Search Results
Stem Cell and Regenerative Medicine Action Awards to be Presented at World Stem Cell Summit on January 23 at the Hyatt Regency Miami – Yahoo Finance
By daniellenierenberg
2020 Honorees include Cystic Fibrosis Foundation, Emily Whitehead Foundation, Gift of Life Marrow Registry and Ret. Major General Bernard Burn Loeffke (US Military)
Miami, FL, Jan. 09, 2020 (GLOBE NEWSWIRE) -- The formal ceremony of the 2020 Stem Cell and Regenerative Medicine Action Awards will take place at a gala reception and dinner on January 23, during the 15th annual World Stem Cell Summit (WSCS) at the Hyatt Regency in Miami. Since 2005, the nonprofit Regenerative Medicine Foundation (RMF) (formerly Genetics Policy Institute) has recognized the stem cell and regenerative medicine community's leading innovators, leaders, and champions through its annual awards reception.
Bernard Siegel, Executive Director of Regenerative Medicine Foundation and founder of the World Stem Cell Summit, said, The 2020 Action Awards will recognize three important organizations that are positively impacting the emerging field of regenerative medicine. We will also honor a retired Major General, who has capped off his military and diplomatic career by promoting the cause of world peace through medicine. All of these distinguished honorees will be recognized for their devotion to improving health and developing cures through advocacy, innovation, leadership and inspiration. In addition, the wounded warrior veterans community of South Florida will also receive special recognition at the event.
Meet the 2020 Stem Cell & Regenerative Medicine Action Award Honorees:
Innovation Award: With the motto, We will not rest until we find a cure, the Cystic Fibrosis Foundation is geared towards the successful development and delivery of treatments, therapies and a cure for every person with cystic fibrosis. CF Foundation has added decades to the lives of people with the disease as a direct result of advances in treatment and care made possible through its innovative business model- venture philanthropy. The Foundation recently unveiled its Path to a Cure research agenda aimed at addressing the root genetic cause of the disease and is currently funding industry programs aimed at gene delivery with the goal of progressing into clinical studies in 2021.
Inspiration Award: Emily Whitehead Foundation is a nonprofit organization committed to raising funds to invest in the most promising pediatric cancer research. Tom and Kari Whitehead founded EWF in honor of their daughter Emily, the first child in the world to receive CAR T-cell therapy, training her own cells to fight cancer. Her inspiring story focused public attention on thepotential for cancer immunotherapy to transform cancer treatment,as well as the need to support lifesaving cancer immunotherapy research. The foundation provides support to pediatric cancer patients and promotes awareness of the disease through education and sharing other inspiring stories.
Advocacy Award: Gift of Life Marrow Registry was established in 1991 by Jay Feinberg and his family after Jay received a life-saving bone marrow transplant. Gift of Life is dedicated to saving lives and facilitating bone marrow and blood stem cell transplants for patients with leukemia, lymphoma, sickle cell and other diseases. In 2019, Gift of Life opened the worlds first apheresis center fully integrated within a registry, the Dr. Miriam and Sheldon G. Adelson Gift of Life-Be The Match Stem Cell Collection Center. With the collection center and rapidly expanding donor database, Gift of Life will launch a biobank to advance cellular therapies using allogeneically sourced cells in 2020.
Leadership Award: Ret. Major General Bernard Burn Loeffke, PhD (US Military) is a highly decorated Special Forces officer, diplomat and medical officer.He survived two helicopter crashes and was wounded in combat. After the Vietnam War, he served as the Army Attach at theU.S. Embassy in Moscow, first Defense Attach at the U.S Embassy in Beijing, a staff officer in theWhite House, and Director of the Commission onWhite House Fellows. His last command was Commanding General of Army South. After 35 years in the military, he became a medical officer traveling the world on relief missions to third and fourth world countries. Presently, at age 85, he champions the hydrocephalus and wounded warrior communities. He continues to serve as an inspiration and supporter of building peaceful international relations through medical partnerships and played a pivotal role as a keynote speaker at the inaugural 2019 World Stem Cell Summit CHINA.He is called the Peace General in Latin America. In China, he is simply known as The General, our Friend.
Story continues
To learn more about past honorees and details for sponsoring or attending the upcoming 2020 Stem Cell and Regenerative Medicine Action Awards dinner, please visit, https://www.worldstemcellsummit.com/stem-cell-action-awards/
About the World Stem Cell Summit (WSCS)
Produced by the non-profit Regenerative Medicine Foundation (RMF), and in its 15th year, the World Stem Cell Summit will take place January 21-24, 2020, in Miami, Florida in partnership with Phacilitate Leaders World, as part of Advanced Therapies Week. The Summit is the most inclusive and expansive interdisciplinary, networking, and partnering meeting in the stem cell science and regenerative medicine field. With the overarching purpose of fostering translation of biomedical research, funding, and investments targeting cures, the Summit and co-located conferences serve a diverse ecosystem of stakeholders. For more information about the upcoming World Stem Cell Summit in Miami, please visit: http://www.worldstemcellsummit.com.
About the Regenerative Medicine Foundation (RMF)
The nonprofit Regenerative Medicine Foundation fosters strategic collaborations to accelerate the development of regenerative medicine to improve health and deliver cures. RMF unites the worlds leading researchers, medical centers, universities, labs, businesses, funders, policymakers, experts in law, regulation and ethics, medical philanthropies, and patient organizations. We maintain a trusted network of leaders and pursue our mission by producing our flagship World Stem Cell Summit series of conferences and public days, honoring leaders through the Stem Cell and Regenerative Medicine Action Awards, supporting our official journal partner STEM CELLS Translational Medicine (SCTM), promoting solution-focused policy initiatives both nationally and internationally and creating STEM/STEAM educational projects. For more information about RMF, please visit: http://www.regmedfoundation.org.
Attachments
Joseph DawsonRegenerative Medicine Foundation561-906-4755joseph@regmedfoundation.org
See the rest here:
Stem Cell and Regenerative Medicine Action Awards to be Presented at World Stem Cell Summit on January 23 at the Hyatt Regency Miami - Yahoo Finance
Stem Cell Assay Market is estimated to witness the highest growth during the forecast period 2017 2025 – Pro News Time
By daniellenierenberg
Stem Cell Assay Market: Snapshot
Stem cell assay refers to the procedure of measuring the potency of antineoplastic drugs, on the basis of their capability of retarding the growth of human tumor cells. The assay consists of qualitative or quantitative analysis or testing of affected tissues and tumors, wherein their toxicity, impurity, and other aspects are studied.
Download Brochure of This Market Report at https://www.tmrresearch.com/sample/sample?flag=B&rep_id=40
With the growing number of successful stem cell therapy treatment cases, the global market for stem cell assays will gain substantial momentum. A number of research and development projects are lending a hand to the growth of the market. For instance, the University of Washingtons Institute for Stem Cell and Regenerative Medicine (ISCRM) has attempted to manipulate stem cells to heal eye, kidney, and heart injuries. A number of diseases such as Alzheimers, spinal cord injury, Parkinsons, diabetes, stroke, retinal disease, cancer, rheumatoid arthritis, and neurological diseases can be successfully treated via stem cell therapy. Therefore, stem cell assays will exhibit growing demand.
Another key development in the stem cell assay market is the development of innovative stem cell therapies. In April 2017, for instance, the first participant in an innovative clinical trial at the University of Wisconsin School of Medicine and Public Health was successfully treated with stem cell therapy. CardiAMP, the investigational therapy, has been designed to direct a large dose of the patients own bone-marrow cells to the point of cardiac injury, stimulating the natural healing response of the body.
Newer areas of application in medicine are being explored constantly. Consequently, stem cell assays are likely to play a key role in the formulation of treatments of a number of diseases.
Global Stem Cell Assay Market: Overview
The increasing investment in research and development of novel therapeutics owing to the rising incidence of chronic diseases has led to immense growth in the global stem cell assay market. In the next couple of years, the market is expected to spawn into a multi-billion dollar industry as healthcare sector and governments around the world increase their research spending.
The report analyzes the prevalent opportunities for the markets growth and those that companies should capitalize in the near future to strengthen their position in the market. It presents insights into the growth drivers and lists down the major restraints. Additionally, the report gauges the effect of Porters five forces on the overall stem cell assay market.
Global Stem Cell Assay Market: Key Market Segments
For the purpose of the study, the report segments the global stem cell assay market based on various parameters. For instance, in terms of assay type, the market can be segmented into isolation and purification, viability, cell identification, differentiation, proliferation, apoptosis, and function. By kit, the market can be bifurcated into human embryonic stem cell kits and adult stem cell kits. Based on instruments, flow cytometer, cell imaging systems, automated cell counter, and micro electrode arrays could be the key market segments.
In terms of application, the market can be segmented into drug discovery and development, clinical research, and regenerative medicine and therapy. The growth witnessed across the aforementioned application segments will be influenced by the increasing incidence of chronic ailments which will translate into the rising demand for regenerative medicines. Finally, based on end users, research institutes and industry research constitute the key market segments.
The report includes a detailed assessment of the various factors influencing the markets expansion across its key segments. The ones holding the most lucrative prospects are analyzed, and the factors restraining its trajectory across key segments are also discussed at length.
Global Stem Cell Assay Market: Regional Analysis
Regionally, the market is expected to witness heightened demand in the developed countries across Europe and North America. The increasing incidence of chronic ailments and the subsequently expanding patient population are the chief drivers of the stem cell assay market in North America. Besides this, the market is also expected to witness lucrative opportunities in Asia Pacific and Rest of the World.
Global Stem Cell Assay Market: Vendor Landscape
A major inclusion in the report is the detailed assessment of the markets vendor landscape. For the purpose of the study the report therefore profiles some of the leading players having influence on the overall market dynamics. It also conducts SWOT analysis to study the strengths and weaknesses of the companies profiled and identify threats and opportunities that these enterprises are forecast to witness over the course of the reports forecast period.
Some of the most prominent enterprises operating in the global stem cell assay market are Bio-Rad Laboratories, Inc (U.S.), Thermo Fisher Scientific Inc. (U.S.), GE Healthcare (U.K.), Hemogenix Inc. (U.S.), Promega Corporation (U.S.), Bio-Techne Corporation (U.S.), Merck KGaA (Germany), STEMCELL Technologies Inc. (CA), Cell Biolabs, Inc. (U.S.), and Cellular Dynamics International, Inc. (U.S.).
Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=40
About TMR Research:
TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
Contact:
TMR Research,3739 Balboa St # 1097,San Francisco, CA 94121United StatesTel: +1-415-520-1050
Tacitus Therapeutics Launches in Collaboration with Mount Sinai to Develop Stem Cell Therapies for Life-Threatening Diseases – PRNewswire
By daniellenierenberg
NEW YORK, Jan. 9, 2020 /PRNewswire/ -- Tacitus Therapeutics, a clinical-stage company, has launched in collaboration with the Mount Sinai Health System to develop stem cell therapies initially targeting blood cancers and related clotting disorders. Their first therapy, HSC100, currently is being investigated in a Phase I clinical trial1.
Tacitus is building upon technology developed by and exclusively licensed from Mount Sinai. Based on research by scientific co-founders Ronald Hoffman, M.D., and Camelia Iancu-Rubin, Ph.D., the technology includes proprietary cell expansion, differentiation and engineering methods. Together, these methods manufacture healthy cells that overcome the limitations of traditional allogeneic, or donor, cell transplantations.
Blood cancers comprise about 10% of new cancer cases in the U.S. each year, and almost 60,000 people die from blood cancer complications annually. Most blood cancers start in the bone marrow, where blood is produced. A common therapy for such blood cancers is a hematopoietic stem cell (HSC) treatment or, as more commonly referred to, bone marrow transplantation. In this process, doctors infuse healthy HSCs into the patient's bloodstream, where they migrate to the bone marrow to grow or engraft.
HSCs for this process can be collected from bone marrow, circulating blood, or umbilical cord blood (CB) of healthy donors. While HSC transplants are common, significant barriers to success exist, including high levels of graft-versus-host disease, low numbers of healthy cells obtained from CB, and increased risk of bleeding due to delayed megakaryocyte, or platelet, engraftment.
Hoffman and Iancu-Rubin are pioneers of bone marrow cell therapy treatments, and development of this technology was enabled by the New York State Stem Cell Science program, NYSTEM. As a New York State Department of Health initiative, NYSTEM awarded a $1 million grant to Hoffman in 2010 that supported the original research underpinning this platform technology. In 2015, NYSTEM awarded Hoffman and Iancu-Rubin an $8 million grant to translate the technology from the laboratory into the clinic, where it is currently in clinical trial1.
Hoffman also serves as Director of the Myeloproliferative Disorders Research Program and Professor of Medicine (Hematology and Medical Oncology) and Iancu-Rubin is Associate Professor of Pathology at the Icahn School of Medicine and Director of the Cellular Therapy Laboratory at Mount Sinai Hospital.
"Promising discoveries by Mount Sinai scientific thought leaders may lead to new, essential cell-based therapies that will broadly benefit patients," said Erik Lium, Executive Vice President and Chief Commercial Innovation Officer, Mount Sinai Innovation Partners. "We're pleased to be collaborating with Tacitus to launch the next stage of development for these technologies."
"Tacitus is committed in its mission to advance next-generation cell therapies with curative potential," said Carter Cliff, CEO of Tacitus. "Based on our founders' solid foundation of research, we are translating these discoveries into broad clinical practice as we look to dramatically improve the standard of care for patients with life-threatening conditions."
About HSC100
HSC100 is an investigational therapy based on allogeneic hematopoietic stem cells (HSC) expanded from umbilical cord blood. HSC100 is being investigated currently in an open-label Phase I clinical trial1 in the United States for treatment of hematological malignancies. The success of unmanipulated cord blood as a source of stem cells has been hampered by the small number of stem cells present in a single cord, leading to delayed engraftment and frequent graft failure. Our proprietary technology includes the use of an epigenetic modifier, valproic acid, to expand the number and the quality of HSCs found in cord blood collections. For more information on HSC100 clinical trials, please visit http://www.clinicaltrials.gov.
1ClinicalTrials.gov identifier NCT03885947.
About Tacitus Therapeutics
Tacitus Therapeutics is a clinical-stage biotechnology company developing advanced medicines for treatment of blood cancers, immune disorders and other intractable disease conditions. Our mission is to pioneer best-in-class therapies using proprietary cell expansion, differentiation and engineering platform technologies that overcome the limitations of traditional cell transplantation. Initial targets include a lead clinical program (HSC100) investigating the treatment of blood cancers, followed by preclinical programs to address clotting disorders and other serious unmet medical needs. For additional information, please visit http://www.tacitustherapeutics.com.
About Mount Sinai Health System
The Mount Sinai Health System is New York City's largest integrated delivery system, encompassing eight hospitals, a leading medical school, and a vast network of ambulatory practices throughout the greater New York region. Mount Sinai's vision is to produce the safest care, the highest quality, the highest satisfaction, the best access and the best value of any health system in the nation. The Health System includes approximately 7,480 primary and specialty care physicians; 11 joint-venture ambulatory surgery centers; more than 410 ambulatory practices throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and 31 affiliated community health centers. The Icahn School of Medicine is one of three medical schools that have earned distinction by multiple indicators: ranked in the top 20 by U.S. News & World Report's "Best Medical Schools", aligned with a U.S. News & World Report's "Honor Roll" Hospital, No. 12 in the nation for National Institutes of Health funding, and among the top 10 most innovative research institutions as ranked by the journal Nature in its Nature Innovation Index. This reflects a special level of excellence in education, clinical practice, and research. The Mount Sinai Hospital is ranked No. 14 on U.S. News & World Report's "Honor Roll" of top U.S. hospitals; it is one of the nation's top 20 hospitals in Cardiology/Heart Surgery, Diabetes/Endocrinology, Gastroenterology/GI Surgery, Geriatrics, Gynecology, Nephrology, Neurology/Neurosurgery, and Orthopedics in the 2019-2020 "Best Hospitals" issue. Mount Sinai's Kravis Children's Hospital also is ranked nationally in five out of ten pediatric specialties by U.S. News & World Report. The New York Eye and Ear Infirmary of Mount Sinai is ranked 12th nationally for Ophthalmology, Mount Sinai St. Luke's and Mount Sinai West are ranked 23rd nationally for Nephrology and 25th for Diabetes/Endocrinology, and Mount Sinai South Nassau is ranked 35th nationally for Urology. Mount Sinai Beth Israel, Mount Sinai St. Luke's, Mount Sinai West, and Mount Sinai South Nassau are ranked regionally. For more information, visit http://www.mountsinai.org or find Mount Sinai on Facebook, Twitter and YouTube.
About Mount Sinai Innovation Partners (MSIP)
MSIP is responsible for driving the real-world application and commercialization of Mount Sinai discoveries and inventions and the development of research partnerships with industry. Our aim is to translate discoveries and inventions into health care products and services that benefit patients and society. MSIP is accountable for the full spectrum of commercialization activities required to bring Mount Sinai inventions to life. These activities include evaluating, patenting, marketing and licensing new technologies building research, collaborations and partnerships with commercial and nonprofit entities, material transfer and confidentiality, coaching innovators to advance commercially relevant translational discoveries, and actively fostering an ecosystem of entrepreneurship within the Mount Sinai research and health system communities. For more information, please visit http://www.ip.mountsinai.orgor find MSIP onLinkedIn, Twitter, Facebook,Medium, and YouTube.
Media Contacts:
Mount Sinai Cynthia Cleto Mount Sinai Innovation Partners (646) 605-7359 cynthia.cleto@mmsm.edu
Tacitus TherapeuticsJoleen RauRau Communications(608) 209-0792232130@email4pr.com
SOURCE Tacitus Therapeutics
Stem Cell and Regenerative Medicine Action Awards to be Presented at World Stem Cell Summit on January 23 at the Hyatt Regency Miami – GlobeNewswire
By daniellenierenberg
Miami, FL, Jan. 09, 2020 (GLOBE NEWSWIRE) -- The formal ceremony of the 2020 Stem Cell and Regenerative Medicine Action Awards will take place at a gala reception and dinner on January 23, during the 15th annual World Stem Cell Summit (WSCS) at the Hyatt Regency in Miami. Since 2005, the nonprofit Regenerative Medicine Foundation (RMF) (formerly Genetics Policy Institute) has recognized the stem cell and regenerative medicine community's leading innovators, leaders, and champions through its annual awards reception.
Bernard Siegel, Executive Director of Regenerative Medicine Foundation and founder of the World Stem Cell Summit, said, The 2020 Action Awards will recognize three important organizations that are positively impacting the emerging field of regenerative medicine. We will also honor a retired Major General, who has capped off his military and diplomatic career by promoting the cause of world peace through medicine. All of these distinguished honorees will be recognized for their devotion to improving health and developing cures through advocacy, innovation, leadership and inspiration. In addition, the wounded warrior veterans community of South Florida will also receive special recognition at the event.
Meet the 2020 Stem Cell & Regenerative Medicine Action Award Honorees:
Innovation Award: With the motto, We will not rest until we find a cure, the Cystic Fibrosis Foundation is geared towards the successful development and delivery of treatments, therapies and a cure for every person with cystic fibrosis. CF Foundation has added decades to the lives of people with the disease as a direct result of advances in treatment and care made possible through its innovative business model- venture philanthropy. The Foundation recently unveiled its Path to a Cure research agenda aimed at addressing the root genetic cause of the disease and is currently funding industry programs aimed at gene delivery with the goal of progressing into clinical studies in 2021.
Inspiration Award: Emily Whitehead Foundation is a nonprofit organization committed to raising funds to invest in the most promising pediatric cancer research. Tom and Kari Whitehead founded EWF in honor of their daughter Emily, the first child in the world to receive CAR T-cell therapy, training her own cells to fight cancer. Her inspiring story focused public attention on thepotential for cancer immunotherapy to transform cancer treatment,as well as the need to support lifesaving cancer immunotherapy research. The foundation provides support to pediatric cancer patients and promotes awareness of the disease through education and sharing other inspiring stories.
Advocacy Award: Gift of Life Marrow Registry was established in 1991 by Jay Feinberg and his family after Jay received a life-saving bone marrow transplant. Gift of Life is dedicated to saving lives and facilitating bone marrow and blood stem cell transplants for patients with leukemia, lymphoma, sickle cell and other diseases. In 2019, Gift of Life opened the worlds first apheresis center fully integrated within a registry, the Dr. Miriam and Sheldon G. Adelson Gift of Life-Be The Match Stem Cell Collection Center. With the collection center and rapidly expanding donor database, Gift of Life will launch a biobank to advance cellular therapies using allogeneically sourced cells in 2020.
Leadership Award: Ret. Major General Bernard Burn Loeffke, PhD (US Military) is a highly decorated Special Forces officer, diplomat and medical officer.He survived two helicopter crashes and was wounded in combat. After the Vietnam War, he served as the Army Attach at theU.S. Embassy in Moscow, first Defense Attach at the U.S Embassy in Beijing, a staff officer in theWhite House, and Director of the Commission onWhite House Fellows. His last command was Commanding General of Army South. After 35 years in the military, he became a medical officer traveling the world on relief missions to third and fourth world countries. Presently, at age 85, he champions the hydrocephalus and wounded warrior communities. He continues to serve as an inspiration and supporter of building peaceful international relations through medical partnerships and played a pivotal role as a keynote speaker at the inaugural 2019 World Stem Cell Summit CHINA.He is called the Peace General in Latin America. In China, he is simply known as The General, our Friend.
To learn more about past honorees and details for sponsoring or attending the upcoming 2020 Stem Cell and Regenerative Medicine Action Awards dinner, please visit, https://www.worldstemcellsummit.com/stem-cell-action-awards/
About the World Stem Cell Summit (WSCS)
Produced by the non-profit Regenerative Medicine Foundation (RMF), and in its 15th year, the World Stem Cell Summit will take place January 21-24, 2020, in Miami, Florida in partnership with Phacilitate Leaders World, as part of Advanced Therapies Week. The Summit is the most inclusive and expansive interdisciplinary, networking, and partnering meeting in the stem cell science and regenerative medicine field. With the overarching purpose of fostering translation of biomedical research, funding, and investments targeting cures, the Summit and co-located conferences serve a diverse ecosystem of stakeholders. For more information about the upcoming World Stem Cell Summit in Miami, please visit: http://www.worldstemcellsummit.com.
About the Regenerative Medicine Foundation (RMF)
The nonprofit Regenerative Medicine Foundation fosters strategic collaborations to accelerate the development of regenerative medicine to improve health and deliver cures. RMF unites the worlds leading researchers, medical centers, universities, labs, businesses, funders, policymakers, experts in law, regulation and ethics, medical philanthropies, and patient organizations. We maintain a trusted network of leaders and pursue our mission by producing our flagship World Stem Cell Summit series of conferences and public days, honoring leaders through the Stem Cell and Regenerative Medicine Action Awards, supporting our official journal partner STEM CELLS Translational Medicine (SCTM), promoting solution-focused policy initiatives both nationally and internationally and creating STEM/STEAM educational projects. For more information about RMF, please visit: http://www.regmedfoundation.org.
Here is the original post:
Stem Cell and Regenerative Medicine Action Awards to be Presented at World Stem Cell Summit on January 23 at the Hyatt Regency Miami - GlobeNewswire
MicroCures Awarded $1.5M SBIR Grant To Support Development of Novel Therapeutic Platform for Accelerated Tissue Repair – BioSpace
By daniellenierenberg
Funding to Support Ongoing Advancement of siFi2, Lead Candidate from Companys First-of-its-Kind Platform for Precisely Controlling Core Cell Migration Mechanisms
New York, NY, January 7, 2020 MicroCures, a biopharmaceutical company developing novel therapeutics that harness the bodys innate regenerative mechanisms to accelerate tissue repair, today announced that it has been awarded a Phase 2 Small Business Innovation Research (SBIR) grant from the National Institutes of Health (NIH). The two-year, $1.5 million award will support ongoing development of the companys lead product candidate, siFi2. siFi2, a small interfering RNA (siRNA) therapeutic that can be applied topically, is designed to enhance recovery after trauma. This Phase 2 grant continues the companys successful Phase 1 SBIR contract which demonstrated significantly improved repair of burn wounds following treatment with siFi2 in animal models.
MicroCures technology is based on foundational scientific research at Albert Einstein College of Medicine regarding the fundamental role that cell movement plays as a driver of the bodys innate capacity to repair tissue, nerves, and organs. The company has shown that complex and dynamic networks of microtubules within cells crucially control cell migration, and that this cell movement can be reliably modulated to achieve a range of therapeutic benefits. Based on these findings, the company has established a first-of-its-kind proprietary platform to create siRNA-based therapeutics capable of precisely controlling the speed and direction of cell movement by selectively silencing microtubule regulatory proteins (MRPs).
The company has developed a broad pipeline of therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. Unlike regenerative medicine approaches that rely upon engineered materials or systemic growth factor/stem cell therapeutics, MicroCures technology directs and enhances the bodys inherent healing processes through local, temporary modulation of cell motility. The companys lead drug candidate, siFi2, is a topical siRNA-based treatment designed to silence the activity of Fidgetin-Like 2 (FL2), a fundamental MRP, within an area of wounded tissue. In doing so, the therapy temporarily triggers accelerated movement of cells essential for repair into an injury area. Importantly, based on its topical administration, siFi2 can be applied early in the treatment process as a supplement to current standard of care.
We are grateful for NIHs continued support of our work through this multi-year Phase 2 SBIR grant. This non-dilutive financial support allows us to continue building a robust portfolio of preclinical data in animal models that demonstrate the therapeutic potential of siFi2 to significantly improve and accelerate healing of burn wounds, said David Sharp, Ph.D., co-founder and chief science officer of MicroCures. This funding will help advance our research as we work towards first-in-human clinical trial in 2020.
The initial Phase 1 SBIR grant from NIH funded preclinical research by MicroCures which demonstrated that treatment with siFi2 accelerated re-epithelization, improved collagen deposit and maturation, and improved quality of healing in a porcine full thickness burn model. Specific findings showed that following eight weeks of treatment, 39% of siFi2-treated wounds were closed as compared to only 11% for control subjects and 0% for placebo. Additionally, siFi2-treated subjects demonstrated a significantly improved rate of healing as measured by epithelial surface measurements as compared to placebo (p = 0.0106) and control (p = 0.0012).
About MicroCures
MicroCures develops biopharmaceuticals that harness innate cellular mechanisms within the body to accelerate and improve recovery after traumatic injury. MicroCures has developed a first-of-its-kind therapeutic platform that precisely controls the rate and direction of cell migration, offering the potential to deliver powerful therapeutic benefits for a variety of large and underserved medical applications.
MicroCures has developed a broad pipeline of novel therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. The companys lead therapeutic candidate, siFi2, targets excisional wound healing, a multi-billion dollar market inadequately served by current treatments. Additional applications for the companys cell migration accelerator technology include dermal burn repair, corneal burn repair, cavernous nerve regeneration, spinal cord regeneration, and cardiac tissue repair. Cell migration decelerator applications include combatting cancer metastases and fibrosis. The company protects its unique platform and proprietary therapeutic programs with a robust intellectual property portfolio including eight issued or allowed patents, as well as eight pending patent applications.
For more information please visit: http://www.microcures.com
Disclaimer: The SBIR Grant (2R44AR070696-02A1) is supported by the NIHs National Institute of Arthritis and Musculoskeletal and Skin Diseases. The content of this press release is solely the responsibility of MicroCures and does not necessarily represent the official views of the NIH.
Where Are They Now? Top 3 Biotech Startups From NextGen Bio Class of 2018 – BioSpace
By daniellenierenberg
Every year, BioSpace analyzes the biotech industry, looking for the hot new biotech startups to watch. We then produce the NextGen Bio Class of, twenty companies ranked based on several categories, including Finance, Collaborations, Pipeline, and Innovation. The companies were typically launched no more than 18 months before the list was created.
We thought it would be insightful to look back at our previous lists to see where some of those companies are today. Heres a look at the top three companies from the Top 20 Life Science Startups to Watch in 2018.
#1. BlueRock Therapeutics. Founded in 2016, BlueRock was #1 on our list of companies to watch in 2018. With facilities in Ontario, Canada; Cambridge, Massachusetts; and New York, New York, BlueRock launched in December 2016 with a $225 million Series A financing led by Bayer AG and Versant Ventures. The company focuses on cell therapies to regenerate heart muscle in patients who have had a heart attack or chronic heart failure, as well as therapies for patients with Parkinsons disease.
In October 2017, BlueRock and Seattle-based Universal Cells entered into a collaboration and license deal to create induced pluripotent stem (iPS) cell lines that can be used in the manufacture of allogeneic cellular therapies. Shortly afterwards, the company established its corporate headquarters in Cambridge, and in April 2018, established a research-and-development hub in New York City, as well as formalizing a sponsored research collaboration with the Center for Stem Cell Biology at Memorial Sloan Kettering (MSK) Cancer Center. The collaboration focuses on translating Ketterings expertise in creating multiple types of authentic neural cells from stem cells to address diseases of the central and peripheral nervous system. BlueRock also received $1 million from the State of New York and Empire State Development under its economic development initiatives program.
In April 2019, BlueRock partnered with Editas Medicine (which was on BioSpaces NextGen Bio Class of 2015 list) to combine their genome editing and cell therapy technologies to focus on novel engineered cell medicines. Part of the deal was to collaborate on creating novel, allogeneic pluripotent cell lines using a combination of Editas CRISPR genome editing technology and BlueRocks iPSC platform.
And finally, in August 2019, Bayer AG acquired BlueRock for the remaining stake in the company for about $240 million in cash and an additional $360 million in pre-defined development milestones.
#2. Prelude Fertility. Prelude Fertility is a bit of an outlier from the typical BioSpace NextGen company, because it isnt quite a biopharma company. It is a life sciences company whose business model is aimed at in vitro fertilization and egg freezing. It was founded with a $200 million investment by entrepreneur Martin Varsavsky. The investment was in the largest in vitro fertilization clinic in the Southeast, Reproductive Biology Associates of Atlanta, and its affiliate, My Egg Bank, the largest frozen donor egg bank in the U.S.
Since then it has expanded in various parts of the country, including adding San Francisco-based Pacific Fertility Center (PFC) to its network in September 25, 2017; partnering with Houston Fertility Institute and acquiring Vivere Health; partnering with the Advanced Fertility Center of Chicago; and in October 2018, partnered with NYU Langone Health.
In March 2019, Prelude merged with Inception Fertility to establish the Prelude Network as the fastest-growing network of fertility clinics and largest provider of comprehensive fertility services in the U.S. Inception is acting as the parent company, with the Prelude Network, both having board representatives from the previous organizations.
#3. Relay Therapeutics. Ranking #3 on our list for 2018, Relay Therapeutics launched in September 2016 with a $57 million Series A financing led by Third Rock Ventures with participation form D.E. Shaw Research. On December 14, 2017, it closed on a Series B round worth $63 million, led by BVF Partners, with new investors GV (formerly Google Ventures), Casdin Capital, EcoR1 Capital and Section 32.
The company focuses on the relationship between protein motion and function. It merges computational power with structural biology, biophysics, chemistry and biology. In December 2018, the company completed a $400 million Series C financing. It was led by the SoftBank Vision fund and included additional new investors, Foresite Capital, Perceptive Advisors and Tavistock Group. Existing investors also participated.
The company announced at the time it planned to use the funds to accelerate the implementation of its long-term strategy, expanding its discovery efforts, advancing existing programs into the clinic and improving its platform.
See more here:
Where Are They Now? Top 3 Biotech Startups From NextGen Bio Class of 2018 - BioSpace
MicroCures Awarded $1.5M SBIR Grant To Support Development of Novel Therapeutic Platform for Accelerated Tissue Repair – Yahoo Finance
By daniellenierenberg
Funding to Support Ongoing Advancement of siFi2, Lead Candidate from Companys First-of-its-Kind Platform for Precisely Controlling Core Cell Migration Mechanisms
NEW YORK, Jan. 07, 2020 (GLOBE NEWSWIRE) -- MicroCures, a biopharmaceutical company developing novel therapeutics that harness the bodys innate regenerative mechanisms to accelerate tissue repair, today announced that it has been awarded a Phase 2 Small Business Innovation Research (SBIR) grant from the National Institutes of Health (NIH). The two-year, $1.5 million award will support ongoing development of the companys lead product candidate, siFi2. siFi2, a small interfering RNA (siRNA) therapeutic that can be applied topically, is designed to enhance recovery after trauma. This Phase 2 grant continues the companys successful Phase 1 SBIR contract which demonstrated significantly improved repair of burn wounds following treatment with siFi2 in animal models.
MicroCures technology is based on foundational scientific research at Albert Einstein College of Medicine regarding the fundamental role that cell movement plays as a driver of the bodys innate capacity to repair tissue, nerves, and organs. The company has shown that complex and dynamic networks of microtubules within cells crucially control cell migration, and that this cell movement can be reliably modulated to achieve a range of therapeutic benefits. Based on these findings, the company has established a first-of-its-kind proprietary platform to create siRNA-based therapeutics capable of precisely controlling the speed and direction of cell movement by selectively silencing microtubule regulatory proteins (MRPs).
The company has developed a broad pipeline of therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. Unlike regenerative medicine approaches that rely upon engineered materials or systemic growth factor/stem cell therapeutics, MicroCures technology directs and enhances the bodys inherent healing processes through local, temporary modulation of cell motility. The companys lead drug candidate, siFi2, is a topical siRNA-based treatment designed to silence the activity of Fidgetin-Like 2 (FL2), a fundamental MRP, within an area of wounded tissue. In doing so, the therapy temporarily triggers accelerated movement of cells essential for repair into an injury area. Importantly, based on its topical administration, siFi2 can be applied early in the treatment process as a supplement to current standard of care.
We are grateful for NIHs continued support of our work through this multi-year Phase 2 SBIR grant. This non-dilutive financial support allows us to continue building a robust portfolio of preclinical data in animal models that demonstrate the therapeutic potential of siFi2 to significantly improve and accelerate healing of burn wounds, said David Sharp, Ph.D., co-founder and chief science officer of MicroCures. This funding will help advance our research as we work towards first-in-human clinical trial in 2020.
The initial Phase 1 SBIR grant from NIH funded preclinical research by MicroCures which demonstrated that treatment with siFi2 accelerated re-epithelization, improved collagen deposit and maturation, and improved quality of healing in a porcine full thickness burn model. Specific findings showed that following eight weeks of treatment, 39% of siFi2-treated wounds were closed as compared to only 11% for control subjects and 0% for placebo. Additionally, siFi2-treated subjects demonstrated a significantly improved rate of healing as measured by epithelial surface measurements as compared to placebo (p = 0.0106) and control (p = 0.0012).
About MicroCures
MicroCures develops biopharmaceuticals that harness innate cellular mechanisms within the body to accelerate and improve recovery after traumatic injury. MicroCures has developed a first-of-its-kind therapeutic platform that precisely controls the rate and direction of cell migration, offering the potential to deliver powerful therapeutic benefits for a variety of large and underserved medical applications.
MicroCures has developed a broad pipeline of novel therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. The companys lead therapeutic candidate, siFi2, targets excisional wound healing, a multi-billion dollar market inadequately served by current treatments. Additional applications for the companys cell migration accelerator technology include dermal burn repair, corneal burn repair, cavernous nerve regeneration, spinal cord regeneration, and cardiac tissue repair. Cell migration decelerator applications include combatting cancer metastases and fibrosis. The company protects its unique platform and proprietary therapeutic programs with a robust intellectual property portfolio including eight issued or allowed patents, as well as eight pending patent applications.
Story continues
For more information please visit: http://www.microcures.com
Disclaimer: The SBIR Grant (2R44AR070696-02A1) is supported by the NIHs National Institute of Arthritis and Musculoskeletal and Skin Diseases. The content of this press release is solely the responsibility of MicroCures and does not necessarily represent the official views of the NIH.
Contact:
Vida Strategic Partners (On behalf of MicroCures)
Stephanie Diaz (investors)415-675-7401sdiaz@vidasp.com
Tim Brons (media)415-675-7402tbrons@vidasp.com
Read the original:
MicroCures Awarded $1.5M SBIR Grant To Support Development of Novel Therapeutic Platform for Accelerated Tissue Repair - Yahoo Finance
Crosstalk between stem cell and spinal cord injury …
By daniellenierenberg
Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75:1526.
Guertin PA. A central pattern generator in the spinal cord for the central control of micturition: an opportunity for first-in-class drug treatments. Asia Pac J Clin Trials Nerv Syst Dis. 2019;4:12.
Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci. 2004;5:14656.
Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 2008;209:37888.
Badner A, Siddiqui AM, Fehlings MG. Spinal cord injuries: how could cell therapy help? Expert Opin Biol Ther. 2017;17:52941.
Nagoshi N, Okano H. Applications of induced pluripotent stem cell technologies in spinal cord injury. J Neurochem. 2017;141:84860.
Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P. Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant. 2003;7(Suppl 3):868.
Lovell-Badge R. The future for stem cell research. Nature. 2001;414:8891.
Neves J, Sousa-Victor P, Jasper H. Rejuvenating strategies for stem cell-based therapies in aging. Cell Stem Cell. 2017;20:16175.
Dang PN, Dwivedi N, Phillips LM, Yu X, Herberg S, Bowerman C, Solorio LD, Murphy WL, Alsberg E. Controlled dual growth factor delivery from microparticles incorporated within human bone marrow-derived mesenchymal stem cell aggregates for enhanced bone tissue engineering via endochondral ossification. Stem Cells Transl Med. 2016;5:20617.
Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol. 2014;114:2557.
Vismara I, Papa S, Rossi F, Forloni G, Veglianese P. Current options for cell therapy in spinal cord injury. Trends Mol Med. 2017;23:83149.
Dasari VR, Veeravalli KK, Dinh DH. Mesenchymal stem cells in the treatment of spinal cord injuries: a review. World J Stem Cells. 2014;6:12033.
Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134:1790807.
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D. Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci. 2019;20(11).
Lee MW, Yang MS, Park JS, Kim HC, Kim YJ, Choi J. Isolation of mesenchymal stem cells from cryopreserved human umbilical cord blood. Int J Hematol. 2005;81:12630.
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:1546.
Shroff G, Dhanda Titus J, Shroff R. A review of the emerging potential therapy for neurological disorders: human embryonic stem cell therapy. Am J Stem Cells. 2017;6:112.
Harper JM, Krishnan C, Darman JS, Deshpande DM, Peck S, Shats I, Backovic S, Rothstein JD, Kerr DA. Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci U S A. 2004;101:71238.
Iwai H, Shimada H, Nishimura S, Kobayashi Y, Itakura G, Hori K, Hikishima K, Ebise H, Negishi N, Shibata S, Habu S, Toyama Y, Nakamura M, Okano H. Allogeneic neural stem/progenitor cells derived from embryonic stem cells promote functional recovery after transplantation into injured spinal cord of nonhuman primates. Stem Cells Transl Med. 2015;4:70819.
Yang JR, Liao CH, Pang CY, Huang LL, Chen YL, Shiue YL, Chen LR. Transplantation of porcine embryonic stem cells and their derived neuronal progenitors in a spinal cord injury rat model. Cytotherapy. 2013;15:2018.
Johnson PJ, Tatara A, Shiu A, Sakiyama-Elbert SE. Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplant. 2010;19:89101.
Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25:4694705.
Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, Plunet WT, Tsai EC, Baptiste D, Smithson LJ, Kawaja MD, Fehlings MG, Kwon BK. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma. 2011;28:161182.
Nakamura M, Okano H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res. 2013;23:7080.
Iyer NR, Wilems TS, Sakiyama-Elbert SE. Stem cells for spinal cord injury: strategies to inform differentiation and transplantation. Biotechnol Bioeng. 2017;114:24559.
Sabelstrom H, Stenudd M, Frisen J. Neural stem cells in the adult spinal cord. Exp Neurol. 2014;260:449.
Gregoire CA, Goldenstein BL, Floriddia EM, Barnabe-Heider F, Fernandes KJ. Endogenous neural stem cell responses to stroke and spinal cord injury. Glia. 2015;63:146982.
Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell. 2012;150:126473.
Kerr CL, Letzen BS, Hill CM, Agrawal G, Thakor NV, Sterneckert JL, Gearhart JD, All AH. Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury. Int J Neurosci. 2010;120:30513.
Hofstetter CP, Holmstrom NA, Lilja JA, Schweinhardt P, Hao J, Spenger C, Wiesenfeld-Hallin Z, Kurpad SN, Frisen J, Olson L. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci. 2005;8:34653.
Gabel BC, Curtis EI, Marsala M, Ciacci JD. A review of stem cell therapy for spinal cord injury: large animal models and the frontier in humans. World Neurosurg. 2017;98:43843.
Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3:17018.
Pereira IM, Marote A, Salgado AJ, Silva NA. Filling the gap: neural stem cells as a promising therapy for spinal cord injury. Pharmaceuticals (Basel). 2019;12(2).
Yousefifard M, Rahimi-Movaghar V, Nasirinezhad F, Baikpour M, Safari S, Saadat S, Moghadas Jafari A, Asady H, Razavi Tousi SM, Hosseini M. Neural stem/progenitor cell transplantation for spinal cord injury treatment; a systematic review and meta-analysis. Neuroscience. 2016;322:37797.
Deng J, Zhang Y, Xie Y, Zhang L, Tang P. Cell transplantation for spinal cord injury: tumorigenicity of induced pluripotent stem cell-derived neural stem/progenitor cells. Stem Cells Int. 2018;2018:5653787.
Kanatsu-Shinohara M, Shinohara T. Spermatogonial stem cell self-renewal and development. Annu Rev Cell Dev Biol. 2013;29:16387.
Glaser T, Opitz T, Kischlat T, Konang R, Sasse P, Fleischmann BK, Engel W, Nayernia K, Brustle O. Adult germ line stem cells as a source of functional neurons and glia. Stem Cells. 2008;26:243443.
Streckfuss-Bomeke K, Vlasov A, Hulsmann S, Yin D, Nayernia K, Engel W, Hasenfuss G, Guan K. Generation of functional neurons and glia from multipotent adult mouse germ-line stem cells. Stem Cell Res. 2009;2:13954.
Kossack N, Meneses J, Shefi S, Nguyen HN, Chavez S, Nicholas C, Gromoll J, Turek PJ, Reijo-Pera RA. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells. 2009;27:13849.
Yang H, Liu Y, Hai Y, Guo Y, Yang S, Li Z, Gao WQ, He Z. Efficient conversion of spermatogonial stem cells to phenotypic and functional dopaminergic neurons via the PI3K/Akt and P21/Smurf2/Nolz1 pathway. Mol Neurobiol. 2015;52:165469.
Yang H, Liu C, Chen B, An J, Zhang R, Zhang Q, Zhao J, He B, Hao DJ. Efficient generation of functionally active spinal cord neurons from spermatogonial stem cells. Mol Neurobiol. 2017;54:788803.
Nazm Bojnordi M, Movahedin M, Tiraihi T, Javan M, Ghasemi Hamidabadi H. Oligoprogenitor cells derived from spermatogonia stem cells improve remyelination in demyelination model. Mol Biotechnol. 2014;56:38793.
Nomura H, Kim H, Mothe A, Zahir T, Kulbatski I, Morshead CM, Shoichet MS, Tator CH. Endogenous radial glial cells support regenerating axons after spinal cord transection. Neuroreport. 2010;21:8716.
Panayiotou E, Malas S. Adult spinal cord ependymal layer: a promising pool of quiescent stem cells to treat spinal cord injury. Front Physiol. 2013;4:340.
Liu Y, Tan B, Wang L, Long Z, Li Y, Liao W, Wu Y. Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury. Int J Clin Exp Pathol. 2015;8:383542.
Ahuja CS, Fehlings M. Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Transl Med. 2016;5:91424.
Xue PXZF, Kou YH, Han S, Wang TB, Zhang DY, Jiang BG. Pre-hospital and in-hospital first aid programs and specifications for spine and spinal cord injury in Beijing, China: study protocol for a prospective, multicenter, nonrandomized controlled trial. Asia Pac J Clin Trials Nerv Syst Dis. 2017;2:5865.
Mukaino M, Nakamura M, Yamada O, Okada S, Morikawa S, Renault-Mihara F, Iwanami A, Ikegami T, Ohsugi Y, Tsuji O, Katoh H, Matsuzaki Y, Toyama Y, Liu M, Okano H. Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation. Exp Neurol. 2010;224:40314.
Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci. 2016;10:98.
Gao L, Zhang Z, Xu W, Li T, Ying G, Qin B, Li J, Zheng J, Zhao T, Yan F, Zhu Y, Chen G. Natrium benzoate alleviates neuronal apoptosis via the DJ-1-related anti-oxidative stress pathway involving Akt phosphorylation in a rat model of traumatic spinal cord injury. Front Mol Neurosci. 2019;12:42.
Sugawara T, Chan PH. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal. 2003;5:597607.
Wang X, Wu X, Liu Q, Kong G, Zhou J, Jiang J, Wu X, Huang Z, Su W, Zhu Q. Ketogenic metabolism inhibits histone deacetylase (HDAC) and reduces oxidative stress after spinal cord injury in rats. Neuroscience. 2017;366:3643.
Zhou L, Ouyang L, Lin S, Chen S, Liu Y, Zhou W, Wang X. Protective role of beta-carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. Int Immunopharmacol. 2018;61:929.
Shimizu EN, Seifert JL, Johnson KJ, Romero-Ortega MI. Prophylactic riluzole attenuates oxidative stress damage in spinal cord distraction. J Neurotrauma. 2018;35:131928.
Zhang L, Kaneko S, Kikuchi K, Sano A, Maeda M, Kishino A, Shibata S, Mukaino M, Toyama Y, Liu M, Kimura T, Okano H, Nakamura M. Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition. Mol Brain. 2014;7:14.
Tashiro S, Nishimura S, Iwai H, Sugai K, Zhang L, Shinozaki M, Iwanami A, Toyama Y, Liu M, Okano H, Nakamura M. Functional recovery from neural stem/progenitor cell transplantation combined with treadmill training in mice with chronic spinal cord injury. Sci Rep. 2016;6:30898.
Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nat Neurosci. 2017;20:63747.
Emgard M, Piao J, Aineskog H, Liu J, Calzarossa C, Odeberg J, Holmberg L, Samuelsson EB, Bezubik B, Vincent PH, Falci SP, Seiger A, Akesson E, Sundstrom E. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord. Exp Neurol. 2014;253:13845.
Hawryluk GW, Mothe A, Wang J, Wang S, Tator C, Fehlings MG. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. 2012;21:222238.
Kadoya K, Lu P, Nguyen K, Lee-Kubli C, Kumamaru H, Yao L, Knackert J, Poplawski G, Dulin JN, Strobl H, Takashima Y, Biane J, Conner J, Zhang SC, Tuszynski MH. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med. 2016;22:47987.
Armstrong RJ, Hurelbrink CB, Tyers P, Ratcliffe EL, Richards A, Dunnett SB, Rosser AE, Barker RA. The potential for circuit reconstruction by expanded neural precursor cells explored through porcine xenografts in a rat model of Parkinsons disease. Exp Neurol. 2002;175:98111.
Bregman BS, Kunkel-Bagden E, Reier PJ, Dai HN, McAtee M, Gao D. Recovery of function after spinal cord injury: mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats. Exp Neurol. 1993;123:316.
Stenudd M, Sabelstrom H, Frisen J. Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol. 2015;72:2357.
Giusto E, Donega M, Cossetti C, Pluchino S. Neuro-immune interactions of neural stem cell transplants: from animal disease models to human trials. Exp Neurol. 2014;260:1932.
Volkman R, Offen D. Concise review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells. 2017;35:186780.
Qu J, Zhang H. Roles of mesenchymal stem cells in spinal cord injury. Stem Cells Int. 2017;2017:5251313.
DeBrot A, Yao L. The combination of induced pluripotent stem cells and bioscaffolds holds promise for spinal cord regeneration. Neural Regen Res. 2018;13:167784.
Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004;14:31124.
Cho SR, Kim YR, Kang HS, Yim SH, Park CI, Min YH, Lee BH, Shin JC, Lim JB. Functional recovery after the transplantation of neurally differentiated mesenchymal stem cells derived from bone marrow in a rat model of spinal cord injury. Cell Transplant. 2016;25:1423.
Luo H, Xu C, Liu Z, Yang L, Hong Y, Liu G, Zhong H, Cai X, Lin X, Chen X, Wang C, Nanwen Z, Xu W. Neural differentiation of bone marrow mesenchymal stem cells with human brain-derived neurotrophic factor gene-modified in functionalized self-assembling peptide hydrogel in vitro. J Cell Biochem. 2019;120:282835.
Osaka M, Honmou O, Murakami T, Nonaka T, Houkin K, Hamada H, Kocsis JD. Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res. 2010;1343:22635.
Ramalho BDS, Almeida FM, Sales CM, de Lima S, Martinez AMB. Injection of bone marrow mesenchymal stem cells by intravenous or intraperitoneal routes is a viable alternative to spinal cord injury treatment in mice. Neural Regen Res. 2018;13:104653.
Neirinckx V, Cantinieaux D, Coste C, Rogister B, Franzen R, Wislet-Gendebien S. Concise review: spinal cord injuries: how could adult mesenchymal and neural crest stem cells take up the challenge? Stem Cells. 2014;32:82943.
Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, Yoshida A, Long G, Wright KT, Johnson WE, Baba H. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma. 2012;29:161425.
Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5:10310.
Kim Y, Jo SH, Kim WH, Kweon OK. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther. 2015;6:229.
Kolar MK, Kingham PJ, Novikova LN, Wiberg M, Novikov LN. The therapeutic effects of human adipose-derived stem cells in a rat cervical spinal cord injury model. Stem Cells Dev. 2014;23:165974.
Kokai LE, Marra K, Rubin JP. Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res. 2014;163:399408.
Kim Y, Lee SH, Kim WH, Kweon OK. Transplantation of adipose derived mesenchymal stem cells for acute thoracolumbar disc disease with no deep pain perception in dogs. J Vet Sci. 2016;17:1236.
Zhou J, Lu P, Ren H, Zheng Z, Ji J, Liu H, Jiang F, Ling S, Heng BC, Hu X, Ouyang H. 17beta-estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury. J Cell Mol Med. 2014;18:32643.
Hyun J, Grova M, Nejadnik H, Lo D, Morrison S, Montoro D, Chung M, Zimmermann A, Walmsley GG, Lee M, Daldrup-Link H, Wan DC, Longaker MT. Enhancing in vivo survival of adipose-derived stromal cells through Bcl-2 overexpression using a minicircle vector. Stem Cells Transl Med. 2013;2:690702.
Lee SH, Kim Y, Rhew D, Kuk M, Kim M, Kim WH, Kweon OK. Effect of the combination of mesenchymal stromal cells and chondroitinase ABC on chronic spinal cord injury. Cytotherapy. 2015;17:137483.
Hur JW, Cho TH, Park DH, Lee JB, Park JY, Chung YG. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: a human trial. J Spinal Cord Med. 2016;39:65564.
Sanluis-Verdes A, Sanluis-Verdes N, Manso-Revilla MJ, Castro-Castro AM, Pombo-Otero J, Fraga-Marino M, Sanchez-Ibanez J, Domenech N, Rendal-Vazquez ME. Tissue engineering for neurodegenerative diseases using human amniotic membrane and umbilical cord. Cell Tissue Bank. 2017;18:115.
Caron I, Rossi F, Papa S, Aloe R, Sculco M, Mauri E, Sacchetti A, Erba E, Panini N, Parazzi V, Barilani M, Forloni G, Perale G, Lazzari L, Veglianese P. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials. 2016;75:13547.
Bottai D, Scesa G, Cigognini D, Adami R, Nicora E, Abrignani S, Di Giulio AM, Gorio A. Third trimester NG2-positive amniotic fluid cells are effective in improving repair in spinal cord injury. Exp Neurol. 2014;254:12133.
Gao S, Ding J, Xiao HJ, Li ZQ, Chen Y, Zhou XS, Wang JE, Wu J, Shi WZ. Anti-inflammatory and anti-apoptotic effect of combined treatment with methylprednisolone and amniotic membrane mesenchymal stem cells after spinal cord injury in rats. Neurochem Res. 2014;39:154452.
Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience. 2003;118:117.
Liu CB, Huang H, Sun P, Ma SZ, Liu AH, Xue J, Fu JH, Liang YQ, Liu B, Wu DY, Lu SH, Zhang XZ. Human umbilical cord-derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia. Stem Cells Transl Med. 2016;5:100413.
Park SE, Jung NY, Lee NK, Lee J, Hyung B, Myeong SH, Kim HS, Suh YL, Lee JI, Cho KR, Kim DH, Choi SJ, Chang JW, Na DL. Distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in canines after intracerebroventricular injection. Neurobiol Aging. 2016;47:192200.
Kang KS, Kim SW, Oh YH, Yu JW, Kim KY, Park HK, Song CH, Han H. A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study. Cytotherapy. 2005;7:36873.
Yao L, He C, Zhao Y, Wang J, Tang M, Li J, Wu Y, Ao L, Hu X. Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury: electrophysiological changes and long-term efficacy. Neural Regen Res. 2013;8:397403.
Zhu H, Poon W, Liu Y, Leung GK, Wong Y, Feng Y, Ng SCP, Tsang KS, Sun DTF, Yeung DK, Shen C, Niu F, Xu Z, Tan P, Tang S, Gao H, Cha Y, So KF, Fleischaker R, Sun D, Chen J, Lai J, Cheng W, Young W. Phase I-II clinical trial assessing safety and efficacy of umbilical cord blood mononuclear cell transplant therapy of chronic complete spinal cord injury. Cell Transplant. 2016;25:192543.
Guo L, Rolfe AJ, Wang X, Tai W, Cheng Z, Cao K, Chen X, Xu Y, Sun D, Li J, He X, Young W, Fan J, Ren Y. Rescuing macrophage normal function in spinal cord injury with embryonic stem cell conditioned media. Mol Brain. 2016;9:48.
Salewski RP, Mitchell RA, Shen C, Fehlings MG. Transplantation of neural stem cells clonally derived from embryonic stem cells promotes recovery after murine spinal cord injury. Stem Cells Dev. 2015;24:3650.
Koch P, Opitz T, Steinbeck JA, Ladewig J, Brustle O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci U S A. 2009;106:322530.
Shin S, Mitalipova M, Noggle S, Tibbitts D, Venable A, Rao R, Stice SL. Long-term proliferation of human embryonic stem cell-derived neuroepithelial cells using defined adherent culture conditions. Stem Cells. 2006;24:12538.
Chang YW, Goff LA, Li H, Kane-Goldsmith N, Tzatzalos E, Hart RP, Young W, Grumet M. Rapid induction of genes associated with tissue protection and neural development in contused adult spinal cord after radial glial cell transplantation. J Neurotrauma. 2009;26:97993.
Moreno-Manzano V, Rodriguez-Jimenez FJ, Garcia-Rosello M, Lainez S, Erceg S, Calvo MT, Ronaghi M, Lloret M, Planells-Cases R, Sanchez-Puelles JM, Stojkovic M. Activated spinal cord ependymal stem cells rescue neurological function. Stem Cells. 2009;27:73343.
See more here:
Crosstalk between stem cell and spinal cord injury ...
Making Blood On Demand: How Far Have We Come? – Eurasia Review
By daniellenierenberg
The reconstitution of the blood system in humans holds great therapeutic potential to treat many disorders, like blood cancers, sickle-cell anemia and others. Successful reconstitution requires the transplantation and engraftment of hematopoietic (or blood) stem cells (HSCs), which after reaching their niche, start producing all types of blood cells, including platelets, white and red blood cells.
In current clinical practice, this is carried out by infusing HSCs obtained from a matched donor who is immunologically compatible with the patient in need (allogeneic transplantation), or by the expansion of the patients own HSCs in the lab, and then re-infusing them back into the patient (ex-vivo, autologous transplantation).
However, the utility of both routes is currently limited by a number of factors. First, in the case of allogeneic transplantation, the scarcity of matched donors significantly increases the waiting time, which could be detrimental to the patient. Second, the ex vivo expansion of HSCs, whether allogeneic or autologous, has been a challenging task, due to the limited proliferative potential these cells exhibit in culture. These limitations have raised the need for other sources of HSCs that would alleviate the need for matched donors and yield functional HSCs in large quantities.
In 2007, Professor Shinya Yamanaka and colleagues demonstrated that somatic cells, like skin fibroblasts, could be reprogrammed back to a cellular state that resembled human embryonic stem cells (hESCs), which are a group of cells found in the blastocyst-stage human embryo and contribute solely to the development of the human fetus during pregnancy. The reprogrammed cells were termed, Induced Pluripotent Stem Cells (iPSCs).
In addition to their developmental potential, human ESCs and iPS cells display unlimited proliferative potential in culture, which makes them an ideal source of cells for regenerative medicine in general and for hematopoietic differentiation to obtain possibly unlimited quantities of HSCs. Therefore, there has been a growing interest to harness the potential of these cells for treating blood disorders.
However, advancement in deriving functional HSCs from human pluripotent stem cells has been slow. This has been attributed to incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, the authors discuss the latest efforts to generate HSCs capable of long-term engraftment and reconstitution of the blood system from human pluripotent stem cells. Stem cell research has witnessed milestone achievements in this area in the last couple of years, the significance of which are discussed and analyzed in detail.
The authors additionally discuss two highly important families of transcription factors in the context of hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA proteins. These are thought of as master regulators, in the sense of having numerous transcriptional targets, which upon activation, could elicit significant changes in cell identity. The authors hypothesize that precise temporal control of the levels of certain members of these families during hematopoietic differentiation could yield functional HSCs capable of long-term engraftment.
The authors conclude the review with a summary of future perspectives, in which they discuss how newly developed techniques, like the deactivated-Cas9 (dCas9) gene-expression control system, can be utilized during the course of hematopoietic differentiation of pluripotent stem cells for precise temporal control of the aforementioned master regulators to achieve functional HSCs.
Please Donate Today Did you enjoy this article? Then please consider donating today to ensure that Eurasia Review can continue to be able to provide similar content.
Read the original here:
Making Blood On Demand: How Far Have We Come? - Eurasia Review
Research Jan. 2, 2020 The End of Infertility Is in Sight – UCSF News Services
By daniellenierenberg
Fertility expert Marcelle Cedars discusses the future of reproductive medicine.
By Ariel Bleicher UCSF Magazine
Advances in medicine and public health have dramatically extended the human lifespan. Our hearts, lungs, and other vital organs now last 79 years on average. For women, however, the ovaries which stop functioning at an average 51 years remain a stubborn exception. That may soon change, says fertility expert Marcelle Cedars, MD, during a conversation on the future of reproductive medicine.
There are two aspects. One is qualitative. As a woman ages, the quality of her eggs meaning their capacity to make a healthy baby declines. We understand very little about what causes this decline. If we understood that process better, we could dramatically impact fertility success rates.
The other aspect is quantitative. Women are born with a finite number of eggs, and they lose those eggs throughout their lifetime. In fact, that rapid decline in egg numbers starts even before birth. Theres a peak in utero of five to six million eggs. At birth, a woman has only about 1.5 million eggs; at the time of puberty, about 500,000. Through genetics research, were learning that the rate of this decline and the variability from woman to woman is largely driven by ones genes.
Exactly. But what if we could use your genetics and other biological data to understand your unique fertility risks and develop therapies specifically for you or for groups of women like you? This approach is called precision medicine. It has made a huge impact in the world of cancer in terms of improving survival rates. But in the field of reproductive health, precision medicine is still in its infancy.
Potentially. If we can pinpoint the mechanisms of ovarian aging, we could potentially develop a therapy that enables you to still have healthy eggs into your 50s, possibly your 60s. But just because we can do something doesnt always mean we should do it. We know that as women get older, pregnancies are more complicated. You have higher risk for things like high blood pressure, diabetes, and preterm labor. There are many downstream implications, both for the mothers health and the childs.
I dont think the goal should be to enable women to get pregnant into their 60s. Rather, we want women to have the best reproductive lifespan possible to be able to have children when they want to and to not have children when they don't want to and to have a society that supports women across that spectrum.
Were starting to believe that some of the same cellular mechanisms that underlie general aging might also control ovarian aging. This revelation makes the ovary even more interesting to study because its early demise could be a unique window into the bodys aging process. If we can identify cases of accelerated ovarian aging and understand the underlying causes, we might be able to improve not only reproductive function in individual women but also overall health and longevity for all women.
Samesex couples having genetically related children is probably on the horizon. Scientists are learning how to take skin cells or blood cells and turn them into stem cells, which can then be turned into eggs or sperm. Thats not science fiction; its already happening. We just need to figure out how to do it well and safely in humans.
Well probably also see germline engineering. Thats the process of editing genes in reproductive cells or embryos. It has the potential to cure disease before birth. This technology is here. But will society be ready to accept it? A lot of questions need to be answered before its put to use. In addition to technical hurdles, there are innumerable social issues. For instance, if we can eliminate a certain disease, will there be less focus on treatments for people who still have the disease? And what about access to care and social equity? Who would be able to afford these procedures? How will they be applied?
Restrictions are currently preventing the U.S. government from funding research that involves the manipulation of human embryos. As a result, funding for reproductive science is low, which has driven a lot of experts out of academia. If we want to see a revolution in reproductive health, like whats happening with precision cancer medicine, we need to invest in the development of scientific knowledge that will move this field forward.
Original post:
Research Jan. 2, 2020 The End of Infertility Is in Sight - UCSF News Services
Local firm adds a new wrinkle to anti-aging products – The Coal Valley News
By daniellenierenberg
HUNTINGTON Serucell Corporation, a cosmeceutical company based in Huntington, has developed the worlds only dual-cell technology to create and produce anti-aging skincare products, and they did it in Huntington.
Serucell KFS Cellular Protein Complex Serum is made start to finish at Serucells laboratory on the south side of Huntington.
This has been one of the best kept secrets in West Virginia, said Cortland Bohacek, executive chairman and a co-founder of Serucell Corporation.
The company soft launch was in September 2018 at The Greenbrier Spas. The Official online launch was April 2019 and is getting exposure with some well known sellers like Neiman Marcus, local dermatologist and plastic surgeons offices and several other retail locations from New York to California. It is also sold online at serucell.com.
One person that has tried the product is Jennifer Wheeler, who is also a Huntington City Council member.
As a consumer I have an appreciation of the quality of the product and the results Ive seen using it, she said. It has been transformative for my skin and seems like its success will be transformative for our city as well.
She said Serucell and the people behind it are impressive on every level.
In my role on council, Im especially grateful for the companys conscious effort to stay and grow in our city, Wheeler said.
A one-ounce bottle of the serum costs $225. The recommended usage is twice per day and it will last on average of about six weeks.
Serucells active ingredient is called KFS (Keratinocyte Fibroblast Serum), which is made up of more than 1,500 naturally derived super proteins, collagens, peptides and signaling factors that support optimal communication within the cellular makeup of your skin.
This is the first and only dual-cell technology that optimizes hydration and harnesses the power of both keratinocytes and fibroblasts, two essential contributors to maintaining healthy skin by supporting natural rejuvenation of aging skin from the inside out, said Jennifer Hessel, president and CEO of the company.
When applied to the skin, KFS helps boost the skins natural ability to support new collagen and elastin, strengthen the connection and layer of support between the upper and lower layers of your skin. The result, over time is firmer, plumper and smoother skin, according to Hessel.
Why it works so naturally with your skin is because it is natural, Hessel said. These proteins play an important role in strengthening the bond between the layers of your skin, and thats where the re-boot happens.
KFS is the creation of Dr. Walter Neto, Serucells chief science officer and co-founder of the company. Neto is both a physician and a research scientist, specializing in the field of regenerative medicine with an emphasis on skin healing and repair.
Neto said Serucells technology unlocks the key to how our cells communicate and harnesses the signaling power actions to produce the thousands of bioactive proteins necessary to support the skins natural rejuvenation.
Originally from Brazil, Neto studied at Saint Matthews University and completed his clinical training in England. His clinical research on stem-cell cancer therapies, bone and tissue engineering and wound and burn healing led to his discovery in cell-to-cell communication, and ultimately the creation of Serucells KFS Cellular Protein Complex Serum.
Neto received multiple patents for the production method of Serucell KFS Serum.
Neto lives in Huntington with his wife and four golden retrievers.
Neto works alongside his longtime friend, Dr. Brett Jarrell.
I have known Brett since I was 18 years old, Neto said.
Jarrell practices emergency medicine in Ashland, Kentucky, and oversees all aspects of quality control for Serucell. He received his bachelors degree in biology from Wittenberg University, his masters degree in biology from Marshall University and his medical degree from the Marshall University School of Medicine. Jarrell completed his residency at West Virginia University and is board certified by the American Board of Emergency Medicine.
Jarrell has served as a clinical instructor of emergency medicine at the Marshall School of Medicine, president of the West Virginia chapter of the American College of Emergency Medicine and he has published a number of peer-reviewed journal articles on stroke research.
Jarrell also lives in Huntington.
Another co-founder of the company is Dr. Tom McClellan.
McClellan is Serucells chief medical officer and director of research and is a well-respected plastic and reconstructive surgeon with a private practice, McClellan Plastic Surgery, in Morgantown.
McClellan completed his plastic and reconstructive surgery training at the world-renowned Lahey Clinic Foundation, a Harvard Medical School and Tufts Medical School affiliate in Boston, Massachusetts. While in Boston, he worked at Lahey Medical Center, Brigham and Womens Hospital, as well as at the Boston Childrens Hospital. McClellan is board certified by the American Board of Plastic Surgery.
In addition to his practice and role at Serucell, McClellan utilizes his surgical skills through pro bono work with InterplastWV, a non-profit group that provides comprehensive reconstructive surgery to the developing world. He has participated in surgical missions to Haiti, Peru and the Bahamas.
McClellan lives in Morgantown with his family.
All three doctors here have strong connections to West Virginia and we didnt want to leave, Neto said. We all want to give back to West Virginia, so that is the main reason we have our business here in Huntington.
We are building a company we believe can make a difference in the community, Hessel added. Our goal is to grow Serucell and build our brand right here in Huntington. There is a pool of untapped talent here in Huntington. When we expand our business here, we can provide another reason for young people to be able to stay and grow their careers, whether it is in science, operations or manufacturing. The team is a pretty excited to make an impact in the community where it all started.
Hessel decline to give sales numbers, but said the business has been growing each year since the product was introduced. She also declined to give the number of employees at the facility, but did say it has sales representatives across the country.
For more information, visit serucell.com.
Original post:
Local firm adds a new wrinkle to anti-aging products - The Coal Valley News
Making blood on demand: How far have we come? – Science Codex
By daniellenierenberg
The reconstitution of the blood system in humans holds great therapeutic potential to treat many disorders, like blood cancers, sickle-cell anemia and others. Successful reconstitution requires the transplantation and engraftment of hematopoietic (or blood) stem cells (HSCs), which after reaching their niche, start producing all types of blood cells, including platelets, white and red blood cells.
In current clinical practice, this is carried out by infusing HSCs obtained from a matched donor who is immunologically compatible with the patient in need (allogeneic transplantation), or by the expansion of the patient's own HSCs in the lab, and then re-infusing them back into the patient (ex-vivo, autologous transplantation). However, the utility of both routes is currently limited by a number of factors. First, in the case of allogeneic transplantation, the scarcity of matched donors significantly increases the waiting time, which could be detrimental to the patient. Second, the ex vivo expansion of HSCs, whether allogeneic or autologous, has been a challenging task, due to the limited proliferative potential these cells exhibit in culture. These limitations have raised the need for other sources of HSCs that would alleviate the need for matched donors and yield functional HSCs in large quantities.
In 2007, Professor Shinya Yamanaka and colleagues demonstrated that somatic cells, like skin fibroblasts, could be reprogrammed back to a cellular state that resembled human embryonic stem cells (hESCs), which are a group of cells found in the blastocyst-stage human embryo and contribute solely to the development of the human fetus during pregnancy. The reprogrammed cells were termed, Induced Pluripotent Stem Cells (iPSCs). In addition to their developmental potential, human ESCs and iPS cells display unlimited proliferative potential in culture, which makes them an ideal source of cells for regenerative medicine in general and for hematopoietic differentiation to obtain possibly unlimited quantities of HSCs. Therefore, there has been a growing interest to harness the potential of these cells for treating blood disorders.
However, advancement in deriving functional HSCs from human pluripotent stem cells has been slow. This has been attributed to incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, the authors discuss the latest efforts to generate HSCs capable of long-term engraftment and reconstitution of the blood system from human pluripotent stem cells. Stem cell research has witnessed milestone achievements in this area in the last couple of years, the significance of which are discussed and analyzed in detail.
The authors additionally discuss two highly important families of transcription factors in the context of hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA proteins. These are thought of as master regulators, in the sense of having numerous transcriptional targets, which upon activation, could elicit significant changes in cell identity. The authors hypothesize that precise temporal control of the levels of certain members of these families during hematopoietic differentiation could yield functional HSCs capable of long-term engraftment.
The authors conclude the review with a summary of future perspectives, in which they discuss how newly developed techniques, like the deactivated-Cas9 (dCas9) gene-expression control system, can be utilized during the course of hematopoietic differentiation of pluripotent stem cells for precise temporal control of the aforementioned master regulators to achieve functional HSCs.
More:
Making blood on demand: How far have we come? - Science Codex
BrainStorm Cell Therapeutics Wins 2020 ‘Buzz of BIO’ Award for ALS Investigational Therapy – ALS News Today
By daniellenierenberg
For its promising investigational therapeutic approach to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), BrainStorm Cell Therapeutics is theBuzz of BIO 2020 winnerin the Public Therapeutic Biotech category.
The Buzz of BIO contest identifies U.S. companies with groundbreaking, early-stage potential to improve lives. The event also is anopportunity to make investor connections that could take products to the next phase.
Ten biotechnology companies are nominated in each of the three categories ofBuzz of BIO: Public Therapeutic Biotech, Private Therapeutic Biotech, and Diagnostics and Beyond. In the Public Therapeutic Biotech category that BrainStorm won, nominated companies must be actively developing a publicly traded human treatment intended for review by theU.S. Food and Drug Administration (FDA).
As a developer of autologous cellular therapies treatments that use a patients own cells and tissues for debilitating neurodegenerative diseases, BrainStorm is now testing its NurOwn therapy for safety and effectiveness. The treatment involves extracting, from human bone, marrow-derived mesenchymal stem cells (MSCs), which are capable of differentiating into other cell types. The MSCs are then matured into a specific cell type that produces neurotrophic factors compounds that promote nervous tissue growth and survival. They are then reintroduced to the body via injection into muscles and/or the spinal canal.
Backed by a California Institute for Regenerative Medicine grant, Brainstorm has fully enrolledits randomized, double-blind, placebo-controlled Phase 3 clinical trial (NCT03280056) at six U.S. sites in California, Massachusetts, and Minnesota. Some 200 ALS patients are participating. A secondary safety analysis by the trials independent Data Safety Monitoring Board (DSMB) revealed no new concerns. Every two months, study subjects will be given three injections into the spinal canal of either NurOwn or placebo.
The trial is expected to conclude late this year. Results will be announced shortly afterward.
In a Phase 2 study (NCT02017912), which included individuals with rapidly progressing ALS, NurOwn demonstrated a positive safety profile as well as prospective efficacy.
The use of autologous MSC cells to potentially treat ALS was given orphan drug status by both the FDA and the European Medicines Agency.
Thanks to everyone who voted for BrainStorm during the Buzz of BIO competition,Chaim Lebovits, BrainStorm president and CEO, said in a press release. The entire management team at BrainStorm was very pleased with the results of this competition, and we look forward to presenting to an audience of accredited investors who may benefit from the companys story. We thank the BIO[Biotechnology Innovation Organization] team for singling out BrainStorms NurOwn as a key technology with the potential to improve lives.
As a contest winner, BrainStorm is invited to givea presentation at theBio CEO & Investor Conference, to be held Feb. 1011 in New York City, along with exposure to multiple industry elites and potential investors.
NurOwn cells also are being tested in a Phase 2 clinical study (NCT03799718) in patients with progressive multiple sclerosis.
Mary M. Chapman began her professional career at United Press International, running both print and broadcast desks. She then became a Michigan correspondent for what is now Bloomberg BNA, where she mainly covered the automotive industry plus legal, tax and regulatory issues. A member of the Automotive Press Association and one of a relatively small number of women on the car beat, Chapman has discussed the automotive industry multiple times of National Public Radio, and in 2014 was selected as an honorary judge at the prestigious Cobble Beach Concours dElegance. She has written for numerous national outlets including Time, People, Al-Jazeera America, Fortune, Daily Beast, MSN.com, Newsweek, The Detroit News and Detroit Free Press. The winner of the Society of Professional Journalists award for outstanding reporting, Chapman has had dozens of articles in The New York Times, including two on the coveted front page. She has completed a manuscript about centenarian car enthusiast Margaret Dunning, titled Belle of the Concours.
Total Posts: 6
Ins holds a PhD in Biomedical Sciences from the University of Lisbon, Portugal, where she specialized in blood vessel biology, blood stem cells, and cancer. Before that, she studied Cell and Molecular Biology at Universidade Nova de Lisboa and worked as a research fellow at Faculdade de Cincias e Tecnologias and Instituto Gulbenkian de Cincia. Ins currently works as a Managing Science Editor, striving to deliver the latest scientific advances to patient communities in a clear and accurate manner.
Cardio Round-up: Look Back at 2019, The Importance of Sleep, and More – DocWire News
By daniellenierenberg
This weeks Cardio Round-up features a look back at what you may have missed during the holidays, as well as some of the big 2019 cardiology stories.
The past year saw some big stories like the Apple Heart study, presented at ACC.19, which essentially validated the ability of a wearable device (an Apple iWatch) equipped with a tachogram-tracking algorithm was able to detect pulse irregularities associated with atrial fibrillation. Icosapent ethyl also featured prominently, gaining an FDA approval for the reduction of cardiovascular disease risk as an add-on to statin therapy in high-risk patients with hypertriglyceridemia. Dapagliflozin (highlighted in the DAPA-HF study) also was shown to be an effective treatment for heart failure in both diabetic and non-diabetic patients.
2019 In Cardiology: Apple Heart Study Lands; Icosapent Ethyl Gets FDA Nod for New Indication; Dapagliflozin For Nondiabetics; and More
A new observational study published inEuropacesuggests it is possible to monitor and predict individual progression ofatrial fibrillation (AFib) using pacemakers or defibrillators.We aimed to study the progression of AER in individual patients with implantable devices and AFib episodes, the paper authors wrote. The study results indicated that the slope of AAR changes during the progression of AFib showed patient-specific patterns correlating with the time-to-completion of AER (R2 = 0.85). This technology opens up enormous possibilities in personalized medicine for AFib patients because it allows us to determine the progression rate of the arrhythmia in each individual and to optimize the timing of medical intervention with current treatment options, one of the researchers said in a press release.
Personalized Medicine for AFib: How Electric Activity in the Heart Can Predict Individual Progression of Atrial Fibrillation
A research team, publishing the study in the Journal of Molecular and Cellular Cardiology, worked on converting adipogenic mesenchymal stem cells, which reside within fat cells, into cardiac progenitor cells. The ensuing cardiac progenitor cells can be programmed to aid heartbeats as a sinoatrial node (SAN), which is part of the electrical cardiac conduction system.We are reprogramming the cardiac progenitor cell and guiding it to become a conducting cell of the heart to conduct electrical current, said study co-author Bradley McConnell, associate professor of pharmacology, in a press release. Results of this study show that the SHT5 combination of transcription factors can reprogram CPCs into Pacemaker-like cells.
The Next Generation of Biologic Pacemakers? New Discovery in Stem Cells from Fat Creates Another Alternative Treatment
Diabetes mellitus is an independent predictor for heart failure, according to the findings of a study published inMayo Clinic Proceedings. In this study, using the Rochester Epidemiology Project, researchers assessed the long-term impact ofdiabeteson the development of heart failure by including 116 study subjects with diabetes, who were matched 1:2 based on age, hypertension, sex, coronary artery disease and diastolic with 232 participants without diabetes. The results showed that that diabetes is an independent risk factor for the development of heart failure. Over the duration of 10 years, 21% of participants with diabetes developed heart failure, independent of other causes. The researchers observed that by comparison, only 12% of patients without diabetes developed heart failure. The key takeaway is that diabetes mellitus alone is an independent risk factor for the development of heart failure, wrote one of the authors.
Diabetes is an Independent Predictor for Heart Failure
A new study suggests that regularly getting a good nights sleep isnt just a helpful overall health recommendation but is also an essential way to keep risk for heart disease and stroke down. The paper, published in theEuropean Journal of Cardiology, included more than 300,000 participants initially free of cardiovascular disease (CVD) from UK Biobank. According to the results, there were 7,280 documented cases of incident CVD (4,667 coronary heart disease and 2,650 stroke) cases. Participants with a sleep score of 5 had a 35% reduced risk for CVD, a 34% reduced risk for coronary heart disease, and a 34% reduced risk for stroke when compared to participants with a score of 0-1.As with other findings from observational studies, our results indicate an association, not a causal relation, one of the authors said in a press release. However, these findings may motivate other investigations and, at least, suggest that it is essential to consider overall sleep behaviors when considering a persons risk of heart disease or stroke.
Getting Quality Sleep, and the Right Amount, Can Offset Genetic Susceptibility for Heart Disease and Stroke Risk
Read more:
Cardio Round-up: Look Back at 2019, The Importance of Sleep, and More - DocWire News
Firm adds a new wrinkle to anti-aging products – Williamson Daily News
By daniellenierenberg
HUNTINGTON Serucell Corporation, a cosmeceutical company based in Huntington, has developed the worlds only dual-cell technology to create and produce anti-aging skincare products, and they did it in Huntington.
Serucell KFS Cellular Protein Complex Serum is made start to finish at Serucells laboratory on the south side of Huntington.
This has been one of the best kept secrets in West Virginia, said Cortland Bohacek, executive chairman and a co-founder of Serucell Corporation.
The company soft launch was in September 2018 at The Greenbrier Spas. The Official online launch was April 2019 and is getting exposure with some well known sellers like Neiman Marcus, local dermatologist and plastic surgeons offices and several other retail locations from New York to California. It is also sold online at serucell.com.
One person that has tried the product is Jennifer Wheeler, who is also a Huntington City Council member.
As a consumer I have an appreciation of the quality of the product and the results Ive seen using it, she said. It has been transformative for my skin and seems like its success will be transformative for our city as well.
She said Serucell and the people behind it are impressive on every level.
In my role on council, Im especially grateful for the companys conscious effort to stay and grow in our city, Wheeler said.
A one-ounce bottle of the serum costs $225. The recommended usage is twice per day and it will last on average of about six weeks.
Serucells active ingredient is called KFS (Keratinocyte Fibroblast Serum), which is made up of more than 1,500 naturally derived super proteins, collagens, peptides and signaling factors that support optimal communication within the cellular makeup of your skin.
This is the first and only dual-cell technology that optimizes hydration and harnesses the power of both keratinocytes and fibroblasts, two essential contributors to maintaining healthy skin by supporting natural rejuvenation of aging skin from the inside out, said Jennifer Hessel, president and CEO of the company.
When applied to the skin, KFS helps boost the skins natural ability to support new collagen and elastin, strengthen the connection and layer of support between the upper and lower layers of your skin. The result, over time is firmer, plumper and smoother skin, according to Hessel.
Why it works so naturally with your skin is because it is natural, Hessel said. These proteins play an important role in strengthening the bond between the layers of your skin, and thats where the re-boot happens.
KFS is the creation of Dr. Walter Neto, Serucells chief science officer and co-founder of the company. Neto is both a physician and a research scientist, specializing in the field of regenerative medicine with an emphasis on skin healing and repair.
Neto said Serucells technology unlocks the key to how our cells communicate and harnesses the signaling power actions to produce the thousands of bioactive proteins necessary to support the skins natural rejuvenation.
Originally from Brazil, Neto studied at Saint Matthews University and completed his clinical training in England. His clinical research on stem-cell cancer therapies, bone and tissue engineering and wound and burn healing led to his discovery in cell-to-cell communication, and ultimately the creation of Serucells KFS Cellular Protein Complex Serum.
Neto received multiple patents for the production method of Serucell KFS Serum. He lives in Huntington with his wife and four golden retrievers and works alongside his longtime friend, Dr. Brett Jarrell.
I have known Brett since I was 18 years old, Neto said.
Jarrell practices emergency medicine in Ashland, Kentucky, and oversees all aspects of quality control for Serucell. He received his bachelors degree in biology from Wittenberg University, his masters degree in biology from Marshall University and his medical degree from the Marshall University School of Medicine. Jarrell completed his residency at West Virginia University and is board certified by the American Board of Emergency Medicine.
Jarrell has served as a clinical instructor of emergency medicine at the Marshall School of Medicine, president of the West Virginia chapter of the American College of Emergency Medicine and he has published a number of peer-reviewed journal articles on stroke research.
Jarrell also lives in Huntington.
Another co-founder of the company is Dr. Tom McClellan.
McClellan is Serucells chief medical officer and director of research and is a well-respected plastic and reconstructive surgeon with a private practice, McClellan Plastic Surgery, in Morgantown.
McClellan completed his plastic and reconstructive surgery training at the world-renowned Lahey Clinic Foundation, a Harvard Medical School and Tufts Medical School affiliate in Boston, Massachusetts. While in Boston, he worked at Lahey Medical Center, Brigham and Womens Hospital, as well as at the Boston Childrens Hospital. McClellan is board certified by the American Board of Plastic Surgery.
In addition to his practice and role at Serucell, McClellan utilizes his surgical skills through pro bono work with InterplastWV, a non-profit group that provides comprehensive reconstructive surgery to the developing world. He has participated in surgical missions to Haiti, Peru and the Bahamas.
McClellan lives in Morgantown with his family.
All three doctors here have strong connections to West Virginia, and we didnt want to leave, Neto said. We all want to give back to West Virginia, so that is the main reason we have our business here in Huntington.
We are building a company we believe can make a difference in the community, Hessel added. Our goal is to grow Serucell and build our brand right here in Huntington. There is a pool of untapped talent here in Huntington. When we expand our business here, we can provide another reason for young people to be able to stay and grow their careers, whether it is in science, operations or manufacturing. The team is a pretty excited to make an impact in the community where it all started.
Hessel decline to give sales numbers, but said the business has been growing each year since the product was introduced. She also declined to give the number of employees at the facility, but did say it has sales representatives across the country.
Go here to read the rest:
Firm adds a new wrinkle to anti-aging products - Williamson Daily News
Stem Cells Market in The Region Is Anticipated To Expand At a CAGR of 13.8% During the Period from 2017 to 2025 – Market Research Sheets
By daniellenierenberg
In theglobal stem cells marketa sizeable proportion of companies are trying to garner investments from organizations based overseas. This is one of the strategies leveraged by them to grow their market share. Further, they are also forging partnerships with pharmaceutical organizations to up revenues.
In addition, companies in the global stem cells market are pouring money into expansion through multidisciplinary and multi-sector collaboration for large scale production of high quality pluripotent and differentiated cells. The market, at present, is characterized by a diverse product portfolio, which is expected to up competition, and eventually growth in the market.
Some of the key players operating in the global stem cells market are STEMCELL Technologies Inc., Astellas Pharma Inc., Cellular Engineering Technologies Inc., BioTime Inc., Takara Bio Inc., U.S. Stem Cell, Inc., BrainStorm Cell Therapeutics Inc., Cytori Therapeutics, Inc., Osiris Therapeutics, Inc., and Caladrius Biosciences, Inc.
As per a report by Transparency Market Research, the global market for stem cells is expected to register a healthy CAGR of 13.8% during the period from 2017 to 2025 to become worth US$270.5 bn by 2025.
Request a Sample of Stem Cells Market Report
https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=132
Depending upon the type of products, the global stem cell market can be divided into adult stem cells, human embryonic stem cells, induced pluripotent stem cells, etc. Of them, the segment of adult stem cells accounts for a leading share in the market. This is because of their ability to generate trillions of specialized cells which may lower the risks of rejection and repair tissue damage.
Depending upon geography, the key segments of the global stem cells market are North America, Latin America, Europe, Asia Pacific, and the Middle East and Africa. At present, North America dominates the market because of the substantial investments in the field, impressive economic growth, rising instances of target chronic diseases, and technological progress. As per the TMR report, the market in North America will likely retain its dominant share in the near future to become worth US$167.33 bn by 2025.
Investments in Research Drives Market
Constant thrust on research to broaden the utility scope of associated products is at the forefront of driving growth in the global stem cells market. Such research projects have generated various possibilities of different clinical applications of these cells, to usher in new treatments for diseases.Since cellular therapies are considered the next major step in transforming healthcare, companies are expanding their cellular therapy portfolio to include a range of ailments such as Parkinsons disease, type 1 diabetes, spinal cord injury, Alzheimers disease, etc.
Request for a Discount on Stem Cells Market Report -.
https://www.transparencymarketresearch.com/sample/sample.php?flag=D&rep_id=132
The growing prevalence of chronic diseases and increasing investments of pharmaceutical and biopharmaceutical companies in stem cell research are the key driving factors for the stem cells therapeutics market. The growing number of stem cell donors, improved stem cell banking facilities, and increasing research and development are other crucial factors serving to propel the market, explains the lead analyst of the report.
This review is based on the findings of a TMR report, titled, Stem Cells Market (Product Adult Stem Cell, Human Embryonic Stem Cell, and Induced Pluripotent Stem; Sources Autologous and Allogeneic; Application Regenerative Medicine and Drug Discovery and Development; End Users Therapeutic Companies, Cell and Tissues Banks, Tools and Reagent Companies, and Service Companies) Global Industry Analysis, Size, Share, Volume, Growth, Trends, and Forecast 20172025.
About Us
Transparency Market Research is a next-generation market intelligence provider, offering fact-based solutions to business leaders, consultants, and strategy professionals.
Our reports are single-point solutions for businesses to grow, evolve, and mature. Our real-time data collection methods along with ability to track more than one million high growth niche products are aligned with your aims. The detailed and proprietary statistical models used by our analysts offer insights for making right decision in the shortest span of time. For organizations that require specific but comprehensive information we offer customized solutions through adhoc reports. These requests are delivered with the perfect combination of right sense of fact-oriented problem solving methodologies and leveraging existing data repositories.
TMR believes that unison of solutions for clients-specific problems with right methodology of research is the key to help enterprises reach right decision.
ContactTransparency Market ResearchState Tower,90 State Street,Suite 700,Albany NY 12207United StatesTel:+1-518-618-1030USA Canada Toll Free:866-552-3453Email:[emailprotected]Website:http://www.transparencymarketresearch.com
This post was originally published on Market Research Sheets
Firm adds a new wrinkle to anti-aging products – The Logan Banner
By daniellenierenberg
HUNTINGTON Serucell Corporation, a cosmeceutical company based in Huntington, has developed the worlds only dual-cell technology to create and produce anti-aging skincare products, and they did it in Huntington.
Serucell KFS Cellular Protein Complex Serum is made start to finish at Serucells laboratory on the south side of Huntington.
This has been one of the best kept secrets in West Virginia, said Cortland Bohacek, executive chairman and a co-founder of Serucell Corporation.
The company soft launch was in September 2018 at The Greenbrier Spas. The Official online launch was April 2019 and is getting exposure with some well known sellers like Neiman Marcus, local dermatologist and plastic surgeons offices and several other retail locations from New York to California. It is also sold online at serucell.com.
One person that has tried the product is Jennifer Wheeler, who is also a Huntington City Council member.
As a consumer I have an appreciation of the quality of the product and the results Ive seen using it, she said. It has been transformative for my skin and seems like its success will be transformative for our city as well.
She said Serucell and the people behind it are impressive on every level.
In my role on council, Im especially grateful for the companys conscious effort to stay and grow in our city, Wheeler said.
A one-ounce bottle of the serum costs $225. The recommended usage is twice per day and it will last on average of about six weeks.
Serucells active ingredient is called KFS (Keratinocyte Fibroblast Serum), which is made up of more than 1,500 naturally derived super proteins, collagens, peptides and signaling factors that support optimal communication within the cellular makeup of your skin.
This is the first and only dual-cell technology that optimizes hydration and harnesses the power of both keratinocytes and fibroblasts, two essential contributors to maintaining healthy skin by supporting natural rejuvenation of aging skin from the inside out, said Jennifer Hessel, president and CEO of the company.
When applied to the skin, KFS helps boost the skins natural ability to support new collagen and elastin, strengthen the connection and layer of support between the upper and lower layers of your skin. The result, over time is firmer, plumper and smoother skin, according to Hessel.
Why it works so naturally with your skin is because it is natural, Hessel said. These proteins play an important role in strengthening the bond between the layers of your skin, and thats where the re-boot happens.
KFS is the creation of Dr. Walter Neto, Serucells chief science officer and co-founder of the company. Neto is both a physician and a research scientist, specializing in the field of regenerative medicine with an emphasis on skin healing and repair.
Neto said Serucells technology unlocks the key to how our cells communicate and harnesses the signaling power actions to produce the thousands of bioactive proteins necessary to support the skins natural rejuvenation.
Originally from Brazil, Neto studied at Saint Matthews University and completed his clinical training in England. His clinical research on stem-cell cancer therapies, bone and tissue engineering and wound and burn healing led to his discovery in cell-to-cell communication, and ultimately the creation of Serucells KFS Cellular Protein Complex Serum.
Neto received multiple patents for the production method of Serucell KFS Serum. He lives in Huntington with his wife and four golden retrievers and works alongside his longtime friend, Dr. Brett Jarrell.
I have known Brett since I was 18 years old, Neto said.
Jarrell practices emergency medicine in Ashland, Kentucky, and oversees all aspects of quality control for Serucell. He received his bachelors degree in biology from Wittenberg University, his masters degree in biology from Marshall University and his medical degree from the Marshall University School of Medicine. Jarrell completed his residency at West Virginia University and is board certified by the American Board of Emergency Medicine.
Jarrell has served as a clinical instructor of emergency medicine at the Marshall School of Medicine, president of the West Virginia chapter of the American College of Emergency Medicine and he has published a number of peer-reviewed journal articles on stroke research.
Jarrell also lives in Huntington.
Another co-founder of the company is Dr. Tom McClellan.
McClellan is Serucells chief medical officer and director of research and is a well-respected plastic and reconstructive surgeon with a private practice, McClellan Plastic Surgery, in Morgantown.
McClellan completed his plastic and reconstructive surgery training at the world-renowned Lahey Clinic Foundation, a Harvard Medical School and Tufts Medical School affiliate in Boston, Massachusetts. While in Boston, he worked at Lahey Medical Center, Brigham and Womens Hospital, as well as at the Boston Childrens Hospital. McClellan is board certified by the American Board of Plastic Surgery.
In addition to his practice and role at Serucell, McClellan utilizes his surgical skills through pro bono work with InterplastWV, a non-profit group that provides comprehensive reconstructive surgery to the developing world. He has participated in surgical missions to Haiti, Peru and the Bahamas.
McClellan lives in Morgantown with his family.
All three doctors here have strong connections to West Virginia, and we didnt want to leave, Neto said. We all want to give back to West Virginia, so that is the main reason we have our business here in Huntington.
We are building a company we believe can make a difference in the community, Hessel added. Our goal is to grow Serucell and build our brand right here in Huntington. There is a pool of untapped talent here in Huntington. When we expand our business here, we can provide another reason for young people to be able to stay and grow their careers, whether it is in science, operations or manufacturing. The team is a pretty excited to make an impact in the community where it all started.
Hessel decline to give sales numbers, but said the business has been growing each year since the product was introduced. She also declined to give the number of employees at the facility, but did say it has sales representatives across the country.
For more information, visit serucell.com.
See the article here:
Firm adds a new wrinkle to anti-aging products - The Logan Banner
Stem Cell Assay Market Expected to Witness a Sustainable Growth over 2025 – Filmi Baba
By daniellenierenberg
Stem Cell Assay Market: Snapshot
Stem cell assay refers to the procedure of measuring the potency of antineoplastic drugs, on the basis of their capability of retarding the growth of human tumor cells. The assay consists of qualitative or quantitative analysis or testing of affected tissues and tumors, wherein their toxicity, impurity, and other aspects are studied.
Download Brochure of This Market Report at https://www.tmrresearch.com/sample/sample?flag=B&rep_id=40
With the growing number of successful stem cell therapy treatment cases, the global market for stem cell assays will gain substantial momentum. A number of research and development projects are lending a hand to the growth of the market. For instance, the University of Washingtons Institute for Stem Cell and Regenerative Medicine (ISCRM) has attempted to manipulate stem cells to heal eye, kidney, and heart injuries. A number of diseases such as Alzheimers, spinal cord injury, Parkinsons, diabetes, stroke, retinal disease, cancer, rheumatoid arthritis, and neurological diseases can be successfully treated via stem cell therapy. Therefore, stem cell assays will exhibit growing demand.
Another key development in the stem cell assay market is the development of innovative stem cell therapies. In April 2017, for instance, the first participant in an innovative clinical trial at the University of Wisconsin School of Medicine and Public Health was successfully treated with stem cell therapy. CardiAMP, the investigational therapy, has been designed to direct a large dose of the patients own bone-marrow cells to the point of cardiac injury, stimulating the natural healing response of the body.
Newer areas of application in medicine are being explored constantly. Consequently, stem cell assays are likely to play a key role in the formulation of treatments of a number of diseases.
Global Stem Cell Assay Market: Overview
The increasing investment in research and development of novel therapeutics owing to the rising incidence of chronic diseases has led to immense growth in the global stem cell assay market. In the next couple of years, the market is expected to spawn into a multi-billion dollar industry as healthcare sector and governments around the world increase their research spending.
The report analyzes the prevalent opportunities for the markets growth and those that companies should capitalize in the near future to strengthen their position in the market. It presents insights into the growth drivers and lists down the major restraints. Additionally, the report gauges the effect of Porters five forces on the overall stem cell assay market.
Global Stem Cell Assay Market: Key Market Segments
For the purpose of the study, the report segments the global stem cell assay market based on various parameters. For instance, in terms of assay type, the market can be segmented into isolation and purification, viability, cell identification, differentiation, proliferation, apoptosis, and function. By kit, the market can be bifurcated into human embryonic stem cell kits and adult stem cell kits. Based on instruments, flow cytometer, cell imaging systems, automated cell counter, and micro electrode arrays could be the key market segments.
In terms of application, the market can be segmented into drug discovery and development, clinical research, and regenerative medicine and therapy. The growth witnessed across the aforementioned application segments will be influenced by the increasing incidence of chronic ailments which will translate into the rising demand for regenerative medicines. Finally, based on end users, research institutes and industry research constitute the key market segments.
The report includes a detailed assessment of the various factors influencing the markets expansion across its key segments. The ones holding the most lucrative prospects are analyzed, and the factors restraining its trajectory across key segments are also discussed at length.
Global Stem Cell Assay Market: Regional Analysis
Regionally, the market is expected to witness heightened demand in the developed countries across Europe and North America. The increasing incidence of chronic ailments and the subsequently expanding patient population are the chief drivers of the stem cell assay market in North America. Besides this, the market is also expected to witness lucrative opportunities in Asia Pacific and Rest of the World.
Global Stem Cell Assay Market: Vendor Landscape
A major inclusion in the report is the detailed assessment of the markets vendor landscape. For the purpose of the study the report therefore profiles some of the leading players having influence on the overall market dynamics. It also conducts SWOT analysis to study the strengths and weaknesses of the companies profiled and identify threats and opportunities that these enterprises are forecast to witness over the course of the reports forecast period.
Some of the most prominent enterprises operating in the global stem cell assay market are Bio-Rad Laboratories, Inc (U.S.), Thermo Fisher Scientific Inc. (U.S.), GE Healthcare (U.K.), Hemogenix Inc. (U.S.), Promega Corporation (U.S.), Bio-Techne Corporation (U.S.), Merck KGaA (Germany), STEMCELL Technologies Inc. (CA), Cell Biolabs, Inc. (U.S.), and Cellular Dynamics International, Inc. (U.S.).
Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=40
About TMR Research:
TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
Contact:
TMR Research,3739 Balboa St # 1097,San Francisco, CA 94121United StatesTel: +1-415-520-1050
Go here to see the original:
Stem Cell Assay Market Expected to Witness a Sustainable Growth over 2025 - Filmi Baba
Stem Cell Assay Market Predicted to Accelerate the Growth by 2017-2025 – News Cast Report
By daniellenierenberg
Stem Cell Assay Market: Snapshot
Stem cell assay refers to the procedure of measuring the potency of antineoplastic drugs, on the basis of their capability of retarding the growth of human tumor cells. The assay consists of qualitative or quantitative analysis or testing of affected tissues and tumors, wherein their toxicity, impurity, and other aspects are studied.
Download Brochure of This Market Report at https://www.tmrresearch.com/sample/sample?flag=B&rep_id=40
With the growing number of successful stem cell therapy treatment cases, the global market for stem cell assays will gain substantial momentum. A number of research and development projects are lending a hand to the growth of the market. For instance, the University of Washingtons Institute for Stem Cell and Regenerative Medicine (ISCRM) has attempted to manipulate stem cells to heal eye, kidney, and heart injuries. A number of diseases such as Alzheimers, spinal cord injury, Parkinsons, diabetes, stroke, retinal disease, cancer, rheumatoid arthritis, and neurological diseases can be successfully treated via stem cell therapy. Therefore, stem cell assays will exhibit growing demand.
Another key development in the stem cell assay market is the development of innovative stem cell therapies. In April 2017, for instance, the first participant in an innovative clinical trial at the University of Wisconsin School of Medicine and Public Health was successfully treated with stem cell therapy. CardiAMP, the investigational therapy, has been designed to direct a large dose of the patients own bone-marrow cells to the point of cardiac injury, stimulating the natural healing response of the body.
Newer areas of application in medicine are being explored constantly. Consequently, stem cell assays are likely to play a key role in the formulation of treatments of a number of diseases.
Global Stem Cell Assay Market: Overview
The increasing investment in research and development of novel therapeutics owing to the rising incidence of chronic diseases has led to immense growth in the global stem cell assay market. In the next couple of years, the market is expected to spawn into a multi-billion dollar industry as healthcare sector and governments around the world increase their research spending.
The report analyzes the prevalent opportunities for the markets growth and those that companies should capitalize in the near future to strengthen their position in the market. It presents insights into the growth drivers and lists down the major restraints. Additionally, the report gauges the effect of Porters five forces on the overall stem cell assay market.
Global Stem Cell Assay Market: Key Market Segments
For the purpose of the study, the report segments the global stem cell assay market based on various parameters. For instance, in terms of assay type, the market can be segmented into isolation and purification, viability, cell identification, differentiation, proliferation, apoptosis, and function. By kit, the market can be bifurcated into human embryonic stem cell kits and adult stem cell kits. Based on instruments, flow cytometer, cell imaging systems, automated cell counter, and micro electrode arrays could be the key market segments.
In terms of application, the market can be segmented into drug discovery and development, clinical research, and regenerative medicine and therapy. The growth witnessed across the aforementioned application segments will be influenced by the increasing incidence of chronic ailments which will translate into the rising demand for regenerative medicines. Finally, based on end users, research institutes and industry research constitute the key market segments.
The report includes a detailed assessment of the various factors influencing the markets expansion across its key segments. The ones holding the most lucrative prospects are analyzed, and the factors restraining its trajectory across key segments are also discussed at length.
Global Stem Cell Assay Market: Regional Analysis
Regionally, the market is expected to witness heightened demand in the developed countries across Europe and North America. The increasing incidence of chronic ailments and the subsequently expanding patient population are the chief drivers of the stem cell assay market in North America. Besides this, the market is also expected to witness lucrative opportunities in Asia Pacific and Rest of the World.
Global Stem Cell Assay Market: Vendor Landscape
A major inclusion in the report is the detailed assessment of the markets vendor landscape. For the purpose of the study the report therefore profiles some of the leading players having influence on the overall market dynamics. It also conducts SWOT analysis to study the strengths and weaknesses of the companies profiled and identify threats and opportunities that these enterprises are forecast to witness over the course of the reports forecast period.
Some of the most prominent enterprises operating in the global stem cell assay market are Bio-Rad Laboratories, Inc (U.S.), Thermo Fisher Scientific Inc. (U.S.), GE Healthcare (U.K.), Hemogenix Inc. (U.S.), Promega Corporation (U.S.), Bio-Techne Corporation (U.S.), Merck KGaA (Germany), STEMCELL Technologies Inc. (CA), Cell Biolabs, Inc. (U.S.), and Cellular Dynamics International, Inc. (U.S.).
Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=40
About TMR Research:
TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
Contact:
TMR Research,3739 Balboa St # 1097,San Francisco, CA 94121United StatesTel: +1-415-520-1050
I am an active day trader spending the majority of my time analyzing earnings reports and watching commodities and derivatives. I have a Masters Degree in Economics from Westminster University with previous roles counting Investment Banking.
Address: 4109 Briarwood Road Crane, MO 65633, USAPhone: (+1) 417-892-8092Email: Sheilashipman@newscastreport.com
Read more:
Stem Cell Assay Market Predicted to Accelerate the Growth by 2017-2025 - News Cast Report
Local firm adds a new wrinkle to anti-aging products – Williamson Daily News
By daniellenierenberg
HUNTINGTON Serucell Corporation, a cosmeceutical company based in Huntington, has developed the worlds only dual-cell technology to create and produce anti-aging skincare products, and they did it in Huntington.
Serucell KFS Cellular Protein Complex Serum is made start to finish at Serucells laboratory on the south side of Huntington.
This has been one of the best kept secrets in West Virginia, said Cortland Bohacek, executive chairman and a co-founder of Serucell Corporation.
The company soft launch was in September 2018 at The Greenbrier Spas. The Official online launch was April 2019 and is getting exposure with some well known sellers like Neiman Marcus, local dermatologist and plastic surgeons offices and several other retail locations from New York to California. It is also sold online at serucell.com.
One person that has tried the product is Jennifer Wheeler, who is also a Huntington City Council member.
As a consumer I have an appreciation of the quality of the product and the results Ive seen using it, she said. It has been transformative for my skin and seems like its success will be transformative for our city as well.
She said Serucell and the people behind it are impressive on every level.
In my role on council, Im especially grateful for the companys conscious effort to stay and grow in our city, Wheeler said.
A one-ounce bottle of the serum costs $225. The recommended usage is twice per day and it will last on average of about six weeks.
Serucells active ingredient is called KFS (Keratinocyte Fibroblast Serum), which is made up of more than 1,500 naturally derived super proteins, collagens, peptides and signaling factors that support optimal communication within the cellular makeup of your skin.
This is the first and only dual-cell technology that optimizes hydration and harnesses the power of both keratinocytes and fibroblasts, two essential contributors to maintaining healthy skin by supporting natural rejuvenation of aging skin from the inside out, said Jennifer Hessel, president and CEO of the company.
When applied to the skin, KFS helps boost the skins natural ability to support new collagen and elastin, strengthen the connection and layer of support between the upper and lower layers of your skin. The result, over time is firmer, plumper and smoother skin, according to Hessel.
Why it works so naturally with your skin is because it is natural, Hessel said. These proteins play an important role in strengthening the bond between the layers of your skin, and thats where the re-boot happens.
KFS is the creation of Dr. Walter Neto, Serucells chief science officer and co-founder of the company. Neto is both a physician and a research scientist, specializing in the field of regenerative medicine with an emphasis on skin healing and repair.
Neto said Serucells technology unlocks the key to how our cells communicate and harnesses the signaling power actions to produce the thousands of bioactive proteins necessary to support the skins natural rejuvenation.
Originally from Brazil, Neto studied at Saint Matthews University and completed his clinical training in England. His clinical research on stem-cell cancer therapies, bone and tissue engineering and wound and burn healing led to his discovery in cell-to-cell communication, and ultimately the creation of Serucells KFS Cellular Protein Complex Serum.
Neto received multiple patents for the production method of Serucell KFS Serum.
Neto lives in Huntington with his wife and four golden retrievers.
Neto works alongside his longtime friend, Dr. Brett Jarrell.
I have known Brett since I was 18 years old, Neto said.
Jarrell practices emergency medicine in Ashland, Kentucky, and oversees all aspects of quality control for Serucell. He received his bachelors degree in biology from Wittenberg University, his masters degree in biology from Marshall University and his medical degree from the Marshall University School of Medicine. Jarrell completed his residency at West Virginia University and is board certified by the American Board of Emergency Medicine.
Jarrell has served as a clinical instructor of emergency medicine at the Marshall School of Medicine, president of the West Virginia chapter of the American College of Emergency Medicine and he has published a number of peer-reviewed journal articles on stroke research.
Jarrell also lives in Huntington.
Another co-founder of the company is Dr. Tom McClellan.
McClellan is Serucells chief medical officer and director of research and is a well-respected plastic and reconstructive surgeon with a private practice, McClellan Plastic Surgery, in Morgantown.
McClellan completed his plastic and reconstructive surgery training at the world-renowned Lahey Clinic Foundation, a Harvard Medical School and Tufts Medical School affiliate in Boston, Massachusetts. While in Boston, he worked at Lahey Medical Center, Brigham and Womens Hospital, as well as at the Boston Childrens Hospital. McClellan is board certified by the American Board of Plastic Surgery.
In addition to his practice and role at Serucell, McClellan utilizes his surgical skills through pro bono work with InterplastWV, a non-profit group that provides comprehensive reconstructive surgery to the developing world. He has participated in surgical missions to Haiti, Peru and the Bahamas.
McClellan lives in Morgantown with his family.
All three doctors here have strong connections to West Virginia and we didnt want to leave, Neto said. We all want to give back to West Virginia, so that is the main reason we have our business here in Huntington.
We are building a company we believe can make a difference in the community, Hessel added. Our goal is to grow Serucell and build our brand right here in Huntington. There is a pool of untapped talent here in Huntington. When we expand our business here, we can provide another reason for young people to be able to stay and grow their careers, whether it is in science, operations or manufacturing. The team is a pretty excited to make an impact in the community where it all started.
Hessel decline to give sales numbers, but said the business has been growing each year since the product was introduced. She also declined to give the number of employees at the facility, but did say it has sales representatives across the country.
For more information, visit serucell.com.
Read this article:
Local firm adds a new wrinkle to anti-aging products - Williamson Daily News