.

Dr. Andra Blomkalns, chair of emergency medicine at Stanford and the lead in the Eli Lilly outpatient trial, said she is now enrolling older people with comorbidities like heart disease, chronic lung disease, a history of strokes and severe obesity shortly after they test positive.

The hypothesis is that the bamlanivimab monotherapy, which is very similar to the Regeneron monoclonals, might work best early in the infection. Although about 400 patients have been enrolled in the Lilly phase 3 trials nationwide, to date fewer than 10 have been enrolled at Stanford and UCSF.

Matthay, who headed up the Lilly monoclonal study with LY-CoV555 at UCSF, said the cancellation of this inpatient trial was disappointing, but "just because this one did not work, doesn't mean another one won't work for hospitalized patients."

Blomkalns said the testing criteria has been changing. She expects the outpatient trial to open soon to adolescents ages 12 and up to determine whether the drug can be used as a preventive.

Designer monoclonal antibodies / Vir Biotechnology, San Francisco:

Scientists at Vir are studying several types of monoclonal antibodies, including a type engineered to activate T cells, which can search out and destroy cells infected with the coronavirus. A study published in the journal Nature in October found that monoclonals, modified to bind with certain receptors, stimulated T cells and improved the human immune response.

"By observing and learning from our body's powerful natural defenses, we have discovered how to maximize the capacity of antibodies through the amplification of key characteristics that may enable more effective treatments for viral diseases," said Herbert Virgin, the chief scientific officer at Vir and co-author of the study.

A similarly modified monoclonal antibody, leronlimab, is being studied in coronavirus clinical trials by its Washington state drugmaker, CytoDyn, which has developed drugs to treat HIV. The company's chief medical officer is in San Francisco, and the company that does laboratory tests of leronlimab is in San Carlos.

Anti-inflammatory drugs

Colchicine / UCSF ( San Francisco and New York):

The anti-inflammatory drug commonly used to treat gout flare-ups is being studied by scientists at UCSF and New York University. The drug short-circuits inflammation by decreasing the body's production of certain proteins, and researchers hope that it will reduce lung complications and prevent deaths from COVID-19.

Preliminary results from a clinical trial found that "Colchicine can be effective in reducing systemic symptoms of COVID-19 by inhibiting inflammatory biomarkers."

Selinexor / Kaiser Permanente:

Kaiser hospitals in San Francisco, Oakland and Sacramento are studying selinexor, an anticancer drug that blocks a key protein in the cellular machinery for DNA processing. Preliminary findings during the trials indicated that low doses of selinexor helped hospitalized patients with severe COVID-19. The drug has both antiviral and anti-inflammatory properties, and it's administered orally, according to Kaiser's Dr. Jacek Skarbinski.

Vaccines

VXA-COV2-1 / Vaxart, South San Francisco:

The biotechnology company Vaxart is testing VXA-COV2-1, the only potential vaccine in pill form. It uses the genetic code of the coronavirus to trigger a defensive response in mucous membranes. The hope is that the newly fortified membranes will prevent the virus from entering the body.

"It's the only vaccine (candidate) that activates the first line of defense, which is the mucosa," said Andrei Floroiu, Vaxart's chief executive. He said intravenous vaccines kill the virus after it is inside the body, but this one stops it beforehand.

Go here to read the rest:
Coronavirus Updates: The Latest Treatments and Vaccines - GovTech

To Read More: Coronavirus Updates: The Latest Treatments and Vaccines – GovTech
categoriaBone Marrow Stem Cells commentoComments Off on Coronavirus Updates: The Latest Treatments and Vaccines – GovTech | dataDecember 3rd, 2020
Read All

Imago BioSciences Expands Phase 2 Clinical Trial of Bomedemstat (IMG-7289) for the Treatment of Myelofibrosis into Hong Kong – Business Wire

By daniellenierenberg

SOUTH SAN FRANCISCO, Calif.--(BUSINESS WIRE)--Imago BioSciences, Inc., (Imago) a clinical-stage biotechnology company developing innovative treatments for myeloid diseases, today announced the expansion of its global Phase 2b clinical study evaluating bomedemstat (IMG-7289) for the treatment of advanced myelofibrosis (MF) into Hong Kong, where the first patient has now been enrolled and dosed at the Department of Medicine, Queen Mary Hospital and the University of Hong Kong. Myelofibrosis is a rare bone marrow cancer that interferes with the production of blood cells.

In addition to Hong Kong, the Phase 2b study continues to actively enroll patients in the U.S., U.K., and E.U. The study is in the final stages of completing enrollment and continues to dose patients to evaluate safety, tolerability and efficacy.

Patients with myelofibrosis around the world are still in need of new treatment options, said Hugh Young Rienhoff, Jr. M.D., Chief Executive Officer, Imago BioSciences. We are progressing well with enrollment and are pleased to continue expanding our global Phase 2 study into new geographies like Hong Kong. We are encouraged by the signs of clinical activity and safety of bomedemstat as a treatment alternative for patients who do not benefit from the current standards of care.

Bomedemstat is an inhibitor of lysine-specific demethylase 1 (LSD1), an epigenetic regulator critical for self-renewal of malignant myeloid cells and the differentiation of myeloid progenitors. Data presented at the 25th European Hematology Association (EHA) Annual Congress in June demonstrated that the first-in-class LSD1 inhibitor was well tolerated with no dose-limiting toxicities or safety signals. Furthermore, recent data demonstrates the potential of bomedemstat as a monotherapy in intermediate-2 and high-risk patients with myelofibrosis who have become intolerant of, resistant to or are ineligible for a Janus Kinase (JAK) inhibitor.

Bomedemstat was recently granted PRIME (PRIority MEdicines) designation by the European Medicines Agency (EMA) for the treatment of MF. The EMA reviewed bomedemstat non-clinical and clinical data from the ongoing Phase 2 study. The PRIME initiative was launched by the EMA in 2016 to provide proactive and enhanced support to the developers of promising medicines with the view of accelerating their evaluation to reach patients faster.

About Bomedemstat (IMG-7289)

Bomedemstat is an orally available small molecule discovered and developed by Imago BioSciences that inhibits lysine-specific demethylase 1 (LSD1 or KDM1A), an enzyme shown to be vital in cancer stem/progenitor cells, particularly neoplastic bone marrow cells. In non-clinical studies, bomedemstat demonstrated robust in vivo anti-tumor efficacy across a range of myeloid malignancies as a single agent and in combination with other therapeutic agents. Bomedemstat is an investigational agent currently being evaluated in ongoing clinical trials (ClinicalTrials.gov Identifier: NCT03136185, NCT04262141, NCT04254978 and NCT04081220).

Bomedemstat has U.S. FDA Orphan Drug and Fast Track Designation for the treatment of myelofibrosis and essential thrombocythemia, Orphan Drug Designation for treatment of acute myeloid leukemia and PRIME designation by the European Medicines Agency for the treatment of MF.

Bomedemstat is being evaluated in two open-label Phase 2 clinical trials for the treatment of advanced myelofibrosis (MF) and essential thrombocythemia (ET), bone marrow cancers that interfere with the production of blood cells. MF patients who are resistant to a Janus Kinase (JAK) inhibitor are eligible for the study of bomedemstat. ET patients who have failed one standard of care treatment are eligible for the bomedemstat ET study.

About Imago BioSciences

Imago BioSciences is a clinical-stage biopharmaceutical company focused on discovering and developing novel therapeutics for the treatment of hematologic disorders targeting epigenetic enzymes. Imago has developed a series of compounds that inhibit LSD1, an epigenetic enzyme critical for cancer stem cell function and blood cell differentiation. Imago is advancing the clinical development of its first LSD1 inhibitor, bomedemstat, for the treatment of myeloid neoplasms. Imago BioSciences is backed by leading private, corporate, and public investors including Farallon Capital Management, LLC., funds and accounts advised by T. Rowe Price Associates, Inc., funds and accounts managed by Blackrock Advisors, LLC., Surveyor Capital (a Citadel company), Irving Investors, Kingdon Capital Management, a fund managed by Blackstone Life Sciences, Frazier Healthcare Partners, Omega Funds, Amgen Ventures, MRL Ventures Fund, HighLight Capital, Pharmaron, Greenspring Associates and Xeraya Capital. The company is based in South San Francisco, California. To learn more, visit http://www.imagobio.com, http://www.myelofibrosisclinicalstudy.com, http://www.etclinicalstudy.com and follow us on Twitter @ImagoBioRx, Facebook and LinkedIn.

Originally posted here:
Imago BioSciences Expands Phase 2 Clinical Trial of Bomedemstat (IMG-7289) for the Treatment of Myelofibrosis into Hong Kong - Business Wire

To Read More: Imago BioSciences Expands Phase 2 Clinical Trial of Bomedemstat (IMG-7289) for the Treatment of Myelofibrosis into Hong Kong – Business Wire
categoriaBone Marrow Stem Cells commentoComments Off on Imago BioSciences Expands Phase 2 Clinical Trial of Bomedemstat (IMG-7289) for the Treatment of Myelofibrosis into Hong Kong – Business Wire | dataDecember 3rd, 2020
Read All

Family ‘over the moon’ as nine-year-old Aurora confirmed as being back in remission – The Isle of Thanet News

By daniellenierenberg

Brilliant news as Keisha announces daughter Aurora is back in remission Photo Keisha Pile-Gray

Amazing news has been announced today (November 30) nine-year-old Aurora Pile-Gray from Westbrook is in remission.

Aurora was diagnosed with stage 4 Burkitts Lymphoma after becoming poorly towards the end of April.

The rare cancer affects blood and bone marrow. Aurora has been undergoing chemotherapy and her family were looking at CAR-T cell therapy and an allogeneic transplant.

Earlier this year, after 4 gruelling cycles of intensive chemo, Aurora had been given the news that she was in remission, however this was short lived.

In October the family were told the cancer had in fact spread to Auroras bones and that the youngster was in need of a bone marrow transplant. The situation was also complicated by Auroras mixed ethnicity, making it that much more difficult to find a match.

Aurora is currently being treated by Royal Marsden Hospital and Great Ormond Street Hospital.

But in brilliant news Auroras mum Keisha has today revealed her daughter is now in remission.

Posting to facebook Keisha said: Aurora is officially back in remission!!

Her bone marrow assessments show no cancer cells present, and no cancer cell regeneration on new cells in both the solid and liquid part of her biopsy.

We were aware about the liquid aspirate a week ago, but weve been anxiously waiting for news on the solid part up until today!

The transplant team have also sourced an 11/12 donor match which means that Aurora will have one more round of chemotherapy and will move forward with transplant in January!

We dont know much about her donor other than her stem cells will be coming from a 36 year old female, with 2 children. We arent sure if we are allowed to get in contact before two years but just know, if you read this and its you, or of you know who it could be, we owe our entire life to you and would give you the world.

Days like today make our heart burst with pride and love and just how strong she has been throughout this whole ordeal. We are forever in awe of how she has tackled this journey and we are absolutely overjoyed that things are starting to look up!

Theres still a long way to go, but shes already come this far, we are all so over the moon, and I can barely get my words out, so for now, we are celebrating that out little lion is fighting on.

Matching bone marrow donors is a much more complex process than matching blood type. It relies on matching individual tissue type, and genetic markers that are found on most cells in the body. These markers are used by the immune system as a way to distinguish what cells are supposed to be in the body, and which arent. The markers must be as closely matched as possible between host and guest, to prevent the body rejecting the new bone marrow. Everyones tissue type is inherited, so often bone marrow donations come directly from a donor with the same ethnic background.

Theres a lack of individuals from ethnic minorities on the register, and as a whole only 2% of the entire UK population is currently signed up to become a bone marrow donor despite having a 1 in 800 chance you would be a match for someone.

Keisha added: Auroras in remission but we still have to get her through transplant and theres a 90% chance it could return within a year. Were made up, but still very apprehensive.

This month mum-of-three Keisha and St Saviours pupil Aurora were announced as joint winners, alongside Westgates Wilfred Jenkins, after our call out for Thanet heroes of 2020.

And Keishas latest update here

Find out how to join the bone marrow register:

http://www.anthonynolan.org

http://www.dkms.org

A fundraising page has been set up to help the family in case treatment abroad is needed.

Related

View post:
Family 'over the moon' as nine-year-old Aurora confirmed as being back in remission - The Isle of Thanet News

To Read More: Family ‘over the moon’ as nine-year-old Aurora confirmed as being back in remission – The Isle of Thanet News
categoriaBone Marrow Stem Cells commentoComments Off on Family ‘over the moon’ as nine-year-old Aurora confirmed as being back in remission – The Isle of Thanet News | dataDecember 3rd, 2020
Read All

The New Coronavirus Vaccine Is Changing The Future Of Medicine – Forbes

By daniellenierenberg

The mRNA technology used to create the Pfizer and Moderna vaccines for COVID is being applied to ... [+] many other medical treatments in addition to vaccines.

While the vaccines for Covid-19 seem to have been created in record time, the technology making them possible has been decades in development. The two vaccine candidates produced by Pfizer/BioNTech and Moderna are unlike any other vaccine thats come before. Should they achieve commercial success, it could usher in a new era of medical science not just for vaccines, but for cancer treatments, blood disorders, and gene therapy.

The two new vaccines are the first ever to use mRNA, which stands for messenger RNA, to generate immunity. Historically, vaccines have used dead or weakened viruses to imitate an infection, spurring the body to make antibodies against that virus without danger of getting sick. Measles, polio, and some seasonal flu shots are examples of vaccines made with whole virus particles.

Other vaccines use only certain fragments of the virus, called antigens, that provoke an immune response. To make this type of vaccine, the genetic code for the desired viral antigen molecule is put into yeast or bacteria cells. These microbes can be grown rapidly and inexpensively, and they can churn out massive quantities of antigen. Then the molecule must be purified to clinical standards so that its safe to inject into healthy people. Prevnar and Gardasil are examples of this type of vaccine.

These methods work well, but they require enormous research and development efforts. A laboratory could spend years optimizing the methods for producing one virus protein, but those methods wouldnt automatically translate to mass-producing a different protein.

For every new protein, you start over. Its a brand-new procedure every step of the way, explains immunologist Drew Weissman of the Perelman School of Medicine at the University of Pennsylvania. Weissman is one of the pioneering scientists behind the mRNA vaccine.

The way I see it, the mRNA platform is much better, its much quicker, and its cheaper, says Weissman. Thats the trilogy of what you need to improve vaccines. With mRNA, the steps are the same, no matter what virus the vaccine is targeting. This makes it easily customizable. Once an mRNA manufacturing facility is up and running, it can easily be deployed to make vaccines against any number of viral antigens.

A strand of mRNA carries the instructions for making one protein. Your cells normally make their own mRNA strands and use them as blueprints to manufacture all the proteins your body needs to function.

The vaccine slips a new strand of mRNA into the cell, like an extra page in the blueprint. This mRNA contains the instructions for making the coronavirus spike protein, and the cell reads it the same way it reads its own mRNAs, using it to build the viral protein. The immune system recognizes that protein as foreign, and starts making antibodies against it. Then, if youre exposed to the actual virus, those antibodies will be available to stop the infection. Astonishingly, in animal tests, mRNA vaccines appear to induce immunity that lasts much longer than live virus vaccines.

The beauty of mRNA is that its temporary. Your cells wont keep cranking out spike protein forever. Like an Instagram story, the mRNA fades away after a certain amount of time, because you dont need to keep making coronavirus protein forever in order to maintain the protective immunity.

Another big advantage of mRNA is that its rapidly customizable. Once scientists know the genetic sequence of a viral protein, they can make the mRNA in the lab and package it into a vaccine in a matter of weeks.

Originally envisioned as a way to deliver gene therapy, mRNA had to overcome some serious challenges before arriving at todays big moment. In 2005, Weissman and his colleague, Katalin Karik, solved one of the most difficult problems facing mRNA. In its natural form, the molecule sparks an excessive immune reaction, igniting inflammation that damages the body. To avoid this, they changed the structure of the mRNA just enough to fool the immune sentries.

Similar to DNA, RNA is made up of a series of chemical letters, a kind of code that the cell translates to make a protein. Modifying the chemical structure of one of those letters allowed the information to remain intact, and eliminated the signal that triggered the bodys immune alarms.

Before the coronavirus pandemic hit, Weissmans lab was working on vaccines for influenza, herpes, and HIV. Those will all be going into phase I clinical trials within the next year, he says. But vaccines are only the beginning of what mRNA can do.

Often in the case of genetic diseases, the problem is that a broken gene fails to produce a protein that the body needs for healthy function. The idea of gene therapy is simple: send in a healthy copy of the broken gene, which the cells can use to make the protein. Most times, researchers use viruses to deliver the gene, but viruses can cause problems of their own. Delivering mRNA to the cell without a virus circumvents some of these issues.

To ferry the mRNA into cells, it is encapsulated in a fatty coating called a lipid nanoparticle (LNP). Weissmans lab has been experimenting with ways to modify the LNP so that it can home in on certain cell types.

In sickle cell disease (SCD), a broken hemoglobin gene prevents blood cells from carrying oxygen ... [+] efficiently, and causes them to take on a rigid, sickle-shaped form.

My lab has figured out how to specifically deliver the LNP to bone marrow stem cells, Weissman says. This could lead to an inexpensive and practical cure for sickle cell anemia. An mRNA molecule can be programmed to encode the beta-hemoglobin gene, which is defective in sickle cell disease. That mRNA would be sent directly to the bone marrow cells using the specially targeted LNPs, enabling the bone marrow to produce healthy red blood cells that contain functioning beta-hemoglobin.

All that would need to be done is to give people a single intravenous injection of the mRNA LNP, and youll cure their sickle cell anemia, Weissman says. By contrast, the current FDA-approved gene-editing therapy for sickle cell requires the patients bone marrow be removed, treated, and then returned to the bodyan expensive and invasive procedure. The mRNA treatment could be simple enough to deliver in lower-income countries, where sickle cell disease impacts the health of millions of people.

An up-and-coming strategy for fighting cancer is a so-called cancer vaccine, which uses immune cells called dendritic cells (DCs). DCs perform surveillance for the immune system. When they detect something that shouldnt be there, whether its a virus, a bacteria, or even a cancer cell, the DCs chew it up, break it into its component molecules, and then show those foreign molecules to the immune cells that make antibodies.

Dendritic cells chew up viruses or other foreign bodies, and present the pieces to other immune ... [+] cells. T cells and B cells both play a role in mounting a long-lasting immunity against the pathogen.

When cancer grows slowly, though, it can slip past the DC surveillance network. To give the immune system a boost, a patients DCs are taken out and artificially loaded with tumor-specific proteins, or antigens. Back inside the body, the cells stimulate the generation of antibodies against the tumor.

Using mRNA to deliver the tumor antigen information to the DCs could provide a way to make this process easier, cheaper, and safer. BioNTech is currently conducting clinical trials on cancer vaccines for triple-negative breast cancer, metastatic melanoma, and HPV-positive head and neck cancers. Called FixVac, the vaccines include multiple tumor antigens that are frequently found across different patients. Early data published in September 2020 showed promise, suggesting that the mRNA therapy generates a lasting immune response, comparable to more expensive methods.

Karik, who is now a senior vice president at BioNTech, and Weissman both speak with an air of inevitability, as if they have only been waiting patiently for the world to catch up with their discovery. The two scientists told their stories recently at the 2nd annual mRNA Day celebration in San Diego, hosted by Trilink BioTechnologies in honor of their recently opened facility there. After hearing the tumultuous history of the technology and seeing promising new data, one attendee asked, what would you say was the turning point for mRNA therapeutics?

Karik responded simply, When people read our [2005] paper. We were waiting for somebody to respond, we did a lot of experiments, but we waited and waited. It was just too early for most people.

Weissman agreed. I think we were early, he said. It finally caught on, and it will hopefully change the world.

Full coverage and live updates on the Coronavirus

More:
The New Coronavirus Vaccine Is Changing The Future Of Medicine - Forbes

To Read More: The New Coronavirus Vaccine Is Changing The Future Of Medicine – Forbes
categoriaBone Marrow Stem Cells commentoComments Off on The New Coronavirus Vaccine Is Changing The Future Of Medicine – Forbes | dataDecember 3rd, 2020
Read All

The Amniotic Fluid Stem Cell Therapy Market to Cascade the Success Trove – The Haitian-Caribbean News Network

By daniellenierenberg

Stem cells are biological cells which have the ability to distinguish into specialized cells, which are capable of cell division through mitosis. Amniotic fluid stem cells are a collective mixture of stem cells obtained from amniotic tissues and fluid. Amniotic fluid is clear, slightly yellowish liquid which surrounds the fetus during pregnancy and is discarded as medical waste during caesarean section deliveries. Amniotic fluid is a source of valuable biological material which includes stem cells which can be potentially used in cell therapy and regenerative therapies. Amniotic fluid stem cells can be developed into a different type of tissues such as cartilage, skin, cardiac nerves, bone, and muscles. Amniotic fluid stem cells are able to find the damaged joint caused by rheumatoid arthritis and differentiate tissues which are damaged. Medical conditions where no drug is able to lessen the symptoms and begin the healing process are the major target for amniotic fluid stem cell therapy. Amniotic fluid stem cells therapy is a solution to those patients who do not want to undergo surgery. Amniotic fluid has a high concentration of stem cells, cytokines, proteins and other important components. Amniotic fluid stem cell therapy is safe and effective treatment which contain growth factor helps to stimulate tissue growth, naturally reduce inflammation. Amniotic fluid also contains hyaluronic acid which acts as a lubricant and promotes cartilage growth.

Get Free Sample Copy With Impact Analysis Of COVID-19 Of Market Report @https://www.persistencemarketresearch.com/samples/23101

With increasing technological advancement in the healthcare, amniotic fluid stem cell therapy has more advantage over the other therapy. Amniotic fluid stem cell therapy eliminates the chances of surgery and organs are regenerated, without causing any damage. These are some of the factors driving the growth of amniotic fluid stem cell therapy market over the forecast period. Increasing prevalence of chronic diseases which can be treated with the amniotic fluid stem cell therapy propel the market growth for amniotic fluid stem cell therapy, globally. Increasing funding by the government in research and development of stem cell therapy may drive the amniotic fluid stem cell therapy market growth. But, high procedure cost, difficulties in collecting the amniotic fluid and lack of reimbursement policies hinder the growth of amniotic fluid stem cell therapy market.

The global amniotic fluid stem cell therapy market is segmented on basis of treatment, application, end user and geography:

You Can Buy This PMR Healthcare Report From Here @https://www.persistencemarketresearch.com/checkout/23101

Rapid technological advancement in healthcare, and favorable results of the amniotic fluid stem cells therapy will increase the market for amniotic fluid stem cell therapy over the forecast period. Increasing public-private investment for stem cells in managing disease and improving healthcare infrastructure are expected to propel the growth of the amniotic fluid stem cell therapy market.

However, on the basis of geography, global Amniotic Fluid Stem Cell Therapy Market is segmented into six key regionsviz. North America, Latin America, Europe, Asia Pacific Excluding China, China and Middle East & Africa. North America captured the largest shares in global Amniotic Fluid Stem Cell Therapy Market and is projected to continue over the forecast period owing to technological advancement in the healthcare and growing awareness among the population towards the new research and development in the stem cell therapy. Europe is expected to account for the second largest revenue share in the amniotic fluid stem cell therapy market. The Asia Pacific is anticipated to have rapid growth in near future owing to increasing healthcare set up and improving healthcare expenditure. Latin America and the Middle East and Africa account for slow growth in the market of amniotic fluid stem cell therapy due to lack of medical facilities and technical knowledge.

Some of the key players operating in global amniotic fluid stem cell therapy market are Stem Shot, Provia Laboratories LLC, Thermo Fisher Scientific Inc. Mesoblast Ltd., Roslin Cells, Regeneus Ltd. etc. among others.

Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape

Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics andmarket research methodologyto help businesses achieve optimal performance.

To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.

Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.

Contact us:

Naved BegPersistence Market ResearchAddress 305 Broadway, 7th Floor New York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Websitehttps://www.persistencemarketresearch.com

See more here:
The Amniotic Fluid Stem Cell Therapy Market to Cascade the Success Trove - The Haitian-Caribbean News Network

To Read More: The Amniotic Fluid Stem Cell Therapy Market to Cascade the Success Trove – The Haitian-Caribbean News Network
categoriaSkin Stem Cells commentoComments Off on The Amniotic Fluid Stem Cell Therapy Market to Cascade the Success Trove – The Haitian-Caribbean News Network | dataDecember 2nd, 2020
Read All

Page 206«..1020..205206207208..220230..»


Copyright :: 2024