Page 305«..1020..304305306307..310320..»

Stem Cell Therapy Market Set to Witness an Uptick during 2017 to 2025 – Science In Me

By daniellenierenberg

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Know the Growth Opportunities in Emerging Markets

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

The regional analysis covers:

Order this Report TOC for Detailed Statistics

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Read the original:
Stem Cell Therapy Market Set to Witness an Uptick during 2017 to 2025 - Science In Me

To Read More: Stem Cell Therapy Market Set to Witness an Uptick during 2017 to 2025 – Science In Me
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy Market Set to Witness an Uptick during 2017 to 2025 – Science In Me | dataApril 13th, 2020
Read All

Cardiac Stem CellsHope for Congestive Heart Failure

By daniellenierenberg

it would be a good thing!

There are oodles of old rules in Cardiology. The provocateur in me loves it when dogma falls.

Niftier even, is when one can invoke the biology of newts to explain how yet another certainty was proven wrong.

As it turns out, those funny-looking mud-lovers possess a property that may revolutionize the treatment of heart disease. Unlike humans, newts can regrow damaged organs, including the heart! The newts organs contain cells that arent fully committed (biologists say terminally differentiated) to function.

Thats different than humans. Our organs, the heart among them, once damaged, do not recover. In humans, scar tissue replaces dead cells and the organ is diminished. This is how heart attacks result in heart failure: non-contracting scar tissue replaces the blood-starved (infarcted) muscle. This leads to a weaker pump (congestive heart failure) and susceptibility to rhythm problems (sudden death). Sadly, this process takes only an hour or so to occur. Hence the rush in stenting open a blocked artery.

Millions of heart patients suffer from weak hearts due to heart muscle damage. Until recently, most doctors held to the old belief that self-renewal of heart muscle is impossible. All doctors can do is micro-manage medicines and maybe implant risky defibrillators. The heart remains weak, the patient limited. The wordirreversibility.

Until recently that is.

New and emerging data reveals that our hearts may indeed have progenitor (stem) cells capable of growing into mature squeezing muscle cells. Call them, newt-like if you will.

Here goes the thinking: Unlike the newt, we humans cant signal heart stem cells to grow new muscle. But imagine if we could? Scar could be replaced with beating muscle, thereby restoring pump function. Heart attacks and heart muscle problems (cardiomyopathy), once thought permanently disabling, could be reversed like skin infections. Its like a fantasy.

Stem cells? Yes. I think its possible that cardiac stems cells may be the key that opens the treasure chest of the next generation of cardiac care. And how neat is it that my hometown, Louisville KY, happens to be at the epicenter of stem cell research?

Dr Roberto Bolli, a hard-working, self-made research scientist from Italy, who now chairs the Department of Cardiology at the University of Louisville has broken exciting new ground. His teams work, published in the journal, Lancet, has brought new momentum to the dreamy possibility of using cardiac stem cells to regrow damaged heart muscle.

Dr Bollis study (called SCIPIO) was the first in-man study of heart-derived stem cells. Previous stem cell studies used animal models, or those done in humans used bone marrow cells rather than heart cells.

Heres my brief synopsis of the Lancet study:

The U of L researchers enrolled patients with prior heart attacks and weakened hearts that were referred for bypass surgery. During surgery, a sample of the heart was cut out, sent to Boston where the cardiac stem cells were isolated. (This process involves serious biochemistry, above my pay grade; I like to think of the sample as being juiced down to the stem cells.). At four months, time enough for improvement from bypass to have occurred, one group (16 patients) underwent heart cath where a balloon angioplasty catheter was used to infuse a syringe full of the patients own (1 million) stem cells. The control group (7 patients) had standard bypass but no stem cell infusions.

The results were striking:

Compared to the control subjects who showed no improvement in heart function during the follow-up period (1 year), those who received stem cells sustained significant improvements in heart function, physical capacity and scored better on quality of life questionnaires. Most remarkably, ultrasound and MRI imaging revealed the areas where stem cells were infused showed the most improvement, and the enhanced squeezing function continued over the year. There were no safety issues with stem cell infusions.

These findings led the authors to conclude that cardiac stem cells induced regeneration of heart muscle.

Wow.

I have to admit that my knee-jerk reaction tended towards naysaying. No way could this work, I thought. The study involved only 16 patients followed for only a year. Lots of limitations. Very preliminary.

But after spending a couple of hours reading about the biology of stem cells, Im pretty excited about the Louisville research. For instance, I learned that injected stem cells might not have to en-graft themselves into the scar, rather they may signal the native heart to repair itself. Biologists call this a paracrine function.

Dr Bolli told our local paper that he has been besieged with letters from desperate patients with weakened hearts. Promising press reports on very early research tend to amplify hope. Rightly, Dr Bolli emphasizes the preliminary nature of this work. He adds that the SCIPIO study is ongoing and more data is forthcoming.

Its surely way too early to speculate on whether this novel approach evolves into Cardiologys Facebook or iPhone.

We will see. But let it be known that I am marking this post with a new category, Cardiac stem cells. Im keeping my eye on this exciting topic.

Put me down as optimistic and hopefulthe heart-healthy outlook.

JMM

Disclosure: I dont own Baxter stock.

h/t to Larry Husten (@cardiobrief)

Go here to see the original:
Cardiac Stem CellsHope for Congestive Heart Failure

To Read More: Cardiac Stem CellsHope for Congestive Heart Failure
categoriaCardiac Stem Cells commentoComments Off on Cardiac Stem CellsHope for Congestive Heart Failure | dataApril 12th, 2020
Read All

Merck Receives Priority Review from FDA for Second Application for KEYTRUDA (pembrolizumab) Based on Biomarker, Regardless of Tumor Type – Benzinga

By daniellenierenberg

Supplemental Biologics License Application (sBLA) Accepted for KEYTRUDA Monotherapy in Patients Whose Tumors Are Tumor Mutational Burden-High (TMB-H) Who Have Progressed Following Prior Treatment

Merck (NYSE:MRK), known as MSD outside the United States and Canada, today announced that the U.S. Food and Drug Administration (FDA) has accepted and granted priority review for a new supplemental Biologics License Application (sBLA) for KEYTRUDA, Merck's anti-PD-1 therapy. The application seeks accelerated approval of KEYTRUDA monotherapy for the treatment of adult and pediatric patients with unresectable or metastatic solid tumors with tissue tumor mutational burden-high (TMB-H) 10 mutations/megabase, as determined by an FDA-approved test, who have progressed following prior treatment and who have no satisfactory alternative treatment options. The FDA has set a Prescription Drug User Fee Act (PDUFA), or target action, date of June 16, 2020.

"From the start, biomarker research has been a critical aspect of our clinical program evaluating KEYTRUDA monotherapy," said Dr. Scot Ebbinghaus, vice president, clinical research, Merck Research Laboratories. "TMB has been an area of scientific interest to help identify patients most likely to benefit from KEYTRUDA. We look forward to working with the FDA throughout the review process to help bring KEYTRUDA monotherapy to patients with cancer in the second-line or higher treatment setting, where options remain limited."

The application was based in part on results from the Phase 2 KEYNOTE-158 trial, which also supported Merck's 2017 FDA approval for KEYTRUDA as the first cancer treatment based on a biomarker, regardless of cancer type, in microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) solid tumors. MSI-H is on the highest end of the TMB spectrum. Data from KEYNOTE-158 on the TMB-H patient population were presented at the European Society for Medical Oncology (ESMO) 2019 Congress.

About KEYNOTE-158

KEYNOTE-158 (NCT02628067) is a multicenter, multi-cohort, non-randomized, open-label trial evaluating KEYTRUDA (200 mg every three weeks) in patients with solid tumors. Tissue TMB status was determined using the Foundation Medicine, Inc. FoundationOneCDx assay. Tumor response was assessed every nine weeks per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 by independent, central, blinded radiographic review. The major efficacy outcome measures were objective response rate (ORR) and duration of response (DOR) as assessed by blinded independent central review (BICR) according to RECIST v1.1, modified to follow a maximum of 10 target lesions and a maximum of five target lesions per organ.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the body's immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industry's largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those 2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those 2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those 2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (20%) were fatigue (29%), diarrhea (24%), and rash (24%).

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

More:
Merck Receives Priority Review from FDA for Second Application for KEYTRUDA (pembrolizumab) Based on Biomarker, Regardless of Tumor Type - Benzinga

To Read More: Merck Receives Priority Review from FDA for Second Application for KEYTRUDA (pembrolizumab) Based on Biomarker, Regardless of Tumor Type – Benzinga
categoriaCardiac Stem Cells commentoComments Off on Merck Receives Priority Review from FDA for Second Application for KEYTRUDA (pembrolizumab) Based on Biomarker, Regardless of Tumor Type – Benzinga | dataApril 12th, 2020
Read All

Best of the Mess from April 5, 2000 – Walking in the midnight sun – Aitkin Independent Age

By daniellenierenberg

Grace Mitchell cant wait to get on the road again.

And when she hits the road this time, shell be bound for Anchorage, Alaska, to take part in the Mayors Midnight Sun Marathon on June 17.

Grace will be participating in a 26.2 mile walk, sponsored by the Leukemia Society of America.

I completed the Honolulu Marathon in December of 1998, Grace said. I raised almost $5,000.

This is Graces second year as part of the Leukemia Societys Team in Training program. Money raised during the marathon is given to researchers at the Mayo Clinic, Hughs Institute and the University of Minnesota. Research funded in the past by the Leukemia Society has helped to develop new treatments for other cancers as well. Funds raised this year will be used to fight leukemia, myeloma, lymphoma, and Hodgkins disease. Grace and her husband own a summer cabin on Mille Lacs Lake and have been coming to the area for many years.

Inspired by his story in the Messenger, Grace is walking this year in honor of Abel Vanderpoel, son of Mary Jo and Keith Vanderpoel of Onamia.

Abel Vanderpoel was diagnosed with leukemia in September. He recently received stem cells from his sister Betsy and is undergoing treatment at Fairview Medical Center in the Twin Cities.

Grace will also be walking in memory of Patrick Kluck, who passed away in July of 1990 from leukemia.

Although not official honorees this year, in my heart, I will also be walking in memory of Catherine Malmquist and to honor Tanner Mielke, she said.

Two years ago, Grace was diagnosed with myelodysplastic syndrome, a pre-luekemia disease.

This is a cancer that attacks the bone marrow that produces the red blood cells, she said. At the present time, they do not know what causes the disease, and there is no cure. Thanks to tremendous prayer support, my disease is stable. My hope and prayer is that by the time my disease progresses, a treatment an cure will be found through continuing research.

Teams in training began in 1968 in New York when a woman named Lucy Duffy wanted to do something positive in response to her husbands struggle with leukemia. As a runner in the New York City Marathon, she passed out pledge forms to solicit donations for each mile she completed in the race. Her husband lost his battle two months after she ran the marathon, but she had raised $22,000 in his honor. Last year, over 23,000 runners, walkers and cyclists participated in the worlds major marathons on behalf of the Leukemia Society of America.

The Minnesota Team in Training began in 1994 and has raised nearly $2 million for research and patient aid in Minnesota, South and North Dakota.

Continue reading here:
Best of the Mess from April 5, 2000 - Walking in the midnight sun - Aitkin Independent Age

To Read More: Best of the Mess from April 5, 2000 – Walking in the midnight sun – Aitkin Independent Age
categoriaBone Marrow Stem Cells commentoComments Off on Best of the Mess from April 5, 2000 – Walking in the midnight sun – Aitkin Independent Age | dataApril 12th, 2020
Read All

Young-onset Parkinson’s may start in the womb – Health24

By daniellenierenberg

People who develop Parkinson's disease at a younger age (before age 50) may have malfunctioning brain cells at birth, according to a study that also identified a drug that may help these patients.

At least 500 000 people in the United States are diagnosed with Parkinson's each year. Most are 60 or older at diagnosis, but about 10% are between 21 and 50.

Parkinson's is a neurological disease that occurs when brain neurons that make dopamine become impaired or die. Dopamine helps coordinate muscle movement.

Symptoms get worse over time and include slow gait, rigidity, tremors and loss of balance. There is currently no cure.

"Young-onset Parkinson's is especially heart-breaking because it strikes people at the prime of life," said study co-author Dr Michele Tagliati, director of the Movement Disorders Program at Cedars-Sinai Medical Center in Los Angeles.

"This exciting new research provides hope that one day we may be able to detect and take early action to prevent this disease in at-risk individuals," he said in a hospital news release.

For the study, Tagliati and colleagues generated special stem cells from the cells of patients with young-onset Parkinson's disease. These stem cells can produce any cell type of the human body. Researchers used them to produce dopamine neurons from each patient and analysed those neurons in the lab.

The dopamine neurons showed two key abnormalities: build-up of a protein called alpha-synuclein, which occurs in most forms of Parkinson's disease; and malfunctioning lysosomes, structures that act as "trash cans" for the cell to break down and dispose of proteins. This malfunction could result in a build-up of alpha-synuclein, the researchers said.

"Our technique gave us a window back in time to see how well the dopamine neurons might have functioned from the very start of a patient's life," said senior author Clive Svendsen, director of the Cedars Sinai Board of Governors Regenerative Medicine Institute.

"What we are seeing using this new model are the very first signs of young-onset Parkinson's," Svendsen said in the release. "It appears that dopamine neurons in these individuals may continue to mishandle alpha-synuclein over a period of 20 or 30 years, causing Parkinson's symptoms to emerge."

The study was published in the journal Nature Medicine.

The researchers also tested drugs that might reverse the neuron abnormalities. A drug called PEP005 already approved by the US Food and Drug Administration for treating pre-cancers of the skin reduced elevated levels of alpha-synuclein both in mice and in dopamine neurons in the lab.

The investigators plan to determine how PEP005, which is available in gel form, might be delivered to the brain to potentially treat or prevent young-onset Parkinson's.

They also want to find out whether the abnormalities in neurons of young-onset Parkinson's patients also exist in other forms of Parkinson's.

View original post here:
Young-onset Parkinson's may start in the womb - Health24

To Read More: Young-onset Parkinson’s may start in the womb – Health24
categoriaSkin Stem Cells commentoComments Off on Young-onset Parkinson’s may start in the womb – Health24 | dataApril 12th, 2020
Read All

Few folks are flying during the coronavirus outbreak, former Omahan finds – Omaha World-Herald

By daniellenierenberg

The author, a government affairs analyst for the National Marrow Donor Program, grew up in Omaha.

Flying during a pandemic is a slightly different experience from flying during normal periods.

Social distancing, for example, is really easy because hardly anyone is in the airports.

I work in Minneapolis for the National Marrow Donor Program and Be The Match, the nations largest bone marrow registry. Im among the 400-plus people who serve as couriers for Be The Match. Couriers transport donated bone marrow or blood stem cells in coolers on commercial flights, taking it from the location where the donation occurred to the hospital where it will be given to a patient.

This week, I traveled from my home in Minneapolis Be The Matchs headquarters city to a city on the East Coast, where I picked up donated blood stem cells. I then took the stem cells to a city on the West Coast, where the patient is.

I cant say the specific cities involved in order to maintain confidentiality of the donor and the recipient.

Couriers are able to travel during this time because we are considered essential critical public health workers.

When I went to pick up the empty cooler before I flew out, a logistics coordinator told me that flights were being canceled left and right and that they were working long hours and on weekends to make sure couriers can continue to travel.

The airports I traveled through were pretty empty no lines to get through security. After the security check, physical distancing wasnt a problem; you could have an entire gate to yourself.

Most stores in the airports were closed, with only a couple of convenience stores still open and takeout-only food options available at restaurants. All the restaurants eating areas were roped off.

Before boarding, airline staff reminded travelers over the intercoms that crews were sanitizing the planes. They also noted that the planes have high-quality air filtration systems.

The usual boarding process by groups (people needing assistance, military members, first class, Group A, etc.) was unnecessary. Gate agents didnt need to go through their normal spiel.

Since we have a very light flight, Im not going through alphabet soup, so all groups are boarding, one gate agent said.

We have plenty of places for bags, so I dont have to ask about that ...

... Do I have any active-duty military?

Pause.

... Do I have anyone whos just happy the day is Monday? OK. Come on down.

Overall, I was lucky in terms of flights. I had three legs of travel: a flight from Minneapolis with a layover to the East Coast, a flight with a layover to the West Coast and a direct flight back to Minneapolis. One of my flights was canceled, one was changed from a direct flight to an indirect route and one was delayed. A team at Be The Match monitors courier travel, so I didnt have to rebook anything myself.

When I called to double-check on one of my flights, the coordinator told me that my experience wasnt bad at all compared with those of other couriers, who have dealt with multiple cancellations and have required several backup itineraries.

My flights had anywhere from 10 to 30 people. I never sat next to anyone else, although passengers sat directly in front of me or across the aisle in the same row. Flight attendants didnt serve drinks in cups with ice, but you could get bottles of water or cans of soda and snacks. I tried to keep my cloth mask on my face for all my flights, taking it off only for an occasional sip of water.

Mask use was sporadic both by airline and airport employees and passengers. On only one flight were attendants wearing masks and eye shields the entire time. I was a little surprised by this and felt that more people should be wearing some sort of protective gear, especially in light of the recent guidance from the Centers for Disease Control and Prevention to wear cloth face coverings in public.

I stayed in two different hotels. At one, I had to sign a document indicating that I was an essential worker, which was pushed to me under a plastic screen. At the other hotel, I checked in behind a retractable barrier about three feet from the desk.

For food, I ordered takeout, paid online and picked up a couple times, but mostly I stayed in my room and ate the food I packed. I wanted a latte but just drank the coffee from the little machine in my hotel room. It seemed weird to order online just for coffee.

My parents werent thrilled that I was traveling across the country right now, but I know that patients cant wait for the pandemic to be over to get the transplant they need its life or death for them. And lots of couriers are traveling: In March, for example, Be The Match facilitated 604 transplants.

As more and more travel restrictions are put in place, Be The Match may have to rely on other transportation, such as military transport. But for now, Im looking to see when I can take the next trip.

I should note that the delivery to the hospital went smoothly. Thats always a relief. Its all possible because of the donors, lab staff, doctors, nurses and other transplant center workers and my Be The Match coworkers.

To find out how to become a bone marrow donor, visit bethematch.org/support-the-cause/donate-bone-marrow/join-the-marrow-registry/.

Hank, a Labrador retriever, does not respect social distancing and gives Morgan Henderson, the owner of Dirty Doodles, a kiss while being groomed at Dirty Doodles in Omaha. The dog grooming service has moved work stations outside so employees can remain six feet apart during the novel coronavirus pandemic.

A message written in chalk on a wall along Martha Street in Omaha on Wednesday, April 8, 2020.

Traffic is sparse at time on Interstate 80 through Omaha as people are encouraged to stay home amid the coronavirus pandemic.

Handwritten notes for customers at Nite Owl in Omaha on Wednesday, April 1, 2020. Nite Owl has been writing personal notes to customers and offering specials, like the Social Distance Daiquiri, while offering curbside take-out as the novel coronavirus pandemic continues.

Karna Gurung answers a text on his phone at his store located at 822 N 40th Street on Thursday, April 02, 2020. Gurung is translating important information about coronavirus for non english speaking members of his community.

Rita Otis leads an outdoor Tai Chi class on a grass island at Glenwood Road and Sunset Trail on Wednesday, April 01, 2020. Participants had to maintain a distance of six feet due to coronavirus social distancing measures.

Rita Otis leads an outdoor Tai Chi class on a grass island at Glenwood Road and Sunset Trail on Wednesday, April 01, 2020. Participants had to maintain a distance of six feet due to coronavirus social distancing measures.

The Easter Bunny waves to families as they drive by at the Hy-Vee near 144th and Stony Brook Blvd. in Omaha on Saturday, April 4, 2020. The grocery store usually hosts an Easter egg hunt, but went with a drive-thru Easter Bunny visit this year to encourage social distancing in response to the novel coronavirus.

A sign is installed at Zorinsky Lake Park in Omaha on Saturday, April 4, 2020. Playgrounds and athletic fields are closed in all Omaha parks.

A ball field is seen through a chainlink fence, at Lee Valley Park in Omaha on Saturday, April 4, 2020. Playgrounds and athletic fields are closed in all Omaha parks.

A ball field sets empty at Prairie Lane Park in Omaha on Saturday, April 04, 2020. Playgrounds and athletic fields are closed in all Omaha parks.

A Washington Elementary School sign reads 'Nebraska Strong' on Thursday, April 02, 2020, in Fremont, Nebraska.

About 100 people line up outside Brickway Brewery & Distillery in Omaha on Monday, April 6, 2020. The Old Market business was giving away free hand sanitizer on tap to anyone who brings their own bottle of 64 ounces or less.

Don Rupp wears a face mask made by his wife while waiting in line outside Brickway Brewery & Distillery in Omaha on Monday, April 6, 2020. The Old Market business was giving away free hand sanitizer on tap to anyone who brings their own bottle of 64 ounces or less.

The empty streets of downtown Grand Island on Monday, April 06, 2020. The area was experiencing a surge in coronavirus cases.

Playground equipment is seen wrapped in caution tape at Pier Park on Monday, April 06, 2020, in Grand Island, Nebraska. Playgrounds are closed as a measure to prevent the spread of coronavirus.

Russell Hatt smokes a cigarette outside of Fonner Park at on Monday, April 06, 2020, in Grand Island, Nebraska. "I'm a widower, so this is what I do to stay busy. I bet on horses and play Texas Hold'em."

The Kroc Center is illuminated as a symbol of hope in Omaha on Monday, April 6, 2020.

Rabbi Daniel Blotner puts together Seder-To-Go kits at Chabad House in Omaha on Monday, April 6, 2020. The Seder is a ritual dinner to mark the beginning of Passover, which began on April 8. The free kits and were available for delivery for anyone who is homebound during the novel coronavirus pandemic.

Leah Hanson and others visit their grandmother from outside the Douglas County Health Center in Omaha on Tuesday, April 7, 2020.

From left, Carol Ann Hixson, Terri Rohmeyer and Carol Carol Coffey wave and blow kisses to a family member from outside the Douglas County Health Center in Omaha on Tuesday, April 7, 2020.

A woman walks a dog as the sun sets on Elmwood Park in Omaha on Wednesday, April 08, 2020. Omaha has closed all city parks until April 30 to combat COVID-19. The trail system will remain open, but parking lots at trail heads are closed. People must walk or bike in.

A couple walks along the West Papio Trail in Omaha on Wednesday, April 08, 2020. Omaha has closed all city parks until April 30 to combat COVID-19. The trail system will remain open, but parking lots at trail heads are closed. People must walk or bike in.

Kennedy Cascio has decorated her home's front door with a symbol for medicine and hearts. Cascio is an intensive care unit nurse at the Bellevue Medical Center and created the display to "show that I am thankful for everyone working on the frontlines," as the novel coronavirus pandemic continues. Photographed in Omaha on Wednesday, April 8, 2020.

A message is left along a fence at Lewis and Calrk Middle School in Omaha on Thursday, April 09, 2020. Omaha Public Schools have been closed since mid-March, with remote learning for all students, as the novel coronavirus pandemic continues.

Traffic signs on Dodge Street, near 168th, display self quarantine guideline suggestions on Monday, April 06, 2020.

A sparrow sit in its nest in the letter "g" in Walgreens sign at 5038 Center Street on Friday, April 10, 2020.

See the original post:
Few folks are flying during the coronavirus outbreak, former Omahan finds - Omaha World-Herald

To Read More: Few folks are flying during the coronavirus outbreak, former Omahan finds – Omaha World-Herald
categoriaBone Marrow Stem Cells commentoComments Off on Few folks are flying during the coronavirus outbreak, former Omahan finds – Omaha World-Herald | dataApril 12th, 2020
Read All

Taiwanese team finds key antibodies in Covid-19 patients – The Star Online

By daniellenierenberg

TAIPEI, April 8 (The China Post/ANN) A Taiwanese research team has produced 25 human monoclonal antibodies based on antibody gene segments from three patients infected with the COVID-19 coronavirus.

Huang Kuan-ying (), a resident physician at Chang Gung Memorial Hospital who led the research team, told the press Tuesday that the achievement could facilitate the development of not only rapid screening kits but also medication that targets the virus.

Monoclonal antibodies (mAbs) are immune system proteins that are created in the lab. They are made by identical immune cells that are all clones of a unique parent cell. Like the bodys own antibodies, mAbs recognize specific targets.

The mAbs, made based on antibodies in B cells of the patients, are 13 strains targeting the spike protein (S) of the coronavirus and 12 strains targeting the nucleocapsid protein (N) of the virus.

B cells are a type of white blood cell that make antibodies. They are part of the immune system and develop from stem cells in the bone marrow. They are also called B lymphocyte.

Since the antibodies can identify the virus, they are useful in two areas, including the development and production of rapid testing agents, Huang said, and if such antibody testing agents react to tissue samples containing the virus, they can show the result in a minimum of 30 minutes.

The other area in which they can be used is therapy, Huang went on, because mAbs are regarded as magic bullets that can cure some infectious diseases.

His team found that there is one particular strain among the 13 S-targeting mAbs that has the ability to block the paths that the new coronavirus can use to invade the body, Huang said.

He explained that for the virus to enter cells, it has to integrate with the cell receptor, angiotensin converting enzyme 2, which is an enzyme attached to the outer surface of cells in organs.

The receptor is like a gate. If the virus outflanks an antibody to open it, the body will be infected, the researcher said. But if the antibody opens the gate first, it has the opportunity to stop the virus from entering cells.

Shih Shin-ru (), a professor at the Research Center for Emerging Viral Infections of Chang Gung University, said this certain mAb, which was found capable of stopping the coronavirus from invading the body, can be used in the development of COVID-19 therapies or even vaccines if it is proven effective in human tests in the future.

Compared with animal mAbs, those from humans will be safer to use in medical treatment, she added.

Originally posted here:
Taiwanese team finds key antibodies in Covid-19 patients - The Star Online

To Read More: Taiwanese team finds key antibodies in Covid-19 patients – The Star Online
categoriaBone Marrow Stem Cells commentoComments Off on Taiwanese team finds key antibodies in Covid-19 patients – The Star Online | dataApril 12th, 2020
Read All

Chimeric Antigen Receptor (CAR) T-Cell Therapy Market 2020: Professional Survey & Competitive Dynamics Mustang Bio Inc., iCell Gene Therapeutics,…

By daniellenierenberg

Global Chimeric Antigen Receptor (CAR) T-Cell Therapy Market 2020 is analyzed in details, to provide accurate and useful insights and market data that players can perform strong growth in the future. Experts and Chimeric Antigen Receptor (CAR) T-Cell Therapy industry analysts, which makes it legitimate and dependable compile the analysis. Readers have a thorough inspection of historical and futuristic Chimeric Antigen Receptor (CAR) T-Cell Therapy market scenarios to have a good understanding of other issues that are important with the market competition. The report offers Chimeric Antigen Receptor (CAR) T-Cell Therapy information on key players, key sections, market dynamics and assorted niches. It is a complete collection of Chimeric Antigen Receptor (CAR) T-Cell Therapy research and in-depth analysis of the market.

Global Chimeric Antigen Receptor (CAR) T-Cell Therapy market trends provide a basic summary of the including definitions, classes, applications and industry chain analysis. The Chimeric Antigen Receptor (CAR) T-Cell Therapy market analysis is provided for the international markets, including key regions, development status, competitive landscape, and development trends. Plans and policies are discussed, as well as cost structures are analyzed and processes. This Chimeric Antigen Receptor (CAR) T-Cell Therapy report also claims ingestion, demand and supply figures, cost, price, revenue and gross margins.

Get Sample Copy @ https://www.futuristicreports.com/request-sample/57340

Key Players Mentioned at the Chimeric Antigen Receptor (CAR) T-Cell Therapy Market Trends Report:

Chimeric Antigen Receptor (CAR) T-Cell Therapy Market: Segmentation

The report gives a breakdown of the Chimeric Antigen Receptor (CAR) T-Cell Therapy market sections, focusing on potential market size, market share and their CAGR for future growth. The industry is divided by product type, application and region. Each segment in these types is the subject of comprehensive Chimeric Antigen Receptor (CAR) T-Cell Therapy research to familiarize yourself with its growth prospects and key trends. The segmental analysis is essential to identify the most important growth factors of a sector. The Chimeric Antigen Receptor (CAR) T-Cell Therapy report offers specific details on market development and demand for applications and products that players may concentrate on their industrial growth.

On the end-users/applications basis, the Chimeric Antigen Receptor (CAR) T-Cell Therapy report concentrates on the status and prognosis for revenue quantity, important applications market share and growth rate for each application, including

On the basis of types, this report shows the revenue quantity, revenue (USD), Chimeric Antigen Receptor (CAR) T-Cell Therapy market share and growth rate, largely split into

Get Impressive Discount with this particular account at: https://www.futuristicreports.com/check-discount/57340

Chimeric Antigen Receptor (CAR) T-Cell Therapy Market: Regional analysis includes:

Global Chimeric Antigen Receptor (CAR) T-Cell Therapy Market Report Structure at a Brief:

Enquire more about the report at: https://www.futuristicreports.com/send-an-enquiry/57340

Email: [emailprotected]

Visit our website: https://www.futuristicreports.com

Phone: +1 (408) 520 9037

Country: United States

Follow this link:
Chimeric Antigen Receptor (CAR) T-Cell Therapy Market 2020: Professional Survey & Competitive Dynamics Mustang Bio Inc., iCell Gene Therapeutics,...

To Read More: Chimeric Antigen Receptor (CAR) T-Cell Therapy Market 2020: Professional Survey & Competitive Dynamics Mustang Bio Inc., iCell Gene Therapeutics,…
categoriaIPS Cell Therapy commentoComments Off on Chimeric Antigen Receptor (CAR) T-Cell Therapy Market 2020: Professional Survey & Competitive Dynamics Mustang Bio Inc., iCell Gene Therapeutics,… | dataApril 12th, 2020
Read All

Cyborg computer chips will get their brain from human neurons – SYFY WIRE

By daniellenierenberg

A.I.has already gotten to almost sci-fi levels of emulating brain activity, so much so that amputees can experience mind-controlled robotic arms, and neural networks might soon be a thing. That still wasnt enough for the brains behind one ambitious startup, though.

Cortical Labs sounds like it could have been pulled from the future. Co-founder and CEO Hong Wen Chong and his team are merging biology and technology by embedding real neurons onto a specialized computer chip. Instead of being programmed to act like a human brain, it will use those neurons to think and learn and function on its own. The hybrid chips will save tremendous amounts of energy with an actual neuron doing the processing for them.

Biological neural networks can solve problems in unfamiliar situations independent of acquired knowledge due to their self-organizing properties, says the companys website. Fluid intelligence is an essential requirement for autonomous robots.

Bio-computing was first switched on with neurons from mouse embryos, but can now use human neurons. Cortical Labs can morph human skin cells back into stem cells and then induce them to grow into actual human neurons. This was a process originally developed by Japanese scientists who were looking to eliminate the controversy that comes with using human embryonic stem cells. These cells are so useful because they havent yet decided what their function will be. That means they can be manipulated into just about anything.

After the skin cells undergo their transformation into neurons, a nourishing liquid medium is used to embed them onto a tiny metal oxide chip that has an even tinier grid of 22,00 electrodes. It is these electrodes that speak to programmers about when to zap electrical inputs to the neurons, letting them know what kind of outputs they are getting.

Artificially created neurons turn out the same as neurons that would (hypothetically) be taken from your gray matter, except there is no brain invasion required. Something like that would cross over from science fiction to science horror.

Right now, these chips are close to processing things like a dragonfly brain, so there are still upgrades to be made. Remember spending hours at the arcade playing Pong? Chong is determined to teach the chips to play that retro Atari game, and being powered by neurons uses just a fraction of what they would if they were only functioning on computerized intelligence. Think about it. The human brain has over a billion neurons, and our level of intelligence runs on only about 20 watts of power. Thats more than enough to play a marathon session of Pong.

Biological computing is the new frontier of computational power efficiency, the website says.

By the way, this wasnt the first time Pong got scientific star power. A.I. company DeepMind used it, along with other early Atari games that might be collecting dust in your basement somewhere, to demo how algorithms modeled after human neuron functions could perform. DeepMinds software scored high enough to convince Google into buying it. Now Google is using that tech to control the monster air conditioning units in its data centers, where it gets unbearably hot from servers devouring enough energy to keep entire cities running.

Cortical Labs is currently using mouse neurons on its quest to get hybrid chips to play Pong, but it probably wont be long before they use mutant human neurons. Gnarly.

(via Business Insider/Cortical Labs)

See original here:
Cyborg computer chips will get their brain from human neurons - SYFY WIRE

To Read More: Cyborg computer chips will get their brain from human neurons – SYFY WIRE
categoriaSkin Stem Cells commentoComments Off on Cyborg computer chips will get their brain from human neurons – SYFY WIRE | dataApril 12th, 2020
Read All

My son needed regular blood transfusions, but now coronavirus threatens the survival of children like him – ABC News

By daniellenierenberg

By Jessica Lake

Updated April 12, 2020 08:32:52

Almost two years ago, our world fell apart.

Our cheeky and sweet three-year-old son Larry suddenly became unwell. His previously robust physicality waned. His ruddy complexion became creamy.

His rosy cheeks and rose red lips glowed a pale pink at best. There were bad bruises on his legs darker and deeper ones than those dotting the knees of his identical twin brother. There was a strange patch of little red dots on his neck petechia, we would later learn pin-prick bleeding under the skin.

We took him to our GP. Then we took him to Monash Children's Emergency. Then, a few weeks later, we arrived at the Children's Cancer Centre of the Royal Children's Hospital.

He was diagnosed with idiopathic very severe aplastic anaemia. For unexplained reasons, his bone marrow had spontaneously started shutting down. We were disoriented and devastated.

Without the ability to make blood, Larry required constant transfusions. Every six-to-10 days, when his nose oozed or a blood blister appeared in his mouth, we would race to the clinic or emergency department (sometimes via ambulance) for a bag of platelets: "yellow medicine" our son called it. Once he could clot again we could relax a little.

About every one-to-three weeks, when he struggled to pull himself out of bed or off the couch, when his appetite diminished and his pallor grew too pale, he would receive a bag of "red medicine" to resuscitate his system.

Until mid 2018, I had the privilege and luck of never thinking much about blood donation. But now, the prospect of a shortage terrifies me.

Due to COVID-19, the Australian Red Cross Lifeblood service faces a critical shortage unless thousands of people donate.

Over a period of 14 months, while our son battled bravely through immunosuppressive treatment and multiple infections, he underwent more than 70 platelet transfusions and 40 blood transfusions. The blood of more than 100 kind souls kept him going.

One day last April, Larry's haemoglobin was the lowest it had ever been. In the 50s. Less than half the level of a "normal" person.

It was a Saturday morning, and I'd just raced him through city traffic to the hospital emergency department yet again.

Once we arrived, they ordered a bag of red cells. He dozed on the trolley bed. His lips the same colour as his skin. His skin the same colour as the sheet he had just vomited on.

I fidgeted and hopped back and forth around the doorway of our cubicle watching for the blood bank delivery. Please. Please. Please. An agonising wait. Finally, it arrived.

A rush of immense gratitude. The nurses did their double cross checks. Name, date of birth, patient number. Then it was hooked up to the IV Pump and connected. 235 millilitres over four hours.

I stared at the bag: "Collected 15 April 2019, due to expire 15 May 2019". I wondered who donated it on that Monday two weeks before. A man or a woman? Young or old? Which centre had they attended? Had they congratulated or rewarded themselves for their gift? I hoped so.

After 20 minutes, my dear little boy started to stir. He'd only had 19ml by then but it was already making a difference. A dusky warm colour was creeping into his complexion. Energy was reaching his cells again. By the time one hour had passed, he was sitting up, demanding food, drawing, playing I-spy and cracking jokes.

I assume if everyone could witness this miraculous transformation, we would all run to the blood bank and offer up our veins. By the end of the day, the bag of blood was empty and Larry was full of life again temporarily.

In August 2019, our son underwent a long-awaited bone marrow transplant.

From a pool of more than 30 million bone marrow donors worldwide, only three were a match, all from overseas.

Someone in Europe willingly, with no financial incentive or reward, booked into their local hospital and had stem cells sucked from their hip bones so that a stranger our son might live. An amazing act of generosity.

The sludgy burgundy bag arrived in Melbourne late at night on a commercial flight. Our little Larry had already undergone seven days of heavy chemotherapy in order to be ready to receive the cells. The last scraps of his immune system had been destroyed to make necessary space.

It was either the beginning, or the end of the road.

After a couple of months in isolation, Larry was discharged from hospital. A new beginning.

He is now six months post-transplant and doing well. He plays riotously with his twin brother and big sister. He no longer needs blood. He can make his own again, for now.

But many children at the Children's Cancer Centre cannot. They rely on platelets, plasma and blood to survive day-to-day. A shortage spells disaster.

Many are also relying on a bone marrow transplant for an ultimate cure. And due to travel bans and overwhelmed hospital systems globally, overseas bone marrow donors are now inaccessible indefinitely.

It is painful to imagine Larry's plight if the coronavirus occurred a year earlier.

Let's honour the tremendous courage of kids like Larry by showing ours. Make an appointment at Australia Red Cross Lifeblood today.

Give blood. Give your name to the bone marrow register. Give laughter, hope and life to these incredible kids.

Let's not let cancer treatment become another casualty of the coronavirus crisis.

Jessica Lake is a mother, writer, academic, and member of the Parent's Advisory Group of the Children's Cancer Centre at the Royal Children's Hospital, Melbourne.

Topics:covid-19,diseases-and-disorders,health,blood,children,family-and-children,community-and-society,melbourne-3000,australia

First posted April 12, 2020 05:00:59

Read more from the original source:
My son needed regular blood transfusions, but now coronavirus threatens the survival of children like him - ABC News

To Read More: My son needed regular blood transfusions, but now coronavirus threatens the survival of children like him – ABC News
categoriaSkin Stem Cells commentoComments Off on My son needed regular blood transfusions, but now coronavirus threatens the survival of children like him – ABC News | dataApril 12th, 2020
Read All

Adrenoleukodystrophy Market Structure and Its Segmentation for the Period 2017 2025 – Curious Desk

By daniellenierenberg

Adrenoleukodystrophy is also known as Adrenomyeloneuropathy or Schilder-Addison Complex, it is a hereditary condition that damages the myelin sheath (membrane surrounding nerve cells in your brain) and disrupts the breakdown process of long-chain fatty acids (VLCFA). Adrenoleukodystrophy is passed down from parents to their children in a form of X-linked genetic trait. The genetic trait causes deposition of very-long chain fatty acids in the body tissues due to impaired beta oxidation. Myelin sheath in central nervous system, the adrenal cortex and Ledydig cells in the testes are the most severely affected tissues. Adrenoleukodystrophy give rise to three major disease categories such as childhood cerebral form (observed between 4 to 8 years of age), adrenomyelopathy and impaired adrenal gland function (also known as Addison disease).

Request to Sample report @ https://www.persistencemarketresearch.com/samples/19747

The major symptoms observed in a childhood cerebral form adrenoleukodystrophy patient are muscle spasms, crossed eyes (strabismus), hearing loss, seizures and other disorders related with the nervous system. In adrenomyelopathy the patients are observed with difficulty in controlling urination, muscle weakness or leg stiffness, difficulties in thinking speed and lack of visual memory. In Addison disease or adrenal gland failure the major symptoms observed are coma, decreased apetite, skin pigmentation, loss of weight, muscle weakness and vomiting. According to Centers for Disease Control and Prevention (CDC), approximately 1 in 20,000 people suffer from X-linked adrenoleukodystrophy. The Office of Rare Diseases (ORD) of the National Institutes of Health (NIH) has listed Adrenoleukodystrophy as a rare disease. In addition to this, CDC also reported that adrenoleukodystrophy, is a subtype of adrenoleukodystrophy, affects less than 200,000 people in the U.S. population annually.

Request PMR insights on measuring the impact of COVID-19 coronavirus across industries.

The adrenoleukodystrophy is diagnosed primarily with plasma very long chain fatty acid (VLCFA) examination by application of gas chromatography and/or mass spectrometery. The other diagnostics methods include chromosome studies that are carried out to understand the mutation in ABCD 1 gene and magnetic resonance imaging (MRI) scan of head. Adrenoleukodystrophy is treated with dietary therapy, transplant, adrenal insufficiency and gene therapy.

The dietary therapy consists of prohibiting the patient for the intake of very-long chain fatty acids (VLCFA) and this is a supportive therapy to normalize the disease conditions of the patient. The transplants are performed with allogeneic hematopoietic stem cells that assist in the demyelination process where myelin sheath is restored and its deterioration is inhibited. In gene therapy appropriate vectors are selected and modified according to the normal ABCD 1 and later these are transplanted into patients bone marrow or stem cell transplant. Adrenal insufficiency is the treatment still under research and trials as this process is ineffective and needs assistance form hormonal replacement therapy. In some cases genetic counseling is recommended for prospective parents with a family history of X-linked adrenoleukodystrophy.

Request to View TOC @ https://www.persistencemarketresearch.com/toc/19747

The product pipeline of adrenoleukodystrophy undergoing phase III trials is as follows:

North America was observed to be the leading geography followed by Europe due to high prevalence rate, increasing social awareness and key players based in the same geography. Asia-Pacific and Rest of the World lack due to unavailability and inaccessibility of the diagnostic techniques, counseling bodies and modern treatments.

The key players involved in the adrenoleukodystrophy therapeutics market are ,

Adrenoleukodystrophy is a rare disease hence the companies involved in therapeutics market of disease are few in number.

For in-depth competitive analysis, buy [emailprotected] https://www.persistencemarketresearch.com/checkout/19747

Follow this link:
Adrenoleukodystrophy Market Structure and Its Segmentation for the Period 2017 2025 - Curious Desk

To Read More: Adrenoleukodystrophy Market Structure and Its Segmentation for the Period 2017 2025 – Curious Desk
categoriaSkin Stem Cells commentoComments Off on Adrenoleukodystrophy Market Structure and Its Segmentation for the Period 2017 2025 – Curious Desk | dataApril 12th, 2020
Read All

Autologous Stem Cell and Non-Stem Cell Based Therapies Market: Incredible Possibilities, Growth With Industry Study, Detailed Analysis And Forecast To…

By daniellenierenberg

The Autologous Stem Cell and Non-Stem Cell Based Therapies market research encompasses an exhaustive analysis of the market outlook, framework, and socio-economic impacts. The report covers the accurate investigation of the market size, share, product footprint, revenue, and progress rate. Driven by primary and secondary researches, the Autologous Stem Cell and Non-Stem Cell Based Therapies market study offers reliable and authentic projections regarding the technical jargon.

All the players running in the global Autologous Stem Cell and Non-Stem Cell Based Therapies market are elaborated thoroughly in the Autologous Stem Cell and Non-Stem Cell Based Therapies market report on the basis of proprietary technologies, distribution channels, industrial penetration, manufacturing processes, and revenue. In addition, the report examines R&D developments, legal policies, and strategies defining the competitiveness of the Autologous Stem Cell and Non-Stem Cell Based Therapies market players.

Request Sample Report @ https://www.marketresearchhub.com/enquiry.php?type=S&repid=2439434&source=atm

The major players profiled in this report include:U.S. STEM CELL, INC.Brainstorm Cell TherapeuticsCytoriDendreon CorporationFibrocellLion BiotechnologiesCaladrius BiosciencesOpexa TherapeuticsOrgenesisRegenexxGenzymeAntriaRegeneusMesoblastPluristem Therapeutics IncTigenixMed cell EuropeHolostemMiltenyi Biotec

The end users/applications and product categories analysis:On the basis of product, this report displays the sales volume, revenue (Million USD), product price, market share and growth rate of each type, primarily split into-Embryonic Stem CellResident Cardiac Stem CellsAdult Bone MarrowDerived Stem CellsUmbilical Cord Blood Stem Cells

On the basis on the end users/applications, this report focuses on the status and outlook for major applications/end users, sales volume, market share and growth rate of Autologous Stem Cell and Non-Stem Cell Based Therapies for each application, including-Neurodegenerative DisordersAutoimmune Diseases Cancer and TumorsCardiovascular Diseases

Make An EnquiryAbout This Report @ https://www.marketresearchhub.com/enquiry.php?type=E&repid=2439434&source=atm

Objectives of the Autologous Stem Cell and Non-Stem Cell Based Therapies Market Study:

The Autologous Stem Cell and Non-Stem Cell Based Therapies market research focuses on the market structure and various factors (positive and negative) affecting the growth of the market. The study encloses a precise evaluation of the Autologous Stem Cell and Non-Stem Cell Based Therapies market, including growth rate, current scenario, and volume inflation prospects, on the basis of DROT and Porters Five Forces analyses. In addition, the Autologous Stem Cell and Non-Stem Cell Based Therapies market study provides reliable and authentic projections regarding the technical jargon.

You can Buy This Report from Here @ https://www.marketresearchhub.com/checkout?rep_id=2439434&licType=S&source=atm

After reading the Autologous Stem Cell and Non-Stem Cell Based Therapies market report, readers can:

See the original post:
Autologous Stem Cell and Non-Stem Cell Based Therapies Market: Incredible Possibilities, Growth With Industry Study, Detailed Analysis And Forecast To...

To Read More: Autologous Stem Cell and Non-Stem Cell Based Therapies Market: Incredible Possibilities, Growth With Industry Study, Detailed Analysis And Forecast To…
categoriaCardiac Stem Cells commentoComments Off on Autologous Stem Cell and Non-Stem Cell Based Therapies Market: Incredible Possibilities, Growth With Industry Study, Detailed Analysis And Forecast To… | dataApril 12th, 2020
Read All

Atopy: Weighing Risk With the Possibility of Cure Using Hematopoietic Cell Transplantation – Hematology Advisor

By daniellenierenberg

Contraryto previous research, some patients with atopy who undergo allogeneichematopoietic cell transplantation (AHCT) may be cured even if the donor isatopic, according to research published in Bone Marrow Transplantation.

Investigatorsaimed to determine whether atopic disease could be cured or transferred fromdonor to recipient, as there is evidence, though unconfirmed, that AHCT caneither transfer atopy from donor to recipient when the donor has the conditionand the recipient does not (D+R-), or cure atopy in a recipient with thecondition when the donor does not have it (D-R+).

Of the 54 participants including in the study, the median age at transplant was 46 years (range, 4-64 years), one-third of patients had acute myeloid leukemia, and 50% had a human leukocyte antigenmatched sibling. The median donor age at transplant was 34 years (range, 7-60 years).

Amongall AHCT procedures included in this study, 18 (33%) had an atopic donor andrecipient (D+R+), 13 (24%) had a nonatopic donor and recipient (D-R-), 11(20.4%) had an atopic donor and nonatopic recipient, and 12 (22.2%) had anonatopic donor and an atopic recipient.

At afollow-up of at least 2-years post-HCT, 7 of 12 (58%) D-R+ patients becamenonatopic, while only 1 of 11 (9%) D+R- patients became atopic. While 11 of 13(85%) D-R- patients remained nonatopic, 11 of 18 (61%) D+R+ patients became nonatopic,as well.

Inconclusion, cure of atopy with HCT occurs in about half patients, albeitprobably not due to the replacement of atopic with nonatopic immune system butpossibly due to an immune reset analogous to that observed in some autoimmunedisease patients after autologous HCT, the authors concluded. They added thatprospective trials are needed to confirm these findings.

Reference

Whiteside S, Chin A, Tripathi G, et al. Curtability and transferability of atopy with allogeneic hematopoietic cell transplantation [published online March 30, 2020]. Bone Marrow Transplant. doi: 10.1038/s41409-020-0876-7

Read this article:
Atopy: Weighing Risk With the Possibility of Cure Using Hematopoietic Cell Transplantation - Hematology Advisor

To Read More: Atopy: Weighing Risk With the Possibility of Cure Using Hematopoietic Cell Transplantation – Hematology Advisor
categoriaBone Marrow Stem Cells commentoComments Off on Atopy: Weighing Risk With the Possibility of Cure Using Hematopoietic Cell Transplantation – Hematology Advisor | dataApril 10th, 2020
Read All

Germline mutation of MDM4, a major p53 regulator, in a familial syndrome of defective telomere maintenance – Science Advances

By daniellenierenberg

Abstract

Dyskeratosis congenita is a cancer-prone inherited bone marrow failure syndrome caused by telomere dysfunction. A mouse model recently suggested that p53 regulates telomere metabolism, but the clinical relevance of this finding remained uncertain. Here, a germline missense mutation of MDM4, a negative regulator of p53, was found in a family with features suggestive of dyskeratosis congenita, e.g., bone marrow hypocellularity, short telomeres, tongue squamous cell carcinoma, and acute myeloid leukemia. Using a mouse model, we show that this mutation (p.T454M) leads to increased p53 activity, decreased telomere length, and bone marrow failure. Variations in p53 activity markedly altered the phenotype of Mdm4 mutant mice, suggesting an explanation for the variable expressivity of disease symptoms in the family. Our data indicate that a germline activation of the p53 pathway may cause telomere dysfunction and point to polymorphisms affecting this pathway as potential genetic modifiers of telomere biology and bone marrow function.

TP53 is the gene most frequently mutated in human tumors (1), and germ lineinactivating p53 mutations cause the Li-Fraumeni syndrome of cancer predisposition (2). In addition, accelerated tumorigenesis has been associated with polymorphisms increasing the expression of MDM2 or MDM4, the essential p53 inhibitors (3, 4). Alterations of the p53/MDM2/MDM4 regulatory node are, thus, mainly known to promote cancer. Unexpectedly, however, we recently found that mice expressing p5331, a hyperactive mutant p53 lacking its C terminus, recapitulated the complete phenotype of patients with dyskeratosis congenita (DC) (5).

DC is a telomere biology disorder characterized by the mucocutaneous triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia; patients are also at very high risk of bone marrow failure, pulmonary fibrosis, and cancer, especially head and neck squamous cell carcinoma (HNSCC) and acute myeloid leukemia (AML) (6). Patients with DC are known to exhibit disease diversity in terms of age of onset, symptoms, and severity due to the mode of inheritance and causative gene (7, 8). DC is caused by germline mutations in genes encoding key components of telomere biology: the telomerase holoenzyme (DKC1, TERC, TERT, NOP10, and NHP2), the shelterin telomere protection complex (ACD, TINF2, and POT1), telomere capping proteins (CTC1 and STN1), and other proteins interacting with these cellular processes (RTEL1, NAF1, WRAP53, and PARN) (6). Twenty to 30% of affected individuals remain unexplained at the molecular level.

Our finding that p5331/31 mice were remarkable models of DC was initially unexpected for two reasons. First, an increased p53 activity was not expected to cause telomere dysfunction, given the well-accepted notion that p53 acts as the guardian of the genome. However, p53 is now known to down-regulate the expression of many genes involved in genome maintenance (5, 9, 10), and this might actually contribute to its toolkit to prevent tumor formation (11). Second, telomere biology diseases are usually difficult to model in mice because of differences in telomere length and telomerase expression between mice and humans. Mice that lack telomerase exhibited short telomeres only after three or four generations (G3/G4) of intracrosses (12, 13). However, mice with a telomerase haploinsufficiency and a deficient shelterin complex exhibited telomere dysfunction and DC features in a single generation (G1) (14). Because DC features were observed in G1 p5331/31 mice, we supposed that p53 might exert pleiotropic effects on telomere maintenance. Consistent with this, we found that murine p53 down-regulates several genes implicated in telomere biology (5, 9). Because some of these genes were also down-regulated by p53 in human cells (5, 9), our data suggested that an activating p53 mutation might cause features of DC in humans. However, this conclusion remained speculative in the absence of any clinical evidence.

Here, we report the identification of a germline missense mutation in MDM4, encoding an essential and specific negative regulator of p53, in a family presenting some DC-like phenotypic traits. We used a mouse model to demonstrate that this mutation leads to p53 activation, short telomeres, and bone marrow failure. Together, our results provide compelling evidence that a germline mutation affecting a specific p53 regulator may cause DC-like features in both humans and mice.

Family NCI-226 first enrolled in the National Cancer Institute (NCI) inherited bone marrow failure syndrome (IBMFS) cohort in 2008 (Fig. 1A and table S1). At the time, the proband (226-1) was 17 years of age and had a history of neutropenia, bone marrow hypocellularity, vague gastrointestinal symptoms, and chronic pain. His mother (226-4) also had intermittent neutropenia and a hypocellular bone marrow. Notably, his maternal aunt (226-7) had a history of melanoma and died at age 52 because of AML. The maternal aunts daughter (probands cousin, 226-8) had HNSCC at age 27 years, intermittent neutropenia, and bone marrow hypocellularity, while her son (probands cousin, 226-9) was diagnosed with metastatic HNSCC at 42 years of age. The probands father (226-3) was healthy with the exception of hemochromatosis. An IBMFS was suspected on the basis of the family history of cancer and neutropenia. Chromosome breakage for Fanconi anemia was normal, while lymphocyte telomeres were between the 1st and 10th percentiles in the proband and maternal cousin (226-8) (Fig. 1, B and C). The proband was tested for mutations in known DC-causing genes, and a TERT variant (p.W203S) was identified. Unexpectedly, however, the variant was found to be inherited from his father. TERT p.W203S is not present in gnomAD, but it is predicted to be tolerated by MetaSVM (15).

(A) Pedigree of family NCI-226. Arrow indicates proband. Cancer histories include oral squamous cell carcinoma for 226-8 at age 27 years and for 226-9 at age 42 years, and melanoma at 51 years and AML at 52 years for 226-7 (see table S1 for further details). 226-5 had lung cancer at age 69 years. 226-6 had non-Hodgkin lymphoma at age 91 years. In addition, four siblings of 226-6 had cancer: one with breast, two with lung, and one with ovary or uterus (not specified). Sequencing of 226-5, 226-6, 226-7, and 226-9 was not possible because of lack of available DNA. (B and C) Lymphocyte telomere lengths (TL) of study participants. Total lymphocyte telomere lengths are shown and were measured by flow cytometry with in situ hybridization. (B) Graphical depiction of telomere length in relation to age. Four individuals had telomeres measured twice. Legend is in (C). Percentiles (%ile) are based on 400 healthy individuals (50). (C) Age at measurement(s) and telomere length in kilobases. (D) Sequence of the MDM4 RING domain (residues 436 to 490) with secondary structure residues indicated (black boxes). The P-loop motif is highlighted in gray, and the mutated residue in red. (E) The mutant RING domain retains ATP-binding capacity. Wild-type (WT) and mutant (TM) glutathione S-transferase (GST)RING proteins, or GST alone, were incubated with 10 nM ATP and 5 Ci ATP-32P for 10 min at room temperature, filtered through nitrocellulose, and counted by liquid scintillation CPM, counts per minute. Results from two independent experiments. (F) The mutant MDM4 RING domain has an altered capacity to dimerize with the MDM2 RING. Two-hybrid assays were carried out as described (47). -LW, minus leucine and tryptophan; -LWHA, minus leucine, tryptophan, histidine and adenine; OD, optical density. Growth on the -LWHA medium indicates protein interaction, readily observed between MDM2 (M2-BD) and WT MDM4 (M4-AD WT) but faintly visible between MDM2 and MDM4T454M (M4-AD TM). (G) Impact of the mutation in transfected human cells. U2OS cells were transfected with an empty vector (EV) or an expression plasmid encoding a Myc-tagged MDM4 (WT or T454M) protein and then treated or not with cycloheximide (CHX) to inhibit protein synthesis, and protein extracts were immunoblotted with antibodies against Myc, p21, or actin. Bands were normalized to actin, and a value of 1 was assigned to cells transfected with the WT MDM4 expression plasmid (for Myc) or with the empty vector (for p21).

Since the TERT variant did not track with disease inheritance, whole-exome sequencing (WES) was performed to search for a causal gene. The whole-exome data were filtered by maternal autosomal inheritance and revealed three genes with heterozygous missense mutations potentially deleterious according to bioinformatics predictions: MDM4, KRT76, and REM1 (table S2). Given the limited knowledge of the function of KRT76 and REM1, and our prior knowledge of a DC-like phenotype in p5331/31 mice, we chose to focus on the mutation affecting MDM4 because it encodes a major negative regulator of p53. Although the T454M mutation does not affect the p53 interaction domain of MDM4, it might affect p53 regulation because it affects the MDM4 RING domain: Residue 454 is both part of a P-loop motif thought to confer adenosine triphosphate (ATP)binding capacity (16) and part of a strand important for MDM2-MDM4 heterodimerization (Fig. 1D) (17). The mutant RING domain had fully retained its capacity to bind ATP specifically (Fig. 1E and fig. S1A) but exhibited an altered capacity to interact with the MDM2 RING domain in a yeast two-hybrid assay (Fig. 1F). We next used transfection experiments to evaluate the consequences of this mutation on the full-length protein in human cells. We transfected U2OS cellsknown to have a functional but attenuated p53 pathway due to MDM2 overexpression (18)with either an empty vector or an expression plasmid encoding a Myc-tagged MDM4WT or MDM4T454M protein. Compared with cells transfected with the empty vector, cells transfected with a MDM4WT or a MDM4T454M expression plasmid exhibited decreased p21 levels, indicating MDM4-mediated p53 inhibition in both cases (Fig. 1G). However, the decrease in p21 levels was less pronounced in cells expressing MDM4T454M than in cells expressing MDM4WT (Fig. 1G) despite similar transfection efficiencies (fig. S1B). The lower expression levels of the MDM4T454M protein likely contributed to its decreased capacity to inhibit p53 (Fig. 1G). In this experimental setting, the treatment with cycloheximide did not reveal any significant difference in stability between the mutant and wild-type (WT) MDM4 proteins (Fig. 1G and quantification in fig. S1C), raising the possibility that the observed lower MDM4T454M protein levels might result from differences in mRNA translation efficiency. Together, these preliminary results argued for an impact of the mutation on MDM4 function, leading to p53 activation.

The MDM4 RING domain is remarkably conserved throughout evolution, e.g., with 91% identity between the RING domains of human MDM4 and mouse Mdm4 (19). Thus, we decided to create a mouse model to precisely evaluate the physiological impact of the human mutation. We used homologous recombination in embryonic stem (ES) cells to target the p.T454M mutation at the Mdm4 locus (Fig. 2A). Targeted recombinants were identified by long-range polymerase chain reaction (PCR) (Fig. 2B), confirmed by DNA sequencing (Fig. 2C), and the structure of the recombinant allele was further analyzed by Southern blots with probes located 5 and 3 of the targeted mutation (Fig. 2D). Recombinant ES clones were then microinjected into blastocysts to generate chimeric mice, and chimeras were mated with PGK-Cre mice to excise the Neo gene. PCR was used to verify transmission through the germ line of the Mdm4T454M (noted below Mdm4TM) mutation and to genotype the mouse colony and mouse embryonic fibroblasts (MEFs) (Fig. 2E). We first isolated RNAs from Mdm4TM/TM MEFs and sequenced the entire Mdm4 coding sequence: The Mdm4TM sequence was identical to the WT Mdm4 sequence except for the introduced missense mutation (not shown). Furthermore, like its human counterpart, the Mdm4 gene encodes two major transcripts: Mdm4-FL, encoding the full-length oncoprotein that inhibits p53, and Mdm4-S, encoding a shorter, extremely unstable protein (20, 21). We observed, in unstressed cells as well as in cells treated with Nutlin [a molecule that activates p53 by preventing Mdm2-p53 interactions (22) without altering Mdm4-p53 interactions (23, 24)], that the Mdm4TM mutation affected neither Mdm4-FL nor Mdm4-S mRNA levels (Fig. 2F). In Western blots, however, Mdm4-FL was the only detectable isoform, and it was expressed at lower levels in the mutant MEFs (Fig. 2G).

(A) Targeting strategy. Homologous recombination in ES cells was used to target the T454M mutation at the Mdm4 locus. For the Mdm4 WT allele, exons 9 to 11 are shown [black boxes, coding sequences; white box, 3 untranslated region (3UTR)] and Bam HI (BH) restriction sites. Above, the targeting construct contains the following: (i) a 2.9-kb-long 5 homology region encompassing exon 10, intron 10, and exon 11 sequences upstream the mutation; (ii) the mutation (asterisk) within exon 11; (iii) a 2.6-kb-long fragment encompassing the 3 end of the gene and sequences immediately downstream; (iv) a neomycin selection gene (Neo) flanked by loxP sequences (gray arrowheads) and an additional BH site; (v) a 2.1-kb-long 3 homology region containing sequences downstream Mdm4; and (vi) the Diphtheria toxin a gene (DTA) for targeting enrichment. (B to D) screening of G418-resistant ES clones as described in (A), with asterisks (*) indicating positive recombinants: (B) PCR with primers a and b; (C) sequencing after PCR with primers c and d: the sequence for codons 452 to 456 demonstrates heterozygosity at codon 454; (D) Southern blot of Bam HIdigested DNA with the 5 (left) or 3 (right) probe. (E) Examples of fibroblast genotyping by PCR with primers e and f. (F) The Mdm4T454M mutation does not alter Mdm4 mRNA levels. Mdm4-FL (left) and Mdm4-S (right) mRNAs were extracted from WT and Mdm4TM/TM MEFs before or after treatment for 24 hours with 10 M Nutlin, quantified using real-time PCR, and normalized to control mRNAs, and then the value in Nutlin-treated WT MEFs was assigned a value of 1. Results from five independent experiments and >4 MEFs per genotype. ns, not significant in a Students t test. (G) Decreased Mdm4 protein levels in Mdm4TM/TM MEFs. Protein extracts, prepared from MEFs treated as in (F), were immunoblotted with antibodies against Mdm4 or actin. Bands were normalized to actin, and then the values in Nutlin-treated WT cells were assigned a value of 1. p53P/P Mdm4E6/E6 MEFs do not express a full-length Mdm4 protein (20): They were loaded to unambiguously identify the Mdm4(-FL) band in the other lanes.

Mdm4TM/TM MEFs contained higher mRNA levels for the p53 targets p21(Cdkn1a) and Mdm2, indicating increased p53 activity (Fig. 3A). Consistent with this, Mdm4TM/TM MEFs exhibited increased p21 and Mdm2 protein levels (Fig. 3B and fig. S2). Moreover, Mdm4TM/TM MEFs prematurely ceased to proliferate when submitted to a 3T3 protocol (Fig. 3C), which also suggests an increased p53 activity. The mean telomere length was decreased by 11% in Mdm4TM/TM MEFs, and a subset of very short telomeres was observed in these cells, hence demonstrating a direct link between the Mdm4TM mutation, p53 activation, and altered telomere biology (Fig. 3D). In p5331/31 MEFs, subtle but significant decreases in expression were previously observed for several genes involved in telomere biology, and in particular, small variations in Rtel1 gene expression were found to have marked effects on the survival of p5331/31 mice (5, 9). Similarly, Mdm4TM/TM MEFs exhibited subtle but significant decreases in expression for Rtel1 and several other genes contributing to telomere biology (Fig. 3E). We previously showed that p53 activation correlates with an increased binding of the E2F4 repressor at the Rtel1 promoter (9). Hence, the decreased Rtel1 mRNA levels in Mdm4TM/TM MEFs most likely resulted from increased p53 signaling. Consistent with this, a further increase in p53 activity, induced by Nutlin, led to further decreases in Rtel1 mRNA and protein levels, in both WT and Mdm4TM/TM cells (fig. S3A). Recently, in apparent contradiction with our finding that p53 activation can cause telomere shortening (5), p53 was proposed to prevent telomere DNA degradation by inducing subtelomeric transcripts, including telomere repeat-containing RNA (TERRA) (25, 26), which suggested a complex, possibly context-dependent impact of p53 on telomeres (27). This led us to compare TERRA transcripts in WT and Mdm4TM/TM cells. Consistent with an earlier report (26), p53 activation led to increased TERRA at the mouse Xq subtelomeric region in WT cells (fig. S3B). However, Mdm4TM/TM cells failed to induce TERRA in response to stress (fig. S3B). Together, our data suggest that the telomere shortening observed in Mdm4TM/TM cells results from a p53-dependent decrease in expression of several telomere-related genes and, notably, Rtel1, a gene mutated in several families with DC (6). In addition, although evidence that altered TERRA levels can cause DC is currently lacking, we cannot exclude that an altered regulation of TERRA expression might contribute to telomere defects in Mdm4TM/TM cells.

(A) Quantification of p21 and Mdm2 mRNAs extracted from WT, Mdm4+/TM, and Mdm4TM/TM MEFs, treated or not for 24 hours with 10 M Nutlin. mRNA levels were quantified using real-time PCR and normalized to control mRNAs, and then the value in Nutlin-treated WT MEFs was assigned a value of 1. Results from 10 independent experiments. (B) Protein extracts, prepared from p53/, WT, and Mdm4TM/TM MEFs treated as in (A), were immunoblotted with antibodies against Mdm2, Mdm4, p53, p21, or actin. Bands were normalized to actin, and then the values in Nutlin-treated WT MEFs were assigned a value of 1. (C) Proliferation of MEFs in a 3T3 protocol. Each point is the average value of three independent MEFs. (D) Decreased telomere length in Mdm4TM/TM MEFs, as measured by quantitative FISH with a telomeric probe. Results from two MEFs per genotype, and 68 to 75 metaphases per MEF [means + 95% confidence interval (CI) are shown in yellow]. a.u., arbitrary units. (E) Telomere-related genes down-regulated in Mdm4TM/TM MEFs. mRNAs were extracted from unstressed WT and Mdm4TM//TM MEFs, quantified using real-time PCR, and normalized to control mRNAs, and the value in WT MEFs was assigned a value of 1. Results from >3 independent experiments and two MEFs per genotype. In relevant panels: P = 0.08, *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 by Students t (A, C at passage 7, and E) or Mann-Whitney (D) statistical tests.

Mdm4TM/TM mice were born in Mendelian proportions from Mdm4+/TM intercrosses (Fig. 4A) but were smaller than their littermates and died within 0 to 30 min after birth, with signs of severe respiratory distress (Fig. 4, B and C). Consistent with this, Mdm4TM/TM pups at postnatal day 0 (P0) appeared hypoxic (Fig. 4C), and their lungs were very small and dysfunctional (Fig. 4D). Thus, Mdm4TM/TM pups most likely died from neonatal respiratory failure. Tissues from Mdm4TM/TM pups exhibited increased p21 mRNA levels, suggesting an increase in p53 activity in these animals (fig. S4). We next used flowFISH (fluorescence in situ hybridization) with a telomere-specific probe to evaluate the impact of the mutation on telomere length in vivo. Lung cells from Mdm4TM/TM pups (and control G3 Terc/ mice) exhibited a 25% decrease in mean telomere length compared with cells from WT or Mdm4+/TM littermates, indicating altered telomere biology in G1 homozygous mutants (Fig. 4E). Notably, p53 loss or haploinsufficiency rescued the perinatal lethality of Mdm4TM/TM pups, illustrating that the premature death of Mdm4TM/TM mice likely resulted from increased p53 activity (Fig. 4F). However, p53/ and Mdm4TM/TM p53/ mice exhibited similar survival curves, with a fraction of the mice (respectively 4 of 12 and 1 of 6) succumbing to thymic lymphoma in less than 180 days. In contrast, after 180 days, all the p53+/ mice remained alive, whereas most Mdm4TM/TM p53+/ mice had died. Mdm4TM/TM p53+/ mice were smaller than their littermates (Fig. 4G) and exhibited hyperpigmentation of the footpads (Fig. 4H), and 120-day-old Mdm4TM/TM p53+/ mice exhibited abnormal hemograms (Fig. 4I). Furthermore, the Mdm4TM/TM p53+/ mice that died 60 to 160 days after birth exhibited bone marrow hypocellularity (Fig. 4J), indicating bone marrow failure as the likely cause for their premature death.

(A) Mendelian distribution of the offspring from 8 Mdm4+/TM intercrosses. (B) Mdm4TM/TM mice die at birth. Cohort sizes are in parentheses. (C) Mdm4TM/TM neonates are smaller than their littermates and appear hypoxic. (D) Lungs from Mdm4TM/TM P0 pups are hypoplastic and sink in phosphate-buffered saline owing to a lack of air inflation. (E) Flow-FISH analysis of P0 lung cells with a telomere-specific peptide nucleic acid (PNA) probe. Top: Representative results from a WT, a Mdm4+/TM, a Mdm4TM/TM, and a G3 Terc/ mouse are shown. Right: Green fluorescence (fluo.) with black histograms for cells without the probe (measuring cellular autofluorescence) and green histograms for cells with the probe. The shift in fluorescence intensity is smaller in Mdm4TM/TM and Terc/ cells (c or d < a or b), indicating reduced telomere length. Left: Propidium iodide (PI) fluorescence histograms are superposed for cells with or without the probe. Below: Statistical analysis of green fluorescence shifts (see Materials and Methods). Means + 95% CI are shown; data are from two to three mice and >3800 cells per genotype. (F) Impact of decreased p53 activity on Mdm4TM/TM animals. Cohort sizes are in parentheses. (G) Examples of littermates with indicated genotypes. (H) Hind legs of mice with indicated genotypes. (I) Mdm4TM/TM p53+/ mice exhibit abnormal hemograms. Counts for white blood cells (WBC), red blood cells (RBC), and platelets (PLT) for age-matched (120 days old) animals are shown. (J) Hematoxylin and eosin staining of sternum sections from WT and Mdm4TM/TM p53+/ mice. In relevant panels: ns, not significant; *P < 0.05, ***P < 0.001, and ****P < 0.0001 by Mantel-Cox (B and F), Students t (C, D, G, and I), or Mann-Whitney (E) statistical tests. Photo credits: E.T. and R.D., Institut Curie (C, G, and H); R.D., Institut Curie (D).

Although Mdm4TM/TM MEFs and mice were useful to demonstrate that the Mdm4T454M mutation leads to p53 activation and short telomeres, a detailed analysis of Mdm4+/TM mice appeared more relevant to model the NCI-226 family, in which all affected relatives were heterozygous carriers of the MDM4T454M mutation. Unlike Mdm4TM/TM mice, most Mdm4+/TM animals remained alive 6 months after birth and had no apparent phenotype, similarly to WT mice (Fig. 5A). This was consistent with our analyses in fibroblasts because Mdm4+/TM MEFs behaved like WT cells in a 3T3 proliferation assay (Fig. 3C). However, p53 target genes appeared to be transactivated slightly more efficiently in Mdm4+/TM than in WT cells (Fig. 3A), and 30% of Mdm4+/TM mice exhibited a slight hyperpigmentation of the footpads, suggesting a subtle increase in p53 activity (Fig. 5B). We reasoned that a further, subtle increase in p53 activity might affect the survival of Mdm4+/TM mice. We tested this hypothesis by mating Mdm4+/TM animals with p53+/31 mice. p53+/31 mice were previously found to exhibit a slight increase in p53 activity and to remain alive for over a year (5). Notably, unlike Mdm4+/TM or p53+/31 heterozygous mice, Mdm4+/TM p53+/31 compound heterozygotes died in less than 3 months (Fig. 5A) and exhibited many features associated with strong p53 activation. Mdm4+/TM p53+/31 mice exhibited intense skin hyperpigmentation (Fig. 5C), were much smaller than their littermates (Fig. 5D), and exhibited heart hypertrophy (Fig. 5E) and thymic hypoplasia (Fig. 5F) and the males had testicular hypoplasia (Fig. 5G). Bone marrow failure was the likely cause for the premature death of Mdm4+/TM p53+/31 mice, as indicated by abnormal hemograms of 18-day-old (P18) compound heterozygotes (Fig. 5H) and bone marrow hypocellularity in the sternum sections of moribund Mdm4+/TM p53+/31 animals (Fig. 5I). We next used flow-FISH to analyze telomere length in the bone marrow cells of P18 WT, Mdm4+/TM, p53+/31, and Mdm4+/TM p53+/31 mice. We found no significant difference between telomere lengths in cells from five WT and three Mdm4+/TM mice with normal skin pigmentation, whereas cells from two Mdm4+/TM mice with increased skin pigmentation (or from p53+/31 mice) exhibited marginal (5 to 7%) decreases in mean telomere length. Notably, in G1 Mdm4+/TM p53+/31 cells, the average telomere length was decreased by 34% (Fig. 5J). Together, these results demonstrate that Mdm4+/TM mice are hypersensitive to subtle increases in p53 activity. Consistent with this, Mdm4+/TM p53+/31 MEFs also exhibited increased p53 signaling and accelerated proliferation arrest in a 3T3 protocol (fig. S5). In sum, the comparison between Mdm4TM/TM and Mdm4TM/TM p53+/ mice, or between Mdm4+/TM and Mdm4+/TM p53+/31 animals, indicated that subtle variations in p53 signaling had marked effects on the phenotypic consequences of the Mdm4T454M mutation (table S3).

(A) Impact of increased p53 activity on Mdm4+/TM animals. Cohort sizes are in parentheses. (B) Footpads from Mdm4+/TM mice appear normal (top) or exhibit a subtle increase in pigmentation (bottom). (C) Mdm4+/TM p53+/31 mice exhibit strong skin hyperpigmentation. (D) Mdm4+/TM p53+/31 mice are smaller than age-matched WT mice. (E to G) Mdm4+/TM p53+/31 mice exhibit heart hypertrophy (E) as well as thymic (F) and testicular (G) hypoplasia. (H) Mdm4+/TM p53+/31 mice exhibit abnormal hemograms. Counts for white blood cells, red blood cells, and platelets for five age-matched (P18) animals per genotype are shown. (I) Hematoxylin and eosin staining of sternum sections from mice of the indicated genotypes. (J) Flow-FISH analysis of P18 bone marrow cells with a telomere-specific PNA probe. Top: Representative results for a WT, a Mdm4+/TM with normal skin pigmentation (nsp), a Mdm4+/TM with increased footpad skin pigmentation (isp), a p53+/31, and a Mdm4+/TM p53+/31 mouse are shown; black histograms, cells without the probe; green histograms, cells with the probe. The smallest shift in fluorescence intensity (e) was observed with Mdm4+/TM p53+/31 cells. Bottom: Statistical analysis of green fluorescence shifts. Means + 95% CI are shown; data are from >1500 cells per genotype. In relevant panels: ns, not significant; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 by Mantel-Cox (A), Students t (D and E to H), or Mann-Whitney (J) statistical tests. Photo credits: R.D. and P.L., Institut Curie (B); E.T. and R.D., Institut Curie (C and D).

The carriers of the MDM4T454M mutation exhibited considerable heterogeneity in their phenotypes (Fig. 1 and table S1). The data from our mouse model suggested that variations in p53 activity might account for the variable expressivity and penetrance of clinical features among the NCI-226 MDM4+/T454M relatives. Hence, we analyzed nine known common polymorphisms reported to affect p53 activity and tumorigenesis (four at the TP53 locus, two at the MDM2 locus, and three at the MDM4 locus) (3,4,2832). Among the four MDM4+/T454M relatives, the proband (NCI-226-1) is more difficult to interpret because the potential contribution of the TERT p.W203S variant to his phenotype cannot be ruled out (even though it appears unlikely according to in silico predictions). The MDM4 allele encoding the mutant protein (p.T454M) appears associated with the C allele of single-nucleotide polymorphism (SNP) rs4245739, the G allele of SNP rs11801299, and the G allele of SNP rs1380576 (Fig. 6A). These three MDM4 variant alleles are associated with increased p53 activity (4,32) and might, thus, synergize with the MDM4T454M mutation in this family.

(A) Genotyping of polymorphisms that may affect the p53 pathway. The SNPs rs1800371 and rs1042522 modify the p53 protein sequence (28,29), whereas rs17878362 and rs17880560 are singlets (A1) or doublets (A2) of G-rich sequences in noncoding regions of TP53 that affect p53 expression (30). SNPs rs117039649 and rs2279744, in the MDM2 promoter, affect MDM2 mRNA levels (3,31). Three SNPs are at the MDM4 locus: rs4245739 in the 3UTR region affects MDM4 protein levels (4), whereas rs11801299 and rs1380576 were associated with an increased risk of developing retinoblastoma (32), a cancer type with frequent MDM4 alterations (51). Polymorphisms that differ among family members are in bold, with the allele (or haplotype) associated with increased p53 activity in green (because it may synergize with the effects of the MDM4T454M mutation). Alleles (or haplotypes) for which there is evidence of decreased p53 activity, or for which the effect is uncertain, are highlighted in red or blue, respectively. Please note that the clinical effects of the TP53 rs1042522 SNP have recently been contested (33), so that all alleles for this SNP were labeled in blue. MAF, minor allele frequency reported for all gnomAD populations combined. https://gnomad.broadinstitute.org (52). (B) Comparative analysis of primary fibroblasts from family members 226-4 and 226-8. p21 and RTEL1 mRNAs, extracted from cells from relatives NCI 226-4 and NCI 226-8 or two unrelated patients with DC carrying a TINF2 or a TERT mutation, were quantified using real-time PCR, normalized to control mRNAs, and then expressed relative to the mean values in TINF2 and TERT mutant cells. ns, not significant, **P < 0.01 and ***P < 0.001 in a Students t test.

The probands affected cousin (226-8) exhibited a very early onset of disease, with lymphocyte telomere length within or below the first percentile of age-matched control participants and tongue squamous cell carcinoma at age 27 (Fig. 1 and table S1). The WT MDM4 allele of 226-8 carried the rs4245739 C, the rs11801299 G, and the rs1380576 G variants associated with increased p53 activity. This suggests a potential disease-modifying effect of these MDM4 SNPs. In contrast, the probands mother (226-4) was much less severely affected, with telomere length between the 10th and 50th percentiles (Fig. 1). Although we cannot rule out that disease anticipation might contribute to her milder phenotype, note that her WT MDM4 allele carried variants that might correlate with decreased p53 activity and could antagonize the MDM4T454M mutation (rs4245739 A, rs11801299 A, and rs1380576 C; Fig. 6A). Family members 226-4 and 226-8 shared the same genotypes for all the other tested variants, except for TP53 rs1042522, a SNP first reported to affect apoptotic or cell cycle arrest responses (28), but with a clinical effect that now appears controversial (33). The probands sister (226-2), with a B cell deficiency and telomere lengths around the 10th percentile, also appeared less affected than 226-8. All the tested variants at the MDM2 and MDM4 loci were identical between 226-2 and 226-8. However, unlike 226-8, 226-2 exhibited a TP53 allele with an A1A1 haplotype for variants rs17878362 and rs17880560 that might decrease p53 activity (30) and antagonize the effects of the MDM4T454M mutation (Fig. 6A).

We had primary fibroblasts available for two of these family members, 226-4 and 226-8, allowing us to directly assess the functional effect of the MDM4T454M variant in these cells. These fibroblasts were grown in parallel with primary fibroblasts from patients with DC carrying either a TINF2K280E mutation or a TERTP704S mutation, and mRNA levels for p21 and RTEL1 were quantified. In agreement with the notion that a MDM4T454M heterozygous mutation activates p53 signaling in NCI-226 family members, fibroblasts from both 226-4 and 226-8 exhibited increased p21 mRNA levels compared with TINF2 or TERT mutant cells (Fig. 6B). However, cells from 226-4 only exhibited a 2-fold increase in p21 levels, whereas a 12-fold increase was observed for cells from 226-8, consistent with the notion that SNPs affecting the p53 pathway might counteract (for 226-4) or strengthen (for 226-8) the effect of the MDM4T454M mutation. Furthermore, we previously showed that RTEL1 mRNA levels are down-regulated upon p53 activation in human cells (5). RTEL1 mRNA levels appeared normal in cells from 226-4 but were markedly decreased in cells from 226-8, raising the possibility that a threshold in p53 activation might be required to affect RTEL1 expression (Fig. 6B).

Although MDM4 is primarily known for its clinical relevance in cancer biology, our study shows that a germline missense MDM4 mutation may cause features suggestive of DC. In humans, the MDM4 (p.T454M) mutation was identified in this family with neutropenia, bone marrow hypocellularity, early-onset tongue SCC, AML, and telomeres between the 1st and 10th percentiles in the younger generation. In mice, the same Mdm4 mutation notably correlated with increased p53 activity, short telomeres, and bone marrow failure. In both human transfected cells and MEFs, the mutant protein was expressed at lower levels than its WT counterpart, likely contributing to increased p53 activity. Together, these results demonstrate the importance of the MDM4/p53 regulatory axis on telomere biology and DC-like features in both species. Notably, p5331/31 mice were previously found to phenocopy DC (5), but whether this finding was relevant to human disease had remained controversial. When a mutation in PARN was found to cause DC (34), it first appeared consistent with the p5331 mouse model because PARN, the polyadenylate-specific ribonuclease, had been proposed to regulate p53 mRNA stability (35). However, whether PARN regulates the stability of mRNAs is now contested (36). Rather, PARN would regulate the levels of over 200 microRNAs, of which only a few might repress p53 mRNA translation (37). Furthermore, PARN regulates TERC, the telomerase RNA component (38), and TERC overexpression increased telomere length in PARN-deficient cells (39). Thus, whether a germline mutation that specifically activates p53 can cause DC-like features remained to be demonstrated in humans, and our report provides compelling evidence for this, because unlike PARN, MDM4 is a very specific regulator of p53.

A germline antiterminating MDM2 mutation was recently identified in a patient with a Werner-like syndrome of premature aging. Although multiple mechanisms might contribute to the clinical features in that report, a premature cellular senescence resulting from p53 hyperactivation was proposed to play a major role in his segmental progeroid phenotype (40). In that regard, our finding that increased p53 activity correlates with short telomeres appears relevant because telomere attrition is a primary hallmark of aging, well known to trigger cellular senescence (41). Furthermore, germline TP53 frameshift mutations were recently reported in two patients diagnosed with pure red blood cell aplasia and hypogammaglobulinemia, resembling but not entirely consistent with Diamond Blackfan anemia (DBA) (42). In addition to the pure red cell aplasia diagnostic of DBA, those patients were found to exhibit relatively short telomeres (although not as short as telomeres from patients with DC), which may also seem consistent with our results. Our finding of an MDM4 missense mutation in a DC-like family, together with recent reports linking an antiterminating MDM2 mutation to a Werner-like phenotype and TP53 frameshift mutations to DBA-like features, indicates that the clinical impact of germline mutations affecting the p53/MDM2/MDM4 regulatory network is just emerging. An inherited hyperactivation of the p53 pathwayvia a germline TP53, MDM2, or MDM4 mutationmay thus cause either DBA, Werner-like, or DC-like features, but additional work will be required to determine whether mutations in any of these three genes can cause any of these three syndromes. Likewise, several mouse models have implicated p53 deregulation in features of other developmental syndromes including the CHARGE, Treacher-Collins, Waardenburg, or DiGeorge syndrome (43), and it will be important to know whether germline mutations in TP53, MDM2, or MDM4 may cause these additional syndromes in humans.

Heterozygous Mdm4+/TM mice appeared normal but were hypersensitive to variations in p53 activity, and, perhaps most notably, Mdm4+/TM p53+/31 compound heterozygous mice rapidly died from bone marrow failure. Thus, the p5331 mutation acted as a strong genetic modifier of the Mdm4TM mutation. It is tempting to speculate that similarly, among the NCI-226 family members heterozygous for the MDM4T454M allele, differences in the severity of phenotypic traits (e.g., lymphocyte telomere length and bone marrow cellularity) may result, in part, from modifiers affecting the p53 pathway and synergize or antagonize with the effects of the MDM4T454M mutation. To search for potentially relevant modifiers, we looked at nine polymorphisms at the TP53, MDM2, and MDM4 loci that were previously reported to affect p53 activity. Notably, we found that the family member most severely affected (226-8, the probands cousin) carried a TP53 haplotype, as well as SNPs on the WT MDM4 allele, that might synergize with the effects of the MDM4T454M mutation. Conversely, a TP53 haplotype for the probands sister (226-2), or SNPs at the WT MDM4 locus for the probands mother (226-4), might antagonize the impact of MDM4T454M allele. Consistent with this, primary fibroblasts from 226-4 and 226-8 exhibited increased p53 activity, but p53 activation was much stronger in cells from 226-8. Our data, thus, appear consistent with the existence of genetic modifiers at the TP53 and MDM4 loci that may affect DC-like phenotypic traits among family members carrying the MDM4 (p.T454M) mutation. However, this remains speculative given the small number of individuals that could be analyzed. Furthermore, nonexonic variants affecting other genes might also contribute to DC-like traits (44). Last, the TP53 and MDM4 polymorphisms considered here were previously evaluated for their potential impact on tumorigenic processes, rather than DC-like traits such as telomere length or bone marrow hypocellularity. Our data suggest that polymorphisms at the TP53 and MDM4 (and possibly MDM2) loci should be evaluated for their potential impact on bone marrow function and telomere biology.

The individuals in this study are participants in an Institutional Review Boardapproved longitudinal cohort study at the NCI entitled Etiologic Investigation of Cancer Susceptibility in Inherited Bone Marrow Failure Syndromes (www.marrowfailure.cancer.gov, ClinicalTrials.gov NCT00027274) (7). Patients and their family members enrolled in 2008 and completed detailed family history and medical history questionnaires. Detailed medical record review and thorough clinical evaluations of the proband, his sister, parents, and maternal cousin were conducted at the National Institutes of Health (NIH) Clinical Center. Telomere length was measured by flow cytometry with in situ hybridization (flow-FISH) (45) in leukocytes of all patients and family members reported. DNA was extracted from whole blood using standard methods. DNA was not available from 226-7 or 226-9 (Fig. 1). Given the time frame of participant enrollment, Sanger sequencing of DKC1, TINF2, TERT, TERC, and WRAP53 was performed first, followed by exome sequencing.

WES of blood-derived DNA for family NCI-226 was performed at the NCIs Cancer Genomics Research Laboratory as previously described (46). Exome enrichment was performed with NimbleGens SeqCap EZ Human Exome Library v3.0 + UTR (Roche NimbleGen Inc., Madison, WI, USA), targeting 96 Mb of exonic sequence and the flanking untranslated regions (UTRs) on an Illumina HiSeq. Annotation of each exome variant locus was performed using a custom software pipeline. WES variants of interest were identified if they met the following criteria: heterozygous in the proband, his mother, and maternal cousin; nonsynonymous; had a minor allele frequency <0.1% in the Exome Aggregation Consortium databases; and occurred <5 times in our in house database of 4091 individuals. Variants of interest were validated to rule out false-positive findings using an Ion 316 chip on the Ion PGM Sequencer (Life Technologies, Carlsbad, CA, USA).

Primers flanking the MDM4 RING domain were used to amplify RING sequences, and PCR products were cloned (or cloned and mutagenized) in the pGST-parallel2 plasmid. Glutathione S-transferase (GST) fusion proteins were expressed in BL21 (DE3) cells. After induction for 16 hours at 20C with 0.2 mM IPTG (isopropyl--d-thiogalactopyranoside), soluble proteins were extracted by sonication in lysis buffer [50 mM tris (pH 7.0), 300 mM LiSO4, 1 mM dithiothreitol (DTT), 0.5 mM phenylmethylsulfonyl fluoride (PMSF), 0.2% NP-40, complete Protease inhibitors (Roche) 1]. The soluble protein fraction was incubated with Glutathione Sepharose beads (Pharmacia) at 4C for 2 hours, and the bound proteins were washed with 50 mM tris (pH 7.0), 300 mM LiSO4, and 1 mM DTT and then eluted with an elution buffer [50 mM tris-HCl (pH 7.5), 300 mM NaCl, 1 mM DTT, and 15 mM glutathione]. WT and mutant GST-RING proteins (0, 1, 2, 4, or 8 g) or GST alone (0 or 8 g) was incubated with 10 nM ATP and 5 Ci ATP-32P for 10 min at room temperature, filtered through nitrocellulose, and counted by liquid scintillation. Alternatively, 7 g of either WT or mutant GST-RING proteins was incubated with 5 Ci ATP-32P for 10 min at room temperature and increasing amounts (0, 0.02, 2, 20, and 200 M) of ATP or guanosine triphosphate (GTP), filtered through nitrocellulose, and counted by liquid scintillation.

The yeast two-hybrid assays were performed as described (47). Briefly, MDM4 and MDM2 RING open reading frames were cloned in plasmids derived from the two-hybrid vectors pGADT7 (Gal4-activating domain) and pGBKT7 (Gal4-binding domain) creating N-terminal fusions and transformed in yeast haploid strains Y187 and AH109 (Clontech). Interactions were scored, after mating and diploid selection on dropout medium without leucine and tryptophan, as growth on dropout medium without leucine, tryptophan, histidine, and adenine.

U2OS cells (106) were transfected by using Lipofectamine 2000 (Invitrogen) with pCDNA3.1 (6 g), or 5 106 cells were transfected with 30 g of pCDNA3.1-MycTag-MDM4WT or pCDNA3.1-MycTag-MDM4TM. Twenty-four hours after transfection, cells were treated with cycloheximide (50 g/ml; Sigma-Aldrich, C4859), then scratched in phosphate-buffered saline (PBS) after 2, 4, or 8 hours, pelleted, and snap frozen in liquid nitrogen before protein or RNA extraction with standard protocols.

The targeting vector was generated by recombineering from the RP23-365M5 BAC (bacterial artificial chromosome) clone (CHORI BACPAC Resources) containing mouse Mdm4 and downstream sequences of C57Bl6/J origin. A loxP-flanked neomycin cassette (Neo) and a diphtheria toxin gene (DTA) were inserted downstream of the Mdm4 gene, respectively, for positive and negative selections, and a single-nucleotide mutation encoding the missense mutation T454M (TM) was targeted in the exon 11 of Mdm4. The targeting construct was fully sequenced before use.

CK-35 ES cells were electroporated with the targeting construct linearized with Not I. Recombinant clones were identified by long-range PCR, confirmed by Southern blot, PCR, and DNA sequencing (primer sequences in table S4). Two independent recombinant clones were injected into blastocysts to generate chimeras, and germline transmission was verified by genotyping their offspring. Reverse transcription PCR (RT-PCR) of RNAs from Mdm4TM/TM MEFs showed that the mutant complementary DNA (cDNA) differed from an Mdm4 WT sequence only by the engineered missense mutation. The genotyping of p53+/, p53+/31, and G3 Terc/ mice was performed as previously described (5, 12). All experiments were performed according to Institutional Animal Care and Use Committee regulations.

MEFs isolated from 13.5-day embryos were cultured in a 5% CO2 and 3% O2 incubator, in Dulbeccos modified Eagles medium GlutaMAX (Gibco), with 15% fetal bovine serum (Biowest), 100 M 2-mercaptoethanol (Millipore), 0.01 mM Non-Essential Amino Acids, and penicillin/streptavidin (Gibco) for five or fewer passages, except for 3T3 experiments, performed in a 5% CO2 incubator for seven passages. Cells were treated for 24 hours with 10 M Nutlin 3a (Sigma-Aldrich) (22) or 15 M cisplatin (Sigma-Aldrich). Primary human fibroblasts at low passage (p.2 for TINF2K280E, p.3 for NCI-226-4 and NCI-226-8, and p.4 for TERTP704S) were thawed and cultured in fibroblast basal medium (Lonza) with 20% fetal calf serum, l-glutamin, 10 mM Hepes, penicillin/streptavidin, and gentamicin before quantitative PCR (qPCR) analysis.

Total RNA, extracted using NucleoSpin RNA II (Macherey-Nagel), was reverse transcribed using SuperScript IV (Invitrogen), with, for TERRA quantification, a (CCCTAA)4 oligo as described (48). Real-time qPCRs were performed with primer sequences as described (5, 9, 48) on a QuantStudio using Power SYBR Green (Applied Biosystems).

Protein detection by immunoblotting was performed using antibodies against Mdm2 (4B2), Mdm4 (M0445; Sigma-Aldrich), p53 (AF1355, R&D Systems), actin (A2066; Sigma-Aldrich), p21 (F5; Santa Cruz Biotechnology), Myc-Tag (SAB2702192; Sigma-Aldrich), and Rtel1 (from J.-A.L.-V.). Chemiluminescence revelation was achieved with SuperSignal West Dura (Perbio). Bands of interest were quantified by using ImageJ and normalized with actin.

Cells were treated with colcemide (0.5 g/ml) for 1.5 hours, submitted to hypotonic shock, fixed in an (3:1) ethanol/acetic acid solution, and dropped onto glass slides. Quantitative FISH was then carried out as described (5) with a TelC-Cy3 peptide nucleic acid (PNA) probe (Panagene). Images were acquired using a Zeiss Axioplan 2, and telomeric signals were quantified with iVision (Chromaphor).

Flow-FISH with mouse cells was performed as described (45). For each animal, either the lungs were collected or the bone marrow from two tibias and two femurs was collected and red blood cells were lysed; then, 2 106 cells were fixed in 500 l of PNA hybridization buffer [70% deionized formamide, 20 mM tris (pH 7.4), and 0.1% Blocking reagent; Roche] and stored at 20C. Either nothing (control) or 5 l of probe stock solution was added to cells [probe stock solution: 10 M TelC-FAM PNA probe (Panagene), 70% formamide, and 20 mM tris (pH 7.4)], and samples were denatured for 10 min at 80C before hybridization for 2 hours at room temperature. After three washes, cells were resuspended in PBS 1, 0.1% bovine serum albumin, ribonuclease A (1000 U/ml), and propidium iodide (12.5 g/ml) and analyzed with an LSR II fluorescence-activated cell sorter. WT and G3 Terc/ mice were included in all flow-FISH experiments, respectively, as controls of normal and short telomeres. For fluorescence shift analyses, the green histograms (corresponding to cells with the telomeric probe) were sliced into 18 windows of equal width and numbered 0 to 17 according to their distance from the median value in cells without the probe, and the number of cells in each window was quantified with ImageJ. The data from two to five mice per genotype were typically used to calculate mean telomere lengths, expressed relative to the mean in WT cells.

Organs were fixed in formol 4% for 24 hours and then ethanol 70% and embedded in paraffin wax. Serial sections were stained with hematoxylin and eosin using standard procedures (49). For hemograms, 100 l of blood from each animal was recovered retro-orbitally in a 10-l citrate-concentrated solution (S5770; Sigma-Aldrich) and analyzed using an MS9 machine (Melet Schloesing Laboratoires).

DNA extracted from Epstein-Barr virustransformed lymphocytes of NCI-226 family members was amplified with primers flanking nucleotide polymorphisms of interest (primer sequences in table S5), and then PCR products were analyzed by Sanger DNA sequencing.

Analyses with Students t, Mann-Whitney, or Mantel-Cox statistical tests were performed by using GraphPad Prism, and values of P < 0.05 were considered significant.

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acknowledgments: We are grateful to the family for valuable contributions to this study. We thank I. Grandjean, C. Caspersen, A. Fosse, and M. Garcia from the Animal Facility, C. Alberti and C. Roulle from the Transgenesis Platform, M. Richardson and A. Nicolas from the Pathology Service, and Z. Maciorowski from the Cell-Sorting Facility of the Institut Curie. We thank A. Chor for help with qPCRs, A. Pyanitskaya, C. Adam, V. Borde, M. Schertzer, and M. Perderiset for plasmids and technical advices, and A. Fajac for comments on the manuscript. F.T. would like to acknowledge the talent, kindness, and loyal support of I. Simeonova and S.J., two exceptional PhD students whose pioneering work led to this study. Funding: The Genetics of Tumor Suppression laboratory received funding from the Ligue Nationale contre le Cancer (Labellisation 2014-2018 and Comit Ile-de-France), the Fondation ARC and the Gefluc. PhD students were supported by fellowships from the Ministre de lEnseignement Suprieur et de la Recherche (to S.J., E.T., and R.D.), the Ligue Nationale contre le Cancer (to S.J.), and the Fondation pour la Recherche Mdicale (to E.T.). The work of S.A.S., N.G., and B.P.A. was supported by the intramural research program of the Division of Cancer Epidemiology and Genetics, NCI, and the NIH Clinical Center. Author contributions: V.L. created the Mdm4T454M mouse model, genotyped mouse cohorts, and performed transfections, yeast two-hybrid assays, protein purifications, and molecular cloning. E.T., R.D., and V.L. managed mouse colonies. E.T., R.D., and P.L. performed mouse anatomopathology. I.D., E.T., R.D., F.T., and J.-A.L.-V. determined mouse telomere lengths. V.L. and S.J. genotyped human polymorphisms and analyzed human fibroblasts. E.T. and R.D. genotyped MEFs and performed 3T3 assays. V.L., R.D., and E.T. performed Western blots. E.T., R.D., V.L., S.J., and P.L. performed qPCRs. B.B. and V.L. performed ATP-binding assays. B.P.A. supervised the NCI IBMFS study. N.G. and S.A.S. evaluated study participants. S.A.S. analyzed the exome sequencing data. F.T. and S.A.S. supervised the project and wrote the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors. The human samples can be provided by S.A.S. pending scientific review and a completed material transfer agreement. Requests for human cells should be submitted to S.A.S.

Continue reading here:
Germline mutation of MDM4, a major p53 regulator, in a familial syndrome of defective telomere maintenance - Science Advances

To Read More: Germline mutation of MDM4, a major p53 regulator, in a familial syndrome of defective telomere maintenance – Science Advances
categoriaBone Marrow Stem Cells commentoComments Off on Germline mutation of MDM4, a major p53 regulator, in a familial syndrome of defective telomere maintenance – Science Advances | dataApril 10th, 2020
Read All

Stem Cells Market Expected to Boost the Global Industry Growth in the Near Future – Germany English News

By daniellenierenberg

Advance Market Analyticsreleased the research report ofGlobal Stem CellsMarket, offers a detailed overview of the factors influencing the global business scope.Global Stem Cells Market research report shows the latest market insights with upcoming trends and breakdown of the products and services.The report provides key statistics on the market status, size, share, growth factors of the Global Stem Cells.This Report covers the emerging players data, including: competitive situation, sales, revenue and global market.

Free Sample Report + All Related Graphs & Charts @ https://www.advancemarketanalytics.com/sample-report/72815-global-stem-cells-market-1

The stem cell is used for treating chronic diseases such as cardiovascular disorders, cancer, diabetes, and others. Growing research and development in stem cell isolation techniques propelling market growth. For instance, a surgeon from Turkey developed a method for obtaining stem cells from the human body without enzymes which are generally used for the isolation of stem cells. Further, growing healthcare infrastructure in the developing economies and government spending on the life science research and development expected to drive the demand for stem cell market over the forecasted period.

The Global Stem Cellsis segmented by following Product Types:

Type (Adult Stem Cells (Neuronal, Hematopoietic, Mesenchymal, Umbilical Cord, Others), Human Embryonic Stem Cells (hESC), Induced Pluripotent Stem Cells, Very Small Embryonic-Like Stem Cells), Application (Regenerative Medicine (Neurology, Orthopedics, Oncology, Hematology, Cardiovascular and Myocardial Infraction, Injuries, Diabetes, Liver Disorder, Incontinence, Others), Drug Discovery and Development), Technology (Cell Acquisition (Bone Marrow Harvest, Umbilical Blood Cord, Apheresis), Cell Production (Therapeutic Cloning, In-vitro Fertilization, Cell Culture, Isolation), Cryopreservation, Expansion and Sub-Culture), Therapy (Autologous, Allogeneic)

Region Included are: North America, Europe, Asia Pacific, Oceania, South America, Middle East & Africa

Country Level Break-Up: United States, Canada, Mexico, Brazil, Argentina, Colombia, Chile, South Africa, Nigeria, Tunisia, Morocco, Germany, United Kingdom (UK), the Netherlands, Spain, Italy, Belgium, Austria, Turkey, Russia, France, Poland, Israel, United Arab Emirates, Qatar, Saudi Arabia, China, Japan, Taiwan, South Korea, Singapore, India, Australia and New Zealand etc.Enquire for customization in Report @:https://www.advancemarketanalytics.com/enquiry-before-buy/72815-global-stem-cells-market-1

Strategic Points Covered in Table of Content of Global Stem Cells Market:

Chapter 1: Introduction, market driving force product Objective of Study and Research Scope the Global Stem Cells market

Chapter 2: Exclusive Summary the basic information of the Global Stem Cells Market.

Chapter 3: Displayingthe Market Dynamics- Drivers, Trends and Challenges of the Global Stem Cells

Chapter 4: Presenting the Global Stem Cells Market Factor Analysis Porters Five Forces, Supply/Value Chain, PESTEL analysis, Market Entropy, Patent/Trademark Analysis.

Chapter 5: Displaying the by Type, End User and Region 2013-2018

Chapter 6: Evaluating the leading manufacturers of the Global Stem Cells market which consists of its Competitive Landscape, Peer Group Analysis, BCG Matrix & Company Profile

Chapter 7: To evaluate the market by segments, by countries and by manufacturers with revenue share and sales by key countries in these various regions.

Chapter 8 & 9: Displaying the Appendix, Methodology and Data Source

Finally, Global Stem Cells Market is a valuable source of guidance for individuals and companies.

Data Sources & Methodology

The primary sources involves the industry experts from the Global Stem Cells Market including the management organizations, processing organizations, analytics service providers of the industrys value chain. All primary sources were interviewed to gather and authenticate qualitative & quantitative information and determine the future prospects.

In the extensive primary research process undertaken for this study, the primary sources Postal Surveys, telephone, Online & Face-to-Face Survey were considered to obtain and verify both qualitative and quantitative aspects of this research study. When it comes to secondary sources Companys Annual reports, press Releases, Websites, Investor Presentation, Conference Call transcripts, Webinar, Journals, Regulators, National Customs and Industry Associations were given primary weight-age.

Get More Information: https://www.advancemarketanalytics.com/reports/72815-global-stem-cells-market-1

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia.

About Author:

Advance Market Analytics is Global leaders of Market Research Industry provides the quantified B2B research to Fortune 500 companies on high growth emerging opportunities which will impact more than 80% of worldwide companies revenues.

Our Analyst is tracking high growth study with detailed statistical and in-depth analysis of market trends & dynamics that provide a complete overview of the industry. We follow an extensive research methodology coupled with critical insights related industry factors and market forces to generate the best value for our clients. We Provides reliable primary and secondary data sources, our analysts and consultants derive informative and usable data suited for our clients business needs. The research study enable clients to meet varied market objectives a from global footprint expansion to supply chain optimization and from competitor profiling to M&As.

Contact Us:

Craig Francis (PR & Marketing Manager)AMA Research & Media LLPUnit No. 429, Parsonage Road Edison, NJNew Jersey USA 08837Phone: +1 (206) 317 1218[emailprotected]

Connect with us athttps://www.linkedin.com/company/advance-market-analyticshttps://www.facebook.com/AMA-Research-Media-LLP-344722399585916https://twitter.com/amareport

Read more here:
Stem Cells Market Expected to Boost the Global Industry Growth in the Near Future - Germany English News

To Read More: Stem Cells Market Expected to Boost the Global Industry Growth in the Near Future – Germany English News
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cells Market Expected to Boost the Global Industry Growth in the Near Future – Germany English News | dataApril 10th, 2020
Read All

Cell therapy restores mobility and sensations in rodent models of stroke – FierceBiotech

By daniellenierenberg

Scientists at Lund University in Sweden showed long ago they could reprogram human cells into nerve cells and implant them into the brains of rats after a stroke. But would the cells form the vital connections needed to restore mobility and sensations like touch?

Now, they have early evidence that the answer to that question isyes. The Lund team turned skin cells into nerve cells, transplanted them into the brains of the rodent stroke models and observed them for six months. The new cells repaired the damage caused by strokes in the animals, the researchers reported in the journal PNAS.

The Lund University team transplanted the reprogrammed skin cells into the rats cerebral cortices, the region of the brain thats most commonly damaged by stroke. Then they used electron microscopy and other technologies to track the cells. That allowed them to see that the cells were making the connections needed to repair damaged nerve circuits.

Virtual Clinical Trials Online

This virtual event will bring together industry experts to discuss the increasing pace of pharmaceutical innovation, the need to maintain data quality and integrity as new technologies are implemented and understand regulatory challenges to ensure compliance.

We have been able to see that the fibers from the transplanted cells have grown to the other side of the brain, the side where we did not transplant any cells, and created connections, said co-author Zaal Kokaia, professor of neurology at Lund, in a statement.

RELATED: Restoring neurons to preserve memory after heart attack or stroke

Cell therapy has been proposed for treating stroke damage in the past, but efforts to make it a reality have hit some roadblocks. A stem cell therapy being developed by British biotech ReNeuron failed to hit its primary trial endpoint of improving arm and leg movements. ReNeuron has since turned in better results from a trial of its cell therapy for improving vision in patients with retinitis pigmentosa.

Meanwhile, academic researchers are testing a variety of other therapies aimed at repairing stroke damage. Last year, for example, Stanford researchers showed that blocking a particular microRNA prompted star-shaped brain cells called astrocytes to become neurons, which helped restore memory in rats.

The Lund team is now planning additional animal trials to study how their transplanted cells affect memory and other intellectual functions, they said. They will also watch the rats closely to make sure they arent experiencing side effects, and theyll study the impact of the transplants on regions of the brain.

The rest is here:
Cell therapy restores mobility and sensations in rodent models of stroke - FierceBiotech

To Read More: Cell therapy restores mobility and sensations in rodent models of stroke – FierceBiotech
categoriaSkin Stem Cells commentoComments Off on Cell therapy restores mobility and sensations in rodent models of stroke – FierceBiotech | dataApril 10th, 2020
Read All

Jeff Bezos and the New Face of Male Vanity – TownandCountrymag.com

By daniellenierenberg

When Jeff Bezos, the Amazon kingpin, debuted his new muscular physique at the Sun Valley Conference in 2017, he almost broke the internet. His Vin Dieselesque guns launched countless memes about how the dweebs dweeb had transformed himself into a jacked-up specimen worthy of an action franchise.

In interviews Bezos credits his diet (which includes roast iguana and octopus for breakfast), his unwavering commitment to working out, and eight hours of sleep. But not everyone is buying it.

Clean livingthats the catchphrase, isnt it? quips Patricia Wexler, the ne plus ultra of Manhattan dermatologists. Very few admit to doing any procedures.

Not a chance its just diet and exercise, says Roberta Del Campo, a dermatologist based in Miami, the countrys plastic surgery capital. Behind the scenes these people are getting all sorts of injectables and body sculpting treatments, such as Emsculpt and Trusculpt Flex, which have surged in popularity, especially among men, in the last couple of years.

Drew AngererGetty Images

Other experts suspect that captains of industry such as Bezos, who is 56, are going to even greater lengths to project vigor for both boards and broads. The tech titans are all looking much better than they used to, says Jessie Cheung, a Chicago-based cosmetic dermatologist whose holistic approach often involves testosterone and growth hormone substitutes, especially for men of a certain age who are lacking in muscle and look frail.

Access to bio-hacking tools such as stem cells and hormones is allowing men to look, perform, and think better. Its worth noting that Bezos, along with fellow billionaire Peter Thiel, invested in Unity Biotechnology, a company researching drugs and treatments to keep aging at bay. Im pretty sure hes gotten a taste of some good stuff, Cheung says.

Welcome to the new male vanity, in which even Silicon Valley bigwigs considerably younger than Bezos are resorting to newfangled procedures to avoid aging out of the workforce. The stakes have never been higher. American men underwent 1.1 million noninvasive cosmetic procedures in 2018a 72 percent increase since 2000, a trend that shows no signs of abating. In its forecast for 2020, the American Society for Aesthetic Plastic Surgery predicts the continued rise of the Daddy-Do-Over, the male equivalent of the Mommy Makeover, as men look to boost their confidence and improve their physical appearance.

Its a lesson in maintenance the men in the presidential race would do well to learn. In the not so distant past politicians could dismiss reporters questions about whether theyd had a face-lift, as Arnold Schwarzenegger did during his 2003 run for governor of California, when he joked that they must be confusing him with Cher. Now pols and pundits of every party are being grilled as mercilessly about their appearance as about their Medicare plans.

"Unfortunately for Biden, you can see the work thats been done," says one NYC dermatologist.

Joe Bidens forehead and Donald Trumps hair flap and skin color are dissected with the rigor of Kremlinologists (some of them actually are Kremlinologists, in Trumps case). And with good reason: If Hillary Clintons wrinkles, Elizabeth Warrens glasses, and Amy Klobuchars eyebrows are fair game, why not the nipped and tucked peacocks strutting around on Capitol Hill?

Denials about the scars on the side of Bidens face are, according to the experts, malarkey. Unfortunately for Biden, who has obviously had hair transplants and Botox, among other things, you can see the work thats been done, says Wexler. Nobody should be talking about work. When you have work done, the last thing you want is for people to notice it.

The queen of Fraxels laser focus on male primping is not partisan. Mr. Trump has definitely had workand not great work, at that, she adds. Give him his crumb, though: He wasnt bad looking when he was younger and in better shape.

Trumps penchant for cosmetic adjustments has been an open if much denied secret since at least 1991, when Ivana Trump disclosed his scalp reduction surgery and chin and waist liposuction in their divorce papers. In February the world was served a fresh reminder, when the president was photographed, in an image that quickly went viral, stepping out of Marine One with a windswept rug and a fake tan for the history books.

At tony dermatologist practices from coast to coast, man-tans like Trumps and obvious old-school work like the kind favored by Vladimir Putin is frowned uponif anyone can move any facial muscles at all. Instead, next-gen lasers such as NeoSkin by Aerolase, IBeam, and Nd:YAG are used to eliminate redness and discoloration.

Instead of surgical face-lifts, which, to be fair, remain popular in certain parts of the country (I definitely see them more on the West Coast, Wexler says, where its been around longer and is more accepted), men of means are turning to noninvasive procedures, most notably Ultherapy, a relatively painless FDA-cleared ultrasound treatment that requires no downtime.

Edward George/Alamy Stock Photo

For the ultimate injection of masculine vigor, though, Cheung works with membersand not necessarily of Congress. We make penises bigger and better, she says. Self-confidence for men is tied up with their penises and how well they work. We give them their swagger back.

Men looking for an extra glide in their stride are considering the augmented Priapus Shot, or P-shot, Cheung says, a treatment thats the male equivalent of the O-shot. She is also increasingly recommending a machine called Emsella, better known as the Orgasm Throne, which generates approximately 11,000 Kegel contractions in 30 minutes (it was originally developed for female incontinence). It really gives you an invigorating kick in the pants, Cheung says.

If the recent past is anything to go by, theres no guarantee that the candidates who end up squaring off in November will provide anything resembling accurate medical recordswhich is a shame, as they would make interesting reading. Like Bezos and less heralded moguls across the country, they are unlikely to reveal any touch-ups to anyone but their best pals.

Men will come in and ask for something their friend has had done, Wexler says. But you wont hear anyone on Jimmy Fallon saying, Im so tired: I was at the dermatologist all day.

This story appears in the May 2020 issue of Town & Country.

Go here to read the rest:
Jeff Bezos and the New Face of Male Vanity - TownandCountrymag.com

To Read More: Jeff Bezos and the New Face of Male Vanity – TownandCountrymag.com
categoriaSkin Stem Cells commentoComments Off on Jeff Bezos and the New Face of Male Vanity – TownandCountrymag.com | dataApril 10th, 2020
Read All

Mount Sinai Leading the Way in Innovative Stem Cell Therapy for COVID-19 Patients – Newswise

By daniellenierenberg

Newswise (New York, NY April 9, 2020) Mount Sinai Health System is the first in the country to use an innovative allogeneic stem cell therapy in COVID-19 patients and will play a central role in developing and conducting a rigorous clinical trial for patients with severe acute respiratory distress syndrome, the breathing illness that afflicts people who have severe cases of COVID-19.

The therapy, known as remestemcel-L, has previously been tested in bone marrow transplant patients, who can experience an overactive immune response similar to that seen in severe cases of COVID-19.

Mount Sinai began administering the therapy, known as remestemcel-L, to patients in late March under the Food and Drug Administrations compassionate use program, which allows patients with an immediately life-threatening condition to gain access to an investigational therapy. Ten patients with moderate to severe cases of COVID-19-related acute respiratory distress syndrome (ARDS), most of whom were on ventilators, were given the therapy and doctors saw encouraging results.

We are encouraged by what we have seen so far and look forward to participating in the randomized controlled trial starting soon that would better indicate whether this is an effective therapy for patients in severe respiratory distress from COVID-19, said Keren Osman, MD, Medical Director of the Cellular Therapy Service in the Bone Marrow and Stem Cell Transplantation Program at The Tisch Cancer Institute at Mount Sinai and Associate Professor of Medicine (Hematology and Medical Oncology) at the Icahn School of Medicine at Mount Sinai. Dr. Osman oversaw the treatment of the first Mount Sinai patients with this innovative therapy.

Under the leadership of Annetine Gelijns, PhD, Alan Moskowitz, MD, and Emilia Bagiella, PhD, of Mount Sinais Institute of Transformative Clinical Trials, Mount Sinai will serve as the clinical and data coordinating center for a randomized clinical trial evaluating the therapeutic benefit and safety of this stem cell therapy in 240 patients with COVID-related ARDS in the United States and Canada. The trial will be conducted as a public-private partnership between the Cardiothoracic Surgical Trials Network, which was established as a flexible clinical trials platform by the National Heart, Lung, and Blood Institute, and Mesoblast, the manufacturer of the cells.

The coronavirus pandemic has caused exponential increases of people suffering with acute respiratory distress syndrome, requiring intubation and mechanical ventilation with many dying, said Dr. Gelijns, who is also the Edmond A. Guggenheim Professor of Health Policy at the Icahn School of Medicine at Mount Sinai. We have designed a clinical trial that will expeditiously determine whether the stem cell therapy will offer a life-saving therapy for a group of patients with a dismal prognosis.

We are interested to study the potential of this anti-inflammatory cell therapy to make an impact on the high mortality of lung complications in COVID-19 patients, said CSTN Chairman A. Marc Gillinov, MD. This randomized controlled trial is in line with our mandate to rigorously evaluate novel therapies for public health imperatives.

The therapy consists of mesenchymal stem cells. These cells are found in bone marrow and serve many functions including aiding tissue repair and suppressing inflammation. The therapy was previously tested in a phase 3 trial in children who had an often-fatal inflammatory condition called graft-versus-host disease (GVHD) that can occur after bone marrow transplants.

The inflammation that occurs in GVHD is the result of a cytokine storm, which activates immune cells that attack healthy tissue. A similar cytokine storm that causes damage to the lungs and other organs appears to be taking place in COVID-19 patients who develop acute respiratory distress syndrome, said John Levine, MD, Professor of Medicine (Hematology and Medical Oncology), and Pediatrics, at the Icahn School of Medicine at Mount Sinai, who helped implement the compassionate use of the drug at Mount Sinai.

These stem cells have shown excellent response rates in severe graft-versus-host disease in children, said Dr. Levine, who is also the co-director of the Mount Sinai Acute GVHD International Consortium (MAGIC). Mesenchymal stem cells have a natural property that dampens excessive immune responses.

Several people were instrumental in quickly and efficiently working through the complex application process for each patient to gain compassionate use of the therapy. Three key players involved were Stacey-Ann Brown, MD, MPH, Assistant Professor of Medicine (Pulmonary, Critical Care and Sleep Medicine) at the Icahn School of Medicine at Mount Sinai; Tiffany Drummond, Assistant Director of Regulatory Affairs at The Tisch Cancer Institute at Mount Sinai; and Camelia Iancu-Rubin, PhD, Director of the Cellular Therapy Laboratory at the Icahn School of Medicine at Mount Sinai.

About the Mount Sinai Health System

The Mount Sinai Health System is New York City's largest academic medical system, encompassing eight hospitals, a leading medical school, and a vast network of ambulatory practices throughout the greater New York region. Mount Sinai is a national and international source of unrivaled education, translational research and discovery, and collaborative clinical leadership ensuring that we deliver the highest quality carefrom prevention to treatment of the most serious and complex human diseases. The Health System includes more than 7,200 physicians and features a robust and continually expanding network of multispecialty services, including more than 400 ambulatory practice locations throughout the five boroughs of New York City, Westchester, and Long Island. The Mount Sinai Hospital is ranked No. 14 onU.S. News & World Report's"Honor Roll" of the Top 20 Best Hospitals in the country and the Icahn School of Medicine as one of the Top 20 Best Medical Schools in country. Mount Sinai Health System hospitals are consistently ranked regionally by specialty and our physicians in the top 1% of all physicians nationally byU.S. News & World Report.

For more information, visithttps://www.mountsinai.orgor find Mount Sinai onFacebook,TwitterandYouTube.

Read the original here:
Mount Sinai Leading the Way in Innovative Stem Cell Therapy for COVID-19 Patients - Newswise

To Read More: Mount Sinai Leading the Way in Innovative Stem Cell Therapy for COVID-19 Patients – Newswise
categoriaBone Marrow Stem Cells commentoComments Off on Mount Sinai Leading the Way in Innovative Stem Cell Therapy for COVID-19 Patients – Newswise | dataApril 10th, 2020
Read All

Turkey opens airspace to save Italian toddler’s life – Anadolu Ajans

By daniellenierenberg

ANKARA

Amid the closure of Turkish airspace due to the coronavirus outbreak, it opened it up to an Italian jet to save the life of a 2-year-old Italian child.

On March 14, Dr. Massimo Cardillo, the head of Italys National Transplant Center, sent an email asking Turkish authorities for help with the ailing toddler, according to Turkish healthcare sources.

The mail said that after a comprehensive search of international donor banks, the compatible donor for the toddler awaiting a stem cell transplant was found in Turkey, added the sources, who asked not to be named due to restrictions on speaking to the media.

Although by that time Turkey had closed its airspace due to the COVID-19 threat, Turkeys Health Ministry and Foreign Ministry made a special exception in this case to save the toddlers life.

The compatible donor was found and provided by Turkey's Stem Cell Coordination Center.

On March 31, a jet took off from Rome and was allowed to land at Istanbul Airport.

The stem cells were then delivered to the Italian team by Turkish doctors in an isolated room at the airport.

The Italian team took the cells to Rome without incident and delivered them to the hospital for transplantation to the toddler.

Nicoletta Sacchi, director of the Italian Bone Marrow Donor Registry, said they will never forget Turkeys help during this difficult period.

"I extend my thanks to the donor, the main hero of the event. Were grateful to both Turkey and the donor," he said.

Due to the coronavirus pandemic, which has killed tens of thousands of people worldwide since emerging last December, many countries, including Turkey, have closed their airspace to both international and domestic flights.

*Writing by Fahri Aksut

View original post here:
Turkey opens airspace to save Italian toddler's life - Anadolu Ajans

To Read More: Turkey opens airspace to save Italian toddler’s life – Anadolu Ajans
categoriaBone Marrow Stem Cells commentoComments Off on Turkey opens airspace to save Italian toddler’s life – Anadolu Ajans | dataApril 10th, 2020
Read All

Cellect Biotechnology Reports Fourth Quarter and Full Year 2019 Results – Yahoo Finance

By daniellenierenberg

Achieved Primary Investigational New Drug (IND) Approval in the U.S.; Positioned to Commence Patient Enrollment

Maintained Clinical Progress in Israel and Nearing Completion of Phase 1/2 Trial

Strategic Commercial Agreement with Canndoc Anticipated to Generate Significant Revenue; Closing of Merger Transaction Progressing as Planned

TEL AVIV, Israel, April 3, 2020 /PRNewswire/ -- Cellect Biotechnology Ltd. (Nasdaq: APOP), a developer of a novel stem cell production technology, today announced operating and financial results for the fourth quarter and full year ended December 31, 2019.

"We achieved a number of strategic priorities in 2019, including the IND approval to commence our first-ever trial in the U.S.," commented Dr. Shai Yarkoni, Chief Executive Officer."We plan to begin enrolling patients for this trial and completing the trial in Israel when the COVID-19 pandemic is mitigated. While these near-term events are value-enhancers, I believe that our recently announced prospective partnership with Canndoc could be a game-changer for Cellect and change our growth trajectory. It has the potential to significantly enhance our short and long term business prospects and shareholder value. As a player in the fast-growing pain management market, we would anticipate significant revenue opportunities already this year."

Recent Strategic Development

As previously announced, on March 4, 2020, the Company entered into a commercial binding Letter Of Intent (LOI) with Canndoc Ltd, a leading pharma grade medical cannabis pioneer and a wholly owned subsidiary of publicly-traded Intercure Ltd. (TASE: INCR),to acquire from Canndoc all rights to the use and sell Canndoc products for the reduction of opioid usage, including accumulated data, as well as on-going and pipeline of clinical trials. This commercial arrangement is subject to negotiation and approval by each company's board of directors and definitive agreements.

Additionally, the two companies signed a non-binding LOI for a full merger. Under preliminary details, Cellect will acquire from Intercure all of Canndoc outstanding shares, in exchange for additional Cellect ADRs to be in total ~95% (~93% on a fully diluted basis) of the merged company. The proposed merger is subject to independent valuation of both companies, fairness opinion by a third party, negotiation of a definitive agreement, approval of the agreement by the Company's Board of Directors and shareholders, internal approvals by Canndoc and Intercure, and customary closing conditions, including the approval of the IMCA (Israeli Medical Cannabis Agency). Upon the closing of the merger, Cellect and Canndoc will aim to fulfill all of the requirements to ensure the Company's ADRs and warrants continue trading on the Nasdaq Stock Market (Nasdaq) and, for this purpose, Intercure would commit to invest a cash sum of at least $3.0 million in any public offering that is undertaken by the Company, at a price of not less than $4.50 per ADR.

Based on the progress to date, the Company continues to expect the commercial and merger transactions will close in the second quarter of 2020.

Additional Operating Highlights:

Clinical Progress Update:

Due to the ongoing COVID-19 pandemic, the Company is experiencing clinical disruption such as:

The Company continues to take all the necessary precautions advised by global health officials to ensure the health and safety of its employees and partners. The Company is unaware of any impact on employees from pandemic related exposure or illness and is continuing to perform in-house research, including in the opioid/pain management area.

Fourth Quarter and Full Year 2019 Financial Results:

Balance Sheet Highlights:

For the convenience of the reader, the amounts have been translated from NIS into U.S. dollars, at the representative rate of exchange on December 31, 2019 (U.S. $1 = NIS 3.456).

About Cellect Biotechnology Ltd.

Cellect Biotechnology (NASDAQ: APOP) has developed a breakthrough technology, for the selection of stem cells from any given tissue, that aims to improve a variety of stem cell-based therapies.

The Company's technology is expected to provide researchers, clinical community and pharma companies with the tools to rapidly isolate stem cells in quantity and quality allowing stem cell-based treatments and procedures in a wide variety of applications in regenerative medicine. The Company's current clinical trial is aimed at bone marrow transplantations in cancer treatment.

Story continues

Forward Looking Statements

This press release contains forward-looking statements about the Company's expectations, beliefs and intentions. Forward-looking statements can be identified by the use of forward-looking words such as "believe", "expect", "intend", "plan", "may", "should", "could", "might", "seek", "target", "will", "project", "forecast", "continue" or "anticipate" or their negatives or variations of these words or other comparable words or by the fact that these statements do not relate strictly to historical matters. For example, forward-looking statements are used in this press release when we discuss Cellect's intent regarding the future potential of Cellect's technology. These forward-looking statements and their implications are based on the current expectations of the management of the Company only and are subject to a number of factors and uncertainties that could cause actual results to differ materially from those described in the forward-looking statements. In addition, historical results or conclusions from scientific research and clinical studies do not guarantee that future results would suggest similar conclusions or that historical results referred to herein would be interpreted similarly in light of additional research or otherwise. The following factors, among others, could cause actual results to differ materially from those described in the forward-looking statements: the Company's history of losses and needs for additional capital to fund its operations and its inability to obtain additional capital on acceptable terms, or at all; the Company's ability to continue as a going concern; uncertainties of cash flows and inability to meet working capital needs; the Company's ability to obtain regulatory approvals; the Company's ability to obtain favorable pre-clinical and clinical trial results; the Company's technology may not be validated and its methods may not be accepted by the scientific community; difficulties enrolling patients in the Company's clinical trials; the ability to timely source adequate supply of FasL; risks resulting from unforeseen side effects; the Company's ability to establish and maintain strategic partnerships and other corporate collaborations; the scope of protection the Company is able to establish and maintain for intellectual property rights and its ability to operate its business without infringing the intellectual property rights of others; competitive companies, technologies and the Company's industry; unforeseen scientific difficulties may develop with the Company's technology; and the Company's ability to retain or attract key employees whose knowledge is essential to the development of its products. Any forward-looking statement in this press release speaks only as of the date of this press release. The Company undertakes no obligation to publicly update or review any forward-looking statement, whether as a result of new information, future developments or otherwise, except as may be required by any applicable securities laws. More detailed information about the risks and uncertainties affecting the Company is contained under the heading "Risk Factors" in Cellect Biotechnology Ltd.'s Annual Report on Form 20-F for the fiscal year ended December 31, 2019 filed with the U.S. Securities and Exchange Commission, or SEC, which is available on the SEC's website, http://www.sec.gov, and in the Company's periodic filings with the SEC.

Cellect Biotechnology Ltd

Consolidated Statement of Operation

Convenience

translation

Twelve months

ended

Twelve months ended

Three months ended

December 31,

December 31,

December 31,

2019

2019

2018

2019

2018

Unaudited

Audited

Audited

Unaudited

Unaudited

U.S. dollars

NIS

(In thousands, except share and pershare data)

Research and development expenses

3,508

12,122

13,513

2,571

4,040

General and administrative expenses

2,954

10,210

15,734

2,378

4,733

Operating loss

6,462

22,332

29,247

4,949

8,773

Financial expenses (income) due towarrants exercisable into ADS

(2,032)

(7,022)

(7,719)

998

(4,784)

Other financial expenses (income), net

433

1,498

(1,415)

129

(238)

Total comprehensive loss

4,863

16,808

20,113

6,076

3,751

Loss per share:

Basic and diluted loss per share

0.023

0.079

0.155

0.027

0.029

Weighted average number of sharesoutstanding used to compute basic anddiluted loss per share

212,642,505

212,6432,505

129,426,091

224,087,799

130,274,953

Cellect Biotechnology Ltd

Consolidated Balance Sheet Data

See original here:
Cellect Biotechnology Reports Fourth Quarter and Full Year 2019 Results - Yahoo Finance

To Read More: Cellect Biotechnology Reports Fourth Quarter and Full Year 2019 Results – Yahoo Finance
categoriaBone Marrow Stem Cells commentoComments Off on Cellect Biotechnology Reports Fourth Quarter and Full Year 2019 Results – Yahoo Finance | dataApril 10th, 2020
Read All

Page 305«..1020..304305306307..310320..»


Copyright :: 2025