Rocket Pharmaceuticals Presents Positive Clinical Data from its Fanconi Anemia and Leukocyte Adhesion Deficiency-I Programs at the 62nd American…
By daniellenierenberg
NEW YORK--(BUSINESS WIRE)--Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT) (Rocket), a clinical-stage company advancing an integrated and sustainable pipeline of genetic therapies for rare childhood disorders, today presents updated interim data from its Fanconi Anemia (FA) and Leukocyte Adhesion Deficiency-I (LAD-I) programs at the 62nd American Society of Hematology (ASH) Annual Meeting. The data are highlighted in two oral presentations.
We are highly pleased with the data presented at ASH demonstrating ongoing evidence of efficacy and durability using Process B in both FA and LAD-I as we move towards potential registration, said Gaurav Shah, M.D., Chief Executive Officer and President of Rocket. Follow-up data from the Phase 1 and 2 trials for FA continue to support RP-L102 as a potential hematologic treatment option in the absence of cytotoxic conditioning. In five of the seven patients treated as of October 2020, there was evidence of engraftment. In addition, stabilization of peripheral blood counts in two of the three patients with at least 12-month follow-up, which declined substantially in these patients prior to gene therapy, suggests a halt in bone marrow failure progression. We look forward to reporting longer-term follow-up on these patients in the first half of 2021.
Dr. Shah continued, Additionally, we continue to see encouraging evidence of efficacy for RP-L201 for the treatment of LAD-I. Patients have shown sustained CD18 expression of 23% to 40%, far exceeding the 4-10% threshold associated with survival into adulthood. These data, on top of our exciting results from our lentiviral program for PKD, show our steady progress across three of our five gene therapy programs. We are proud of this progress and are committed to advancing our investigational gene therapies through development for patients and families facing these devastating disorders.
Key findings and details for each presentation are highlighted below. To access the presentations at the conclusion of the oral presentation, please visit: https://www.rocketpharma.com/ash-presentations/
Gene Therapy for Fanconi Anemia, Complementation Group A: Updated Results from Ongoing Global Clinical Studies of RP-L102The data presented in the oral presentation are from seven of the nine patients treated as of the cutoff date of October 2020 in both the U.S. Phase 1 and global Phase 2 studies of RP-L102 for FA. Seven patients had follow-up data of at least 2-months, and three of the seven patients had been followed for 12-months or longer. Key highlights from the presentation include:
Presentation Details:Title: Gene Therapy for Fanconi Anemia, Complementation Group A: Updated Results from Ongoing Global Clinical Studies of RP-L102Session Title: Gene Editing, Therapy and Transfer IPresenter: Agnieszka Czechowicz, M.D., Ph.D., Assistant Professor of Pediatrics, Division of Stem Cell Transplantation, Stanford University School of MedicineSession Date: Monday, December 7, 2020Session Time: 11:30 a.m. - 1:00 p.m. (Pacific Time)Presentation Time: 12:15 p.m. (Pacific Time)
Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I): Results from Phase 1The data presented in the oral presentation are from three pediatric patients with severe LAD-I, as defined by CD18 expression of less than 2%. The patients were treated with RP-L201, Rockets ex-vivo lentiviral gene therapy candidate. Patient L201-003-1001 was 9-years of age at enrollment and had been followed for 12-months as of a cutoff date of November 2020. Patient L201-003-1004 was 3-years of age at enrollment and had been followed for over 6-months. Patient L201-003-2006 was 7-months of age at enrollment and was recently treated with RP-L201. Key highlights from the presentation include:
Rockets LAD-I research is made possible by a grant from the California Institute for Regenerative Medicine (Grant Number CLIN2-11480). The contents of this press release are solely the responsibility of Rocket and do not necessarily represent the official views of CIRM or any other agency of the State of California.
Presentation Details:Title: Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I): Results from Phase 1Session Title: Gene Editing, Therapy and Transfer IPresenter: Donald Kohn, M.D., Professor of Microbiology, Immunology and Molecular Genetics, Pediatrics (Hematology/Oncology), Molecular and Medical Pharmacology, and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at the University of California, Los AngelesSession Date: Monday, December 7, 2020Session Time: 11:30 a.m. - 1:00 p.m. (Pacific Time)Presentation Time: 12:30 p.m. (Pacific Time)
Conference Call DetailsRocket management will host a conference call and webcast today December 7, at 6:00 p.m. EST. To access the call and webcast, please click here. The webcast replay will be available on the Rocket website following the completion of the call.
Investors may listen to the call by dialing (866) 866-1333 from locations in the United States or +1 (404) 260-1421 from outside the United States. Please refer to conference ID number 50038102
About Fanconi AnemiaFanconi Anemia (FA) is a rare pediatric disease characterized by bone marrow failure, malformations and cancer predisposition. The primary cause of death among patients with FA is bone marrow failure, which typically occurs during the first decade of life. Allogeneic hematopoietic stem cell transplantation (HSCT), when available, corrects the hematologic component of FA, but requires myeloablative conditioning. Graft-versus-host disease, a known complication of allogeneic HSCT, is associated with an increased risk of solid tumors, mainly squamous cell carcinomas of the head and neck region. Approximately 60-70% of patients with FA have a Fanconi Anemia complementation group A (FANCA) gene mutation, which encodes for a protein essential for DNA repair. Mutation in the FANCA gene leads to chromosomal breakage and increased sensitivity to oxidative and environmental stress. Increased sensitivity to DNA-alkylating agents such as mitomycin-C (MMC) or diepoxybutane (DEB) is a gold standard test for FA diagnosis. Somatic mosaicism occurs when there is a spontaneous correction of the mutated gene that can lead to stabilization or correction of a FA patients blood counts in the absence of any administered therapy. Somatic mosaicism, often referred to as natural gene therapy provides a strong rationale for the development of FA gene therapy because of the selective growth advantage of gene-corrected hematopoietic stem cells over FA cells.
About Leukocyte Adhesion Deficiency-ISevere Leukocyte Adhesion Deficiency-I (LAD-I) is a rare, autosomal recessive pediatric disease caused by mutations in the ITGB2 gene encoding for the beta-2 integrin component CD18. CD18 is a key protein that facilitates leukocyte adhesion and extravasation from blood vessels to combat infections. As a result, children with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations. Children who survive infancy experience recurrent severe infections including pneumonia, gingival ulcers, necrotic skin ulcers, and septicemia. Without a successful bone marrow transplant, mortality in patients with severe LAD-I is 60-75% prior to the age of 2 and survival beyond the age of 5 is uncommon. There is a high unmet medical need for patients with severe LAD-I.
About Rocket Pharmaceuticals, Inc.Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT) (Rocket) is advancing an integrated and sustainable pipeline of genetic therapies that correct the root cause of complex and rare childhood disorders. The companys platform-agnostic approach enables it to design the best therapy for each indication, creating potentially transformative options for patients afflicted with rare genetic diseases. Rocket's clinical programs using lentiviral vector (LVV)-based gene therapy are for the treatment of Fanconi Anemia (FA), a difficult to treat genetic disease that leads to bone marrow failure and potentially cancer, Leukocyte Adhesion Deficiency-I (LAD-I), a severe pediatric genetic disorder that causes recurrent and life-threatening infections which are frequently fatal, Pyruvate Kinase Deficiency (PKD) a rare, monogenic red blood cell disorder resulting in increased red cell destruction and mild to life-threatening anemia and Infantile Malignant Osteopetrosis (IMO), a bone marrow-derived disorder. Rockets first clinical program using adeno-associated virus (AAV)-based gene therapy is for Danon disease, a devastating, pediatric heart failure condition. For more information about Rocket, please visit http://www.rocketpharma.com.
Rocket Cautionary Statement Regarding Forward-Looking StatementsVarious statements in this release concerning Rocket's future expectations, plans and prospects, including without limitation, Rocket's expectations regarding its guidance for 2020 in light of COVID-19, the safety, effectiveness and timing of product candidates that Rocket may develop, to treat Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), Pyruvate Kinase Deficiency (PKD), Infantile Malignant Osteopetrosis (IMO) and Danon Disease, and the safety, effectiveness and timing of related pre-clinical studies and clinical trials, may constitute forward-looking statements for the purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995 and other federal securities laws and are subject to substantial risks, uncertainties and assumptions. You should not place reliance on these forward-looking statements, which often include words such as "believe," "expect," "anticipate," "intend," "plan," "will give," "estimate," "seek," "will," "may," "suggest" or similar terms, variations of such terms or the negative of those terms. Although Rocket believes that the expectations reflected in the forward-looking statements are reasonable, Rocket cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Rocket's ability to monitor the impact of COVID-19 on its business operations and take steps to ensure the safety of patients, families and employees, the interest from patients and families for participation in each of Rockets ongoing trials, our expectations regarding the delays and impact of COVID-19 on clinical sites, patient enrollment, trial timelines and data readouts, our expectations regarding our drug supply for our ongoing and anticipated trials, actions of regulatory agencies, which may affect the initiation, timing and progress of pre-clinical studies and clinical trials of its product candidates, Rocket's dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates, the outcome of litigation, and unexpected expenditures, as well as those risks more fully discussed in the section entitled "Risk Factors" in Rocket's Quarterly Report on Form 10-Q for the quarter ended September 30, 2020, filed November 6, 2020 with the SEC. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and Rocket undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.
Precigen Presents New Data Supporting the Safety, Clinical Activity, Expansion and Persistence of PRGN-3006 UltraCAR-T at the 62nd ASH Annual Meeting…
By daniellenierenberg
GERMANTOWN, Md., Dec. 7, 2020 /PRNewswire/ -- Precigen Inc., a biopharmaceutical company specializing in the development of innovative gene and cell therapies to improve the lives of patients, today announced at the 62nd ASH Annual Meeting and Exposition (Abstract 2864) clinical progress and new data from the ongoing Phase 1/1b clinical study of PRGN-3006UltraCAR-Tin patients with relapsed or refractory (r/r) acute myeloid leukemia (AML) and higher risk myelodysplastic syndrome (MDS) (clinical trial identifier: NCT03927261).
AML is a rapidly progressing disease with poor prognosis and high unmet need. Precigen's UltraCAR-T platform is designed to overcome limitations of currently available chimeric antigen receptor (CAR)-T therapies by utilizing an advanced overnight non-viral gene delivery manufacturing process at a medical center's cGMP facility without the need for ex vivo expansion. Current CAR-T cell therapies are limited due to, inter alia, the prolonged interval between apheresis to product infusion and an exhausted phenotype of T cells resulting from lengthy ex vivo expansion. As announced in November 2020, UltraCAR-T cells for the PRGN-3006 study are now manufacturedovernight using Precigen's proprietary UltraPorator device. PRGN-3006 UltraCAR-T is a multigenic autologous CAR-T simultaneously expressing a CAR specifically targeting CD33; membrane bound IL-15 (mbIL15) for enhanced in vivo expansion and persistence; and a kill switch to conditionally eliminate CAR-T cells for an improved safety profile. CD33 is over-expressed on AML blasts with lesser expression on normal hematopoietic stem cells.
An investigator-initiated, non-randomized Phase 1/1b dose-escalation study to evaluate the safety and maximal tolerated dose of PRGN-3006 UltraCAR-T is currently ongoing in collaboration with the H. Lee Moffitt Cancer Center & Research Institute (Moffitt). The study population includes adult patients ( 18 years) with r/r AML and hypomethylating agent (HMA) failure, higher risk MDS or chronic myelomonocytic leukemia (CMML) patients with 5% blasts. To test the hypothesis that expression of mbIL15 on PRGN-3006 can promote UltraCAR-T cell expansion and persistence without the need for lymphodepletion and improve the overall safety profile, studysubjects receive the PRGN-3006 infusion either without prior lymphodepletion (Cohort 1) or following lymphodepleting chemotherapy (Cohort 2). A multicenter expansion of the trial is planned.
Key findings:
A case study of the patient with the longest follow-up as of the data cutoff was also presented. This patient received, one day after gene transfer and without prior lymphodepletion, a very low dose, approximately three hundred thousand UltraCAR-T per kilogram (3 x 105 UltraCAR-T/kg) for a total of only 24 million UltraCAR-T. She is a 69 year old female with secondary AML (sAML) and four prior lines of therapy, including induction chemotherapy (IC), allogenic hematopoietic stem cell transplantation (allo-HSCT), HMA plus venetoclax (HMA+VEN), refractory to all therapy post allo-HSCT. The patient had approximately 40% peripheral blasts and 47% bone marrow blasts at baseline.
Case study findings:
"There is an urgent need for novel therapies for relapsed or refractory AML patients as the median overall survival for this patient population is less than six months. Current CAR-T approaches for AML have faced challenges due to long manufacturing durations resulting in subsequent delays in treatment," said David A. Sallman, MD, of Moffitt and lead investigator for the PRGN-3006 clinical study. "We are encouraged by the initial data, including safety and manufacturing success from patients treated with autologous UltraCAR-T cells, which were manufactured on-site with almost instant turnaround. We are excited by the expansion and continued persistence of PRGN-3006 UltraCAR-T cells in the patient case study for over seven months post-infusion without prior lymphodepletion and are looking forward to higher doses in the lymphodepleted and non-lymphodepletion cohorts."
"Currently commercialized CAR-T therapies have not demonstrated the persistence needed to drive sustained, durable responses," said Helen Sabzevari, PhD, President and CEO of Precigen. "The results from Dr. Sallman's patient case study are particularly encouraging as the patient received a very low dose of cells without any ex vivo expansion or activation and no lymphodepletion, which highlights the importance of membrane bound IL-15 in expansion and persistence of these cells and, we believe, differentiates the UltraCAR-T platform from other CAR-T's. In particular, expansion and persistence of UltraCAR-T cells in the patient's blood through seven months post-infusion show promise for the durability of PRGN-3006. We look forward to providing additional details for the PRGN-3006 study at our upcoming clinical update call this month."
About Acute Myeloid Leukemia (AML)AML is a cancer that starts in the bone marrow, but most often moves into the blood.1 Though consideredrare, AML is among the most common types of leukemia in adults.2 In 2019, it was estimated that 21,450 new cases of AML would be diagnosed in the US.2 AML is uncommon before the age of 45 and the average age of diagnosis is about 68.2 The prognosis for patients with AML is poor with an average 5year survival rate of approximately 25 percent overall, and less than a 5 percent 5year survival rate for patients older than 65.3 Amongst elderly AML patients ( 65 years of age), median survival isshort, ranging from 3.5 months for patients 65 to 74 years of age to 1.4 months for patients 85 years of age.3
About Myelodysplastic Syndrome (MDS)MDS are diseases of the bone marrow generally found in adults in their 70s.4 Incidence in the US is not known for sure, but estimates range from 10,000 each year and higher.4 Using International Prognostic Scoring System (IPSS-R), median survival for MDS patients can vary from less than one year for the "very high" IPSS-R risk group to more than eight years for the "very low" IPSS-R group.4
About PRGN-3006 UltraCAR-TPRGN-3006 UltraCAR-T is a multigenic autologous CAR-T cell treatment utilizing Precigen's non-viral Sleeping Beauty system to simultaneously express a CAR specifically targeting CD33, which is over expressed on acute myeloid leukemia blasts with lesser expression on normal hematopoietic stem cell populations and minimal non-hematopoietic expression; membrane bound IL-15 for enhanced in vivo expansion and persistence; and a kill switch to conditionally eliminate CAR-T cells for animproved safety profile. PRGN-3006 is being evaluated in collaboration with the Moffitt Cancer Center in a nonrandomized, investigatorinitiated Phase 1/1b dose escalation study to evaluate the safety and maximal tolerated dose of PRGN3006 UltraCAR-T (clinical trial identifier: NCT03927261). The study population includes patients with relapsed or refractory acute myeloid leukemia or higher risk myelodysplastic syndrome. The US Food and Drug Administration (FDA) has granted orphan drug designation (ODD) for PRGN-3006 UltraCAR-T in patients with AML.
Precigen: Advancing Medicine with PrecisionPrecigen (Nasdaq: PGEN) is a dedicated discovery and clinical stage biopharmaceutical company advancing the next generation of gene and cell therapies using precision technology to target urgent and intractable diseases in our core therapeutic areas of immuno-oncology, autoimmune disorders, and infectious diseases. Our technologies enable us to find innovative solutions for affordable biotherapeutics in a controlled manner. Precigen operates as an innovation engine progressing a preclinical and clinical pipeline of well-differentiated unique therapies toward clinical proof-of-concept and commercialization. For more information about Precigen, visit http://www.precigen.com or follow us on Twitter @Precigen and LinkedIn.
TrademarksPrecigen, UltraCAR-T, UltraPorator and Advancing Medicine with Precision are trademarks of Precigen and/or its affiliates. Other names may be trademarks of their respective owners.
Cautionary Statement Regarding Forward-Looking StatementsSome of the statements made in this press release are forward-looking statements. These forward-looking statements are based upon the Company's current expectations and projections about future events and generally relate to plans, objectives, and expectations for the development of the Company's business, including the timing and progress of preclinical studies, clinical trials, discovery programs and related milestones, the promise of the Company's portfolio of therapies, and in particular its CAR-T therapies, and the Company's refocus to a healthcare-oriented business. Although management believes that the plans and objectives reflected in or suggested by these forward-looking statements are reasonable, all forward-looking statements involve risks and uncertainties, including the possibility that the timeline for the Company's clinical trials might be impacted by the COVID-19 pandemic, and actual future results may be materially different from the plans, objectives and expectations expressed in this press release. The Company has no obligation to provide any updates to these forward-looking statements even if its expectations change. All forward-looking statements are expressly qualified in their entirety by this cautionary statement. For further information on potential risks and uncertainties, and other important factors, any of which could cause the Company's actual results to differ from those contained in the forward-looking statements, see the section entitled "Risk Factors" in the Company's most recent Annual Report on Form 10-K and subsequent reports filed with the Securities and Exchange Commission.
References1 American Cancer Society. What is Acute Myeloid Leukemia (AML)?2 American Cancer Society. Key Statistics for Acute Myeloid Leukemia (AML)3 Thein, M., et al., Outcome of older patients with acute myeloid leukemia: an analysis of SEER data over 3 decades. Cancer, 2013. 119(15): p.2720-74 American Cancer Society.Key Statistics for Myelodysplastic Syndromes
For more information, contact:
View original content to download multimedia:http://www.prnewswire.com/news-releases/precigen-presents-new-data-supporting-the-safety-clinical-activity-expansion-and-persistence-of--prgn-3006-ultracar-t-at-the-62nd-ash-annual-meeting-and-exposition-301186957.html
SOURCE Precigen, Inc.
Read the rest here:
Precigen Presents New Data Supporting the Safety, Clinical Activity, Expansion and Persistence of PRGN-3006 UltraCAR-T at the 62nd ASH Annual Meeting...
CLL patients in England to get AZ’s Calquence after okay from NICE – – pharmaphorum
By daniellenierenberg
NHS England is to grant immediate access to AstraZenecas cancer drug Calquence (acalabrutinib) for certain patients with chronic lymphocytic leukaemia (CLL) after NICE backed it in first draft recommendations.
NICE recommended regular NHS funding for Calquence in CLL who are considered high-risk due to 17p deletion or TP53 mutations.
It is also recommended for adults with CLL who have had at least one previous treatment and only if AbbVie and Janssens class rival Imbruvica (ibrutinib) is their only suitable treatment option.
NHS England is granting access via an interim funding arrangement with AstraZeneca, which will end 30 days after publication of positive final guidance, after which treatment will be funded by routine commissioning budgets.
However the guidance has rejected Calquence for a third group of patients with untreated, non-high risk CLL who are unsuitable for treatment with chemotherapy.
AZ said it will provide further data analyses for continued discussions with NICE about this group of patients.
Calquence was approved in CLL by the EMA last month as monotherapy or in combination with Roches Gazyvaro (obinutuzumab).
In CLL, too many blood stem cells in the bone marrow become abnormal white blood cells, and these have difficulty in fighting infections.
As the number of abnormal cells grows there is less room for healthy white blood cells, red blood cells, and platelets. This could result in anaemia, infection, and bleeding.
B-cell receptor signalling through Brutons tyrosine kinase (BTK) is one of the essential growth pathways for CLL.
In B-cells, BTK signalling results in the activation of pathways necessary for growth: proliferation, trafficking, chemotaxis, and adhesion.
Calquence binds selectively to BTK, inhibiting its activity.
This is the second recommendation of a therapy for CLL in the space of a month in November it recommended AbbVie/Roches chemotherapy-free option of Venclyxto (venetoclax) and Gazyva.
NICEs decision allows for a 12-month fixed duration treatment option based on data from the phase 3 CLL14 trial.
Read more:
CLL patients in England to get AZ's Calquence after okay from NICE - - pharmaphorum
Regenerative Medicine: Market Trends and Legal Developments on the Horizon for 2021 – MedTech Intelligence
By daniellenierenberg
As the second wave of the pandemic engulfs us and the world works at warp speed to develop vaccines and therapies to respond, the importance of regenerative medicine has never been higher. Since 2017, Goldman Sachs has touted the sector as one of the most compelling areas for venture capital investment. With billions of dollars of global government spending being poured into the search for vaccines and therapies to respond to the novel coronavirus, and with the FDA having now granted approval to the first vaccines based on CRISPR mRNA gene-editing technologies, business models based on regenerative medicines are commanding record values. Despite the flood of cash into regenerative medicine, legal and ethical considerations will continue to cause much controversy.
Regenerative medicine ultimately accelerates the human bodys healing process. It is an area of biomedical sciences that involves medical treatments to repair or replace damaged cells, tissues, or organs. Instead of merely focusing on the symptoms, regenerative medicine uses cellular therapies, tissue engineering, medical devices, and artificial organs to improve peoples health. For example, stem cell therapies, tissue grafts, and organ transplants are all part of regenerative medicine.
Today, cellular and acellular regenerative medicines are often used in clinical procedures such as cell, immunomodulation, and tissue engineering therapies. They have the potential to effectively treat many chronic diseases, including Alzheimers, Parkinsons and cardiovascular disorders, osteoporosis, and spinal cord injuries.
A small number of unscrupulous actors, according to the FDA, however, have seized on the clinical promise of regenerative medicine to offer patients unproven treatments. The FDA and other regulators are challenged to provide assurances of safety for these therapies without stifling development, as well as to approve treatments based on manipulation of stem cells derived from human and animal embryos given the ethical issues involved.
In the future, stem cell research will play an increasingly outsized role in regenerative medicine techniques. In November 2020, voters in California narrowly passed Proposition 14, a referendum to approve $5.5 billion in new government funding for stem cell research. Other governments around the world are doing the same.
Today, the growing prevalence of chronic medical ailments and genetic disorders across the globe is a primary factor driving the regenerative medicine industrys growth, according to the Regenerative Medicine Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2020-2025. The increasing aging population, prone to various musculoskeletal, oncological, dermatological, and cardiological disorders, is a key growth driver. Widespread adoption of organ transplantation is another contributing factor to this growth in market share. The current pandemic that began in January 2020, however, has changed the paradigm for regenerative medicine.
Market applications are burgeoning. Regenerative medicine can prevent and cure disease through effective vaccines and efficacious therapies. It can minimize the risk of organ rejection post-transplant and speed recovery. Technological advancements in cell-based therapies, such as the development of 3-D bioprinting techniques and the adoption of artificial intelligence in the production of regenerative medicines, are also stimulating growth. These advancements also facilitate dermatological grafting procedures to treat burns, bone defects, and skin wounds. Other factors, including extensive research and development activities in medical sciences and improving healthcare infrastructure, are also predicted to drive the market even further.
According to the Alliance for Regenerative Medicine, there are approaching approximately 1,000 companies focusing on this evolving area worldwide. These new companies are focusing on gene therapy, cell therapy and tissue engineering therapeutic developers. More than half of these companies are in North America, followed by almost a quarter in Europe and Israel and approximately 20% in Asia. More than 50% of these companies are focusing on cell therapy and gene therapy.
From 2014 to 2019, the global regenerative medicine market experienced a nearly 16% CAGR. Companies involved in gene and cell therapies as well as other regenerative medicine areas raised $4.8 billion during the first half of 2019, including $2.6 billion in the second quarter. Meanwhile, companies in Europe and Israel saw an acceleration of fundraising, with $1.3 billion amassed in just the first half of 2019, representing a 17% increase over the same period in 2018. Project Warp Speed has attracted billions of dollars of U.S. government spending, and similar efforts are ongoing in China, Russia, the European Union and among other major powers. Consequently, regenerative medicine has never before benefited from such a combination of public and private investment.
Whenever the viability and quality of human life are at stake, ethical and legal considerations always arise.
The modern ethical controversy surrounding regenerative medicine began in 1998 when research scientists at the University of Wisconsin succeeded in deriving and growing stem cells from early-stage human embryos. Ethicists and right-to-life activists protested that scientists were taking away human life (embryos) to conduct scientific experiments. Left unchecked, so the argument went, doctors could usurp nature and play God by developing the power to create and terminate life. A society where human life could be fundamentally perverted by medicine conjured up comparisons to Nazi Germany and Frankenstein. In 2001, then-U.S. President George W. Bush cut off federal funding for any research involving newly created embryonic stem cell lines, but agreed to continue funding research on 60 existing stem cell lines, where the life and death decision ha[d] already been made. The State of California responded in 2004 and again in 2020 with voter-approved programs directing billions of funding into stem cell research, making the region the global hub of regenerative medicine.
The use of human-derived embryonic stem cells, or animal-derived stem cells, continues to cause much controversy among ethicists and society at large. Some fear the risks of enrolling humans in experimental stem cell studies. Others fear the use of organs from human-animal chimeras in transplantation.
While these techniques have the potential to cure disease and save lives, they also have the potential to forever alter the nature of life as we know it and fundamental aspects of our society.
In the United States, legal jurisdiction for regulating regenerative medicine on a federal level lies with the FDA and in a patchwork of state laws, R&D funding programs and non-binding, NGO-promulgated statements of policy. The main responsibility of the FDA is to protect the public from dangerous products and ensure its safety, including overseeing medications for humans and animals, vaccines, and more.
During the Trump Administration, the FDA has largely focused on enabling developers to gain product approvals through a less burdensome and costly process. In numerous policy statements, the FDA under President Trump has deferred questions about the efficacy of new regenerative health products to the free markets, so long as they posed no serious safety or toxicity concerns.
The U.S. federal government is now transitioning to an administration led by President-elect Biden. The president-elect has spent many years advocating for increased R&D funding and going for moonshots. With a new mandate from the U.S. electorate to address the coronavirus, more money will be earmarked for regenerative medicines and stem cell research. How this will affect the release of new products into the market remains to be seen.
Regenerative medicine is poised to change the way we live, work and interact like never before. The fourth industrial revolution is upon us. CRISPR gene-editing technologies, facilitated by quantum-computing capabilities at the edge of a computer network powered by 5G telecommunications bandwidths, artificial intelligence and machine learning, have changed the game for regenerative medicine. We can foresee a day when those suffering from paralysis regain movement, when a damaged heart reverses course through regeneration, and when a diagnosis of Alzheimers Disease no longer means neurodegeneration. What a wonderful day that will be.
Changing the traditional healthcare model and moving from cure to prevention will take time.
The rise in chronic disease and the effort to reduce healthcare costs presents a large opportunity for the field of regenerative medicine.
As the continent becomes a bigger player, western companies should explore the potential prospects.
Topics from regenerative medicine to artificial intelligence to cannabis will be discussed.
The rest is here:
Regenerative Medicine: Market Trends and Legal Developments on the Horizon for 2021 - MedTech Intelligence
New health researchers at Dal, IWK and Nova Scotia Health receive funding from Research Nova Scotia – Dal News
By daniellenierenberg
Researchers with affiliations to Dalhousie University, Nova Scotia Health and the IWK Health Centre are the recipients of over $1.3 million in funding from Research Nova Scotia.
The funding has been provided by the New Health Investigator Grant, which supports new health researchers who are engaged in work that aligns with the provinces health research priorities. The grant aims to provide two years of support of up to $100,000 for researchers who are within the first five years of their academic appointment in Nova Scotia, or who are new to the field of health research.
There has never been a greater need to support new health researchers in Nova Scotia to help inform practice, policy and decision making, says Stefan Leslie, CEO of Research Nova Scotia in a news release. Were pleased to announce funding for these researchers and are confident their work will positively impact the health of Nova Scotians.
For the 2020-21 academic year, funding for this grant is provided by the Nova Scotia Department of Health and Wellness. It will support the establishment of independent programs of research and support and expand the research productivity necessary for obtaining long-term funding from national and external agencies and provide opportunities for early-career investigators to make significant contributions in their field.
Congratulations to all the recipients of funding from Research Nova Scotia, says Dr. Alice Aiken, vice president research and innovation at Dalhousie. With projects that span a wide range of topics, like diabetes, cancer, dementia care, and the COVID-19 pandemic, these researchers are improving health care and helping people in the Maritimes and beyond to be healthier.
Highlights of some of the funded projects:
Dr. Christine Cassidy, Faculty of Health
Designing an integrated pediatric inpatient-ambulatory care service delivery model
The health care system is facing challenges related to poor quality of care, rising health care costs, and outdated technology. Efforts are needed to redesign health services to improve outcomes for patients, health care providers, and the overall health system. One way to address these challenges is to integrate care across multiple health care providers and services. This means that care is coordinated to meet patient needs and preferences.
During the COVID-19 pandemic, the IWK Health Care Centre identified gaps in their current approach to delivering services to children, youth, and their families which includes the need to improve the integration of care across their outpatient and inpatient settings. Healthcare interventions are more effective when patients and care providers are included in the design process, and the integrated approach developed by Dr. Cassidy and her research team will help strengthen the delivery of care within the pediatric health system.
Dr. Parisa Ghanouni, Faculty of Health
Community-based services for individuals with developmental disabilities: Transition to adult care
Despite the great progress signaled by the United Nations Convention on the Rights of Persons with Disabilities, individuals with disabilities worldwide continue to confront barriers to equitable access to the health resources and social supports that enable their full participation in society. Gaps in access have improved for many, especially for children, but the transition to adulthood continues to represent a services cliff that people with disabilities confront in their late teens.
Through their research, Dr. Ghanouni and her team plan to uncover barriers and facilitators related to community-based healthcare services during the transition of adolescents with developmental disabilities to adulthood in rural areas, and co-develop a toolkit with stakeholders that outlines implementation strategies to promote successful transitions. This initiative will advance knowledge on services available that support the transition to adulthood in rural areas, highlight service gaps, point to important areas for investment, and contribute to academic, policy and community understandings and capacity around services for people with disabilities.
Dr. Brendan Leung, Faculty of Dentistry
Harnessing oral microbiota to prevent chemotherapy-induced oral mucositis: Functional screening using a bio-printed mammalian-microbe co-culture model
Chemotherapy induced oral mucositis (CIOM) is a painful and debilitating side effect of cancer treatment that affects 20-40% of cancer patients. Chemotherapy kills cancer cells, but it also affects fast growing normal cells in the body, especially those that line the mouth. When those are damaged, painful mouth ulcers form. These can affect patients ability to eat, drink, talk and even rest, and significantly reduce their quality of life. Currently there is no effective way to prevent CIOM from happening, and the only way to treat it is to provide supportive care such as numbing gels, ice chips and painkillers.
Research has found that the types of bacteria that normally live in the mouth change when someone develops CIOM. It is difficult to study cause and effect between bacteria and CIOM, partly because it is difficult to grow bacteria and human cells together in the lab in a controlled and repeatable way. Through his research, Dr. Leung will use a unique method to grow oral bacteria to investigate how microbes interact with oral cells during chemotherapy in order to identify microbial species that may offer protection against CIOM.
Dr. Elaine Moody, Faculty of Health
Primary healthcare for people with dementia: Exploring care provided by collaborative family practice teams in Nova Scotia
There is an increasing need to improve the health care of people with dementia in Nova Scotia. As the population ages, it will become even more important to provide good care to people with dementia to ensure they can live well in the community. In Nova Scotia, there has been a move to develop collaborative family practice teams, where physicians, nurse practitioners, family practice nurses and other healthcare providers work together to address the primary health care needs of individuals. Primary care providers in these teams require dementia-specific knowledge, skills, resources and supports to enable people with dementia and their caregivers to live well in the community.
Dr. Moody and her research team hope to better understand how collaborative family practice teams in Nova Scotia are addressing the needs of people living with dementia in the community, and to identify ways to improve their care. To achieve their goal, the researchers will gather the perspectives of people living with dementia and caregivers on how collaborative family practice teams provide care in order to identify gaps in current service provision and opportunities to improve care, with a particular focus on diversity and inclusion. Additionally, they will explore how care provided by collaborative family practice teams to people with dementia has been affected by the COVID-19 outbreak.
Other funded projects include:
Dr. Leah Cahill, Faculty of Medicine
Does a simple blood test predict who needs strict blood sugar control to prevent heart disease?
Dr. Sylvain Charlebois, Faculty of ManagementHome food gardening in response to the COVID-19 pandemic: Lessons for food security considerations
Dr. Ketul Chaudhary, Faculty of MedicineCardiac Vascular Stem Cells in Right Heart Failure
Dr. Jon Dorling, Faculty of MedicinePreterm Infant Gut microbiome associations with Environment and Outcomes in the NICU (PIGEON)
Dr. Denys Khaperskyy, Faculty of MedicineRole of stress granule formation in immune responses to respiratory viruses
Dr. Michael Kucharczyk, Faculty of MedicineCan Magnetic Resonance Imaging of the prostate combined with a Radiomics Evaluation determine the invasive capacity of a tumour (Can MRI-PREDICT)
Dr. Paula McLaughlin, Faculty of MedicineIdentifying, understanding, and mitigating gaps in dementia care
Dr. Sandra Meier, Faculty of MedicineAn app responding to behaviour of people to promote mental wellbeing in anxious youth
Dr. Deniz Top, Faculty of MedicineDifference in the regulation of behaviour genes as a proposed mechanism for mental illness
Dr. Igor Yakovenko, Faculty of ScienceScreening, self-management and referral to treatment for young cannabis users: Fulfilling an unmet need
For a complete list of recipients and projects, visit the Research Nova Scotia website.
See the original post here:
New health researchers at Dal, IWK and Nova Scotia Health receive funding from Research Nova Scotia - Dal News
BioCryst to Present at JMP Securities Hematology Summit
By Dr. Matthew Watson
RESEARCH TRIANGLE PARK, N.C., Dec. 11, 2020 (GLOBE NEWSWIRE) -- BioCryst Pharmaceuticals, Inc. (Nasdaq: BCRX) today announced that the company will present at the JMP Securities Hematology Summit, which is being conducted as a virtual event, on Tuesday, December 15, 2020 at 3:30 p.m. ET.
See more here:
BioCryst to Present at JMP Securities Hematology Summit
Altimmune to Present at the 4th Annual NASH Summit 2020 Digital Conference
By Dr. Matthew Watson
GAITHERSBURG, Md., Dec. 11, 2020 (GLOBE NEWSWIRE) -- Altimmune, Inc. (Nasdaq: ALT), a clinical-stage biopharmaceutical company, today announced that Dr. Scott Harris, Chief Medical Officer of Altimmune will give an oral presentation on ALT-801, the Company’s novel GLP-1/Glucagon dual receptor agonist in development for the treatment of non-alcoholic steatohepatitis (NASH.) Dr. Harris will also participate on a panel discussion on NASH treatments. The presentations will take place at the 4th Annual NASH Summit 2020 Digital Conference, which is being held December 15-18, 2020.
Read more here:
Altimmune to Present at the 4th Annual NASH Summit 2020 Digital Conference
New Study Provides Personalized Breast Cancer Risk Information for Women with ATM Gene Mutations
By Dr. Matthew Watson
Here is the original post:
New Study Provides Personalized Breast Cancer Risk Information for Women with ATM Gene Mutations
Lexicon Pharmaceuticals Receives Fast Track Designation From the FDA for LX9211 for Diabetic Peripheral Neuropathic Pain
By Dr. Matthew Watson
THE WOODLANDS, Texas, Dec. 11, 2020 (GLOBE NEWSWIRE) -- Lexicon Pharmaceuticals, Inc. (Nasdaq: LXRX), announced today that it has received Fast Track designation from the U.S. Food and Drug Administration (FDA) for the development of LX9211 in diabetic peripheral neuropathic pain.
See the rest here:
Lexicon Pharmaceuticals Receives Fast Track Designation From the FDA for LX9211 for Diabetic Peripheral Neuropathic Pain
Arch Therapeutics to Present at the 13th Annual LD Micro Main Event Conference
By Dr. Matthew Watson
FRAMINGHAM, Mass., Dec. 11, 2020 (GLOBE NEWSWIRE) -- Arch Therapeutics, Inc. (OTCQB: ARTH) ("Arch" or the "Company"), developer of novel self-assembling wound care and biosurgical devices, announced today that it will be presenting at the 13th annual LD Micro Main Event investor conference. This investor conference will take place December 14-15, 2020, on the Sequire Virtual Events platform.
See original here:
Arch Therapeutics to Present at the 13th Annual LD Micro Main Event Conference
ExCellThera receives Priority Medicines (PRIME) designation from European Medicines Agency for ECT-001 Cell Therapy
By Dr. Matthew Watson
MONTREAL, Dec. 11, 2020 (GLOBE NEWSWIRE) -- ExCellThera Inc., a clinical-stage molecular medicine company delivering molecules and bioengineering solutions to expand stem and immune cells for therapeutic use, announced today that ECT-001 Cell Therapy has been granted PRIority MEdicines (PRIME) designation by the European Medicines Agency (EMA) for use in urgent allogeneic haematopoietic stem cell transplants.
The rest is here:
ExCellThera receives Priority Medicines (PRIME) designation from European Medicines Agency for ECT-001 Cell Therapy
Cynata Secures $15m Placement Led By $10m from Healthcare Investor BioScience Managers to Expand Development Pipeline
By Dr. Matthew Watson
MELBOURNE, Australia, Dec. 11, 2020 (GLOBE NEWSWIRE) -- Cynata Therapeutics Limited (ASX: “CYP”, “Cynata”, or the “Company”), a clinical-stage biotechnology company specialising in cell therapeutics, is pleased to announce a successful $15 million placement (“Placement”), led by a $10m investment from experienced healthcare investor BioScience Managers through the BioScience Managers Translation Fund I (BMTFI). BMTFI has a mandate to invest in Australian based innovative healthcare technology and this investment will allow Cynata to significantly expand its clinical development pipeline and scale their operations in Australia. The Placement is being undertaken at an offer price of $0.70 for each new share and will be followed by a 1 for 15 non-renounceable entitlement offer at the same offer price as the Placement.
Go here to see the original:
Cynata Secures $15m Placement Led By $10m from Healthcare Investor BioScience Managers to Expand Development Pipeline
Financial calendar for Zealand Pharma in 2021
By Dr. Matthew Watson
Company announcement – No. 59 / 2020
See the rest here:
Financial calendar for Zealand Pharma in 2021
Galecto Reports Third Quarter 2020 Operating & Financial Results and Provides a Corporate Update
By Dr. Matthew Watson
Successfully completed listing on US Nasdaq and raised over $150 million during recent IPO and preceding crossover round
See the article here:
Galecto Reports Third Quarter 2020 Operating & Financial Results and Provides a Corporate Update
Rhythm Pharmaceuticals Announces Appointments of Camille L. Bedrosian, M.D., and Lynn Tetrault, J.D., to its Board of Directors
By Dr. Matthew Watson
BOSTON, Dec. 11, 2020 (GLOBE NEWSWIRE) -- Rhythm Pharmaceuticals, Inc. (Nasdaq:RYTM), a biopharmaceutical company aimed at developing and commercializing therapies for the treatment of rare genetic diseases of obesity, today announced the appointments of Camille L. Bedrosian, M.D., and Lynn Tetrault, J.D., to its Board of Directors.
New sales reporting structure introduced. 2020 organic sales growth outlook now expected at 0%, from previously -2% to +2%
By Dr. Matthew Watson
Please read the full announcement in PDF
See the article here:
New sales reporting structure introduced. 2020 organic sales growth outlook now expected at 0%, from previously -2% to +2%
Soleno Therapeutics Provides Regulatory Update on DCCR for the Treatment of Prader-Willi Syndrome
By Dr. Matthew Watson
Soleno intends to submit plans to FDA to conduct further analyses of clinical data from completed and ongoing studies of DCCR, together with external, natural history studies Soleno intends to submit plans to FDA to conduct further analyses of clinical data from completed and ongoing studies of DCCR, together with external, natural history studies
Read more here:
Soleno Therapeutics Provides Regulatory Update on DCCR for the Treatment of Prader-Willi Syndrome
SELLAS Announces Positive Follow-up Data from the Randomized Phase 2 VADIS Trial of Nelipepimut-S (NPS) in Women with Ductal Carcinoma In-Situ of the…
By Dr. Matthew Watson
– Immune Stimulation Augmented by +1,300% at 6-months Post-NPS Treatment –
CHMP recommends approval of Plavix® (clopidogrel) with aspirin in adults for certain types of strokes
By Dr. Matthew Watson
CHMP recommends approval of Plavix® (clopidogrel) with aspirin in adults for certain types of strokes
See original here:
CHMP recommends approval of Plavix® (clopidogrel) with aspirin in adults for certain types of strokes
Akari Therapeutics Announces New Clinical Data that Show Long-Term Self-Administered Nomacopan is Well-Tolerated and Substantially Reduces Transfusion…
By Dr. Matthew Watson
NEW YORK and LONDON, Dec. 11, 2020 (GLOBE NEWSWIRE) -- Akari Therapeutics, Plc (Nasdaq: AKTX), a late-stage biopharmaceutical company focused on innovative therapeutics to treat orphan autoimmune and inflammatory diseases where the complement and/or leukotriene systems are implicated, announces new data on the efficacy and safety profile of long-term self-administration of nomacopan for treatment of patients with PNH.
Go here to read the rest:
Akari Therapeutics Announces New Clinical Data that Show Long-Term Self-Administered Nomacopan is Well-Tolerated and Substantially Reduces Transfusion...