Gecko tails and whale bends | Featured Columnists – The Guam Daily Post
By daniellenierenberg
Its time to dip into the animal file and I thought Id feature some local animals. Researchers at University of Guelph in Canada have discovered the type of stem cell thats behind the gecko's ability to regrow its tail, a finding that has implications for spinal cord treatment in humans.
In a study published in the Journal of Comparative Neurology, they reported that the spinal cord in a geckos tail contains both stem cells and proteins known to support stem cell growth. Geckos can regrow a new tail within 30 days, faster than any other lizard. As we all know, they detach their tails when grabbed by a predator. The severed tail continues to wiggle, distracting the predator long enough for the gecko to escape.
In the lab, the researchers pinched the gecko's tail, causing it to drop. After detachment, the body wound began to repair itself, eventually leading to new tissue formation and a new spinal cord. The scientists then investigated what happens at the cellular level before and after detachment.
They discovered that the spinal cord houses a special type of stem cell known as the radial glia which is normally inert. But when the tail detaches, the cells make different proteins and begin to divide and make more new cells. Ultimately, they make a brand-new spinal cord. Once the injury is healed and the spinal cord restored, the cells return to a resting state."
Humans respond to spinal cord injury by making scar tissue. The scar tissue seals the wound quickly, but it prevents regeneration, which is why humans have a limited ability to repair our spinal cords. Were missing the key cell types required. The researchers hope to eventually apply their new knowledge to help humans with spinal cord injuries.
A well-known danger here in our islands is divers who get the bends, a painful and potentially life-threatening decompression sickness that strikes scuba divers who surface too quickly. Did you ever wonder if whales and other marine mammals can get the bends? A new study conducted by researchers at the Woods Hole Oceanographic Institution and published in the journal Proceedings of the Royal Society examines how marine mammals generally avoid getting the bends and how they can succumb under stressful conditions.
When humans make deep dives, their lungs compress and that collapses their alveoli, the tiny lung sacs where gas exchange occurs. Nitrogen bubbles build up in their bloodstream and tissues. If they ascend slowly, the nitrogen can return to the lungs and be exhaled. But if they ascend too fast, the nitrogen bubbles don't have time to diffuse back into the lungs. Under less pressure at shallower depths, the nitrogen bubbles expand in the bloodstream and tissue, causing pain and damage.
But whales, dolphins and porpoises have unusual lung architecture which creates two different pulmonary regions which cause their lungs to partially compress. Scientists assumed that this partial compression was the main adaptation sea mammals have to avoid taking up excessive nitrogen at depth and getting the bends.
The researchers took scans of a deceased dolphin, seal, and a domestic pig pressurized in a hyperbaric chamber and discovered that blood flows mainly through the collapsed region of the lungs. That allows some oxygen and carbon dioxide to be absorbed by the animal's bloodstream, while minimizing or preventing the exchange of nitrogen. The pig didnt show that structural adaptation.
Scientists once thought that diving marine mammals were immune from decompression sickness, but a 2002 stranding event linked to navy sonar exercises revealed that 14 whales that died after beaching off the Canary Islands had gas bubbles in their tissues, a sign of the bends. The researchers think that excessive stress may cause the system to fail and increase blood flow to the air-filled regions.
This study may help explain why so many marine mammals are dying and probably also implies that we humans are to blame. I hope somebody pays attention!
Read more from the original source:
Gecko tails and whale bends | Featured Columnists - The Guam Daily Post
MicroCures Awarded $1.5M SBIR Grant To Support Development of Novel Therapeutic Platform for Accelerated Tissue Repair – BioSpace
By daniellenierenberg
Funding to Support Ongoing Advancement of siFi2, Lead Candidate from Companys First-of-its-Kind Platform for Precisely Controlling Core Cell Migration Mechanisms
New York, NY, January 7, 2020 MicroCures, a biopharmaceutical company developing novel therapeutics that harness the bodys innate regenerative mechanisms to accelerate tissue repair, today announced that it has been awarded a Phase 2 Small Business Innovation Research (SBIR) grant from the National Institutes of Health (NIH). The two-year, $1.5 million award will support ongoing development of the companys lead product candidate, siFi2. siFi2, a small interfering RNA (siRNA) therapeutic that can be applied topically, is designed to enhance recovery after trauma. This Phase 2 grant continues the companys successful Phase 1 SBIR contract which demonstrated significantly improved repair of burn wounds following treatment with siFi2 in animal models.
MicroCures technology is based on foundational scientific research at Albert Einstein College of Medicine regarding the fundamental role that cell movement plays as a driver of the bodys innate capacity to repair tissue, nerves, and organs. The company has shown that complex and dynamic networks of microtubules within cells crucially control cell migration, and that this cell movement can be reliably modulated to achieve a range of therapeutic benefits. Based on these findings, the company has established a first-of-its-kind proprietary platform to create siRNA-based therapeutics capable of precisely controlling the speed and direction of cell movement by selectively silencing microtubule regulatory proteins (MRPs).
The company has developed a broad pipeline of therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. Unlike regenerative medicine approaches that rely upon engineered materials or systemic growth factor/stem cell therapeutics, MicroCures technology directs and enhances the bodys inherent healing processes through local, temporary modulation of cell motility. The companys lead drug candidate, siFi2, is a topical siRNA-based treatment designed to silence the activity of Fidgetin-Like 2 (FL2), a fundamental MRP, within an area of wounded tissue. In doing so, the therapy temporarily triggers accelerated movement of cells essential for repair into an injury area. Importantly, based on its topical administration, siFi2 can be applied early in the treatment process as a supplement to current standard of care.
We are grateful for NIHs continued support of our work through this multi-year Phase 2 SBIR grant. This non-dilutive financial support allows us to continue building a robust portfolio of preclinical data in animal models that demonstrate the therapeutic potential of siFi2 to significantly improve and accelerate healing of burn wounds, said David Sharp, Ph.D., co-founder and chief science officer of MicroCures. This funding will help advance our research as we work towards first-in-human clinical trial in 2020.
The initial Phase 1 SBIR grant from NIH funded preclinical research by MicroCures which demonstrated that treatment with siFi2 accelerated re-epithelization, improved collagen deposit and maturation, and improved quality of healing in a porcine full thickness burn model. Specific findings showed that following eight weeks of treatment, 39% of siFi2-treated wounds were closed as compared to only 11% for control subjects and 0% for placebo. Additionally, siFi2-treated subjects demonstrated a significantly improved rate of healing as measured by epithelial surface measurements as compared to placebo (p = 0.0106) and control (p = 0.0012).
About MicroCures
MicroCures develops biopharmaceuticals that harness innate cellular mechanisms within the body to accelerate and improve recovery after traumatic injury. MicroCures has developed a first-of-its-kind therapeutic platform that precisely controls the rate and direction of cell migration, offering the potential to deliver powerful therapeutic benefits for a variety of large and underserved medical applications.
MicroCures has developed a broad pipeline of novel therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. The companys lead therapeutic candidate, siFi2, targets excisional wound healing, a multi-billion dollar market inadequately served by current treatments. Additional applications for the companys cell migration accelerator technology include dermal burn repair, corneal burn repair, cavernous nerve regeneration, spinal cord regeneration, and cardiac tissue repair. Cell migration decelerator applications include combatting cancer metastases and fibrosis. The company protects its unique platform and proprietary therapeutic programs with a robust intellectual property portfolio including eight issued or allowed patents, as well as eight pending patent applications.
For more information please visit: http://www.microcures.com
Disclaimer: The SBIR Grant (2R44AR070696-02A1) is supported by the NIHs National Institute of Arthritis and Musculoskeletal and Skin Diseases. The content of this press release is solely the responsibility of MicroCures and does not necessarily represent the official views of the NIH.
How a controversial condition called PANDAS is gaining ground on autism – Spectrum
By daniellenierenberg
PANDAS emerged in the late 1980s in the wake of a resurgence of rheumatic fever in Pennsylvania, Utah and Missouri. Rheumatic fever is an immune response to group A streptococcus, the bacterial strain that causes strep throat and scarlet fever. It arises when those infections are not treated properly, usually in children. In the worst cases, it can lead to heart failure or permanent heart damage. Some people need to take antibiotics for a decade or more.
Up to 30 percent of children with rheumatic fever develop distinctive motor and behavioral traits called Sydenham chorea or, less commonly these days, Saint Vitus dance, after the patron saint of neurological conditions. Children with this condition exhibit jerky, involuntary movements of their hands, feet and face. By some accounts, they also become irritable and prone to emotional outbursts, have trouble concentrating and temporarily lose their ability to read and write. A frequent complaint heard from the mother is that the character of her child is completely changed, wrote Canadian physician William Osler, who first characterized Sydenham chorea in 1894.
During the rheumatic fever outbreak, Swedo sent questionnaires to 37 parents, asking them about their childrens behaviors. She says she hoped to find a brain-based explanation for OCD, which had, until then, largely been credited to harsh parenting techniques. The findings confirmed her suspicions: Children with Sydenham chorea had significantly more obsessive thoughts or behaviors than children with rheumatic fever alone. Based on follow-up interviews, Swedo determined that three children diagnosed with Sydenham chorea met the diagnostic criteria for OCD.
Swedo then inverted her approach. Rather than seeking out children with rheumatic fever, she began studying children with OCD and Tourette syndrome, and swabbing their throats for evidence of a strep infection. She often found it which is not surprising because it is a common infection, and many children also carry the bacteria without getting sick. What was surprising, Swedo says, was what happened when she started treating those children.
She recalls one child who refused to swallow his spit, preferring, instead, to stockpile it. He had three cups under his bed, she says. When she treated him with penicillin, she says, he responded beautifully; his obsessive-compulsive symptoms disappeared. He then had another strep infection, and the OCD-like behavior came roaring back. In another child, she tried plasmapheresis, a technique to separate the childs blood cells from the plasma and strip out the germ-fighting antibodies circulating in his system. She says that led to an 80 percent decrease in the boys OCD traits, according to his parents.
Based on those observations and more over the next decade, Swedo came to believe that an immune response to infection can trigger an improperly diagnosed class of psychiatric conditions. She would go on to investigate and rule out other connections between infection and conditions of brain development, including the spurious association between Lyme infection and autism. In 2006, she proposed a trial to test chelation therapy, which some parents of autistic children pursue based on the bogus belief that mercury and other heavy metals in vaccines cause the condition. Critics called the trial unethical and a waste of funding, and it was ultimately abandoned due to safety concerns.
Theres going to be diagnostic confusion whether a child has a late presentation of autism or if they have PANDAS. Susan Swedo
It was PANDAS that would become Swedos legacy. In 1998, Swedo proposed five criteria to diagnose PANDAS: the presence of OCD or a tic disorder, sudden onset prior to puberty, a waxing and waning pattern of trait severity, an association between strep infections and behavioral traits, and neurological abnormalities such as jerking movements or problems with coordination. Despite the clear, testable criteria she laid out, the definition of PANDAS proved elastic in the hands of practitioners. By 2008, one study had found that only 39 percent of children diagnosed with PANDAS actually fit Swedos original definition. So many children were diagnosed, in fact, that Stanford Universitys multidisciplinary PANDAS clinic the first of its kind when it opened in 2012 sees children from within only a seven-county area and only if they agree to participate in research.
Given the surge of interest, the NIH launched a $3 million multicenter study the largest and most rigorous analysis of the condition. The researchers followed 71 children who met PANDAS diagnostic criteria over two years and compared them with children who had traits of Tourette syndrome or OCD but not PANDAS. Two landmark studies, published in 2008 and 2011, found that in 91 percent of all PANDAS cases, there was no association between the timing of strep infections or presence of strep antibodies and flare-ups of OCD or tics. Even though children with PANDAS were more likely to receive antibiotics than the other children were, the researchers could detect no difference in the number of flare-ups the children experienced.
The NIH makes no mention of these studies on its information pages about PANDAS, which Swedo helped draft. To be fair, the results left just enough room for doubts to creep in. Many strep infections go unnoticed and can trigger immune reactions that standard tests do not detect. The researchers consulted Swedo before the trial, but she says they approached it with an agenda to disprove PANDAS. For example, she says, most of the PANDAS children in the study had Tourette syndrome over a long period of time and showed no signs of abrupt-onset OCD, PANDAS hallmark behavioral trait. However, Kaplan, an investigator on those trials, says all of the participants fit Swedos published definition.
Swedo and her colleagues later proposed a new, broader condition that would better fit the state of the evidence: pediatric acute-onset neuropsychiatric syndrome, or PANS. This umbrella diagnosis is not restricted to children with strep or any other type of infection. It might even be caused, for instance, by environmental factors or metabolic disorders. Nor is it limited to young children: PANS can strike anyone up to the age of 18. The main requirement for PANS is the acute onset of OCD or restricted food intake, though the working guidelines make it clear that mild, non-impairing obsessions or compulsions do not rule out the syndrome.
One 2015 study in mice revealed how strep infections could cause brain inflammation, but no studies have followed a large group of children to try to link infections and PANDAS since the NIH-funded studies. Asked why no one has attempted a new study, Swedo says the field has moved on, adding, You cant fight a felonious report with additional data.
Link:
How a controversial condition called PANDAS is gaining ground on autism - Spectrum
CohBar Discovers Novel Peptide Inhibitors of CXCR4, a Key Regulator of Tumor Growth and Metastasis – Associated Press
By daniellenierenberg
MENLO PARK, Calif., Jan. 08, 2020 (GLOBE NEWSWIRE) -- CohBar, Inc. (NASDAQ: CWBR), a clinical stage biotechnology company developing mitochondria based therapeutics (MBTs) to treat chronic diseases and extend healthy lifespan, today announced the discovery of a series of novel mitochondrial peptide analogs with potent in vitro activity as selective inhibitors of C-X-C Chemokine Receptor Type 4 (CXCR4) and with preliminary in vivo efficacy in a mouse model of melanoma, including substantial reduction in tumor growth as compared to control animals. CXCR4 is a key regulatory receptor involved in tumor growth, invasion, angiogenesis, metastasis, and resistance to therapy.
This new discovery offers the potential to develop novel therapeutics for difficult-to-treat cancers, based on peptides encoded in the mitochondrial genome, said Ken Cundy, Ph.D., CohBars Chief Scientific Officer. Inhibition of this key regulatory pathway is potentially applicable to a wide range of cancers, as well as orphan indications where CXCR4 signaling is dysregulated.
Novel peptide analogs of a mitochondrially encoded peptide (MBT5) demonstrated potent and selective inhibition of human CXCR4 receptor in cell-based assays, with IC50 values in the low nanomolar concentration range. In a difficult-to-treat in vivo mouse model of melanoma, the B16F10 syngeneic tumor model, the combination of an analog of MBT5 administered subcutaneously with the chemotherapeutic temozolomide showed enhanced antitumor activity, reducing tumor growth after 11 days by 61% compared to control animals. The reduction in tumor growth produced by the combination exceeded the effect of either temozolomide used as a single agent, which reduced tumor growth by 38% compared to control, or the murine checkpoint inhibitor anti-PD-1 antibody, which had no effect on tumor growth in this model.
CohBar plans to further explore the efficacy of this new family of peptides in additional animal models with the goal of identifying a new clinical development MBT candidate.
These new data further expand our understanding of the broad regulatory influence exerted by mitochondria and the therapeutic potential of analogs of peptides encoded in mitochondrial DNA, said Steve Engle, CohBar CEO. We are just beginning to scratch the surface of this previously untapped field.
CXCR4 is overexpressed in more than 75% of cancers and high levels of the receptor are associated with poor survival prognosis. Inhibition of the CXCR4 receptor has been shown to mobilize immune cells, enhance the effects of chemotherapy and immunotherapy in various cancers, and reduce the development of metastatic tumors by blocking the ability of tumor cells to evade immune surveillance. CXCR4 also regulates the homing and retention of hematopoietic stem cells and malignant cells in the bone marrow.
Further details of these new studies will be available on the CohBar website at http://www.cohbar.com.
About CohBar
CohBar (NASDAQ: CWBR) is a clinical stage biotechnology company focused on the research and development of mitochondria based therapeutics, an emerging class of drugs for the treatment of chronic and age-related diseases. Mitochondria based therapeutics originate from the discovery by CohBars founders of a novel group of naturally occurring mitochondrial-derived peptides within the mitochondrial genome that regulate metabolism and cell death, and whose biological activity declines with age. To date, the company has discovered more than 100 mitochondrial-derived peptides. CohBars efforts focus on the development of these peptides into therapeutics that offer the potential to address a broad range of diseases, including nonalcoholic steatohepatitis (NASH), obesity, fibrotic diseases, cancer, type 2 diabetes, and cardiovascular and neurodegenerative diseases. The companys lead compound, CB4211, is in the phase 1b stage of a phase 1a/1b clinical trial that includes an evaluation of biological activity relevant to NASH and obesity.
For additional company information, please visit http://www.cohbar.com.
Forward-Looking Statements
This news release contains forward-looking statements which are not historical facts within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are based only on our current beliefs, expectations and assumptions regarding the future of our business, future plans and strategies, projections, anticipated events and other future conditions. In some cases you can identify these statements by forward-looking words such as believe, may, will, estimate, continue, anticipate, intend, could, should, would, project, plan, expect, goal, seek, future, likely or the negative or plural of these words or similar expressions. Examples of such forward-looking statements including but not limited to statements regarding the ability of mitochondrial peptide analogs to reduce tumor growth in mice; anticipated outcomes of research and clinical trials for our mitochondria based therapeutic (MBT) candidates; expectations regarding the growth of MBTs as a significant future class of drug products; and statements regarding anticipated therapeutic properties and potential of our mitochondrial peptide analogs and MBTs. You are cautioned that such statements are not guarantees of future performance and that actual results or developments may differ materially from those set forth in these forward looking statements. Factors that could cause actual results to differ materially from these forward-looking statements include: our ability to successfully advance drug discovery and development programs, including the delay or termination of ongoing clinical trials; our possible inability to mitigate the prevalence and/or persistence of the injection site reactions, receipt of unfavorable feedback from regulators regarding the safety or tolerability of CB4211 or the possibility of other developments affecting the viability of CB4211 as a clinical candidate or its commercial potential; results that are different from earlier data results including less favorable than and that may not support further clinical development; our ability to raise additional capital when necessary to continue our operations; our ability to recruit and retain key management and scientific personnel; and our ability to establish and maintain partnerships with corporate and industry partners. Additional assumptions, risks and uncertainties are described in detail in our registration statements, reports and other filings with the Securities and Exchange Commission and applicable Canadian securities regulators, which are available on our website, and at http://www.sec.gov or http://www.sedar.com.
You are cautioned that such statements are not guarantees of future performance and that our actual results may differ materially from those set forth in the forward-looking statements. The forward-looking statements and other information contained in this news release are made as of the date hereof and CohBar does not undertake any obligation to update publicly or revise any forward-looking statements or information, whether as a result of new information, future events or otherwise, unless so required by applicable securities laws. Nothing herein shall constitute an offer to sell or the solicitation of an offer to buy any securities.
Investor and Media Contact:Jordyn TaraziDirector of Investor RelationsCohBar, Inc.(650) 445-4441 Jordyn.tarazi@cohbar.com
Joyce AllaireLifeSci Advisors, LLC jallaire@lifesciadvisors.com
Read more here:
CohBar Discovers Novel Peptide Inhibitors of CXCR4, a Key Regulator of Tumor Growth and Metastasis - Associated Press
New Treatment Approved in Canada for Most Common Type of Leukemia – Canada NewsWire
By daniellenierenberg
CALQUENCE (acalabrutinib) is now available for adult patients with previously untreated and relapsed/refractory chronic lymphocytic leukemia
MISSISSAUGA, ON, Jan. 8, 2020 /CNW/ - AstraZeneca Canada today announced that Health Canada has approved Calquence (acalabrutinib), an oral Bruton's tyrosine kinase (BTK) inhibitor, for the treatment of adult patients with chronic lymphocytic leukemia (CLL), as monotherapy or in combination with obinutuzumab in the first-line setting, and as monotherapy for relapsed/refractory (r/r) disease.1
CLL is the most common type of leukemia in adults, accounting for 44 per cent of all cases in Canada.2 Morethan 2,200 people in Canada are diagnosed with the disease each year and more than 600 will die from it.3,4 Despite advancements in the treatment of CLL, there is still no cure for the disease and even after successful initial treatment, some patients may relapse, leaving them in need of further innovation.
"CLL is most often diagnosed when patients are more than 60 years old, at a time when they are already dealing with other health conditions related to aging and are trying to maintain the best quality of life," says Antonella Rizza, CEO of Lymphoma Canada. "Today's announcement offers Canadians living with CLL an important new option for this incurable but treatable disease."'
The Canadian approval was granted under Project Orbis, a new international health authority collaboration which provides a framework for simultaneous submission and review of oncology products among international partners.5Under this collaboration, Health Canada, the U.S. FDA, and the Australian Therapeutic Goods Administration (TGA) collectively reviewed the application for Calquence, making it the second treatment approved as part of the program and the first in hematology.
"In the last several years, we've been moving away from traditional chemotherapies to more targeted therapies for CLL." said Dr. Carolyn Owen, Alberta Health Services, Calgary. "Health Canada's approval of acalabrutinib provides a new effective and well tolerated treatment option for CLL patients and improves their treatment options."
The Health Canada approval of Calquence was based on positive interim data from two Phase III clinical trials, ELEVATE-TN and ASCEND.6,7The ELEVATE-TN trial evaluated the safety and efficacy of Calquence in combination with obinutuzumab, a CD20 monoclonal antibody, or Calquence alone versus chlorambucil, a chemotherapy, in combination with obinutuzumab in previously untreated patients with CLL. The ASCEND trial evaluated the efficacy of Calquence in previously treated patients with CLL.Together, the trials showed that Calquence in combination with obinutuzumab or as a monotherapy significantly reduced the relative risk of disease progression or death. Across both trials, the safety and tolerability of Calquence were consistent with its established profile.1
About chronic lymphocytic leukemia (CLL)Chronic lymphocytic leukemia is the most common type of leukemia in adults, which begins in the bone marrow, and progresses slowly.8 In CLL, too many blood stem cells in the bone marrow become abnormal lymphocytes and these abnormal cells have difficulty fighting infections.9 As the number of abnormal cells grows there is less room for healthy white blood cells, red blood cells and platelets.9This could result in anaemia, infection and bleeding.9B-cell receptor signalling through BTK is one of the essential growth pathways for CLL. Many people with CLL do not have any symptoms upon diagnosis, and the disease is often found in blood tests for unrelated health problems.10
AboutCalquenceCalquence(acalabrutinib; previously known as ACP-196) is a selective inhibitor of Bruton's tyrosine kinase (BTK).1Calquencebinds covalently to BTK, thereby inhibiting its activity, and has demonstrated this with minimal interactions with other immune cells in pre-clinical studies.1,6,7In B cells, BTK signaling results in activation of pathways necessary for B cell proliferation, trafficking, chemotaxis and adhesion.1 The recommended dose ofCalquenceis one 100mg capsule taken orally twice daily (approximately 12 hours apart), until disease progression or unacceptable toxicity.1Calquencemay be taken with or without food.1
About AstraZenecaAstraZeneca is a global, innovation-driven biopharmaceutical business with a primary focus on the discovery, development and commercialization of primary and specialty care medicines that transform lives. Our primary focus is on three important areas of healthcare: Cardiovascular and Metabolic disease; Oncology; and Respiratory, Inflammation and Autoimmunity. AstraZeneca operates in more than 100 countries and its innovative medicines are used by millions of patients worldwide. In Canada, we employ more than 675 employees across the country and our headquarters are located in Mississauga, Ontario. For more information, please visit the company's website at http://www.astrazeneca.ca.
References
SOURCE AstraZeneca Canada Inc.
For further information: AstraZeneca Corporate Communications, [emailprotected]; Hibaq Ali, Weber Shandwick Canada, [emailprotected] / tel: 416-642-7915
View post:
New Treatment Approved in Canada for Most Common Type of Leukemia - Canada NewsWire
Contemporary Bone Alleviates Mechanisms Have Prospective Therapeutic Applications – MENAFN.COM
By daniellenierenberg
(MENAFN - Fior Markets)
Spearheaded by researchers at Baylor College of Medicine divulges a contemporary mechanism that donates to adult bone conservation and restores and unfurls the possibility of advancing the therapeutic plan of action for enhancing bone healing.
Corresponding author Dr. Dongsu Park professor of molecular and human genetics said that adult bone repairs depend on the setting off of bone stem cells which yet remains deficiently distinguished. Bone stem cells have been discovered both in the bone marrow interior of the bone and also in the periosteum the exterior layer of the tissue that wraps the bone. Former studies have portrayed that these two communities of stem cell albeit they apportion various characteristics also have distinctive functions and particular regulatory processes.
Of the two periosteal steam cells are the minimalistcomprehended. It is known that they constitute a heterogeneous population ofcells that can bestow to bone density, molding and rupture restoration,however, scientists had not been able to discern between varied subtypes of thebone stem cell to scrutinize how their varied purposes are controlled.
In the present study Park and his colleagues advanced aprocedure to recognize varied subpopulations of periosteal stem cells expoundtheir benefaction to bone fracture restoration in animate mouse models andrecognize particular components that control their migration and multiplicationunder psychological circumstances.
The researchers found particular trademarks for periosteal stem cells in mouse models. The trademarks recognized a definite subset of stem cells that donates to long-lasting adult bone resurrection.
MENAFN07012020007010660ID1099519082
See the article here:
Contemporary Bone Alleviates Mechanisms Have Prospective Therapeutic Applications - MENAFN.COM
Gracell Initiates Investigational Study of the Technological Breakthrough TruUCAR Therapy for Relapsed or Refractory T-cell Malignancies – PRNewswire
By daniellenierenberg
SUZHOU, Chinaand SHANGHAI, Jan. 7, 2020 /PRNewswire/ -- Gracell Biotechnologies Co., Ltd. ("Gracell"), a clinical-stage immune cell therapy company, today announced the initiation of an investigational study of GC027, the first product candidate developed using TruUCAR to treat relapsed or refractory (R/R) T-cell malignancies.
T-cell acute lymphoblastic leukemia or T-ALL is an aggressive form of ALL, which affects white blood cells and the bone marrows ability to generate healthy blood cells. About 15-20% of people with ALL have T-ALL. While T-ALL is treatable by chemotherapy and stem cell transplant, around 75% of patients will relapse within two years[1]. T-cell lymphoblastic lymphoma (T-LBL) is another devastating T-cell malignancies. For patients who develop R/R T-ALL or T-LBL, there are few options for treatment.
Autologus CAR-T therapies rely on patients' own T cells, which have been affected by prior therapies; thus, cell quality as well as efficacy remains questionable. Allogenic CAR-T therapies made of healthy donors' T cells would be characterized as being of consistently good quality with the potential to improve efficacy. Unlike autologous CAR-T cells, allogeneic CAR-T cells can be made as off-the-shelf product which means patients do not have to wait for lengthy production time. Furthermore, the cost of production can be significantly lower. Allogenic CAR-T therapies also provide a vital treatment option for patients with viral infections and/or other conditions prohibiting access to autologous cell therapies.
TruUCARbased GC027 is designed to meet the above unmet needs. Its cells are made of T cells from healthy donors, genetically edited and inserted with chimeric antigen receptor (CAR) ex vivo, which can specifically bind to and eliminate target T malignant cells. Different from industry leaders' off-the-shelf CAR-T design, Gracell's proprietary and patented TruUCAR technology requires no co-administration of anti-CD52, a cytotoxic agent for ablating cancerous cells while inducing long term immune depletion in the patient.Instead, GC027 utilizes CRISPRgenome editing strategy that is expected to avoid graft-versus-host disease (GvHD) as well as graft rejection caused by the patients' immune system.
The prudent preclinical studies provide substantial evidence to trigger GC027 moving into a non-IND(investigational new drug)clinical trial to evaluate the safety, pharmacokinetics and pharmacodynamics of GC027 therapy in patients suffering from relapsed and refractory T lymphocyte malignancies.
TruUCAR is another technological breakthrough developed by Gracell following the recent announcement of FasTCAR technology and products. It enables producing off-the-shelf CAR-T cells from healthy MHC (major histocompatibility complex) mismatched donors with a large number of doses readily to be dispatched to patients in need.
"Launch of the investigational GC027 study as the first-of-its-kind therapy marks another significant milestone for Gracell," said Dr. William CAO, Founder and CEO of Gracell. "Once the concept is well-proved with solid evidence for safety and efficacy, we will immediately deploy development of a series of TruUCAR products for other medical unmet needs, including B cell malignancies."
About GC027
GC027 is an investigational, off-the-shelf CAR-T cell therapy for T cell malignancies, derived from healthy donors. The use of healthy donor's cells are preferential to a patient's own with potential to improve efficacy, reduce production time, and lower cost of goods.
About T-ALL
T lymphoblastic leukemia (T-ALL) is an aggressive form of T cell malignancies, with a diffuse invasion of bone marrow and peripheral blood. In 2015, ALL affected around 876,000 people globally and resulted in 110,000 deaths worldwide. T-ALL compromises about 15%-20% children and adults[1].Current standard therapies for T-ALL are chemotherapies and stem cell transplantation. A large portion of these patients will experience relapse within two years following treatment by conventional therapies.
About T-LBL
T lymphoblastic lymphoma (T-LBL) is an aggressive form of T cell malignancies, with rare lymphoproliferative neoplasm of mature T cells caused by infection with the retrovirus human T lymphotropic virus. T-LBL compromises about 2% of adult non-Hodgkin's lymphoma (NHL) and 30% of pediatric NHL patients[2]. Five-year overall survival is only 14% in adults.Although first-line treatment using cytotoxic combination chemotherapy can achieve 70% ORR, nearly 90% of patients relapse, often within months of completing chemotherapy.
About Gracell
Gracell Biotechnologies Co., Ltd. ("Gracell") is a clinical-stage biopharma company, committed to developing highly reliable and affordable cell gene therapies for cancer. Gracell is dedicated to resolving the remaining challenges in CAR-T, such as high production costs, lengthy manufacturing process, lack of off-the-shelf products, and inefficacy against solid tumors. Led by a group of world-class scientists, Gracell is advancing FasTCAR, TruUCAR (off-the-shelf CAR), Dual CAR and Enhanced CAR-T cell therapies for leukemia, lymphoma, myeloma, and solid tumors.
CONTACT:
[1]Pediatric hematologic Malignancies: T-cell acute lymphoblastic Leukemia, Hematology 2016
[2]Clinical Review: Adult T-cell Leukemia/lymphoma, Journal ofOncology Practice 2017
SOURCE Gracell
London charities scoop share of 120000 festive financial boost – London Post
By daniellenierenberg
Fourteen charities based in London have won a 1,000 festive boost thanks to nominations from the public.
The charities were nominated to win a share of 120,000 as part of specialist insurer Ecclesiasticals annual 12 days of giving Christmas campaign.
Anthony Nolan, which helps to save lives by matching individuals willing to donate their blood stem cells or bone marrow to people with blood cancer and blood disorders, and Shakespeare Schools Foundation, which helps thousands of young people from across the UK become better at teamwork, more confident and more ambitious (see notes for full list1), are among the local charities set to benefit from the money, following overwhelming public support in the area.
More than 120,000 people around the UK nominated a cause close to their heart, with over 5,000 charitable causes up and down the country receiving votes. The 120 winning charities were picked at random from those nominated.
The full list of the 120 charity winners is available to view online at http://www.ecclesiastical.com/12days
Thanking supporters in London, Mark Hews, group chief executive at Ecclesiastical, said: Here at Ecclesiastical, our core purpose is to contribute to the greater good of society, so charitable giving is at the heart of our business. We know that 1,000 can make a huge difference to the incredible work that charities do and were looking forward to seeing how this festive financial boost will change lives for the better.
Last year, Ecclesiastical launched its second Impact Report to celebrate some of the many good causes it has helped.
Original post:
London charities scoop share of 120000 festive financial boost - London Post
Highs and Lows of Stem Cell Therapies: Off- The-Shelf Solutions – P&T Community
By daniellenierenberg
NEW YORK, Jan. 7, 2020 /PRNewswire/ --
Report Includes: - An overview of recent advances in stem cell therapies and coverage of potential stem cells used for regenerative advanced therapies
Read the full report: https://www.reportlinker.com/p05835679/?utm_source=PRN
- Discussion on role of genomic and epigenomics manipulations in generating safe and effective treatment options - Identification of autologous and allogeneic cells and their usage in creating advanced therapy medical products (ATMPs) - Information on 3D cell culture and discussion on advances in gene editing and gene programming techniques such as CRIPSR/Cas9, TALEN, and ZINC fingers - Insights into commercial and regulatory landscape, and evaluation of challenges and opportunities for developing autologous and allogenic "off the shelf" solutions
Summary Stem cells are unique in their ability to divide and develop into different cell types that form tissues and organs in the body during development and growth.The stem cell's role is to repair impaired or depleted cells, tissues and organs in the body that are damaged by disease, injury, or normal wear and tear.
Stem cells are found in every organ, but are most abundant in bone marrow, where they help to restore the blood and immune system.
Stem cells may be derived from various sources, including - - Adult stem cells (ASCs): Derived from tissue after birth, these include bone marrow, brain, peripheral blood, skeletal muscle, skin, teeth, heat, gut, liver, ovarian epithelium and testis, as well as umbilical cord stem cells and blood. These cells are currently most widely used for cellbased therapies. Hematopoietic stem cells (HSCs), which are derived from bone marrow, can give rise to red blood cells, white blood cells and platelets, whereas mesenchymal stem cells (MSCs) are derived from the stroma and give rise to non-blood forming cells and tissues. - Human embryonic stem cells (hESCs): Derived from embryos, these include stems cell lines, aborted embryos or from miscarriages, unused in vitro fertilized embryos and cloned embryos. There are currently no clinically approved treatments for embryonic stem cells. - Inducible pluripotent stem cell (iPSCs): These are stem cells generated in the laboratory by reprogramming adult cells that have already differentiated into specific cells, such as liver cells. They are used either for research purposes (e.g., experimental medicine testing toxicity of new drugs) or are under research for potential future clinical use.
Read the full report: https://www.reportlinker.com/p05835679/?utm_source=PRN
About Reportlinker ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.
__________________________ Contact Clare: clare@reportlinker.com US: (339)-368-6001 Intl: +1 339-368-6001
View original content:http://www.prnewswire.com/news-releases/highs-and-lows-of-stem-cell-therapies-off--the-shelf-solutions-300982411.html
SOURCE Reportlinker
See the original post here:
Highs and Lows of Stem Cell Therapies: Off- The-Shelf Solutions - P&T Community
How These Practitioners Can Help with New Year, New You Goals – Milwaukee Magazine
By daniellenierenberg
This is a sponsored story
The start of a new year is the perfect time to prioritize self-care and set health and wellness goals, so make 2020 your happiest yet with a new, enhanced version of you. Use this guide to find the doctors, therapists and practitioners that can help you look and feel your best.
When diet and exercise just wont provide the results youre looking for, visit Skiin Anti-Aging Lounge. They offer the only procedure that builds muscle. EMSCULPT has been proven safe and effective by the most reputable scientific methods. The procedure induces strong muscle contractions with Hifem (high-intensity electromagnetic) technology not achievable through voluntary contractions. This builds muscle and creates a sculpted, toned physique. Other services like CoolSculpting and Exilis also help clients reshape their bodies through nonsurgical, noninvasive methods. Skiin is the first and only CoolSculpting advanced education center in the nation. Another first: Exilis is the first and only device to combine radio frequency and ultrasound to tighten skin through heating and cooling.
Your face is the first place to show signs of aging, but there is a way to take back those years. Dr. John Yousif has received several awards for his research in facial aging. He has been practicing plastic and cosmetic surgery for over 30 years and has even pioneered new techniques like the Gortex Midface Lift and the Hyoid Suspension Neck Lift. At both Sier Medi-Spa and Ascension in Mequon, he offers surgical and nonsurgical procedures to reverse the signs of aging. All of the types of facelifts offered are long-lasting and natural looking, leaving clients feeling like a younger version of themselves.
RELATED Wonderful World of Weddings
Aqua, under the direction of Dr. Christopher Hussussian, is a full-service salon, spa and med spa offering a wide range of services in a luxurious setting on Pewaukee Lake. Whether you are hoping to change the way you look or feel or both Aqua has a solution to enhance your skin and hair for both body and face. New services for the new year include hair restoration for both men and women using PRP (platelet-rich plasma) with biotin and a new weight-loss program using the HCG hormone. They also offer advanced laser hair removal, Clear Lift skin tightening, ThermiVa and CoolSculpting, a popular nonsurgical fat cell reduction with lasting results. A consultation can help you decide what services would work best to achieve a healthier, happier version of yourself.
Serving the Lake Country area, Dr. Tom Stamas is helping people put their best face forward, one smile at a time. He specializes in smile design, a full dental restoration and reconstruction for those suffering from tooth damage or loss, or for those looking to fix crooked, worn or yellowed teeth. During your personalized consultation, Stamas and his team will help you select which treatments will bring your smile to life. Dental treatments like bridges, dental implants, crowns and state-of-the-art diagnostic tools are all available to restore the health, function and appearance of your smile. Youll feel good about the natural-looking results, and your self-esteem will get a boost too.
What if you could use undesired fat from your belly to get rid of the bags under your eyes? Sounds too good to be true, right? Anew Skin and Wellness has a procedure that is done right in the office with long lasting results. The nano-fat transfer removes a small amount of fat with micro liposuction. That fat is harvested for re-injection to the appropriate areas of the face, neck, earlobes, hands and thighs. It can also be used to plump thin lips, smooth cellulite and scars and restore skin elasticity. The nano-fat transfer is safe, effective, economical and helps clients look their best. The in-office procedure provides long-lasting results because the bodys stem cells can turn the aging skin into new, rejuvenated skin. Its the natural way to tighten and smooth skin, allowing you to turn back the clock without a surgical face- or neck-lift.
RELATED Where Should You Brunch this Weekend? We've Got 9 Suggestions
Dr. Arvind Ahuja has provided neurosurgical and endovascular care in southeastern Wisconsin for more than 20 years for brain, spine, artery and peripheral nerve conditions. Whether patients come to Neurosurgery and Endovascular Associates for neck and/or arm pain, back and/or leg pain or headache, the first step is always diagnostic testing to determine the cause of the pain, rather than just treating the symptoms. Often through treatments like medication, steroid injections, physical therapies and if need be surgery, patients achieve improved functioning and long-term relief. Ahujas specialized training in the nervous system is incredibly effective in treating spinal conditions, and his treatments give patients the opportunity to live a happier and morefunctional life.
Excerpt from:
How These Practitioners Can Help with New Year, New You Goals - Milwaukee Magazine
The viral Augustinus Bader rich cream has completely changed my skin for the better – Yahoo Lifestyle
By daniellenierenberg
Welcome to Try Before You Buy, a monthly series where we talk about the pricey beauty products and in-office treatments that are getting major buzz and give our honest feedback. This month, our Senior Beauty & Fashion Editor, Pia Velasco, talks about theAugustinus Bader cream that has changed her skin.
As a beauty editor, Ive tried hundreds (and maybe even thousands) of skincare products since starting my career seven years ago. There have been creams that promise to give me skin as soft as babys bum, serums that pledge to erase all signs of dark spots, face masks that swear theyll make my skin so radiant that itll blind my enemiesand guess what, most of them fell through on their promises. As such, Ive become skeptical when a brand tells me that their product is life-changing and that there isnt anything like it on the market. So when I met Professor Augustinus Bader, the director of the Applied Stem Cell Biology and Cell Technology at the University of Leipzig in Germany, earlier this year and he and his team told me about his epigenetic skincare line that changes the skin to the point of altering DNA, I have to admit that I did mentally raise an eyebrow.
However, I had heard about epigenetic skincare before and was fascinated by the science behind it. Essentially, epigenetics refers to the naturally occurring biological modification process of the DNA thats influenced by the environment and lifestyle patterns. For example, if you have a healthy diet and exercise on the regular, your genetic coding will eventually change to be healthier, and youll be able to transfer those healthy genes onto your offspring. Epigenetic skincare is the same conceptif you train your skin cells to be healthy, your skins DNA will change. Needless to say,I was curious to try it, and when a fellow beauty editor friend told me that she stopped using all of her skincare products after trying the Augustinus Bader The Rich Cream, I went from being curious to being eager to try it.
A quick background on my skin. Ive always had acne-prone skin, and because of my medium skin tone, Im also very prone to hyperpigmentation. Most of the skincare products I use target my acne concerns, but I also go ham on texture-refining products in hopes that one day Ill achieve glass-like skin. Im used to looking at ingredients that target specific skincare concerns (salicylic acid for acne, retinol for anti-aging, vitamin C for brightening, etc.), and for the first time, I was using a product that claimed that it would address all my concerns at once. Because of the way epigenetic skincare works, instead of targeting just one skincare concern, the product tells skin cells to be healthy, which in turn helps skin be the best version of itself.I know it sounds too good to be true, and while it may not work for everybody, holy shit it worked wonders for me.
Courtesy of Augustinus Bader
I started testing out the cream the way I approach all my beauty testing, I did a test-drive on half my face. On the left side of my face, I continued to use the products that were already in my arsenal, and on the right side of my face, I used the Augustinus Bader cream and nothing else. After about two weeks I started seeing a shiftmy acne wasnt working up, my skin texture was a lot more smooth, and it just looked overall healthier. I quickly tossed my other products and switched over to using The Rich Creamevery day. After a while, my skin started balancing out and both looked and felt a whole lot better. Now, Im not saying this product is magicbut Im also not saying that its not.
Im currently testing a whole new array of skincare products for the upcoming HelloGiggles Beauty Crush Awards (stay tuned!), and so Ive had to sacrifice the left side of my face to test new products (I switch off between sides). As a result, my skin has started to shift back into its old ways, with a resurgence of blemishes, dark spots, and uneven texture as I test out new formulas. But the right side of my face is still in A+ condition.
Sure, this product is definitely on the pricier side, but its a product that I can say with full confidence that I would actually buy if I wasnt a beauty editor. (Full disclosure: I receive a lot of free products from beauty brands, and Ive only bought about a handful of products with my own money since working in the business.) For me, getting my ideal skin has always been a battle, and Im so happy to have finally found a product that works magic for me, which is why I was excited to learn that the brand recently launched a body cream as well.
Courtesy of Augustinus Bader
Its important to remember that body care requires skincare too, after all, we do have skin on our bodies. The Augustinus Bader body cream fulfills the basic requirement of moisturizing skin, but what makes this anti-aging body product stand out is that it uses its epigenetic technology to target and treat stretch marks and cellulite with continued use. Now, I havent used it long enough to speak to its long-term effects, but I can say that its fast-absorbing formula does make my skin feel baby soft and look way smoother than it did before. Also, Im typically very good about sharing my beauty products with others, but when my boyfriend asked if he could use this cream I may or may not have told him Id put a curse on his ancestors if he dared. Nothing gets in the way of me and my Augustinus Bader products.
Originally posted here:
The viral Augustinus Bader rich cream has completely changed my skin for the better - Yahoo Lifestyle
Global Amniotic Membrane Market 2020-2024 | Evolving Opportunities with Celularity Inc. and Human Regenerative Technologies LLC | Technavio – Business…
By daniellenierenberg
LONDON--(BUSINESS WIRE)--Technavio has been monitoring the global amniotic membrane market since 2019 and the market is poised to grow by USD 1.48 billion during 2020-2024, progressing at a CAGR of more than 13% during the forecast period. Request a free sample report
Read the 145-page report with TOC on Amniotic Membrane Market Analysis Report by Geography (Asia, Europe, North America, and ROW), Type (Cryopreserved amniotic membrane and Dehydrated amniotic membrane), and the Segment Forecasts, 2020-2024.
https://www.technavio.com/report/amniotic-membrane-market-industry-analysis
The market is driven by the rising demand for biocompatible scaffolds. In addition, the rise in the development of new applications through research is anticipated to boost the growth of the amniotic membrane market.
The rising need for naturally derived materials in tissue scaffolding is increasing the demand for amniotic membranes. This is due to the specialized structure of amniotic membranes that exhibit high biological viability, making them ideal for creating bio-scaffolds. Moreover, the epithelial cells in amniotic membranes have the advantages of stem cells which provide a native environment of cell seeding. Bio-scaffolds are widely used in regenerative therapies for the treatment of bone, cartilage, skin, vascular tissues, and skeletal muscles. With growing geriatric population, the demand for such orthopaedic regenerative therapies is expected to increase significantly during the forecast period. This will have a positive impact on the demand for amniotic membranes.
Buy 1 Technavio report and get the second for 50% off. Buy 2 Technavio reports and get the third for free.
View market snapshot before purchasing
Major Five Amniotic Membrane Market Companies:
Celularity Inc.
Celularity Inc. operates its business through the Unified Business Segment. BIOVANCE is the key offering of the company. It offers a decellularized, dehydrated human amniotic membrane allograft that contains natural extracellular matrix (ECM) that helps in wound regeneration and tissue restoration.
Human Regenerative Technologies LLC
Human Regenerative Technologies LLC operates the business across segments such as Flowable and Membrane. HydraTek amniotic membrane products, is the key offering of the company. It includes thin and thick dehydrated amniotic membranes used in covering and protecting the recipient's tissue.
Integra LifeSciences Holdings Corp.
Integra LifeSciences Holdings Corp. operates its business across segments such as Codman Specialty Surgical, and Orthopedics and Tissue Technologies. The company offers a wide range of amniotic membrane products. Some of the key offerings include AmnioExcel Amniotic Allograft Membrane, BioDDryFlex Amniotic Tissue Membrane, BioDOptix Amniotic Extracellular Membrane, and Integra BioFix Amniotic Membrane Allograft.
Katena Products Inc.
Katena Products Inc. operates the business across segments such as Instruments, Biologics, Plugs, Lenses, Devices, and Blink Medical. Amniotic Membrane Surgical and Amniotic Membrane Clinic are some of the key offerings of the company.
MiMedx Group Inc.
MiMedx Group Inc. operates the business in the Regenerative biomaterial products and bioimplants segment. The company offers a wide range of amniotic membrane products. AmnioFix, EpiFix, and EpiBurn are the key offerings of the company.
Register for a free trial today and gain instant access to 17,000+ market research reports.
Technavio's SUBSCRIPTION platform
Amniotic Membrane Type Outlook (Revenue, USD Billion, 2020 - 2024)
Amniotic Membrane Regional Outlook (Revenue, USD Billion, 2020 - 2024)
Technavios sample reports are free of charge and contain multiple sections of the report, such as the market size and forecast, drivers, challenges, trends, and more. Request a free sample report
Related Reports on Healthcare include:
Global Extracorporeal Membrane Oxygenation Machines Market Global extracorporeal membrane oxygenation machines market by geography (Asia, Europe, North America, and ROW) and modality (veno-venous and arterio-venous; and veno-arterial).
Global Duchenne Muscular Dystrophy (DMD) Therapeutics Market Global Duchenne muscular dystrophy (DMD) therapeutics market by type (biologics and small molecules) and geography (Asia, Europe, North America, and ROW).
About Technavio
Technavio is a leading global technology research and advisory company. Their research and analysis focus on emerging market trends and provides actionable insights to help businesses identify market opportunities and develop effective strategies to optimize their market positions.
With over 500 specialized analysts, Technavios report library consists of more than 17,000 reports and counting, covering 800 technologies, spanning across 50 countries. Their client base consists of enterprises of all sizes, including more than 100 Fortune 500 companies. This growing client base relies on Technavios comprehensive coverage, extensive research, and actionable market insights to identify opportunities in existing and potential markets and assess their competitive positions within changing market scenarios.
If you are interested in more information, please contact our media team at media@technavio.com
Here is the original post:
Global Amniotic Membrane Market 2020-2024 | Evolving Opportunities with Celularity Inc. and Human Regenerative Technologies LLC | Technavio - Business...
Where Are They Now? Top 3 Biotech Startups From NextGen Bio Class of 2018 – BioSpace
By daniellenierenberg
Every year, BioSpace analyzes the biotech industry, looking for the hot new biotech startups to watch. We then produce the NextGen Bio Class of, twenty companies ranked based on several categories, including Finance, Collaborations, Pipeline, and Innovation. The companies were typically launched no more than 18 months before the list was created.
We thought it would be insightful to look back at our previous lists to see where some of those companies are today. Heres a look at the top three companies from the Top 20 Life Science Startups to Watch in 2018.
#1. BlueRock Therapeutics. Founded in 2016, BlueRock was #1 on our list of companies to watch in 2018. With facilities in Ontario, Canada; Cambridge, Massachusetts; and New York, New York, BlueRock launched in December 2016 with a $225 million Series A financing led by Bayer AG and Versant Ventures. The company focuses on cell therapies to regenerate heart muscle in patients who have had a heart attack or chronic heart failure, as well as therapies for patients with Parkinsons disease.
In October 2017, BlueRock and Seattle-based Universal Cells entered into a collaboration and license deal to create induced pluripotent stem (iPS) cell lines that can be used in the manufacture of allogeneic cellular therapies. Shortly afterwards, the company established its corporate headquarters in Cambridge, and in April 2018, established a research-and-development hub in New York City, as well as formalizing a sponsored research collaboration with the Center for Stem Cell Biology at Memorial Sloan Kettering (MSK) Cancer Center. The collaboration focuses on translating Ketterings expertise in creating multiple types of authentic neural cells from stem cells to address diseases of the central and peripheral nervous system. BlueRock also received $1 million from the State of New York and Empire State Development under its economic development initiatives program.
In April 2019, BlueRock partnered with Editas Medicine (which was on BioSpaces NextGen Bio Class of 2015 list) to combine their genome editing and cell therapy technologies to focus on novel engineered cell medicines. Part of the deal was to collaborate on creating novel, allogeneic pluripotent cell lines using a combination of Editas CRISPR genome editing technology and BlueRocks iPSC platform.
And finally, in August 2019, Bayer AG acquired BlueRock for the remaining stake in the company for about $240 million in cash and an additional $360 million in pre-defined development milestones.
#2. Prelude Fertility. Prelude Fertility is a bit of an outlier from the typical BioSpace NextGen company, because it isnt quite a biopharma company. It is a life sciences company whose business model is aimed at in vitro fertilization and egg freezing. It was founded with a $200 million investment by entrepreneur Martin Varsavsky. The investment was in the largest in vitro fertilization clinic in the Southeast, Reproductive Biology Associates of Atlanta, and its affiliate, My Egg Bank, the largest frozen donor egg bank in the U.S.
Since then it has expanded in various parts of the country, including adding San Francisco-based Pacific Fertility Center (PFC) to its network in September 25, 2017; partnering with Houston Fertility Institute and acquiring Vivere Health; partnering with the Advanced Fertility Center of Chicago; and in October 2018, partnered with NYU Langone Health.
In March 2019, Prelude merged with Inception Fertility to establish the Prelude Network as the fastest-growing network of fertility clinics and largest provider of comprehensive fertility services in the U.S. Inception is acting as the parent company, with the Prelude Network, both having board representatives from the previous organizations.
#3. Relay Therapeutics. Ranking #3 on our list for 2018, Relay Therapeutics launched in September 2016 with a $57 million Series A financing led by Third Rock Ventures with participation form D.E. Shaw Research. On December 14, 2017, it closed on a Series B round worth $63 million, led by BVF Partners, with new investors GV (formerly Google Ventures), Casdin Capital, EcoR1 Capital and Section 32.
The company focuses on the relationship between protein motion and function. It merges computational power with structural biology, biophysics, chemistry and biology. In December 2018, the company completed a $400 million Series C financing. It was led by the SoftBank Vision fund and included additional new investors, Foresite Capital, Perceptive Advisors and Tavistock Group. Existing investors also participated.
The company announced at the time it planned to use the funds to accelerate the implementation of its long-term strategy, expanding its discovery efforts, advancing existing programs into the clinic and improving its platform.
See more here:
Where Are They Now? Top 3 Biotech Startups From NextGen Bio Class of 2018 - BioSpace
Stem Cells Market Segmentation and Analysis Report, 2025 – Food & Beverage Herald
By daniellenierenberg
In theglobalstem cells marketa sizeable proportion of companies are trying to garner investments from organizations based overseas. This is one of the strategies leveraged by them to grow their market share. Further, they are also forging partnerships with pharmaceutical organizations to up revenues.
In addition, companies in the global stem cells market are pouring money into expansion through multidisciplinary and multi-sector collaboration for large scale production of high quality pluripotent and differentiated cells. The market, at present, is characterized by a diverse product portfolio, which is expected to up competition, and eventually growth in the market.
Some of the key players operating in the global stem cells market are STEMCELL Technologies Inc., Astellas Pharma Inc., Cellular Engineering Technologies Inc., BioTime Inc., Takara Bio Inc., U.S. Stem Cell, Inc., BrainStorm Cell Therapeutics Inc., Cytori Therapeutics, Inc., Osiris Therapeutics, Inc., and Caladrius Biosciences, Inc.
Request PDF Sample of Stem Cells Market Report @https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=132
As per a report by Transparency Market Research, the global market for stem cells is expected to register a healthy CAGR of 13.8% during the period from 2017 to 2025 to become worth US$270.5 bn by 2025.
Depending upon the type of products, the global stem cell market can be divided into adult stem cells, human embryonic stem cells, induced pluripotent stem cells, etc. Of them, the segment of adult stem cells accounts for a leading share in the market. This is because of their ability to generate trillions of specialized cells which may lower the risks of rejection and repair tissue damage.
Depending upon geography, the key segments of the global stem cells market are North America, Latin America, Europe, Asia Pacific, and the Middle East and Africa. At present, North America dominates the market because of the substantial investments in the field, impressive economic growth, rising instances of target chronic diseases, and technological progress. As per the TMR report, the market in North America will likely retain its dominant share in the near future to become worth US$167.33 bn by 2025.
Enquiry for Discount on Stem Cells Market Report @https://www.transparencymarketresearch.com/sample/sample.php?flag=D&rep_id=132
Investments in Research Drives Market
Constant thrust on research to broaden the utility scope of associated products is at the forefront of driving growth in the global stem cells market. Such research projects have generated various possibilities of different clinical applications of these cells, to usher in new treatments for diseases.Since cellular therapies are considered the next major step in transforming healthcare, companies are expanding their cellular therapy portfolio to include a range of ailments such as Parkinsons disease, type 1 diabetes, spinal cord injury, Alzheimers disease, etc.
The growing prevalence of chronic diseases and increasing investments of pharmaceutical and biopharmaceutical companies in stem cell research are the key driving factors for the stem cells therapeutics market. The growing number of stem cell donors, improved stem cell banking facilities, and increasing research and development are other crucial factors serving to propel the market, explains the lead analyst of the report.
This post was originally published on Food and Beverage Herald
Go here to read the rest:
Stem Cells Market Segmentation and Analysis Report, 2025 - Food & Beverage Herald
MicroCures Awarded $1.5M SBIR Grant To Support Development of Novel Therapeutic Platform for Accelerated Tissue Repair – Yahoo Finance
By daniellenierenberg
Funding to Support Ongoing Advancement of siFi2, Lead Candidate from Companys First-of-its-Kind Platform for Precisely Controlling Core Cell Migration Mechanisms
NEW YORK, Jan. 07, 2020 (GLOBE NEWSWIRE) -- MicroCures, a biopharmaceutical company developing novel therapeutics that harness the bodys innate regenerative mechanisms to accelerate tissue repair, today announced that it has been awarded a Phase 2 Small Business Innovation Research (SBIR) grant from the National Institutes of Health (NIH). The two-year, $1.5 million award will support ongoing development of the companys lead product candidate, siFi2. siFi2, a small interfering RNA (siRNA) therapeutic that can be applied topically, is designed to enhance recovery after trauma. This Phase 2 grant continues the companys successful Phase 1 SBIR contract which demonstrated significantly improved repair of burn wounds following treatment with siFi2 in animal models.
MicroCures technology is based on foundational scientific research at Albert Einstein College of Medicine regarding the fundamental role that cell movement plays as a driver of the bodys innate capacity to repair tissue, nerves, and organs. The company has shown that complex and dynamic networks of microtubules within cells crucially control cell migration, and that this cell movement can be reliably modulated to achieve a range of therapeutic benefits. Based on these findings, the company has established a first-of-its-kind proprietary platform to create siRNA-based therapeutics capable of precisely controlling the speed and direction of cell movement by selectively silencing microtubule regulatory proteins (MRPs).
The company has developed a broad pipeline of therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. Unlike regenerative medicine approaches that rely upon engineered materials or systemic growth factor/stem cell therapeutics, MicroCures technology directs and enhances the bodys inherent healing processes through local, temporary modulation of cell motility. The companys lead drug candidate, siFi2, is a topical siRNA-based treatment designed to silence the activity of Fidgetin-Like 2 (FL2), a fundamental MRP, within an area of wounded tissue. In doing so, the therapy temporarily triggers accelerated movement of cells essential for repair into an injury area. Importantly, based on its topical administration, siFi2 can be applied early in the treatment process as a supplement to current standard of care.
We are grateful for NIHs continued support of our work through this multi-year Phase 2 SBIR grant. This non-dilutive financial support allows us to continue building a robust portfolio of preclinical data in animal models that demonstrate the therapeutic potential of siFi2 to significantly improve and accelerate healing of burn wounds, said David Sharp, Ph.D., co-founder and chief science officer of MicroCures. This funding will help advance our research as we work towards first-in-human clinical trial in 2020.
The initial Phase 1 SBIR grant from NIH funded preclinical research by MicroCures which demonstrated that treatment with siFi2 accelerated re-epithelization, improved collagen deposit and maturation, and improved quality of healing in a porcine full thickness burn model. Specific findings showed that following eight weeks of treatment, 39% of siFi2-treated wounds were closed as compared to only 11% for control subjects and 0% for placebo. Additionally, siFi2-treated subjects demonstrated a significantly improved rate of healing as measured by epithelial surface measurements as compared to placebo (p = 0.0106) and control (p = 0.0012).
About MicroCures
MicroCures develops biopharmaceuticals that harness innate cellular mechanisms within the body to accelerate and improve recovery after traumatic injury. MicroCures has developed a first-of-its-kind therapeutic platform that precisely controls the rate and direction of cell migration, offering the potential to deliver powerful therapeutic benefits for a variety of large and underserved medical applications.
MicroCures has developed a broad pipeline of novel therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. The companys lead therapeutic candidate, siFi2, targets excisional wound healing, a multi-billion dollar market inadequately served by current treatments. Additional applications for the companys cell migration accelerator technology include dermal burn repair, corneal burn repair, cavernous nerve regeneration, spinal cord regeneration, and cardiac tissue repair. Cell migration decelerator applications include combatting cancer metastases and fibrosis. The company protects its unique platform and proprietary therapeutic programs with a robust intellectual property portfolio including eight issued or allowed patents, as well as eight pending patent applications.
Story continues
For more information please visit: http://www.microcures.com
Disclaimer: The SBIR Grant (2R44AR070696-02A1) is supported by the NIHs National Institute of Arthritis and Musculoskeletal and Skin Diseases. The content of this press release is solely the responsibility of MicroCures and does not necessarily represent the official views of the NIH.
Contact:
Vida Strategic Partners (On behalf of MicroCures)
Stephanie Diaz (investors)415-675-7401sdiaz@vidasp.com
Tim Brons (media)415-675-7402tbrons@vidasp.com
Read the original:
MicroCures Awarded $1.5M SBIR Grant To Support Development of Novel Therapeutic Platform for Accelerated Tissue Repair - Yahoo Finance
BrainStorm Cell Therapeutics to Present at the 2020 Biotech Showcase and 3rd Annual Neuroscience Innovation Forum at JPM Week – Yahoo Finance
By daniellenierenberg
NEW YORK, Jan. 07, 2020 (GLOBE NEWSWIRE) -- BrainStorm Cell Therapeutics Inc. (BCLI), a leading developer of adult stem cell therapeutics for neurodegenerative diseases, announced today that Chaim Lebovits, President and Chief Executive Officer, will provide a corporate overview at the 2020 Biotech Showcase, being held on January 13-15, 2020 at the Hilton San Francisco Union Square in San Francisco, California.
Mr. Lebovits will also present at the 3rd Annual Neuroscience Innovation Forum, taking place on January 12, 2020, at the Marines Memorial Club in San Francisco. Additionally, Ralph Kern M.D., MHSc, BrainStorms Chief Operating Officer and Chief Medical Officer, will participate on aRare & Orphan Diseases Panel.
Meetings
BrainStorms senior management will also be hosting institutional investor and partnering meetings at the 2020 Biotech Showcase conference (https://goo.gl/SGFm62). Please use the Investor contact information provided below to schedule a meeting.
About NurOwn
NurOwn (autologous MSC-NTF cells) represent a promising investigational approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. NurOwn is currently being evaluated in a Phase 3 ALS randomized placebo-controlled trial and in a Phase 2 open-label multicenter trial in Progressive MS.
About BrainStorm Cell Therapeutics Inc.
BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (U.S. FDA) and the European Medicines Agency (EMA) in ALS. BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six sites in the U.S., supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. For more information, visit BrainStorm's website at http://www.brainstorm-cell.com.
Safe-Harbor Statement
Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could causeBrainStorm Cell Therapeutics Inc.'sactual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorms need to raise additional capital, BrainStorms ability to continue as a going concern, regulatory approval of BrainStorms NurOwn treatment candidate, the success of BrainStorms product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorms NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorms ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorms ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.
Story continues
The rest is here:
BrainStorm Cell Therapeutics to Present at the 2020 Biotech Showcase and 3rd Annual Neuroscience Innovation Forum at JPM Week - Yahoo Finance
Cynata Therapeutics (ASX:CYP) receives R&D tax incentive refund of more than $1.8M – The Market Herald
By daniellenierenberg
Cynata Therapeutics (CYP) has received a research and development tax incentive refund of $1,891,795 for the 2018-2019 financial year.
This tax incentive refund increases the company's cash position which stood at $9.2 million at the end of the September quarter.
It also enables further resources to be invested towards Cynata's phase 2 clinical trial programs for the critical limb ischemia (CLI) (reduced blood flow) and osteoarthritis products.
This will be alongside the anticipated phase 2 trial for CYP-001 in graft-versus-host disease which will be conducted by Fujifilm.
CLI is an advanced stage of peripheral artery disease which is the narrowing of the arteries in the limbs, typically in the lower legs.
It results from severely impaired blood flow which can cause pain, tissue damage, and gangrene.
Around 25 per cent of CLI patients who are unable to undergo surgery to remove the affected area, often an amputation, will die within a year of diagnosis.
Cynata' Cymerus mesenchymal stem cells (MSCs) have been successfully tested in a mouse model of CLI.
Muscles on the ischaemic leg were injected with Cymerus MSCs or a control.
Over a four-week follow-up period, the return of blood flow was measured and in animals treated with Cymerus MSCs blood flow in the injured limb was significantly higher at every point compared to the control.
MSCs are an adult stem cell found in a wide range of human tissues including bone marrow, fat tissue and placenta.
They are multi-potent which means they can produce more than one type of cell, for example they can differentiate into cartilage cells, bone cells and fat cells.
MSCs have been shown to ease regeneration and effects on the immune system without relying on engraftment (when the transplanted cells start to grow and make healthy cells).
The research and development tax incentive is an important Australian Government program that encourages companies to engage in research and development benefiting Australia by providing a tax offset for eligible activities.
Cynata's share price is up a steady 4.82 per cent with shares trading for $1.20 apiece at 3:29 pm AEDT.
Continue reading here:
Cynata Therapeutics (ASX:CYP) receives R&D tax incentive refund of more than $1.8M - The Market Herald
Merck’s KEYTRUDA (pembrolizumab) in Combination with Chemotherapy Significantly Improved Progression-Free Survival Compared to Chemotherapy Alone as…
By daniellenierenberg
KENILWORTH, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the Phase 3 KEYNOTE-604 trial investigating KEYTRUDA, Mercks anti-PD-1 therapy, in combination with chemotherapy met one of its dual primary endpoints of progression-free survival (PFS) in the first-line treatment of patients with extensive stage small cell lung cancer (ES-SCLC). In the study, treatment with KEYTRUDA in combination with chemotherapy (etoposide plus cisplatin or carboplatin) resulted in a statistically significant improvement in PFS compared to chemotherapy alone (HR=0.75 [95% CI, 0.61-0.91]), which was observed at a prior interim analysis. At the final analysis of the study, there was also an improvement in overall survival (OS) for patients treated with KEYTRUDA in combination with chemotherapy compared to chemotherapy alone; however, these OS results did not meet statistical significance per the pre-specified statistical plan (HR=0.80 [95% CI, 0.64-0.98]). The safety profile of KEYTRUDA in this trial was consistent with that observed in previously reported studies. Results will be presented at an upcoming medical meeting and discussed with regulatory authorities.
Results of KEYNOTE-604 demonstrated the potential of KEYTRUDA, in combination with chemotherapy, to improve outcomes for patients newly diagnosed with extensive stage small cell lung cancer, a highly aggressive malignancy, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. We sincerely thank the patients and investigators for their participation in this study and are committed to helping patients who face difficult-to-treat types of lung cancer.
In addition to KEYTRUDAs five current indications in lung cancer, Merck is continuing to study KEYTRUDA across multiple settings and stages of lung cancer through a broad clinical program, which is comprised of more than 10,000 patients enrolled or expected to be enrolled across 20 Merck-sponsored clinical studies.
About KEYNOTE-604
KEYNOTE-604 is a randomized, double-blind, placebo-controlled Phase 3 trial (ClinicalTrials.gov, NCT03066778) investigating KEYTRUDA in combination with chemotherapy compared to chemotherapy alone in patients with newly diagnosed ES-SCLC. The dual primary endpoints were OS and PFS. Secondary endpoints included objective response rate (ORR), duration of response (DOR), safety and quality of life (QoL). The study enrolled 453 patients who were randomized to receive either:
About Lung Cancer
Lung cancer, which forms in the tissues of the lungs, usually within cells lining the air passages, is the leading cause of cancer death worldwide. Each year, more people die of lung cancer than die of colon and breast cancers combined. The two main types of lung cancer are non-small cell and small cell. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for about 85% of all cases. Small cell lung cancer (SCLC) accounts for about 10 to 15% of all lung cancers. The five-year survival rate for patients diagnosed in the U.S. with any stage of SCLC is estimated to be 6%.
About KEYTRUDA (pembrolizumab) Injection, 100mg
KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,000 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patients likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
Selected KEYTRUDA (pembrolizumab) Indications
Melanoma
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.
KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.
Non-Small Cell Lung Cancer
KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.
KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.
Small Cell Lung Cancer
KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least one other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
Head and Neck Squamous Cell Cancer
KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.
Classical Hodgkin Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Primary Mediastinal Large B-Cell Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.
Urothelial Carcinoma
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10] as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.
Microsatellite Instability-High (MSI-H) Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.
Gastric Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Esophageal Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.
Cervical Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Hepatocellular Carcinoma
KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Merkel Cell Carcinoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Renal Cell Carcinoma
KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).
Selected Important Safety Information for KEYTRUDA
Immune-Mediated Pneumonitis
KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.
Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.
Immune-Mediated Colitis
KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.
Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)
Immune-Mediated Hepatitis
KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.
Hepatotoxicity in Combination With Axitinib
KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.
Immune-Mediated Endocrinopathies
KEYTRUDA can cause hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.
Monitor patients for signs and symptoms of hypophysitis (including hypopituitarism and adrenal insufficiency), thyroid function (prior to and periodically during treatment), and hyperglycemia. For hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 and withhold or discontinue for Grade 3 or 4 hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.
Immune-Mediated Nephritis and Renal Dysfunction
KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.
Immune-Mediated Skin Reactions
Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.
Other Immune-Mediated Adverse Reactions
Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.
The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.
Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.
Infusion-Related Reactions
KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.
Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)
Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.
In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.
Increased Mortality in Patients With Multiple Myeloma
In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.
Embryofetal Toxicity
Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.
Adverse Reactions
In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).
In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).
In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).
In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).
In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.
In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).
In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).
Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.
In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).
In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).
In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.
In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).
In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).
In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those 2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).
In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those 2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).
Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.
Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.
In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).
Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 34) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 34) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).
Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 34) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).
In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).
Continue reading here:
Merck's KEYTRUDA (pembrolizumab) in Combination with Chemotherapy Significantly Improved Progression-Free Survival Compared to Chemotherapy Alone as...
UF student chosen for the Marshall Scholarship, will pursue Masters degrees in United Kingdom – The Independent Florida Alligator
By daniellenierenberg
In high school Aaron Sandoval became obsessed with Deadpool, Marvels comic character who has accelerated healing and regenerative powers.
Sandoval has turned in his superhero cape for a lab coat in medicine by working with reparative methods for the human body. And now, hes received a national award that will allow him to do that.
Sandoval, a 21-year-old UF biology senior, was selected for the Marshall Scholarship, which gives students in the U.S. a chance to pursue their graduate studies in the United Kingdom, all expenses paid. He is the second Marshall scholar in UFs history, following Steven Robinette in 2009.
Sandoval was one of 46 students chosen out of over 1,000 applicants across the U.S.
The Marshall Scholarship Program was created in 1953 to thank the U.S. for helping the U.K. after World War II under the Marshall Plan, which was the U.S.s way of helping European economies after the devastation of the war, according to the programs website.
It still hasnt really sunk in yet, Sandoval said. Im happy to have won it.
Sandoval said in his two years at the University of Cambridge and Kings College London hell study biochemistry and focus on the transfer of stem cells from the lab to the patients so they can understand what cells are being used to help them.
Sandoval has collaborated with UF faculty members like Malcolm Maden, a professor in UFs Cancer and Genetics Research Institute. Sandoval and Maden worked in a lab with an African spiny mouse, to figure out how stem cells repair parts of the human body like skin tissue.
In 2012, Maden and his research team discovered the African spiny mouses ability to regenerate skin scar free. Maden wrote one of Sandovals letters of recommendation for his application for the scholarship.
Sandoval said if the mouses regeneration of skin cells could be translated to humans, then a humans wounds could completely heal rather than scar.
Sandoval didnt have the opportunity to do research in high school and wanted to learn more at the university level, so he decided to take Madens lab.
Maden said Sandovals uniqueness stems from his intelligence, drive and ability to interact with different kinds of people.
Hes behaved like a dynamic scientist, not like an undergrad, he said. Completely amazing, totally unique guy.
Sandoval said he feels fortunate to have won the award and to have so many people who helped him get to this point.
I couldnt have done it without the support of family, friends, mentors, he said. It took a whole village to win this thing.
Contact Emma McAvoy at[emailprotected]. Follow her on Twitter@EmmaMcAvoy1.
Read the original post:
UF student chosen for the Marshall Scholarship, will pursue Masters degrees in United Kingdom - The Independent Florida Alligator
Super Naturals: the high-tech natural beauty brands changing the face of modern skincare – Evening Standard
By daniellenierenberg
The latest lifestyle, fashion and travel trends
A high-end bio-beauty boom is in full bloom thanks to a host of revolutionary brands set on changing the face of modern skincare. These are the five to know...
Hailing from the Napa Valley, where founder April Gargiulo spent two years researching and developing her Holy Grail skincare products using the same meticulous approach her family took to their fine wine business, Vintners Daughter champions just two products that promise dramatic, multi-correctional results using some of the worlds most active organic and foraged botanicals. The original Active Botanical Serum (175) is hailed as the face oils to end all face oils and is built around the brands signature Phyto Radiance Infusion. This process starts with consciously grown whole plants such as calendula and super green alfalfa, known in ancient times as the foods of life, which undergo a methodical three-week long extraction to glean every last drop of their nutritional benefits. Just five drops using the brands 30-second Push/Press Method of application promises to deliver visible radiance, brightness and unparalleled nourishment particularly when used in conjunction with its preparatory Active Treatment Essence (210) (goop.com).
The undisputed Queen of Green, Tata Harper is a pioneer of the farm-to-face beauty movement with all-natural formulations handcrafted in the brands laboratory in Vermont and bottles stamped with a code to trace how fresh your product is and who it was made by. The beauty editors favourite is going one step further with the launch of its Supernaturals 2.0 line of six products boasting 155 ultramodern green ingredients from 46 countries and of course, no synthetic chemicals. The Elixir Vitae Serum (391) alone boasts 34 new radical engineered ingredients from 25 countries, including kelp polymers from France developed to target cellular ageing. Other highlights from the range include the Concentrated Brightening Serum (257), which contains 24 ingredients to hydrate, 17 to reduce wrinkles, 15 to brighten and 13 to even skin tone, and the Boosted Contouring Serum (257), designed to lift, firm and restore youthful elasticity with a combination of Edelweiss stem cells and skin revitalising pomegranate. (tataharperskincare.com)
The brainchild of cosmetologist Anna Buonocore and naturalist Jeanette Thottrup, Seed To Skin believes that effective skincare is threefold. Firstly, that wild ingredients foraged from the land and sea used in conjunction with those sourced from its organic Tuscan farm are among the most potent nature has to offer. Secondly, that just like feeding your body skin requires a healthy, balanced diet and formulas that neither starve nor overload with any one element. Finally, that the most effective absorption relies on a precise mix of perfectly-sized molecules to ensure each ingredient is delivered exactly where it needs to go. As a result, its award-winning product line is loaded with game changers try The AlcheMist Super Active Serum Spray (145) to feed your skin a nutrient-rich drink whenever it needs a boost, or the Black Magic Detoxifying Oxygen Therapy Mask (119) which contains activated charcoal and volcanic clay for a one-stop facial in a jar (libertylondon.com).
(Wildsmith )
Inspired by the arboretums progressive approach to cultivation at Hampshires Heckfield Place and named after its mastermind William Walker Wildsmith, this ethical crafted-in-England skincare brand is designed for those who desire natural products but demand clinical results. Exclusive to Harrods beauty halls, the hero additions to its product line-up include the Platinum Booster (175) a powerful skin-firming treatment powered by encapsulated oxygen and moss cell cultures and a reviving, collagen-boosting Copper Peptide Cream and Serum Duo (150) which delivers a luminous finish to your complexion and comes in a compostable mycelium box (wildsmithskin.com; harrods.com).
After turning to flower arranging as a weekly dose of mindfulness, beauty entrepreneur Kelly S Chung endeavoured to harness the healing power of nature or Flower Therapy, as she has coined it in another form; and Femmue was born. Fusing K-beauty innovation with a clean beauty ethos and the cellular energy of plants, the camellia flower is at the heart of the range and renowned for its antioxidant and restorative qualities. The Divine Camlia Facial Oil (100) is the purest form with 99.8 per cent camellia seed oil, while other must-try products in the line include the bestselling Flower Infused Fine Mask (40) formulated with camellia petals, geranium oil and cactus extract and the lavender-loaded Brilliant Cleansing Oil (73) (net-a-porter.com).
Continue reading here:
Super Naturals: the high-tech natural beauty brands changing the face of modern skincare - Evening Standard