Bone marrow donor drive held in Green Bay for teen who needs a match – WBAY
By daniellenierenberg
GREEN BAY, Wi. (WBAY) - More than 10,000 people couldn't find a match for a bone marrow transplant last year. The family of one Wisconsin teenager in desperate need of a match decided to host their own donor drive during Sunday's Packers game.
Nick Parins, who lives in Land O Lakes, Wisconsin, has T-Cell Lymphoma and needs a bone marrow transplant, but currently there is no match for him.
Its very frustrating for us, his family and friends, that theres so many people out there and so many people in the bank right now but theres just not the match for him, said Erick St. Aubin, Nicks cousin.
On the same day Nick turned 18, Eric St. Aubin and other family and friends gathered just outside Lambeau Field to host a bone marrow donor drive in his honor.
Right after kickoff today we facetimed with him to sing him happy birthday and it was pretty emotional, said St. Aubin.
The family partnered with Be The Match to set up the registration booth. People interested in putting themselves on the global donor registry only needed to provide some basic information and take a cheek swab test.
Its not saying youre signing up today and youre going to donate tomorrow. Thats really far from the truth, said Be The Match Community Engagement Specialist. The reality is its pretty rare to become a match and if you are its a very special thing.
Klingberg says there arent enough people on the registry to help all the patients who need bone marrow transplants.
This is their last hope. So its really frustrating when you hear people Oh, its really painful or It requires a lot of time or whatever, said Klingberg.
Klingberg says if you are a match, the donation process isnt actually all that painful, and it saves a life.
When somebody comes through and honors that commitment to donate some stem cells, thats all it took, and then this person is coming out of the hospital and going to overcome their disease, said Klingberg. Its amazing and it gives me goosebumps every time.
St. Aubin hopes the event will spread awareness and possibly lead to a life saved.
You could be a match [with someone] across the world, or you might be a match for Nick.
To register as a bone marrow donor, or for more information CLICK HERE.
Follow this link:
Bone marrow donor drive held in Green Bay for teen who needs a match - WBAY
Stem Cell Therapies Market research Likely to Emerge over a Period of 2015-2025 – PharmiWeb.com
By daniellenierenberg
VALLEY COTTAGE, N.Y. Stem cells are undifferentiated biological cells, and having remarkable potential to divide into any kind of other cells. When a stem cell divides, each new cell will be a new stem cell or it will be like another cell which is having specific function such as a muscle cell, a red blood cell, brain cell and some other cells.
There are two types of stem cells
Stem cells harvested from umbilical cord blood just after birth. And this cells can be stored in specific conditions. Stem cells also can be harvest from bone marrow, adipose tissue.
Embryonic cells can differentiate into ectoderm, endoderm and mesoderm in developing stage. Stem cells used in the therapies and surgeries for regeneration of organisms or cells, tissues.
Stem cells are used for the treatment of Gastro intestine diseases, Metabolic diseases, Immune system diseases, Central Nervous System diseases, Cardiovascular diseases, Wounds and injuries, Eye diseases, Musculoskeletal disorders.
Download the sample copy of Report with table of contents and Figures @: https://www.futuremarketinsights.com/reports/sample/rep-gb-1087
Harvesting of Adult cell is somewhat difficult compare to embryonic cells. Because Adult cells available in the own body and it is somewhat difficult to harvest.
Stem Cell TherapiesMarket: Drivers and Restraints
Technology advancements in healthcare now curing life threatening diseases and giving promising results. Stem Cell Therapies having so many advantages like regenerating the other cells and body organisms. This is the main driver for this market. These therapies are useful in many life threatening treatments. Increasing the prevalence rate of diseases are driven the Stem Cell Therapies market, it is also driven by increasing technology advancements in healthcare. Technological advancements in healthcare now saving the population from life threatening complications.
Increasing funding from government, private organizations and increasing the Companies focus onStem cell therapiesare also driven this market
However, Collecting the Embryonic Stem cells are easy but Collecting Adult Stem cell or Somatic Stem cells are difficult and also we have to take more precautions for storing the collected stem cells.
Preview Analysis of Stem Cell Therapies Market: Global Industry Analysis and Opportunity Assessment 2015 2025: https://www.futuremarketinsights.com/reports/stem-cell-therapies-market
Stem Cell TherapiesMarket: Segmentation
Stem Cell Therapies are segmented into following types
Based on treatment:
Based on application:
Based on End User:
Stem Cell TherapiesMarket: Overview
With rapid technological advantage in healthcare and its promising results, the use of Stem Cell Therapies will increase and the market is expected to have a double digit growth in the forecast period (2015-2025).
Stem Cell TherapiesMarket: Region- wise Outlook
Depending on geographic regions, the global Stem Cell Therapies market is segmented into seven key regions: North America, South America, Eastern Europe, Western Europe, Asia Pacific excluding Japan, Japan and Middle East & Africa.
The use of Stem Cell Therapies is high in North America because it is highly developed region, having good technological advancements in healthcare setup and people are having good awareness about health care. In Asia pacific region china and India also having rapid growth in health care set up. Europe also having good growth in this market.
Buy this report @https://www.futuremarketinsights.com/checkout/1087
Stem Cell TherapiesMarket: Key Players
Some of the key players in this market are
Our advisory services are aimed at helping you with specific, customized insights that are relevant to your specific challenges. Let us know about your challenges and our trusted advisors will connect with you:https://www.futuremarketinsights.com/askus/rep-gb-1087
More from Healthcare, Pharmaceuticals and Medical devices:
About Us
Future MarketInsights (FMI) is a leading market intelligence and consulting firm. We deliversyndicated research reports, custom research reports and consulting serviceswhich are personalized in nature. FMI delivers a complete packaged solution,which combines current market intelligence, statistical anecdotes, technologyinputs, valuable growth insights and an aerial view of the competitiveframework and future market trends.
Contact UsMr.Abhishek BudholiyaFuture Market Insights616 Corporate Way, Suite 2-9018,Valley Cottage, NY10989,United StatesT:+1-347-918-3531F: +1-845-579-5705T(UK): + 44-(0)-20-7692-8790Sales:sales@futuremarketinsights.comPress Office:Press@futuremarketinsights.comBlog:MarketResearch BlogWebsite:https://www.futuremarketinsights.com/
See original here:
Stem Cell Therapies Market research Likely to Emerge over a Period of 2015-2025 - PharmiWeb.com
Science makes baldness optional (if you can afford it) – The Big Smoke Australia
By daniellenierenberg
However, we may finally have a solution to the First Worlds most enduring problem, baldness, as according to new research, it is certainly possible to create new hair follicles when theyve redeposited themselves to the foot of your shower, through the application of stem-cell technology and 3D printing.
There is a caveat, as the results of the technique are not necessarily long-lasting. When you try to clone hair cells, over time they dedifferentiate and stop producing hair, says Robert Bernstein, a dermatologist in Manhattan who specialises in hair transplantation. For a long time, no one could figure out why. But researchers gradually solved the problem. Over the past few years, they noticed that cells spread out when theyre cultured; the follicular structure essentially melts away. The epiphany was that if you can keep the cells together in their teardrop shape so they continue to signal each other, they continue to grow into hair follicles, Bernstein says.
The next step is to create hair farms, according to an entrepreneur who has started such a thing. Stemson Therapeutics is, per The Atlantic, growing hair from stem cellsnot fetal, but stem cells derived from a persons own skin or bloodand implanting hair follicles rich with dermal papillae into the space around a persons old, shrunken, dormant follicle.
Continue reading here:
Science makes baldness optional (if you can afford it) - The Big Smoke Australia
Cutting through the hype to get to bioprinted human tissue – Livemint
By daniellenierenberg
For the first time ever, Israeli scientists in Tel Aviv made a 3D printed artificial heart using a patients own cells," proclaims a Washington Post story headlined Researchers create 3D printed heart on April 17 this year.
In the scientific paper published two days earlier, the Israeli scientists describe how they made a bioink out of heart cells and other materials from a patient, and then bioprinted the tissue in the shape of a tiny heart, which was kept alive in a nutrient solution. Their paper makes it clear that this 3D printed heart could not function like a real heart. But the way the research that was projected in media shows how the idea of 3D printed organs is hyped.
Biotechnology has made significant advances, but its still a long way from creating organs that can be transplanted into people. The vasculaturethe network of blood vessels that feeds the organis a challenge.
Stem cell engineering to grow all the cells of an organ in a personalised way to avoid rejection by the recipients immune system is another challenge. And finally, researchers will have to show that a lab organ will work with all the other organs in a human body.
At the same time, the development of 3D bioprinters in the last few years has raised the prospects of making tissues and organs in a more affordable and consistent way because of the speed and precision of the machines. Advances in related fields like nanotechnology and gene editing are also pushing the needle.
These are exciting times, but for startups rushing into this nascent field with huge potential, its as important to be prudent as brave. One way is to go after low hanging fruit instead of the holy grail.
Shift to clinical use
Something like skin is easier to translate into a clinical setting," says Alok Medikepura Anil, director and co-founder of Bengaluru-based 3D bioprinting startup Next Big Innovation Lab (NBIL), which has made human skin in the lab. The skin has good regenerative properties and most of the function of bioprinted skin is to keep infections away, provide nutrition for skin to regenerate and stop the scarring of wounds. Replicating this is easier than replicating the function of a critical organ such as the heart."
This approach contrasts with that of another Bengaluru-based 3D bioprinting startup Pandorum Technologies, founded in 2011 by two researchers at Indian Institute of Science. Pandorum first tried its hand with liver tissue and more recently announced that it had bio-engineered corneal tissue.
Organ tissue for clinical use will require FDA and other approvals. So thats a very expensive proposition," says angel investor Venkat Raju, who took an interest in Pandorum but eventually made a bet on NBIL whose proprietary Innoskin also has non-clinical use in cosmetics testing.
The regulatory environment is evolving. This year, FDA released an RMAT (regenerative medicine and advanced therapy) policy that includes tissue engineering. The FDA wants to fast-track tissue-engineered products if they have a lot of benefits," says Pooja Venkatesh, NBIL co-founder.
Raju feels that startups like NBIL gaining traction and validation could bridge the current gap between academic research and business.
Theres tonnes of research happening across the globe on bioprinting. But universities are struggling to commercialize their research. The fact that NBIL is getting receptive audiences in academia is because they see an opportunity to push their research out."
The Wake Forest Institute of Regenerative Medicine in the US is one of the leading institutions for research in this field. Researchers there are growing tissues for over 40 different areas of the body. They were the first to transplant a lab-grown organ into a 10-year-old patient.
Made-to-order organs
Dr Anthony Atala, who is now the director of the institute, had taken a piece of the boys bladder and grown a new one in the lab over the course of two months. The lab-grown bladder was then transplanted into the patient.
That boy, Luke Massella, went on to become the captain of his school wrestling team. Pretty much I was able to live a normal life after that," Massella, who is now 28, said in a recent interview on BBC.
Stories like that of Massella stoke excitement over futuristic scenarios where you could get made-to-order organs. But researchers admit that there are many unsolved problems in tissue engineering before complex organs like the heart, kidney and liver can be bioprinted. The crash of well-funded San Diego 3D bioprinting startup Organovo, which hit a brick wall in commercializing liver tissue, reminds us to keep the hype in check.
Sumit Chakraberty is a contributing editor with Mint. Write to him at chakraberty@gmail.com.
Go here to read the rest:
Cutting through the hype to get to bioprinted human tissue - Livemint
Cell Separation Technology Market is Poised to be Worth US$ 13.6 Bn by 2027 – 101Newsindustry
By daniellenierenberg
Transparency Market Research (TMR) has published a new report on the global cell separation technology market for the forecast period of 20192027. According to the report, the global cell separation technology market was valued at ~ US$ 5 Bn in 2018, and is projected to expand at a double-digit CAGR during the forecast period.
Cell separation, also known as cell sorting or cell isolation, is the process of removing cells from biological samples such as tissue or whole blood. Cell separation is a powerful technology that assists biological research. Rising incidences of chronic illnesses across the globe are likely to boost the development of regenerative medicines or tissue engineering, which further boosts the adoption of cell separation technologies by researchers.
Expansion of the global cell separation technology market is attributed to an increase in technological advancements and surge in investments in research & development, such as stem cell research and cancer research. The rising geriatric population is another factor boosting the need for cell separation technologies Moreover, the geriatric population, globally, is more prone to long-term neurological and other chronic illnesses, which, in turn, is driving research to develop treatment for chronic illnesses. Furthermore, increase in the awareness about innovative technologies, such as microfluidics, fluorescent-activated cells sorting, and magnetic activated cells sorting is expected to propel the global cell separation technology market.
Request a PDF Sample on Cell Separation Technology Market Report
https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=1925
North America dominated the global cell separation technology market in 2018, and the trend is anticipated to continue during the forecast period. This is attributed to technological advancements in offering cell separation solutions, presence of key players, and increased initiatives by governments for advancing the cell separation process. However, insufficient funding for the development of cell separation technologies is likely to hamper the global cell separation technology market during the forecast period. Asia Pacific is expected to be a highly lucrative market for cell separation technology during the forecast period, owing to improving healthcare infrastructure along with rising investments in research & development in the region.
Rising Incidences of Chronic Diseases, Worldwide, Boosting the Demand for Cell Therapy
Incidences of chronic diseases such as diabetes, obesity, arthritis, cardiac diseases, and cancer are increasing due to sedentary lifestyles, aging population, and increased alcohol consumption and cigarette smoking. According to the World Health Organization (WHO), by 2020, the mortality rate from chronic diseases is expected to reach 73%, and in developing counties, 70% deaths are estimated to be caused by chronic diseases.
Southeast Asia, Eastern Mediterranean, and Africa are expected to be greatly affected by chronic diseases. Thus, the increasing burden of chronic diseases around the world is fuelling the demand for cellular therapies to treat chronic diseases. This, in turn, is driving focus and investments on research to develop effective treatments. Thus, increase in cellular research activities is boosting the global cell separation technology market.
Increase in Geriatric Population Boosting the Demand for Surgeries
The geriatric population is likely to suffer from chronic diseases such as cancer and neurological disorders more than the younger population. Moreover, the geriatric population is increasing at a rapid pace as compared to that of the younger population. Increase in the geriatric population aged above 65 years is projected to drive the incidences of Alzheimers, dementia, cancer, and immune diseases, which, in turn, is anticipated to boost the need for corrective treatment of these disorders. This is estimated to further drive the demand for clinical trials and research that require cell separation products. These factors are likely to boost the global cell separation technology market.
According to the United Nations, the geriatric population aged above 60 is expected to double by 2050 and triple by 2100, an increase from 962 million in 2017 to 2.1 billion in 2050 and 3.1 billion by 2100.
Request for a Discount on Cell Separation Technology Market Report
https://www.transparencymarketresearch.com/sample/sample.php?flag=D&rep_id=1925
Productive Partnerships in Microfluidics Likely to Boost the Cell Separation Technology Market
Technological advancements are prompting companies to innovate in microfluidics cell separation technology. Strategic partnerships and collaborations is an ongoing trend, which is boosting the innovation and development of microfluidics-based products. Governments and stakeholders look upon the potential in single cell separation technology and its analysis, which drives them to invest in the development of microfluidics. Companies are striving to build a platform by utilizing their expertise and experience to further offer enhanced solutions to end users.
See the article here:
Cell Separation Technology Market is Poised to be Worth US$ 13.6 Bn by 2027 - 101Newsindustry
Celebrating the Periodic Table of Elements – Massive Science
By daniellenierenberg
Many of us biologists conduct fieldwork in diverse places, from Alaska to the tropics, from aiming to understand how microbes are responding to climate change in the boreal soils to learning about life history strategies and co-evolutionary arms races of bats, their ectoparasitic flies, and the ectoparasitic fungi living on those flies.
The days before fieldwork tend to be hectic: make a checklist to make sure you have everything you need, think about a plan B (and a plan C, just in case), anticipate drawbacks and plan on how to address them, and the list goes on and on. The day comes. You make it to your field site, you collect the samples you want, obtain the data you need, everything works out just like planned, and you make it back to the lab safe, on time, and without going over your planned budget. This is how it should be, but it never really goes like that.
Fieldwork is one of the most exciting experiences about doing research. It is also, in many cases, high-risk. During fieldwork, many things can go wrong, and most of those things cannot be helped. We cannot control the appearances of massive puddles in the middle of the road, critically damaging our transportation vehicles. We cannot control the thunderstorm that makes our study organisms disappear when we finally arrive at a remote field site after hours of climbing a mud-covered mountain.
Sadly, this is not always the case for threats to our integrity as human beings, and we, as a scientific community, have done far too little to address this problem. People from underrepresented groups in the sciences such as people of color, women, and those who identify as LGBTQIA+ or gender nonconforming often are at higher risk of suffering abuse during fieldwork. This comes in the form of sexual harassment, sexual abuse, discrimination, and intimidation. Scientists who have experienced abuse often fear talking about it because they are traumatized and because they fear retaliation and backlash, especially if the perpetrators of abuse are colleagues or superiors advisers and people at higher career stage.
In Spring 2018, we carried out an anonymous survey to collect testimonies of what scientists, specifically from the LGBTQIA+ community, experience during fieldwork. The idea for such a survey sprouted from concerns that sexual orientation or gender identity may play an unwanted or unwarranted role in peoples professional career. Especially during fieldwork, when Diversity and Inclusion Offices from our university campuses are far away, LGBTQIA+ researchers are exposed to people who may not agree with their sexual orientation or who do not understand why he may want to be addressed as they.
Responses revealed experiences ranging from discrimination to situations that made researchers decide to no longer perform fieldwork outside of safe places. This adds a whole new level to fieldwork stress, namely having to evaluate sites for their tolerance towards LGBTQIA+. In one story from fieldwork, men voiced discomfort because an openly gay man would share a room with them while, simultaneously, women felt uncomfortable due to the possibility of having to share a room with someone from the opposite sex. Another survey respondent described that they were fearful to carry out fieldwork in places that are recognized for their homophobic culture. These experiences leave people feeling isolated and rejected.
We present a few strategies that we can instill in STEM fields to avoid cases like these:
1) INFORM PEOPLE ABOUT LGBTQIA+. Erase any misinformation that may exist. For example, a gay man is not a threat to the sexuality of cisgender males. Institutions can facilitate trainings on diversity and inclusiveness and provide information on the LGBTQIA+ community to eliminate negative stereotypes.
2) HAVE SUFFICIENT FUNDING AVAILABLE FOR FIELDWORK. Although sometimes it's unavoidable to share rooms due to limited budget or space, if there is the possibility to do so, provide individual lodging for people traveling to fieldwork or conferences. Especially for those who ask for it.
3) DEVELOP AN EMERGENCY PROTOCOL. As a lab, department, or institution, develop a protocol that scientists can follow as a response to experiencing a threat to their integrity. Protocols like this should be part of a broader departmental or university-wide mission statement about equity in field work. The bar has been set high by this example of a mission statement written by University of California Irvine professor Kathleen Treseder.
4) AVOID INTOLERANT AREAS. It is important to note that this does not only apply to countries like Niger and Tunisia where discriminatory laws expose LGBTQIA+ individuals to the risk of death penalty. It also applies close to home, in the USA, where there is an ongoing debate about public restrooms and which one transgender people and people who identify as gender-nonconforming should use.
5) IMPLEMENT A ZERO-TOLERANCE POLICY. Inform everyone in your lab, department and institution that there is a zero-tolerance policy regarding abuse. A code of conduct with expected versus unaccepted behavior and practices should always be made available through trainings and in field stations.
Visit link:
Celebrating the Periodic Table of Elements - Massive Science
Aspen Neuroscience Launches With $6.5 Million Seed Funding to Advance First-of-its-Kind Personalized Cell Therapy for Parkinson’s Disease – PRNewswire
By daniellenierenberg
SAN DIEGO, Dec. 12, 2019 /PRNewswire/ -- Aspen Neuroscience, Inc. today announced its launch following a $6.5 million seed round led by Domain Associates and Axon Ventures and including Alexandria Venture Investments,Arch Venture Partners,OrbiMedand Section 32 to develop the first autologous cell therapies for Parkinson's disease. Aspen's proprietary approach was developed by the company's co-founders, Jeanne F. Loring, Ph.D., Professor Emeritus and founding director of the Center for Regenerative Medicine at The Scripps Research Institute, and Andres Bratt-Leal, Ph.D., a former post-doctoral researcher in Dr. Loring's lab. The company was initially supported by Summit for Stem Cell, a founding partner and non-profit organization which provides a variety of services for people with Parkinson's disease. Aspen is led by industry veteran Howard J. Federoff, M.D., Ph.D., as Chief Executive Officer.
Parkinson's disease is characterized by the loss of specific brain cells that make the chemical dopamine. Without dopamine, nerve cells cannot communicate with muscles and people are left with debilitating motor problems. Aspen is focusing on human pluripotent stem cells, cultured cells that can become any cell type in the human body. The company's research is specific to induced pluripotent stem cells (iPSCs), which it develops by taking a skin biopsy from a person with Parkinson's disease and turning the tissue into pluripotent stem cells using genetic engineering. Aspen then differentiates the pluripotent stem cells into dopamine-releasing neurons that can be transplanted into that same person (autologous), thereby restoring the types of neurons lost in Parkinson's disease.
As an autologous cell therapy for Parkinson's disease, Aspen's treatment would eliminate the need for immunosuppression because the neurons are transplanted back into the same patient from which they were generated. The use of immunosuppression is necessary with currently available cell therapies for Parkinson's disease and when transplanting cells from one patient to another (allogeneic) to prevent rejection but can pre-dispose the patient to life-threatening complications including infection and add cost to the patient and health system. Aspen is the only company in the world offering an autologous neuron replacement therapy for Parkinson's disease.
Aspen encompasses a powerful executive leadership team including Dr. Federoff who, in addition to his leadership roles at the UC Irvine Health System, was the Executive Vice President for Health Sciences and the Executive Dean of Medicine at Georgetown University. Dr. Federoff also has significant biotech industry experience including co-founding MedGenesis Therapeutix and Brain Neurotherapy Bio, as well as leading the U.S. Parkinson's Disease Gene Therapy Study Group. The company is also proud to announce the addition of several experienced and well-known members to its leadership team including Edward Wirth, M.D., Ph.D., as Chief Medical Officer.
Dr. Wirth currently serves as the Chief Medical Ofcer for Lineage Cell Therapeutics where he oversees clinical development of its two therapeutic programs for spinal cord injuries and lung cancer. He received his M.D. and Ph.D. from the University of Florida in 1994 and remained to conduct postdoctoral research including leading the University of Florida team that performed the rst human embryonic spinal cord transplant in the U.S. Dr. Wirth went on to serve as the Medical Director for Regenerative Medicine at Geron Corporation where the world's rst clinical trial of human embryonic stem cell (hESC)-derived product occurred which demonstrated initial clinical safety.
Drs. Federoff and Wirth are joined by Dr. Loring, as Chief Scientific Officer; Jay Sial, as Chief Financial Officer; Andres Bratt-Leal, Ph.D., as Vice President of Research and Development; Thorsten Gorba, Ph.D., as Senior Director of Manufacturing and Naveen M. Krishnan, M.D., M.Phil., as Senior Director of Corporate Development.
"Aspen is developing a restorative, disease modifying autologous neuron therapy for people suffering from Parkinson's disease," said Dr. Federoff. "We are fortunate to have such a high-caliber scientific and medical leadership team to make our treatments a reality. Our cell replacement therapy, which originated in the laboratory of Dr. Jeanne Loring and was later supported by Summit for Stem Cell and its President, Ms. Jenifer Raub, has the potential to release dopamine and reconstruct neural networks where no disease-modifying therapies exist."
Aspen's lead product (ANPD001) is currently undergoing investigational new drug (IND)-enabling studies for the treatment of sporadic Parkinson's disease. Aspen is also developing a gene-edited autologous neuron therapy (ANPD002) that is in the research stage and targeted toward familial forms of Parkinson's disease beginning with the most common genetic variant in the gene encoding glucocerebrosidase (GBA). Aspen leverages proprietary machine-learning tools and artificial intelligence to ensure quality control during manufacturing and to deliver a safe and reproducible product for each cell line.
"Aspen's financial backing, combined with its experienced and proven leadership team, positions it well for future success," said Kim P. Kamdar, Ph.D., Partner at Domain Associates, one of Aspen's seed investors. "Domain prides itself on investing in companies that can translate scientific research into innovative medicines and therapies that make a difference in people's lives. We clearly see Aspen as fitting into that category, as it is the only company using a patient's own cells for replacement therapy in Parkinson's disease."
About Aspen Neuroscience
Aspen Neuroscience Inc. is a development stage, private biotechnology company that uses innovative genomic approaches combined with stem cell biology to deliver patient-specific, restorative cell therapies that modify the course of Parkinson's disease. Aspen's therapies are based upon the scientific work of world-renowned stem cell scientist, Dr. Jeanne Loring, who has developed a novel method for autologous neuron replacement. For more information and important updates, please visithttp://www.aspenneuroscience.com.
CONTACT: Jennifer Viera, AspenNeuroscience@TeamSeismic.com
SOURCE Aspen Neuroscience
http://www.aspenneuroscience.com
Read the rest here:
Aspen Neuroscience Launches With $6.5 Million Seed Funding to Advance First-of-its-Kind Personalized Cell Therapy for Parkinson's Disease - PRNewswire
Kind of lacking: Injured Bronco wonders why Canada wont fund spinal surgery – Houston Today
By daniellenierenberg
A hockey player paralyzed in the Humboldt Broncos bus crash says it feels good to be home after spending five weeks in Thailand, where he underwent spinal surgery.
It feels good. I mean I felt that cold, cold wind hit my legs, so Im feeling good. Its good to be back, Ryan Straschnitzki said Sunday night as he wheeled himself into the Calgary airport.
The 20-year-old from Airdrie, Alta., who is paralyzed from the chest down, had an epidural stimulator implanted in his spine while he was in Bangkok. A week later, doctors also injected stem cells above and below his spinal injury to try to reverse some of the damage.
Videos posted by Straschnitzki and his father in Thailand show him straightening a leg. In another, Straschnitzki kicks a ball.
In another clip, while hes strapped into a harness, physiotherapists slowly help him walk with a wheeled machine.
It was incredible. I mean the last time I walked beside my dad was before the accident and before I moved away, said Straschnitzki. So doing that again and just seeing the look in his eyes is motivating to me.
Straschnitzki was one of 13 players injured when a semi truck blew through a stop sign and into the path of his junior hockey teams bus at a rural intersection in Saskatchewan in April 2018.
Sixteen others on the bus were killed.
READ MORE: Paralyzed Humboldt Broncos player to get spinal surgery in Thailand
Tom Straschnitzki said hes not an emotional guy, but watching the progress his son made in Thailand has given him hope.
When I actually saw him move his leg, it just took me back to imagining his last steps going onto that bus on that fateful day. And I was just thinking maybe he can go back on the bus one day, he said.
The surgery can cost up to $100,000 but isnt covered by public health care or insurance, because it has not been approved by Health Canada. The Straschnitzkis say theyre frustrated the treatment isnt available here.
Ryan Straschnitzki hopes his experience might at least get the conversation going.
Our health-care system is kind of lacking in this area for spinal cord injuries and I think its huge that Thailand and some other places are getting this started, he said.
I think if Canada can step in and advance this program, I think itll help a lot of people out.
Tom and Michelle Straschnitzki said they have been flooded with comments and questions about their sons procedure.
They want to try it and ask why doesnt Canada do it? I dont have the answer about Canada but they do it in Thailand and it is not experimental, said Tom Straschnitzki.
Health Canada has said it provides licensed spinal cord stimulators but only for pain relief. A spokesman said it has not received an application to have stimulators used to regain motor skills.
READ MORE: Loss for words Injured Bronco shocked, excited over effect of spinal surgery
Ryan Straschnitzki said he isnt expecting a cure but hopes his implant will restore some muscle movement.
Just getting that feeling of being able to move something that I wasnt able to move before and I know core is a huge part of my disability, so anything below my chest is crucial. And after the programming it really helped, he said.
Straschnitzki is hoping to make the Canadian sledge hockey team and compete in the Olympics. He even took his sled with him to Thailand and sat in it as part of his rehabilitation there.
He said he plans to take a few days off before returning to physiotherapy and hitting the ice again back home.
Bill Graveland, The Canadian Press
Like us on Facebook and follow us on Twitter
Continued here:
Kind of lacking: Injured Bronco wonders why Canada wont fund spinal surgery - Houston Today
Automation in Cell Therapy Manufacturing Is Driving the Growth of the Cell Therapy Market over the Forecast Period (2019-2025) – Press Release -…
By daniellenierenberg
A recent report published by Infinium Global Research on cell therapy market provides in-depth analysis of segments and sub-segments in the global as well as regional cell therapy market.
This press release was orginally distributed by SBWire
Pune, India -- (SBWIRE) -- 12/13/2019 -- The Infinium Global Research analyzes the "Cell Therapy Market (Cell Type - Stem Cell, and Differentiated Cell; Therapy Type - Allogenic Therapies, and Autologous Therapies; Application - Autoimmune Diseases, Oncology, Dermatology, Musculoskeletal Therapies, and Other Applications; End-users - Hospitals and Clinics, Biotechnology and Pharmaceutical Companies, and Research Institutes): Global Industry Analysis, Trends, Size, Share and Forecasts to 2025."
For More Details Get FREE Sample Pages of this Research Report@ https://www.infiniumglobalresearch.com/reports/sample-request/12810
Cell therapy is the transplantation of human cells to replace or repair damaged tissue or cells. With new technologies, products, innovative, and limitless imagination. Cells used for cell therapy often stem cells, cells that can mature into different types of specialized cells. The most common type of cell therapy has been the replacement of mature, functioning cells through blood and platelet transfusions. Cell therapies treat cancer, improving a weakened immune system, autoimmune disease, rebuilding damaged cartilage in joints, urinary problems, and infectious disease, repairing spinal cord injuries, and helping patients with neurological disorders.
Automation in Cell Therapy Manufacturing Providing Intensive Opportunities in the Cell Therapy Market
The rising occurrence of chronic diseases across the globe is the major driver for the growth of the global cell therapy market. Moreover, increasing the geriatric population, increase in cell therapy transplantation rate, and replacement of animal testing model are some of the key factors fueling the market growth. Furthermore, increasing awareness of stem cell therapy and the development of cell banking facilities contributing to the growth of the global cell therapy market.
Moreover, technological advancements and improvements in the regulatory framework continuously provide to the growing market. However, challenges in research and development, lack of proper and advanced healthcare in developing regions may hinder market growth. Furthermore, automation in cell therapy manufacturing providing intensive opportunities in the cell therapy market in the coming years.
Request a Discount on Standard Prices of this Premium Report @ https://www.infiniumglobalresearch.com/reports/request-discount/12810
Stem Cell Therapy is Expected to Hold Maximum Share in the Cell Therapy Market
The global cell therapy market is segmented on the basis of type, therapy, application, and end-user. Types are further segmented into stem cells and differentiated cells. Stem cell therapy is expected to hold maximum share in the cell therapy market. Stem cell therapies having several advantages like regenerating the body organisms and other cells, which contributes to the growth of the stem cell therapies market.
By therapy, the cell therapy market is segmented into allogeneic therapies and autologous therapies. On the basis of application, the market is further divided into autoimmune diseases, oncology, dermatology, musculoskeletal therapies, and other applications. Based on end-users, the market is hospitals and clinics, biotechnology and pharmaceutical companies, and Research Institutes.
North America is Leading the Market Share in the Cell Therapy Market
The cell therapy market is segmented regionally into North America, Europe, Asia-Pacific, and the Rest of the World. North America is leading the market share in the cell therapy market due to the high rate of cancer and blood-related disorders coupled with high investments in the research and development of novel technologies. North America has a firm healthcare organization that acts as an added advantage for the growth of the market in this region.
Asia-Pacific region is anticipated to stimulate the growth of the cell therapy market due to a large number of surgeries performed in this region. Rising awareness about advanced medicinal therapies contributes to the growth of the market in the Asia-Pacific region.
Browse Detailed TOC and Description of this Exclusive Report@ https://www.infiniumglobalresearch.com/healthcare-medical-devices/global-cell-therapy-market
Cell Therapy Market: Competitive Analysis
The leading players in the cell therapy market are NuVasive, Inc., Kolon TissueGene, Inc., JCR Pharmaceuticals Co., Ltd., Osiris Therapeutics, Inc., Stemedica Cell Technologies, Inc., MEDIPOST, Stemedica Cell Technologies, Inc., Celgene Corporation, ANTEROGEN.CO., LTD, Vericel Corporation. These companies are adopting strategic partnerships to enhance their product portfolio.
Reasons to Buy this Report:
=> Comprehensive analysis of global as well as regional markets of the cell therapy.
=> Complete coverage of all the product type and application segments to analyze the trends, developments, and forecast of market size up to 2025.
=> Comprehensive analysis of the companies operating in this market. The company profile includes analysis of product portfolio, revenue, SWOT analysis and the latest developments of the company.
=> Infinium Global Research- Growth Matrix presents an analysis of the product segments and geographies that market players should focus to invest, consolidate, expand and/or diversify.
For more information on this press release visit: http://www.sbwire.com/press-releases/automation-in-cell-therapy-manufacturing-is-driving-the-growth-of-the-cell-therapy-market-over-the-forecast-period-2019-2025-1267918.htm
A Window into the Hidden World of Colons – Duke Today
By daniellenierenberg
Biomedical engineers at Duke University have developed a system that allows for real-time observations of individual cells in the colon of a living mouse.
Researchers expect the procedure to allow new investigations into the digestive systems microbiome as well as the causes of diseases such as inflammatory bowel disease and colon cancer and their treatments.
The procedure described online on December 11 in Nature Communications involves surgically implanting a transparent window into a mouses abdominal skin above the colon. Similar setups are already being used to allow live looks into the detailed inner workings of the brain, spinal cord, liver, lungs and other organs. Imaging a live colon, however, is a slipperier proposition.
A brain doesnt move around a lot, but the colon does, which makes it difficult to get detailed images down to a single cell, said Xiling Shen, the Hawkins Family Associate Professor of Biomedical Engineering at Duke University. Weve developed a magnetic system that is strong enough to stabilize the colon in place during imaging to obtain this level of resolution, but can quickly be turned off to allow the colon to move freely.
Immobilizing the colon for imaging is a tricky task for traditional methods such as glue or stitches. At best they can cause inflammation that would ruin most experiments. At worst they can cause obstructions, which can quickly kill the mouse being studied.
To skirt this issue, Shen developed a magnetic device that looks much like a tiny metal nasal strip and can be safely attached to the colon. A magnetic field snaps the colon into place and keeps it stable during imaging, but once turned off, leaves the colon free to move and function as normal.
A vital organ that houses much of the digestive systems microbiome, the colon can be afflicted by diseases such as inflammatory bowel disease, functional gastrointestinal disorders and cancer. It also plays a key role in regulating the immune system, and can communicate directly with the brain through sacral nerves.
There is a great need to better understand the colon, because it can suffer from so many diseases and plays so many roles with significant health implications, Shen said.
In the study, Shen and his colleagues conducted several proof-of-principle experiments that provide starting points for future lines of research.
The researchers first colonized a living mouse colon with E. coli bacteria, derived from Crohns disease patients, that had been tagged with fluorescent proteins. The researchers then showed they could track the migration, growth and decline of the bacteria for more than three days. This ability could help researchers understand not only how antagonistic bacteria afflict the colon, Shen says, but the positive roles probiotics can play and which strains can best help people with gastrointestinal disorders.
In the next experiment, mice were bred with several types of fluorescent immune cells. The researchers then induced inflammation in the colon and carefully watched the activation of these immune cells. Shen says, this approach could be used with various types of immune cells and diseases to gain a better understanding of how the immune system responds to challenges.
Shen and his colleagues then showed that they could tag and track colon epithelial stem cells associated with colorectal cancer throughout radiation treatment. They also demonstrated that they could watch nerves throughout the colon respond to sacral nerve stimulation, an emerging therapy for treating motility and immune disorders such as functional gastrointestinal disorders and irritable bowel disorder.
While we know electrically stimulating the sacral nerves can alleviate the symptoms of these gastrointestinal disorders, we currently have no idea why or any way to optimize these treatments, Shen said. Being able to see how the colons neurons respond to different waveforms, frequencies and amplitudes of stimulation will be invaluable in making this approach a better option for more patients.
This work was supported by National Institutes of Health (R35GM122465, OT2OD023849), the Defense Advanced Research Projects Agency (N66001-15-2-4059) and the National Cancer Institutes (R35CA197616).
An Intravital Window to Image the Colon in Real Time, Nikolai Rakhilin, Aliesha Garrett, Chi-Yong Eom, Katherine Ramos C., David M. Small, Andrea R. Daniel, Melanie M. Kaelberer, Menansili A. Mejooli, Qiang Huang, Shengli Ding, David G. Kirsch, Diego V. Bohrquez, Nozomi Nishimura, Bradley B. Barth, and Xiling Shen. Nature Communications, 2019. DOI: 10.1038/s41467-019-13699-w
# # #
Read the original post:
A Window into the Hidden World of Colons - Duke Today
Aspen Neuroscience Launches With $6.5 Million Seed Funding to Advance First-of-its-Kind Personalized Cell Therapy for Parkinson’s Disease – Yahoo…
By daniellenierenberg
Co-founded by World-Renowned Stem Cell Scientist Jeanne F. Loring, Ph.D. and Andres Bratt-Leal, Ph.D.
Led by Chief Executive Officer Howard Federoff, M.D., Ph.D., Former Vice Chancellor for Health Affairs and Chief Executive Officer of the University of California Irvine Health System
SAN DIEGO, Dec. 12, 2019 /PRNewswire/ -- Aspen Neuroscience, Inc. today announced its launch following a $6.5 million seed round led by Domain Associates and Axon Ventures and including Alexandria Venture Investments,Arch Venture Partners,OrbiMedand Section 32 to develop the first autologous cell therapies for Parkinson's disease. Aspen's proprietary approach was developed by the company's co-founders, Jeanne F. Loring, Ph.D., Professor Emeritus and founding director of the Center for Regenerative Medicine at The Scripps Research Institute, and Andres Bratt-Leal, Ph.D., a former post-doctoral researcher in Dr. Loring's lab. The company was initially supported by Summit for Stem Cell, a founding partner and non-profit organization which provides a variety of services for people with Parkinson's disease. Aspen is led by industry veteran Howard J. Federoff, M.D., Ph.D., as Chief Executive Officer.
Aspen Neuroscience Inc. is a development stage, private biotechnology company that uses innovative genomic approaches combined with stem cell biology to deliver patient-specific, restorative cell therapies that modify the course of Parkinsons disease. Aspens therapies are based upon the scientific work of world-renowned stem cell scientist, Dr. Jeanne Loring, who has developed a novel method for autologous neuron replacement.
Parkinson's disease is characterized by the loss of specific brain cells that make the chemical dopamine. Without dopamine, nerve cells cannot communicate with muscles and people are left with debilitating motor problems. Aspen is focusing on human pluripotent stem cells, cultured cells that can become any cell type in the human body. The company's research is specific to induced pluripotent stem cells (iPSCs), which it develops by taking a skin biopsy from a person with Parkinson's disease and turning the tissue into pluripotent stem cells using genetic engineering. Aspen then differentiates the pluripotent stem cells into dopamine-releasing neurons that can be transplanted into that same person (autologous), thereby restoring the types of neurons lost in Parkinson's disease.
As an autologous cell therapy for Parkinson's disease, Aspen's treatment would eliminate the need for immunosuppression because the neurons are transplanted back into the same patient from which they were generated. The use of immunosuppression is necessary with currently available cell therapies for Parkinson's disease and when transplanting cells from one patient to another (allogeneic) to prevent rejection but can pre-dispose the patient to life-threatening complications including infection and add cost to the patient and health system. Aspen is the only company in the world offering an autologous neuron replacement therapy for Parkinson's disease.
Aspen encompasses a powerful executive leadership team including Dr. Federoff who, in addition to his leadership roles at the UC Irvine Health System, was the Executive Vice President for Health Sciences and the Executive Dean of Medicine at Georgetown University. Dr. Federoff also has significant biotech industry experience including co-founding MedGenesis Therapeutix and Brain Neurotherapy Bio, as well as leading the U.S. Parkinson's Disease Gene Therapy Study Group. The company is also proud to announce the addition of several experienced and well-known members to its leadership team including Edward Wirth, M.D., Ph.D., as Chief Medical Officer.
Story continues
Dr. Wirth currently serves as the Chief Medical Ofcer for Lineage Cell Therapeutics where he oversees clinical development of its two therapeutic programs for spinal cord injuries and lung cancer. He received his M.D. and Ph.D. from the University of Florida in 1994 and remained to conduct postdoctoral research including leading the University of Florida team that performed the rst human embryonic spinal cord transplant in the U.S. Dr. Wirth went on to serve as the Medical Director for Regenerative Medicine at Geron Corporation where the world's rst clinical trial of human embryonic stem cell (hESC)-derived product occurred which demonstrated initial clinical safety.
Drs. Federoff and Wirth are joined by Dr. Loring, as Chief Scientific Officer; Jay Sial, as Chief Financial Officer; Andres Bratt-Leal, Ph.D., as Vice President of Research and Development; Thorsten Gorba, Ph.D., as Senior Director of Manufacturing and Naveen M. Krishnan, M.D., M.Phil., as Senior Director of Corporate Development.
"Aspen is developing a restorative, disease modifying autologous neuron therapy for people suffering from Parkinson's disease," said Dr. Federoff. "We are fortunate to have such a high-caliber scientific and medical leadership team to make our treatments a reality. Our cell replacement therapy, which originated in the laboratory of Dr. Jeanne Loring and was later supported by Summit for Stem Cell and its President, Ms. Jenifer Raub, has the potential to release dopamine and reconstruct neural networks where no disease-modifying therapies exist."
Aspen's lead product (ANPD001) is currently undergoing investigational new drug (IND)-enabling studies for the treatment of sporadic Parkinson's disease. Aspen is also developing a gene-edited autologous neuron therapy (ANPD002) that is in the research stage and targeted toward familial forms of Parkinson's disease beginning with the most common genetic variant in the gene encoding glucocerebrosidase (GBA). Aspen leverages proprietary machine-learning tools and artificial intelligence to ensure quality control during manufacturing and to deliver a safe and reproducible product for each cell line.
"Aspen's financial backing, combined with its experienced and proven leadership team, positions it well for future success," said Kim P. Kamdar, Ph.D., Partner at Domain Associates, one of Aspen's seed investors. "Domain prides itself on investing in companies that can translate scientific research into innovative medicines and therapies that make a difference in people's lives. We clearly see Aspen as fitting into that category, as it is the only company using a patient's own cells for replacement therapy in Parkinson's disease."
About Aspen Neuroscience
Aspen Neuroscience Inc. is a development stage, private biotechnology company that uses innovative genomic approaches combined with stem cell biology to deliver patient-specific, restorative cell therapies that modify the course of Parkinson's disease. Aspen's therapies are based upon the scientific work of world-renowned stem cell scientist, Dr. Jeanne Loring, who has developed a novel method for autologous neuron replacement. For more information and important updates, please visithttp://www.aspenneuroscience.com.
View original content to download multimedia:http://www.prnewswire.com/news-releases/aspen-neuroscience-launches-with-6-5-million-seed-funding-to-advance-first-of-its-kind-personalized-cell-therapy-for-parkinsons-disease-300973830.html
SOURCE Aspen Neuroscience
Read the original here:
Aspen Neuroscience Launches With $6.5 Million Seed Funding to Advance First-of-its-Kind Personalized Cell Therapy for Parkinson's Disease - Yahoo...
Aspen Neuroscience gets funding to pursue personalized cell therapy for Parkinsons disease – The San Diego Union-Tribune
By daniellenierenberg
Aspen Neuroscience, a new San Diego biotech company working on stem cell treatment for Parkinsons disease, has come out of stealth mode and raised $6.5 million to pursue clinical testing for its therapy.
Co-founded by well-known stem cell scientist Jeanne Loring, Aspen Neuroscience proposes creating stem cells from modified skin cells of Parkinsons patents via genetic engineering.
The stem cells, which can become any type of cell in the body, then would undergo a process that makes them specialize into dopamine-releasing neurons.
People with Parkinsons lose a large number up to 50 percent at diagnosis of specific brain cells that make the chemical dopamine.
Without dopamine, nerve cells cannot communicate with muscles and people are left with debilitating motor problems.
Once these modified skin cells have been engineered to specialize in producing dopamine, they can be transplanted into the Parkinsons patient to restore the types of neurons lost to the disease.
The reason we called it Aspen is because l was raised in the Rocky Mountain states, said Loring. When there is a forest fire in the Rockies, the evergreens are wiped out but the aspens are the fist that regenerate after the burn. So it is a metaphor for regeneration.
Aspen still has a long way to go before its proposed therapy would be available to Parkinsons patients. It has been meeting with the U.S. Food and Drug Administration to provide animal trial data and other information in hopes of getting permission to start human clinical trials.
But the company expects the earliest it would get the go-ahead from FDA to start human trials would be 2021.
Loring has been working on the therapy for eight years. She is professor emeritus and founding director of the Center for Regenerative Medicine at the Scripps Research Institute.
Loring co-founded the 20-employee company with Andres Bratt-Leal, a former post-doctoral researcher in Lorings lab at Scripps.
Joining them as Aspens Chief Executive is Dr. Howard Federoff, former vice chancellor for health affairs and chief executive of the University of California Irvine Health System.
Federoff said the company is the only one pursuing the use of Parkinsons patients own cells as part of neuron replacement therapy.
Aspens proprietary approach does not require the use of immuno-suppression drugs, which can be given when transplanted cells come from another person and perhaps limit the effectiveness of the treatment.
Aspens approach is a therapy that is likely to benefit from the fact that your own cells know how to make the best connections with their own target cells in the brain, even in the setting of Parkinsons disease, said Federoff. So when transplanted it is able to set back the clock on Parkinsons.
In addition to Aspens main therapy, it is researching a gene-editing treatment for forms of Parkinsons common in certain families.
Aspens research work up to now has been supported by Summit for Stem Cell, a non-profit on which provides a variety of services for people with Parkinsons disease.
The new seed funding round was led by Domain Associates and Axon Ventures, with additional participation from Alexandria Venture Investments, Arch Venture Partners, OrbiMed and Section 32.
Aspens financial backing, combined with its experienced and proven leadership team, positions it well for future success, said Kim Kamdar, a partner at Domain Associates. Domain prides itself on investing in companies that can translate scientific research into innovative medicines and therapies that make a difference in peoples lives. We clearly see Aspen as fitting into that category, as it is the only company using a patients own cells for replacement therapy in Parkinsons disease.
See original here:
Aspen Neuroscience gets funding to pursue personalized cell therapy for Parkinsons disease - The San Diego Union-Tribune
CHMP Issues Positive Opinion Recommending DARZALEX (Daratumumab) in Combination with Bortezomib, Thalidomide and Dexamethasone in Frontline Multiple…
By daniellenierenberg
Company Announcement
Copenhagen, Denmark; December 13, 2019 Genmab A/S (GMAB) announced today that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has issued a positive opinion recommending broadening the existing marketing authorization for DARZALEX (daratumumab) in the European Union. The recommendation is for the use of DARZALEX in in combination with bortezomib, thalidomide and dexamethasone for the treatment of adult patients with newly diagnosed multiple myeloma who are eligible for autologous stem cell transplant (ASCT).
We are very pleased with this positive opinion from the CHMP as, if approved, the combination of DARZALEX plus bortezomib, thalidomide and dexamethasone would be the first DARZALEX containing regimen that would be a potential treatment option for newly diagnosed patients with multiple myeloma in Europe who are eligible for ASCT, said Jan van de Winkel, Ph.D., Chief Executive Officer of Genmab.
The Type II variation application was submitted to the EMA by Janssen Pharmaceutica NV in March 2019 and was based on the Phase III CASSIOPEIA (MMY3006) study sponsored by the French Intergroupe Francophone du Myelome (IFM) in collaboration with the Dutch-Belgian Cooperative Trial Group for Hematology Oncology (HOVON) and Janssen R&D, LLC. Data from this study was published in The Lancet and presented at the 2019 American Society of Clinical Oncology (ASCO) Annual Meeting. In August 2012, Genmab granted Janssen Biotech, Inc. an exclusive worldwide license to develop, manufacture and commercialize daratumumab.
About the CASSIOPEIA (MMY3006) studyThis Phase III study is a randomized, open-label, multicenter study, run by the French Intergroupe Francophone du Myelome (IFM) in collaboration with the Dutch-Belgian Cooperative Trial Group for Hematology Oncology (HOVON) and Janssen R&D, LLC, including 1,085 newly diagnosed subjects with previously untreated symptomatic multiple myeloma who are eligible for high dose chemotherapy and stem cell transplant. In the first part of the study, patients were randomized to receive induction and consolidation treatment with daratumumab combined with bortezomib, thalidomide (an immunomodulatory agent) and dexamethasone (a corticosteroid) or treatment with bortezomib, thalidomide and dexamethasone alone. The primary endpoint is the proportion of patients that achieve a stringent Complete Response (sCR). In the second part of the study, patients that achieved a response will undergo a second randomization to either receive maintenance treatment of daratumumab 16 mg/kg every 8 weeks for up to 2 years versus no further treatment (observation). The primary endpoint of this part of the study is progression free survival (PFS).
About multiple myelomaMultiple myeloma is an incurable blood cancer that starts in the bone marrow and is characterized by an excess proliferation of plasma cells.1 Approximately 16,830 new patients were expected to be diagnosed with multiple myeloma and approximately 10,480 people were expected to die from the disease in the Western Europe in 2018.2 Globally, it was estimated that 160,000 people were diagnosed and 106,000 died from the disease in 2018.3 While some patients with multiple myeloma have no symptoms at all, most patients are diagnosed due to symptoms which can include bone problems, low blood counts, calcium elevation, kidney problems or infections.4
About DARZALEX (daratumumab)DARZALEX (daratumumab) intravenous infusion is indicated for the treatment of adult patients in the United States: in combination with bortezomib, thalidomide and dexamethasone as treatment for patients newly diagnosed with multiple myeloma who are eligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy; in combination with pomalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received at least two prior therapies, including lenalidomide and a proteasome inhibitor (PI); and as a monotherapy for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy, including a PI and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.5 DARZALEX is the first monoclonal antibody (mAb) to receive U.S. Food and Drug Administration (U.S. FDA) approval to treat multiple myeloma. DARZALEX intravenous infusion is indicated for the treatment of adult patients in Europe: in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of adult patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; for use in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of adult patients with multiple myeloma who have received at least one prior therapy; and as monotherapy for the treatment of adult patients with relapsed and refractory multiple myeloma, whose prior therapy included a PI and an immunomodulatory agent and who have demonstrated disease progression on the last therapy6. The option to split the first infusion of DARZALEX over two consecutive days has been approved in both Europe and the U.S. In Japan, DARZALEX intravenous infusion is approved for the treatment of adult patients: in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone for the treatment of relapsed or refractory multiple myeloma; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant. DARZALEX is the first human CD38 monoclonal antibody to reach the market in the United States, Europe and Japan. For more information, visit http://www.DARZALEX.com.
Story continues
Daratumumab is a human IgG1k monoclonal antibody (mAb) that binds with high affinity to the CD38 molecule, which is highly expressed on the surface of multiple myeloma cells. Daratumumab triggers a persons own immune system to attack the cancer cells, resulting in rapid tumor cell death through multiple immune-mediated mechanisms of action and through immunomodulatory effects, in addition to direct tumor cell death, via apoptosis (programmed cell death).5,6,7,8,9,10
Daratumumab is being developed by Janssen Biotech, Inc. under an exclusive worldwide license to develop, manufacture and commercialize daratumumab from Genmab. A comprehensive clinical development program for daratumumab is ongoing, including multiple Phase III studies in smoldering, relapsed and refractory and frontline multiple myeloma settings. Additional studies are ongoing or planned to assess the potential of daratumumab in other malignant and pre-malignant diseases in which CD38 is expressed, such as amyloidosis, NKT-cell lymphoma and B-cell and T-cell ALL. Daratumumab has received two Breakthrough Therapy Designations from the U.S. FDA for certain indications of multiple myeloma, including as a monotherapy for heavily pretreated multiple myeloma and in combination with certain other therapies for second-line treatment of multiple myeloma.
About Genmab Genmab is a publicly traded, international biotechnology company specializing in the creation and development of differentiated antibody therapeutics for the treatment of cancer. Founded in 1999, the company has two approved antibodies, DARZALEX (daratumumab) for the treatment of certain multiple myeloma indications, and Arzerra (ofatumumab) for the treatment of certain chronic lymphocytic leukemia indications. Daratumumab is in clinical development for additional multiple myeloma indications, other blood cancers and amyloidosis. A subcutaneous formulation of ofatumumab is in development for relapsing multiple sclerosis. Genmab also has a broad clinical and pre-clinical product pipeline. Genmab's technology base consists of validated and proprietary next generation antibody technologies - the DuoBody platform for generation of bispecific antibodies, the HexaBody platform, which creates effector function enhanced antibodies, the HexElect platform, which combines two co-dependently acting HexaBody molecules to introduce selectivity while maximizing therapeutic potency and the DuoHexaBody platform, which enhances the potential potency of bispecific antibodies through hexamerization. The company intends to leverage these technologies to create opportunities for full or co-ownership of future products. Genmab has alliances with top tier pharmaceutical and biotechnology companies. Genmab is headquartered in Copenhagen, Denmark with core sites in Utrecht, the Netherlands and Princeton, New Jersey, U.S.
Contact: Marisol Peron, Corporate Vice President, Communications & Investor Relations T: +1 609 524 0065; E: mmp@genmab.com
For Investor Relations: Andrew Carlsen, Senior Director, Investor RelationsT: +45 3377 9558; E: acn@genmab.com
This Company Announcement contains forward looking statements. The words believe, expect, anticipate, intend and plan and similar expressions identify forward looking statements. Actual results or performance may differ materially from any future results or performance expressed or implied by such statements. The important factors that could cause our actual results or performance to differ materially include, among others, risks associated with pre-clinical and clinical development of products, uncertainties related to the outcome and conduct of clinical trials including unforeseen safety issues, uncertainties related to product manufacturing, the lack of market acceptance of our products, our inability to manage growth, the competitive environment in relation to our business area and markets, our inability to attract and retain suitably qualified personnel, the unenforceability or lack of protection of our patents and proprietary rights, our relationships with affiliated entities, changes and developments in technology which may render our products or technologies obsolete, and other factors. For a further discussion of these risks, please refer to the risk management sections in Genmabs most recent financial reports, which are available on http://www.genmab.com and the risk factors included in Genmabs final prospectus for our U.S. public offering and listing and other filings with the U.S. Securities and Exchange Commission (SEC), which are available at http://www.sec.gov. Genmab does not undertake any obligation to update or revise forward looking statements in this Company Announcement nor to confirm such statements to reflect subsequent events or circumstances after the date made or in relation to actual results, unless required by law.
Genmab A/S and/or its subsidiaries own the following trademarks: Genmab; the Y-shaped Genmab logo; Genmab in combination with the Y-shaped Genmab logo; HuMax; DuoBody; DuoBody in combination with the DuoBody logo; HexaBody; HexaBody in combination with the HexaBody logo; DuoHexaBody; HexElect; and UniBody. Arzerra is a trademark of Novartis AG or its affiliates. DARZALEX is a trademark of Janssen Pharmaceutica NV.
1 American Cancer Society. "Multiple Myeloma Overview." Available at http://www.cancer.org/cancer/multiplemyeloma/detailedguide/multiple-myeloma-what-is-multiple-myeloma.Accessed June 2016.2 Globocan 2018. Western Europe Fact Sheet. Available at http://gco.iarc.fr/today/data/factsheets/populations/926-western-europe-fact-sheets.pdf Accessed March 20183 Globocan 2018. World Fact Sheet. Available at http://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf. Accessed December 2018.4 American Cancer Society. "How is Multiple Myeloma Diagnosed?" http://www.cancer.org/cancer/multiplemyeloma/detailedguide/multiple-myeloma-diagnosis. Accessed June 20165 DARZALEX Prescribing information, September 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761036s024lbl.pdf Last accessed September 20196 DARZALEX Summary of Product Characteristics, available at https://www.ema.europa.eu/en/medicines/human/EPAR/darzalex Last accessed October 20197De Weers, M et al. Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. The Journal of Immunology. 2011; 186: 1840-1848.8 Overdijk, MB, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015; 7: 311-21.9 Krejcik MD et al. Daratumumab Depletes CD38+ Immune-regulatory Cells, Promotes T-cell Expansion, and Skews T-cell Repertoire in Multiple Myeloma. Blood. 2016; 128: 384-94.10Jansen, JH et al. Daratumumab, a human CD38 antibody induces apoptosis of myeloma tumor cells via Fc receptor-mediated crosslinking.Blood. 2012; 120(21): abstract 2974.
Company Announcement no. 60CVR no. 2102 3884LEI Code 529900MTJPDPE4MHJ122
Genmab A/SKalvebod Brygge 431560 Copenhagen VDenmark
Attachment
See the original post here:
CHMP Issues Positive Opinion Recommending DARZALEX (Daratumumab) in Combination with Bortezomib, Thalidomide and Dexamethasone in Frontline Multiple...
The Year in Review: Bioprinting in 2019 – 3DPrint.com
By daniellenierenberg
This year, the bioprinting community has discovered ways to speed up precision in 3D bioprinting. Even though experts have warned us that 3D printed organs might not be available for a long time, we cant help the excitement after witnessing crucial progress in 2019 that gets us closer to the possibility of having functional, compatible and working organs and tissues, especially after researchers made significant progress with different tissues and structures. Other relevant research highlights of this year include new bioprinting machines and bioinks, innovation centers and projects from Australias bioprinting research community, and a map of bioprinting companies that gave us a clear grasp of the main biotech hubs around the world.
Bioprinters and bioinks
In early November we learned that researchers at Harvard UniversitysWyss Institute for Biologically Inspired Engineeringcreated a fast multimaterial 3D printer. Thanks to a unique 3D printed printhead design, users can seamlessly switch between multiple different materials up to 50 times per second. The 3D printing technique called Multimaterial Multinozzle 3D (MM3D) printing could revolutionize the process of printing complex structures and is just one of the many advances in 3D bioprinting coming from Wyss.
On the European front, former regenHu CEO and founder, Mark Thurner, embarked on a new journey after launching his second company, mimiX Biotherapeutics, to bioprint in the operating room using sound. The all new bioprocessing technology called Sound Induced Morphogenesis (SIM) will be launched commercially in the summer and has already demonstrated with scientific evidence that it offers tissue engineering strategies to overcome todays obstacles, for example, the creation of dense networks of cells suitable for micro vascularization.
New bioprinters became commercially available in 2019, including CELLINKs bioprinting platform for complex structures, the Bio X6, as well as the Lumen X, a digital light processing bioprinter resulting from a joint collaboration between the seasoned company and Volumetric that is designed to enhance inventions in creating more substantial vascular structures. Another Swedish-based biotech company called Fluicell released a high-resolution bioprinting technology in both 2D and 3D called Biopixlar, capable of creating complex tissue-like structures where positioning of individual cells can be controlled from a gamepad, the novel feature that allows users to control the system just like they would a videogame was well received.
CELLINK BIO X 6 (Image credit: CELLINK)
Bioink developments this year were plentiful. Companies like Allevi turned out liver-specific bioinks, Biogelx launched their first product range of synthetic bioinks for a variety of 3D printing applications, and the Tessenderlo Group released their first gelatin bioink in their Claro series of tissue-engineering products. As far as academic researchers go, they are not lagging behind, ateam of researchers atTexas A&M University have developed a 3D printable hydrogel bioink containing mineral nanoparticles that can deliver protein therapeutics to control cell behavior, while researchers at the Rensselaer Polytechnic Institute and Yale University, turned living human skin cells into a bioink to print artificial skin, which then grows its own blood vessel system. In years to come, once these amazing advances hit the pre-clinical and clinical phases we will see an even bigger revolution in bioprinting.
Cardiac tissue engineering
(Image credit: Tel Aviv University)
The Tel Aviv University story about researchers making significant progress with 3D bioprinting by introducing a new concept for engineering fully personalized cardiac patches to repair heart defects, became quite the hype of the year, especially after many news outlets around the world began using the words 3D printed and the human heart in the same headline. Leading many to believe that a functional beating heart that could replace organ transplant was just around the corner. Although researchers actually printed a cellularized heart-like structure with a natural architecture to demonstrate the potential of the approach for organ replacement, the focus of their work was on a novel 3D printing technique that uses patients stem cells and extracellular matrix (ECM) to create a personalized hydrogel as a bioink to 3D print thick, vascularized, and perfusable cardiac patches that completely match the immunological, cellular, biochemical, and anatomical properties of the patient, regenerating a previously defective or infarcted heart part.
Some of our most seasoned interviewees suggested that bioprinted organs in the long-term future might not be anatomically designed to look like our organs, but all that matters is that they carry the functions that humans require to live.
A growing bioprinting landscape for Australia
Many of our bioprinting stories this year revolved around biotechnology discoveries, new labs and collaborative research efforts in Australia. The approach to science and research that the countrys experienced professionals have, are consistently about teamwork and collaboration, leading us to believe that perhaps theyre onto something. Constant efforts to enroll researchers in projects between different universities have been aplenty, as well as the myriad of opportunities that they have generated this year to get together and engage in biotechnology to advance the field. Integrated research labs across various universities are booming as more and more students become interested in the engineering, design, medical and biochemical aspects of biofabrication. Leading bioprinting experts Gordon Wallace, Professor at the University of Wollongong, and Jason Chuen, Vascular Surgeon and Director of the 3D Medical Printing Laboratory in Melbourne, have been actively heading and participating in conferences and seminars across the country.
With breakthrough developments like 3D Alek, a bioprinter that replicates human ears for patients with microtia, to creating their own bioinks at the lab, researchers understand that the success of their work comes from sharing knowledge and creativity among peers.
Mapping the companies that make bioprinting successful
Bioprinting world map by 3DPrint.com
To get a better grasp of the landscape that has been building up and what we can expect for the future of bioprinting, 3DPrint.com decided to map out all the companies that are working on developing both bioprinters and bioinks to advance biofabrication. Our Bioprinting World Map offers a snapshot of some of the hubs around the world where biotechnology is taking off, as well as potential startups that could revolutionize the next generation of bio machines. As some of the smaller and new companies are scaling up, coming up with new technology to tackle a competitive environment (such as Aspect Biosystems and CTI Biotech), a few are struggling to stay afloat, like Organovo, and a great deal of university spin-out businesses represent some of the cutting edge research and innovation that is undertaken in faculties and institutes (like OxSyBio, a spin-off from the University of Oxford).
Overall, 2019 was a year of highs. Looking ahead to 2020, we can expect a continued surge in bioprinting research and development as well as an ecosystem of collaboration among scientists. We should also expect top research institutions and leading companies to continue flirting with new technologies to harness the power of 3D bioprinting, as well as continue investigating the functionality of tissues for regenerative medicine. Finally, it will be important to closely analyze the growing popularity of new methods that arise and that may inspire emerging trends in the field.
Join the discussion of this and other 3D printing topics at3DPrintBoard.com.
See original here:
The Year in Review: Bioprinting in 2019 - 3DPrint.com
Cell Separation Technology Market is Expected to Elevate to a Value of US$ 13.6 Bn by 2027 – Techi Labs
By daniellenierenberg
Transparency Market Research (TMR) has published a new report on the global cell separation technology market for the forecast period of 20192027. According to the report, the global cell separation technology market was valued at ~ US$ 5 Bn in 2018, and is projected to expand at a double-digit CAGR during the forecast period.
Cell separation, also known as cell sorting or cell isolation, is the process of removing cells from biological samples such as tissue or whole blood. Cell separation is a powerful technology that assists biological research. Rising incidences of chronic illnesses across the globe are likely to boost the development of regenerative medicines or tissue engineering, which further boosts the adoption of cell separation technologies by researchers.
Expansion of the global cell separation technology market is attributed to an increase in technological advancements and surge in investments in research & development, such as stem cell research and cancer research. The rising geriatric population is another factor boosting the need for cell separation technologies Moreover, the geriatric population, globally, is more prone to long-term neurological and other chronic illnesses, which, in turn, is driving research to develop treatment for chronic illnesses. Furthermore, increase in the awareness about innovative technologies, such as microfluidics, fluorescent-activated cells sorting, and magnetic activated cells sorting is expected to propel the global cell separation technology market.
Request a PDF Sample on Cell Separation Technology Market Report
https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=1925
North America dominated the global cell separation technology market in 2018, and the trend is anticipated to continue during the forecast period. This is attributed to technological advancements in offering cell separation solutions, presence of key players, and increased initiatives by governments for advancing the cell separation process. However, insufficient funding for the development of cell separation technologies is likely to hamper the global cell separation technology market during the forecast period. Asia Pacific is expected to be a highly lucrative market for cell separation technology during the forecast period, owing to improving healthcare infrastructure along with rising investments in research & development in the region.
Rising Incidences of Chronic Diseases, Worldwide, Boosting the Demand for Cell Therapy
Incidences of chronic diseases such as diabetes, obesity, arthritis, cardiac diseases, and cancer are increasing due to sedentary lifestyles, aging population, and increased alcohol consumption and cigarette smoking. According to the World Health Organization (WHO), by 2020, the mortality rate from chronic diseases is expected to reach 73%, and in developing counties, 70% deaths are estimated to be caused by chronic diseases.
Southeast Asia, Eastern Mediterranean, and Africa are expected to be greatly affected by chronic diseases. Thus, the increasing burden of chronic diseases around the world is fuelling the demand for cellular therapies to treat chronic diseases. This, in turn, is driving focus and investments on research to develop effective treatments. Thus, increase in cellular research activities is boosting the global cell separation technology market.
Increase in Geriatric Population Boosting the Demand for Surgeries
The geriatric population is likely to suffer from chronic diseases such as cancer and neurological disorders more than the younger population. Moreover, the geriatric population is increasing at a rapid pace as compared to that of the younger population. Increase in the geriatric population aged above 65 years is projected to drive the incidences of Alzheimers, dementia, cancer, and immune diseases, which, in turn, is anticipated to boost the need for corrective treatment of these disorders. This is estimated to further drive the demand for clinical trials and research that require cell separation products. These factors are likely to boost the global cell separation technology market.
According to the United Nations, the geriatric population aged above 60 is expected to double by 2050 and triple by 2100, an increase from 962 million in 2017 to 2.1 billion in 2050 and 3.1 billion by 2100.
Request for a Discount on Cell Separation Technology Market Report
https://www.transparencymarketresearch.com/sample/sample.php?flag=D&rep_id=1925
Productive Partnerships in Microfluidics Likely to Boost the Cell Separation Technology Market
Technological advancements are prompting companies to innovate in microfluidics cell separation technology. Strategic partnerships and collaborations is an ongoing trend, which is boosting the innovation and development of microfluidics-based products. Governments and stakeholders look upon the potential in single cell separation technology and its analysis, which drives them to invest in the development of microfluidics. Companies are striving to build a platform by utilizing their expertise and experience to further offer enhanced solutions to end users.
Read more here:
Cell Separation Technology Market is Expected to Elevate to a Value of US$ 13.6 Bn by 2027 - Techi Labs
Cell Separation Technology Market Overview, Growth Forecast, Demand and Development Research Report to 2027 – VaporBlash
By daniellenierenberg
Transparency Market Research (TMR)has published a new report on the globalcell separation technology marketfor the forecast period of 20192027. According to the report, the global cell separation technology market was valued at ~US$ 5 Bnin 2018, and is projected to expand at a double-digit CAGR during the forecast period.
Overview
Cell separation, also known as cell sorting or cell isolation, is the process of removing cells from biological samples such as tissue or whole blood. Cell separation is a powerful technology that assists biological research. Rising incidences of chronic illnesses across the globe are likely to boost the development of regenerative medicines or tissue engineering, which further boosts the adoption of cell separation technologies researchers.
Expansion of the global cell separation technology market is attributed to an increase in technological advancements and surge in investments in research & development, such asstem cellresearch and cancer research. The rising geriatric population is another factor boosting the need for cell separation technologies Moreover, the geriatric population, globally, is more prone to long-term neurological and other chronic illnesses, which, in turn, is driving research to develop treatment for chronic illnesses. Furthermore, increase in the awareness about innovative technologies, such as microfluidics, fluorescent-activated cells sorting, and magnetic activated cells sorting is expected to propel the global cell separation technology market.
Want to know the obstructions to your companys growth in future? Request a PDF sample here
North America dominated the global cell separation technology market in 2018, and the trend is anticipated to continue during the forecast period. This is attributed to technological advancements in offering cell separation solutions, presence of key players, and increased initiatives governments for advancing the cell separation process. However, insufficient funding for the development of cell separation technologies is likely to hamper the global cell separation technology market during the forecast period. Asia Pacific is expected to be a highly lucrative market for cell separation technology during the forecast period, owing to improving healthcare infrastructure along with rising investments in research & development in the region.
Rising Incidences of Chronic Diseases, Worldwide, Boosting the Demand for Cell Therapy
Incidences of chronic diseases such as diabetes, obesity, arthritis, cardiac diseases, and cancer are increasing due to sedentary lifestyles, aging population, and increased alcohol consumption and cigarette smoking. According to the World Health Organization (WHO), 2020, the mortality rate from chronic diseases is expected to reach73%, and in developing counties,70%deaths are estimated to be caused chronic diseases. Southeast Asia, Eastern Mediterranean, and Africa are expected to be greatly affected chronic diseases. Thus, the increasing burden of chronic diseases around the world is fuelling the demand for cellular therapies to treat chronic diseases. This, in turn, is driving focus and investments on research to develop effective treatments. Thus, increase in cellular research activities is boosting the global cell separation technology market.
To Obtain All-Inclusive Information On Forecast Analysis Of Global Market, Request A PDF Brochure Here.
Increase in Geriatric Population Boosting the Demand for Surgeries
The geriatric population is likely to suffer from chronic diseases such as cancer and neurological disorders more than the younger population. Moreover, the geriatric population is increasing at a rapid pace as compared to that of the younger population. Increase in the geriatric population aged above 65 years is projected to drive the incidences of Alzheimers, dementia, cancer, and immune diseases, which, in turn, is anticipated to boost the need for corrective treatment of these disorders. This is estimated to further drive the demand for clinical trials and research that require cell separation products. These factors are likely to boost the global cell separation technology market.
According to the United Nations, the geriatric population aged above 60 is expected to double 2050 and triple 2100, an increase from962 millionin 2017 to2.1 billionin 2050 and3.1 billion2100.
Productive Partnerships in Microfluidics Likely to Boost the Cell Separation Technology Market
Technological advancements are prompting companies to innovate in microfluidics cell separation technology. Strategic partnerships and collaborations is an ongoing trend, which is boosting the innovation and development of microfluidics-based products. Governments and stakeholders look upon the potential in single cell separation technology and its analysis, which drives them to invest in the development ofmicrofluidics. Companies are striving to build a platform utilizing their expertise and experience to further offer enhanced solutions to end users.
Stem Cell Research to Account for a Prominent Share
Stem cell is a prominent cell therapy utilized in the development of regenerative medicine, which is employed in the replacement of tissues or organs, rather than treating them. Thus, stem cell accounted for a prominent share of the global market. The geriatric population is likely to increase at a rapid pace as compared to the adult population, 2030, which is likely to attract the use of stem cell therapy for treatment. Stem cells require considerably higher number of clinical trials, which is likely to drive the demand for cell separation technology, globally. Rising stem cell research is likely to attract government and private funding, which, in turn, is estimated to offer significant opportunity for stem cell therapies.
Biotechnology & Pharmaceuticals Companies to Dominate the Market
The number of biotechnology companies operating across the globe is rising, especially in developing countries. Pharmaceutical companies are likely to use cells separation techniques to develop drugs and continue contributing through innovation. Growing research in stem cell has prompted companies to own large separate units to boost the same. Thus, advancements in developing drugs and treatments, such as CAR-T through cell separation technologies, are likely to drive the segment.
As per research, 449 public biotech companies operate in the U.S., which is expected to boost the biotechnology & pharmaceutical companies segment. In developing countries such as China, China Food and Drug Administration(CFDA) reforms pave the way for innovation to further boost biotechnology & pharmaceutical companies in the country.
Global Cell Separation Technology Market: Prominent Regions
North America to Dominate Global Market, While Asia Pacific to Offer Significant Opportunity
In terms of region, the global cell separation technology market has been segmented into five major regions: North America, Europe, Asia Pacific, Latin America, and the Middle East & Africa. North America dominated the global market in 2018, followed Europe. North America accounted for a major share of the global cell separation technology market in 2018, owing to the development of cell separation advanced technologies, well-defined regulatory framework, and initiatives governments in the region to further encourage the research industry. The U.S. is a major investor in stem cell research, which accelerates the development of regenerative medicines for the treatment of various long-term illnesses.
The cell separation technology market in Asia Pacific is projected to expand at a high CAGR from 2019 to 2027. This can be attributed to an increase in healthcare expenditure and large patient population, especially in countries such as India and China. Rising medical tourism in the region and technological advancements are likely to drive the cell separation technology market in the region.
Launching Innovative Products, and Acquisitions & Collaborations Key Players Driving Global Cell Separation Technology Market
The global cell separation technology market is highly competitive in terms of number of players. Key players operating in the global cell separation technology market include Akadeum Life Sciences, STEMCELL Technologies, Inc., BD, Bio-Rad Laboratories, Inc., Miltenyi Biotech, 10X Genomics, Thermo Fisher Scientific, Inc., Zeiss, GE Healthcare Life Sciences, PerkinElmer, Inc., and QIAGEN.
These players have adopted various strategies such as expanding their product portfolios launching new cell separation kits and devices, and participation in acquisitions, establishing strong distribution networks. Companies are expanding their geographic presence in order sustain in the global cell separation technology market. For instance, in May 2019, Akadeum Life Sciences launched seven new microbubble-based products at a conference. In July 2017, BD received the U.S. FDAs clearance for its BD FACS Lyric flow cytometer system, which is used in the diagnosis of immunological disorders.
Read more here:
Cell Separation Technology Market Overview, Growth Forecast, Demand and Development Research Report to 2027 - VaporBlash
Cell therapy for spinal cord injury using induced …
By daniellenierenberg
JavaScript is disabled on your browser. Please enable JavaScript to use all the features on this page.Highlights
Transplantation of iPSC-derived neural precursor cells (NPCs) shows beneficial effects for spinal cord injury (SCI).
Because unsafe iPSC-NPC lines can form tumors after grafting, provisions to attenuate this risk are substantially important.
Clinical application for SCI patients using iPSCs will be conducted in the near future.
For the past few decades, spinal cord injury (SCI) has been believed to be an incurable traumatic condition, but with recent developments in stem cell biology, the field of regenerative medicine has gained hopeful momentum in the development of a treatment for this challenging pathology. Among the treatment candidates, transplantation of neural precursor cells has gained remarkable attention as a reasonable therapeutic intervention to replace the damaged central nervous system cells and promote functional recovery. Here, we highlight transplantation therapy techniques using induced pluripotent stem cells to treat SCI and review the recent research giving consideration to future clinical applications.
Spinal cord injury
Neural precursor cells
Induced pluripotent stem cells
Clinical application
neural precursor cells
induced pluripotent stem cells
high mobility group box-1
swine leukocyte antigen
mixed lymphocyte reaction
human leukocyte antigen
peripheral blood mononuclear cells
directly reprogrammed neural precursor cells
-secretase inhibitor
herpes simplex virus type I thymidine kinase
oligodendrocyte progenitor cells
the Center for iPS Cell Research and Application
American Spinal Injury Association
chondroitin sulfate proteoglycans
Recommended articlesCiting articles (0)
2019 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.
Here is the original post:
Cell therapy for spinal cord injury using induced ...
How Will Animals Get Benefitted by Stem Cell Therapy? – Medical Tech Outlook
By daniellenierenberg
ESPCs derived from pig provide important implications for developmental biology, organ transplantation, regenerative medicine, disease modeling, and screening for drugs.
FREMONT, CA: Stem cell therapy, usually applied to humans, is now extended to animals too. It is a regenerative treatment applied to cats, dogs, pigs, and other animals. It includes removing cells from bone marrow, blood or fat, umbilical cords, and the cell can grow into any kind of cell and can repair damaged tissues. The regenerative therapy has been successful in animals. It can be used mainly for the treatment of spinal cord and bone injuries along with the problems with tendons, ligaments, and joints. One of the breakthroughs is the embryonic stem cell lines obtained from the pig.
Scientists have derived Expanded Potential Stem Cells (EPSCs) from pig embryos for the first time. They offer the groundbreaking potential to study embryonic development and produce translational research in genomics and regenerative medicine. Embryonic stem cells (ESC) are derived from the inner cells of early embryos called blastocysts. They are pluripotent cells as they can develop into various cell types of the body in the culture dish. The newly derived porcine EPSCs isolated from pig embryos are the first well-characterized cell lines worldwide. Their pluripotent ability provides important implications for developmental biology, organ transplantation, regenerative medicine, disease modeling, and screening for drugs.
The stem cells can renew themselves, showing that they can be kept in culture indefinitely while showing the typical morphology and gene expression patterns of embryonic stem cells. Because somatic cells have a limited lifespan, they cannot be used for such applications, and therefore the new stem cells are better suited for the lengthy selection process. These porcine stem cell lines can easily be edited with new genome editing techniques like CRISPR/Cas, and are currently the simplest, most versatile and precise method of genetic manipulation.
The EPSCs have a greater capacity to develop into numerous cell types of the organism as well as into extraembryonic tissue, the trophoblasts, rending them very unique and, thus, their name. This capacity is valuable for the future promising organoid technology where organ-like small cell aggregations are grown in 3D aggregates and used for research into early embryo development, various disease models, and testing of new drugs in Petri dishes. Also, they offer a unique possibility to investigate functions or diseases of the placenta in vitro.
More:
How Will Animals Get Benefitted by Stem Cell Therapy? - Medical Tech Outlook
Aspen Neuroscience Launches With $6.5 Million Seed Funding to Advance First-of-its-Kind Personalized Cell Therapy for Parkinson’s Disease – P&T…
By daniellenierenberg
SAN DIEGO, Dec. 12, 2019 /PRNewswire/ -- Aspen Neuroscience, Inc. today announced its launch following a $6.5 million seed round led by Domain Associates and Axon Ventures and including Alexandria Venture Investments,Arch Venture Partners,OrbiMedand Section 32 to develop the first autologous cell therapies for Parkinson's disease. Aspen's proprietary approach was developed by the company's co-founders, Jeanne F. Loring, Ph.D., Professor Emeritus and founding director of the Center for Regenerative Medicine at The Scripps Research Institute, and Andres Bratt-Leal, Ph.D., a former post-doctoral researcher in Dr. Loring's lab. The company was initially supported by Summit for Stem Cell, a founding partner and non-profit organization which provides a variety of services for people with Parkinson's disease. Aspen is led by industry veteran Howard J. Federoff, M.D., Ph.D., as Chief Executive Officer.
Parkinson's disease is characterized by the loss of specific brain cells that make the chemical dopamine. Without dopamine, nerve cells cannot communicate with muscles and people are left with debilitating motor problems. Aspen is focusing on human pluripotent stem cells, cultured cells that can become any cell type in the human body. The company's research is specific to induced pluripotent stem cells (iPSCs), which it develops by taking a skin biopsy from a person with Parkinson's disease and turning the tissue into pluripotent stem cells using genetic engineering. Aspen then differentiates the pluripotent stem cells into dopamine-releasing neurons that can be transplanted into that same person (autologous), thereby restoring the types of neurons lost in Parkinson's disease.
As an autologous cell therapy for Parkinson's disease, Aspen's treatment would eliminate the need for immunosuppression because the neurons are transplanted back into the same patient from which they were generated. The use of immunosuppression is necessary with currently available cell therapies for Parkinson's disease and when transplanting cells from one patient to another (allogeneic) to prevent rejection but can pre-dispose the patient to life-threatening complications including infection and add cost to the patient and health system. Aspen is the only company in the world offering an autologous neuron replacement therapy for Parkinson's disease.
Aspen encompasses a powerful executive leadership team including Dr. Federoff who, in addition to his leadership roles at the UC Irvine Health System, was the Executive Vice President for Health Sciences and the Executive Dean of Medicine at Georgetown University. Dr. Federoff also has significant biotech industry experience including co-founding MedGenesis Therapeutix and Brain Neurotherapy Bio, as well as leading the U.S. Parkinson's Disease Gene Therapy Study Group. The company is also proud to announce the addition of several experienced and well-known members to its leadership team including Edward Wirth, M.D., Ph.D., as Chief Medical Officer.
Dr. Wirth currently serves as the Chief Medical Ofcer for Lineage Cell Therapeutics where he oversees clinical development of its two therapeutic programs for spinal cord injuries and lung cancer. He received his M.D. and Ph.D. from the University of Florida in 1994 and remained to conduct postdoctoral research including leading the University of Florida team that performed the rst human embryonic spinal cord transplant in the U.S. Dr. Wirth went on to serve as the Medical Director for Regenerative Medicine at Geron Corporation where the world's rst clinical trial of human embryonic stem cell (hESC)-derived product occurred which demonstrated initial clinical safety.
Drs. Federoff and Wirth are joined by Dr. Loring, as Chief Scientific Officer; Jay Sial, as Chief Financial Officer; Andres Bratt-Leal, Ph.D., as Vice President of Research and Development; Thorsten Gorba, Ph.D., as Senior Director of Manufacturing and Naveen M. Krishnan, M.D., M.Phil., as Senior Director of Corporate Development.
"Aspen is developing a restorative, disease modifying autologous neuron therapy for people suffering from Parkinson's disease," said Dr. Federoff. "We are fortunate to have such a high-caliber scientific and medical leadership team to make our treatments a reality. Our cell replacement therapy, which originated in the laboratory of Dr. Jeanne Loring and was later supported by Summit for Stem Cell and its President, Ms. Jenifer Raub, has the potential to release dopamine and reconstruct neural networks where no disease-modifying therapies exist."
Aspen's lead product (ANPD001) is currently undergoing investigational new drug (IND)-enabling studies for the treatment of sporadic Parkinson's disease. Aspen is also developing a gene-edited autologous neuron therapy (ANPD002) that is in the research stage and targeted toward familial forms of Parkinson's disease beginning with the most common genetic variant in the gene encoding glucocerebrosidase (GBA). Aspen leverages proprietary machine-learning tools and artificial intelligence to ensure quality control during manufacturing and to deliver a safe and reproducible product for each cell line.
"Aspen's financial backing, combined with its experienced and proven leadership team, positions it well for future success," said Kim P. Kamdar, Ph.D., Partner at Domain Associates, one of Aspen's seed investors. "Domain prides itself on investing in companies that can translate scientific research into innovative medicines and therapies that make a difference in people's lives. We clearly see Aspen as fitting into that category, as it is the only company using a patient's own cells for replacement therapy in Parkinson's disease."
About Aspen Neuroscience
Aspen Neuroscience Inc. is a development stage, private biotechnology company that uses innovative genomic approaches combined with stem cell biology to deliver patient-specific, restorative cell therapies that modify the course of Parkinson's disease. Aspen's therapies are based upon the scientific work of world-renowned stem cell scientist, Dr. Jeanne Loring, who has developed a novel method for autologous neuron replacement. For more information and important updates, please visithttp://www.aspenneuroscience.com.
View original content to download multimedia:http://www.prnewswire.com/news-releases/aspen-neuroscience-launches-with-6-5-million-seed-funding-to-advance-first-of-its-kind-personalized-cell-therapy-for-parkinsons-disease-300973830.html
SOURCE Aspen Neuroscience
Read the rest here:
Aspen Neuroscience Launches With $6.5 Million Seed Funding to Advance First-of-its-Kind Personalized Cell Therapy for Parkinson's Disease - P&T...
Aspen Neuroscience launches with $6.5M seed funding to develop personalized and autologous cell therapy for Parkinson’s disease – TechStartups.com
By daniellenierenberg
Parkinsons disease is characterized by the loss of specific brain cells that make the chemical dopamine. Without dopamine, nerve cells cannot communicate with muscles and people are left with debilitating motor problems. Aspen is focusing on human pluripotent stem cells, cultured cells that can become any cell type in the human body. Many health technology startups are on the raise to cure this disease. At the forefront is Aspen Neuroscience, a healthtech startup developing first-of-its-kind personalized cell therapy for Parkinsons disease.
Aspen Neuroscience is a development stage, private biotechnology company that uses innovative genomic approaches combined with stem cell biology to deliver patient-specific, restorative cell therapies that modify the course of Parkinsons disease.
Today,Aspen Neuroscience announced its official launch with $6.5 million seed financingto develop the first autologous cell therapies for Parkinsons disease.The round was led by Domain Associates and Axon Ventures and including Alexandria Venture Investments, Arch Venture Partners, OrbiMed and others.
Aspens proprietary approach was developed by the companys co-founders, Jeanne F. Loring, Ph.D., Professor Emeritus and founding director of the Center for Regenerative Medicine at The Scripps Research Institute, and Andres Bratt-Leal, Ph.D., a former post-doctoral researcher in Dr. Lorings lab. The company was initially supported by Summit for Stem Cell, a founding partner and non-profit organization which provides a variety of services for people with Parkinsons disease. Aspen is led by industry veteran Howard J. Federoff, M.D., Ph.D., as Chief Executive Officer.
The companys research is specific to induced pluripotent stem cells (iPSCs), which it develops by taking a skin biopsy from a person with Parkinsons disease and turning the tissue into pluripotent stem cells using genetic engineering. Aspen then differentiates the pluripotent stem cells into dopamine-releasing neurons that can be transplanted into that same person (autologous), thereby restoring the types of neurons lost in Parkinsons disease.
As an autologous cell therapy for Parkinsons disease, Aspens treatment would eliminate the need for immunosuppression because the neurons are transplanted back into the same patient from which they were generated. The use of immunosuppression is necessary with currently available cell therapies for Parkinsons disease and when transplanting cells from one patient to another (allogeneic) to prevent rejection but can pre-dispose the patient to life-threatening complications including infection and add cost to the patient and health system. Aspen is the only company in the world offering an autologous neuron replacement therapy for Parkinsons disease.
Aspen encompasses a powerful executive leadership team including Dr. Federoff who, in addition to his leadership roles at the UC Irvine Health System, was the Executive Vice President for Health Sciences and the Executive Dean of Medicine at Georgetown University. Dr. Federoff also has significant biotech industry experience including co-founding MedGenesis Therapeutix and Brain Neurotherapy Bio, as well as leading the U.S. Parkinsons Disease Gene Therapy Study Group. The company is also proud to announce the addition of several experienced and well-known members to its leadership team including Edward Wirth, M.D., Ph.D., as Chief Medical Officer.
Dr. Wirth currently serves as the Chief Medical Ofcer for Lineage Cell Therapeutics where he oversees clinical development of its two therapeutic programs for spinal cord injuries and lung cancer. He received his M.D. and Ph.D. from the University of Florida in 1994 and remained to conduct postdoctoral research including leading the University of Florida team that performed the rst human embryonic spinal cord transplant in the U.S. Dr. Wirth went on to serve as the Medical Director for Regenerative Medicine at Geron Corporation where the worlds rst clinical trial of human embryonic stem cell (hESC)-derived product occurred which demonstrated initial clinical safety.
Drs. Federoff and Wirth are joined by Dr. Loring, as Chief Scientific Officer; Jay Sial, as Chief Financial Officer; Andres Bratt-Leal, Ph.D., as Vice President of Research and Development; Thorsten Gorba, Ph.D., as Senior Director of Manufacturing and Naveen M. Krishnan, M.D., M.Phil., as Senior Director of Corporate Development.
Aspen is developing a restorative, disease modifying autologous neuron therapy for people suffering from Parkinsons disease, said Dr. Federoff. We are fortunate to have such a high-caliber scientific and medical leadership team to make our treatments a reality. Our cell replacement therapy, which originated in the laboratory of Dr. Jeanne Loring and was later supported by Summit for Stem Cell and its President, Ms. Jenifer Raub, has the potential to release dopamine and reconstruct neural networks where no disease-modifying therapies exist.
Continue reading here:
Aspen Neuroscience launches with $6.5M seed funding to develop personalized and autologous cell therapy for Parkinson's disease - TechStartups.com