Cardiol Therapeutics Announces Clinical Steering Committee for Phase 2 International Trial in Acute Myocarditis Using CardiolRx(TM) 100 | INN -…
By daniellenierenberg
Cardiol Therapeutics Inc. is pleased to announce the formation of the Clinical Steering Committee for a Phase 2 international trial.
Cardiol Therapeutics Inc. (TSX:CRDL, OTCQX:CRTPF) (Cardiol or the Company), a leader in the production of pharmaceutical cannabidiol (CBD) products and in the development of innovative cannabidiol medicines for heart disease, is pleased to announce the formation of the Clinical Steering Committee (CSC) for a Phase 2 international trial in acute myocarditis using the Companys CardiolRx100 cannabidiol formulation.
The CSC, which comprises key opinion leaders in acute myocarditis from North America and Europe, recently met during the American Heart Associations Scientific Sessions in Philadelphia held November 16thto 18th. The role of the CSC is to advise on the trial design, provide overall supervision of the trial, and ensure that it is being conducted in accordance with the principles of Good Clinical Practice. The CSC has oversight of the protocol, any protocol amendments, and provides advice to the investigators on all aspects of the trial.
Acute myocarditis is characterized by inflammation of the heart muscle (myocardium). The most common cause is viral infection of the heart tissue which is initially responsible for the inflammation. In a significant number of cases, perhaps due to an autoimmune process, the inflammation persists with ongoing myocardial damage and depressed heart function. Although the symptoms are often mild, myocarditis remains an important cause of acute and fulminant heart failure and is the most common cause of sudden cardiac death in people less than 35 years old. In addition, some patients proceed to develop chronic dilated cardiomyopathy which continues to be the leading indication for cardiac transplantation. Symptoms include chest pain, fatigue, shortness of breath, and arrhythmias. Because of the progressive damage to heart cells, heart failure develops (defined as the inability of the heart to pump sufficient blood to meet the needs of the body). The study will use left ventricular ejection fraction (LVEF) as one measure of heart function.
CardiolRx100 is Cardiol Therapeutics pure pharmaceutically (cGMP) produced high concentration cannabidiol formulation that is THC free (<10ppm). Based on the large body of experimental evidence of the anti-inflammatory and cardioprotective properties of cannabidiol in models of cardiovascular disease, Cardiol believes there is an opportunity to develop a potential breakthrough therapy for acute myocarditis that would be eligible for designation as an orphan drug. In the United States, an orphan drug designation is granted for pharmaceuticals being developed to treat medical conditions affecting fewer than 200,000 people. These conditions are referred to as orphan diseases. In the U.S. and the European Union, orphan drugs are eligible for accelerated marketing approvals and companies developing orphan drugs typically receive other incentives, including a prolonged period of market exclusivity that can extend over seven years, during which the drug developer has sole rights to market the drug.
Cardiol has assembled eight highly distinguished thought leaders in cardiology from North America and Europe to oversee and guide our acute myocarditis trial that is being planned at world leading heart institutes, including the Cleveland Clinic, the Mayo Clinic, the Houston Methodist DeBakey Heart and Vascular Center, the University of Ottawa Heart Institute, and Charit University Medicine Berlin, stated David Elsley, President and CEO of Cardiol Therapeutics. The U.S. orphan drug program was successfully utilized to accelerate the first FDA approval of cannabidiol for the treatment of two pediatric epilepsy orphan diseases. We see a similar opportunity with our international trial in acute myocarditis to fast track the development of our CardiolRx formulation for a serious cardiovascular orphan disease for which there is currently no accepted standard of care.
Members of Cardiols Acute Myocarditis CSC include:
Dennis M. McNamara, MD (Chair)
Dr. Dennis McNamara is a Professor of Medicine at the University of Pittsburgh. He is also the Director of the Heart Failure/Transplantation Program at the University of Pittsburgh Medical Center. Dr. McNamara received his undergraduate/graduate education at Yale University, New Haven, Connecticut, and Harvard Medical School, Boston, Massachusetts, respectively. He completed his internship, residency, and cardiology fellowship at Massachusetts General Hospital in Boston. McNamaras current research interests include etiology and pathogenesis of dilated cardiomyopathies; inflammatory syndromes of cardiovascular disease; myocardial recovery in recent onset non-ischemic primary cardiomyopathy; etiology and management of peripartum cardiomyopathy; and genetic modulation of outcomes in cardiovascular disease.
Leslie T. Cooper, Jr., MD (Co-Chair)
Dr. Leslie T. Cooper, Jr., is a general cardiologist and the chair of the Mayo Clinic Enterprise Department of Cardiovascular Medicine, as well as chair of the Department of Cardiovascular Medicine at the Mayo Clinic in Florida. Dr. Coopers clinical interests and research focus on clinical and translational studies of rare and undiagnosed cardiomyopathies, myocarditis, and inflammatory cardiac and vascular diseases, such as giant cell myocarditis, cardiac sarcoidosis, eosinophilic myocarditis, and Takayasus arteritis. He has published over 130 original peer-reviewed papers, as well as contributing to and editing books on myocarditis. In addition to his clinical and research work, Dr. Cooper is a fellow of the American College of Cardiology, the American Heart Association, the European Society of Cardiology Heart Failure Association, the International Society for Heart and Lung Transplantation, and the Society for Vascular Medicine and Biology. He is also the founder and former president of the Myocarditis Foundation and continues to serve on its Board of Directors.
Arvind Bhimaraj, MD
Dr. Arvind Bhimaraj is a specialist in Heart Failure and Transplantation Cardiology and is Assistant Professor of Cardiology, Institute for Academic Medicine, at Houston Methodist and at Weill Cornell Medical College, NYC. He has been Co-Director of the Heart Failure Research Laboratory at Houston Methodist since 2016. His area of focus is anti-fibrotic mechanisms and how to promote recovery of a damaged heart. Dr. Bhimaraj was a Heart Failure Fellow at the Cleveland Clinic from July 2010 to September 2011. Dr. Bhimaraj also specializes in Interventional Cardiology, is board certified in Cardiovascular Disease, and the author of numerous cardiovascular publications.
Matthias Friedrich, MD
Dr. Matthias Friedrich is Full Professor with the Departments of Medicine and Diagnostic Radiology at the McGill University in Montreal and Chief, Cardiovascular Imaging at the McGill University Health Centre. He is also Professor of Medicine at Heidelberg University in Germany. Dr. Friedrich earned his MD at the Friedrich-Alexander-University Erlangen-Nrnberg, Germany. He completed his training as an internist and cardiologist at the Charit University Medicine Center, Humboldt University in Berlin. Dr. Friedrich founded one of the first large Cardiovascular Magnetic Resonance centres in Germany at the Charit University Hospital in Berlin. After his move to Canada, from 2004 to 2011, he was Director of the Stephenson Cardiovascular MR Centre at the Libin Cardiovascular Institute of Alberta and Professor of Medicine within the Departments of Cardiac Sciences and Radiology at the University of Calgary, Canada. From 2011 to 2015, he directed the Philippa and Marvin Carsley Cardiovascular MR Centre at the Montreal Heart Institute and was Michel and Renata Hornstein Chair in Cardiac Imaging at the Universit de Montral.
Peter Liu, MD
Dr. Peter Liu is the Chief Scientific Officer and Vice President, Research, of the University of Ottawa Heart Institute, and Professor of Medicine and Physiology at the University of Toronto and University of Ottawa. He was the former Scientific Director of the Institute of Circulatory and Respiratory Health at the Canadian Institutes of Health Research, the major federal funding agency for health research in Canada. Prior to that role, he was the inaugural Director of the Heart & Stroke/Lewar Centre of Excellence in Cardiovascular Research at University of Toronto. Dr. Liu received his MD from the University of Toronto, and postgraduate training at Harvard University. His laboratory investigates the causes and treatments of heart failure, the role of inflammation, and the identification of novel biomarkers and interventions in cardiovascular disease. Dr. Liu has published over 300 peer-reviewed articles in high impact journals and received numerous awards in recognition of his research and scientific accomplishments.
Wai Hong Wilson Tang, MD
Dr. Wai Hong Wilson Tang is the Advanced Heart Failure and Transplant Cardiology specialist at the Cleveland Clinic in Cleveland, Ohio. Dr. Tang is also the Director of the Cleveland Clinics Center for Clinical Genomics; Research Director, and staff cardiologist in the Section of Heart Failure and Cardiac Transplantation Medicine in the Sydell and Arnold Miller Family Heart & Vascular Institute at the Cleveland Clinic. He attended and graduated from Harvard Medical School in 1996, having over 23 years of diverse experience, especially in Advanced Heart Failure and Transplant Cardiology. Dr. Tang is affiliated with many hospitals including the Cleveland Clinic and cooperates with other doctors and physicians in medical groups including The Cleveland Clinic Foundation.
Barry Trachtenberg, MD
Dr. Barry H. Trachtenberg is a cardiologist specializing in heart failure and cardiac transplantation. He is also the director of the Michael DeBakey Cardiology Associates Cardio-Oncology program, an evolving field devoted to prevention and management of cardiovascular complications of cancer therapies such as chemotherapy and radiation. His clinical experience includes heart failure and heart transplantation, mechanical support pumps, and cardio-oncology. He has contributed to multiple publications related to advanced heart failure, cardiac transplantation, regenerative therapies, and ventricular assist devices. Dr. Trachtenberg is a member of the American Heart Association, the International Society for Heart and Lung Transplantation, the Heart Failure Society of America, and the International CardiOncology Society of North America.
Carsten Tschpe, MD
Dr. Carsten Tschpe is Professor of Medicine and Cardiology and Vice Director of the Department of Internal Medicine and Cardiology, Charit University Medicine Berlin. He received his doctorate in medicine in 1993 and has over 140 peer-reviewed publications, including overview and book articles, and 120 international original articles. His research interests include inflammatory cardiomyopathy, diabetic cardiopathy, and ischemic cardiopathy. He also includes diastolic dysfunction, endothelial dysfunction, peptide systems, and experimental and clinical studies in cardiology and stem cells in his research studies. For his outstanding research work, Dr. Tschpe was awarded the prestigious Arthur Weber Prize by the German Cardiac Society Cardiovascular Research.
About Cardiol Therapeutics
Cardiol Therapeutics Inc. (TSX: CRDL)(OTCQX: CRTPF) is focused on producing pharmaceutical cannabidiol (CBD) products and developing innovative therapies for heart disease, including acute myocarditis and other causes of heart failure. The Companys lead product, CardiolRx, is designed to be one of the safest and most consistent CBD formulations on the market. CardiolRx is pharmaceutically produced, cGMP certified, and is THC free. The Company plans to commercialize CardiolRx in the billion-dollar market for medicinal cannabinoids in Canada and is also pursuing distribution opportunities in Europe and Latin America.
In heart failure, Cardiol is planning an international clinical study of CardiolRx in acute myocarditis, a condition caused by inflammation in heart tissue, which remains the most common cause of sudden cardiac death in people less than 35 years of age. The Company is also developing proprietary nanotechnology to uniquely deliver pharmaceutical CBD and other anti-inflammatory drugs directly to sites of inflammation in the heart that are associated with heart failure. Heart failure is the leading cause of death and hospitalization in North America with associated healthcare costs in the U.S. alone exceeding $30 billion. For further information about Cardiol Therapeutics, please visitwww.cardiolrx.com.
For further information, please contact:
David Elsley, President & CEO+1.289.910.0850david.elsley@cardiolrx.com
Trevor Burns, Investor Relations+1.289.910.0855trevor.burns@cardiolrx.com
Cautionary statement regarding forward-looking information:
This news release contains forward-looking information within the meaning of applicable Canadian securities laws. All statements, other than statements of historical fact, that address activities, events or developments that Cardiol Therapeutics Inc. (Cardiol) believes, expects or anticipates will, may, could or might occur in the future are forward- looking information. Forward-looking information is frequently identified by the use of words such as plans, expects, projects, intends, believes, anticipates, forecasts, and other similar words and phrases, including variations (and negative variations) of such words and phrases, or may be identified by statements to the effect that certain actions, events or conditions may, could, should, would, or will be taken, occur or be achieved. Forward-looking information contained herein may include, but is not limited to, statements with respect to: future events; the future performance or the intended business strategy of Cardiol, including, but not limited to, the plan to commercialize CardiolRx100 and the planning of an international clinical study of CardiolRx in acute myocarditis; the potential for Cardiols licensed drug encapsulation and delivery technologies to enhance the bioavailability of pharmaceuticals; managements expectations regarding estimated future pharmaceutical research and development opportunities, collaborations and prospects; the success and proposed timing of Cardiols product development activities; the ability of Cardiol to develop its product candidates; Cardiols plans to research, discover, evaluate and develop additional products; Cardiols proposed future collaborations to advance Cardiols lead nanoformulations into clinical development; and the potential for Cardiols cannabinoid-based products to provide sources of future revenue. Forward-looking information contained herein reflects the current expectations or beliefs of Cardiol based on information currently available to it and is subject to a variety of known and unknown risks and uncertainties and other factors that could cause the actual events or results to differ materially from any future results, performance or achievements expressed or implied by the forward-looking information. These risks and uncertainties and other factors include that the success of Cardiols product candidates will require significant capital resources and years of clinical development efforts; the results of clinical testing and trial activities of Cardiols products; Cardiols ability to obtain regulatory approval and market acceptance of its products; Cardiols ability to raise capital and the availability of future financing; Cardiols lack of operating history; unforeseeable deficiencies in the development of Cardiols product candidates; uncertainties relating to the availability and costs of financing needed in the future for Cardiols research and development initiatives; Cardiols ability to manage its research, development, growth and operating expenses; the potential failure of clinical trials to demonstrate acceptable levels of safety and efficacy of Cardiols product candidates; Cardiols ability to retain key management and other personnel; risks related to fluctuations in medicinal cannabinoid markets in Canada and worldwide; uncertainties regarding Cardiols ongoing collaborative and manufacturing partnerships; uncertainties regarding results of researching and developing products for human use; Cardiol competes in a highly competitive and evolving industry; Cardiols ability to obtain and maintain current and future intellectual property protection; and other risks and uncertainties and factors. These risks, uncertainties and other factors should be considered carefully, and investors should not place undue reliance on the forward-looking information. Any forward-looking information speaks only as of the date on which it is made and, except as may be required by applicable securities laws, Cardiol disclaims any intent or obligation to update or revise such forward-looking information, whether as a result of new information, future events or results or otherwise. Although Cardiol believes that the expectations reflected in the forward-looking information are reasonable, they do involve certain assumptions, risks, and uncertainties and are not (and should not be considered to be) guarantees of future performance. It is important that each person reviewing this news release understands the significant risks attendant to the operations of Cardiol.
Click here to connect with Cardiol Therapeutics Inc. (TSX:CRDL) for an Investor Presentation.
Source
The rest is here:
Cardiol Therapeutics Announces Clinical Steering Committee for Phase 2 International Trial in Acute Myocarditis Using CardiolRx(TM) 100 | INN -...
Stem Cell Therapies Market research to Witness a Healthy Growth during 2015 2025 – Lake Shore Gazette
By daniellenierenberg
Stem cells are undifferentiated biological cells, and having remarkable potential to divide into any kind of other cells. When a stem cell divides, each new cell will be a new stem cell or it will be like another cell which is having specific function such as a muscle cell, a red blood cell, brain cell and some other cells.
There are two types of stem cells
Stem cells harvested from umbilical cord blood just after birth. And this cells can be stored in specific conditions. Stem cells also can be harvest from bone marrow, adipose tissue.
Embryonic cells can differentiate into ectoderm, endoderm and mesoderm in developing stage. Stem cells used in the therapies and surgeries for regeneration of organisms or cells, tissues.
Stem cells are used for the treatment of Gastro intestine diseases, Metabolic diseases, Immune system diseases, Central Nervous System diseases, Cardiovascular diseases, Wounds and injuries, Eye diseases, Musculoskeletal disorders.
Request Sample Report @https://www.futuremarketinsights.com/reports/sample/rep-gb-1087
Harvesting of Adult cell is somewhat difficult compare to embryonic cells. Because Adult cells available in the own body and it is somewhat difficult to harvest.
Stem Cell TherapiesMarket: Drivers and Restraints
Technology advancements in healthcare now curing life threatening diseases and giving promising results. Stem Cell Therapies having so many advantages like regenerating the other cells and body organisms. This is the main driver for this market. These therapies are useful in many life threatening treatments. Increasing the prevalence rate of diseases are driven the Stem Cell Therapies market, it is also driven by increasing technology advancements in healthcare. Technological advancements in healthcare now saving the population from life threatening complications.
Increasing funding from government, private organizations and increasing the Companies focus onStem cell therapiesare also driven this market
However, Collecting the Embryonic Stem cells are easy but Collecting Adult Stem cell or Somatic Stem cells are difficult and also we have to take more precautions for storing the collected stem cells.
Download Data Set @https://www.futuremarketinsights.com/askus/rep-gb-1087
Stem Cell TherapiesMarket: Segmentation
Stem Cell Therapies are segmented into following types
Based on treatment:
Based on application:
Based on End User:
Stem Cell TherapiesMarket: Overview
With rapid technological advantage in healthcare and its promising results, the use of Stem Cell Therapies will increase and the market is expected to have a double digit growth in the forecast period (2015-2025).
Stem Cell TherapiesMarket: Region- wise Outlook
Depending on geographic regions, the global Stem Cell Therapies market is segmented into seven key regions: North America, South America, Eastern Europe, Western Europe, Asia Pacific excluding Japan, Japan and Middle East & Africa.
The use of Stem Cell Therapies is high in North America because it is highly developed region, having good technological advancements in healthcare setup and people are having good awareness about health care. In Asia pacific region china and India also having rapid growth in health care set up. Europe also having good growth in this market.
Request to View TOC @https://www.futuremarketinsights.com/toc/rep-gb-1087
Stem Cell TherapiesMarket: Key Players
Some of the key players in this market are
Read more from the original source:
Stem Cell Therapies Market research to Witness a Healthy Growth during 2015 2025 - Lake Shore Gazette
Stem cells’ role in medicine and research – The Medium
By daniellenierenberg
What are stem cells and what role can they play in medicine andresearch? Stem cell research offers exciting possibilities in terms ofregenerative medicine. However, there are ethical controversies and challengesimpeding the fields advancement. In this article, The Medium presents a briefoverview of the unique abilities, applications, and challenges of stem cells.
According tothe National Institute of Health, stem cells are able to develop into manydifferent cell types in the body during early life and growth. When stem cellsdivide, the new cell can become another stem cell or it can become aspecialized cell such as a muscle cell or a brain cell. Stem cells provide newcells for the body as it grows and replaces damaged or lost specialized cells.The two unique properties of stem cells are that the stem cells can dividemultiple times to produce new cells, and as they divide, the stem cells cangenerate other types of cells found in the body.
In organs suchas the gut and the bone marrow (the soft tissue inside most bones), stem cellsroutinely divide to replace damaged tissue. However, in other organs such asthe heart, stem cells require certain physiological conditions to facilitate celldivision.
Stem cells canbe divided into two categories: embryonic stem cells and adult stem cells.Embryonic stem cells are derived from a blastocystan early stage of embryodevelopment. The blastocyst contains the trophectoderm, which will eventuallyform the placenta, and the inner cell mass, which will develop into the embryo,and later into the organism. Stem cells taken from the inner cell mass arepluripotentthey can develop into any cell type in the body. The embryonic stemcells used in research are sourced from unused embryos that were a result of anin vitro fertilization procedure and were donated for scientific research.
Adult stemcells also have the ability to divide into more than one cell type; however,they are often restricted to certain types of cells. For example, an adult stemcell found in the liver will only divide into more liver cells. In 2006, ShinyaYamanaka, a Japanese stem cell researcher, discovered how to program inducedpluripotent stem cells (iPSCs). iPSCs are adult cells which have beengenetically reprogrammed into a pluripotent embryonic stem cell-like state.Yamanaka won the Nobel Prize for Physiology or Medicine alongside Englishdevelopmental biologist Sir John Gurdon in 2012 for this important discovery.
There arenumerous ways in which stem cells can be used. Firstly, human embryonic stemcells can provide information as to how cells divide into tissues and organs.Abnormal cell division can cause cancer and birth defects, and therefore, amore comprehensive understanding of the processes underlying cell division maysuggest new therapy strategies. Another beneficial avenue involves drug testingas new medications could be tested on cells developed from stem cells in thelab. However, a challenge for researchers is to create an environment identicalto the conditions found in the human body.
Finally, stemcells present exciting possibilities in cell-based therapies and regenerativemedicine. Instead of relying on a limited supply of donated organs and tissuesto replace damaged and destroyed ones, stem cells could be directed to developinto the desired cell type and treat diseases such as heart disease, diabetes,and spinal cord injuries. For example, healthy heart muscle cells could begenerated from stem cells in a laboratory and transplanted into an individualwith heart disease. However, there is still research and testing which needs tobe conducted before researchers can confirm how to effectively and safely usestem cells to treat serious disease.
As explainedby the University of Rochesters medical centre, there are several challengesassociated with stem cells. Researchers first need to learn about how embryonicstem cells develop so that they can control the type of cells generated fromstem cells. Scientists also need to determine how to ensure that the cellsdeveloped from stem cells in the lab are not rejected by the human body. Adultpluripotent stem cells are found in small amounts in the human body and arehard to grow in the lab. There are also numerous ethical issues surrounding theuse of embryonic stem cells as some individuals believe that using cells froman unused blastocyst and consequently, rendering it incapable to develop intoan organism, is similar to destroying an unborn child. Others argue that theblastocyst is not a child yet as it needs to be imbedded into the mothersuterus wall before it has the chance to develop into a fetus. Supporters ofembryonic stem cell research also say that many surplus blastocysts aredestroyed in fertility clinics and can be better used to research medicaltreatments which could save peoples lives.
Students canlearn more about stem cells in BIO380H5: Human Development. Furthermore, Dr.Ted Erlicks lab at UTM is researching how complex neural circuits developfrom an initial population of stem cells. Stem cell research offers promisingavenues of treating diseases and understanding how humans develop. However,there is still a substantial amount of research which needs to be conducted andethical concerns which need to be appropriately addressed and resolved.
See more here:
Stem cells' role in medicine and research - The Medium
‘It was unreal’: Mother of injured Bronco Ryan Straschnitzki stunned by his progress after surgery – Saskatoon StarPhoenix
By daniellenierenberg
The mother of a hockey player paralyzed in the Humboldt Broncos bus crash says shes stunned by the progress he has made since receiving spinal surgery in Thailand.
Doctors implanted an epidural stimulator in Ryan Straschnitzkis spine earlier this month and a week later injected stem cells above and below the injury in the hope that will help reverse some of the damage.
Ryan Straschnitzki was presented a jersey as hockey players from the non-profit PX3 AMP Sledge Hockey Academy have been endorsed by the Calgary Flames as its affiliate sledge hockey team at the upcoming 2019 USA Hockey Sled Classic presented by the NHL in St. Louis from Nov. 21 Nov. 24, 2019 at the Scotiabank Saddledome in Calgary on Wednesday, October 30, 2019. Darren Makowichuk/PostmediaDarren Makowichuk / DARREN MAKOWICHUK/Postmedia
The 20-year-old from Airdrie, Alta., is to remain in Thailand until early December.
Hands down Im 200 per cent behind this. I didnt expect this kind of result this quickly, Michelle Straschnitzki said in an interview. Its definitely not a quick fix. Its not a cure, but its certainly progress and its more than weve had in 19 months.
Tom Straschnitzki, who is also in Thailand, has posted a number of videos of his sons rehab, including one where the young man was able to move a leg. Another video shows him strapped into a harness as physiotherapists slowly help him walk with the use of a machine on wheels.
Bout time he got off his ass. 1st time since he boarded the bus that horrendous day, Straschnitzki tweeted.
Therapist helping with knees and ankles so they dont buckle. Ryan did so good, I sent him to the beer store for me.
Straschnitzki was one of 13 players who were injured when an inexperienced truck driver blew through a stop sign and into the path of the Saskatchewan junior hockey teams bus in April 2018. Sixteen others on the bus died.
Straschnitzki, who was paralyzed from the chest down, has said he isnt expecting a cure but hopes the implant will restore some muscle movement and things such as bladder control.
A small device like a remote control is to send electrical currents to his spinal cord to try to stimulate nerves and move limbs. The implant is being programmed to stimulate certain nerves mapped out by surgeons and therapists.
The surgery can cost up to $100,000 and isnt covered by public health care or insurance, because the epidural procedure has not been approved by Health Canada. The family is paying for it themselves. It is also performed in countries such as the United States and Switzerland, but it is much cheaper in Thailand.
The players mother, who didnt go to Thailand, said hes been low key when shes talked to him.
In typical Ryan fashion hes very quiet. All he says is hes very tired and you can tell. His body, his mind, everything is tired because hes pushing as far as he can.
Her son takes part in nerve mapping in the morning, does physio in the afternoon and then does more work with the implant, she said. He still plans to hit the ice in Bangkok with his hockey sledge before returning home.
Straschnitzki said seeing her boys progress on the videos stunned her.
I was just absolutely floored. It obviously brought the tears. I was bawling. It was unreal, she said.
Tom said the last time Ryan walked was when he walked on the bus and then, to watch him moving his legs, walking essentially, that just rocked me.
Humboldt Broncos crash survivor Ryan Straschnitzki takes a moment during practice at Winsport in Calgary, on Aug. 7, 2018.Leah Hennel / Postmedia
Read more here:
'It was unreal': Mother of injured Bronco Ryan Straschnitzki stunned by his progress after surgery - Saskatoon StarPhoenix
Discovery of New Method Speeds Up Precision 3D Bioprinting – ENGINEERING.com
By daniellenierenberg
Discovery of New Method Speeds Up Precision 3D BioprintingAndrew Wheeler posted on November 19, 2019 |
In the world of additive manufacturing (AM), the promises of bioprinting would be truly groundbreaking if they were to be kept and fully realized. The unscalable mountain is the ability to 3D print patient-specific organs. There would be no more organ rejection from transplants in post-operative care. In 2017, Gartner predicted that this medical innovation would occur within a decade.
Currently, simple tissues are 3D printed by various companies. For example, Poietis established and commercialized a laser methodology for 3D printing biological matter like skin cells and liver tissue. They released a commercial skin product in 2018 and established a partnership with LOral and BASF. Another example comes from the company CELLINK. It makes bioprinters used by pharmaceutical researchers in order to test the effects of drugs on living human tissue.
The technology and techniques of 3D bioprinting still have a long way to go before patient-specific organ transplants transform from fantasy to reality. Recent developments from TU Wien in Austria highlight one of the main factors in achieving what is now impossible: speed.
These are living cells photographed in a 3D scaffold. Weeks 1, 3 and 5 are pictured from left to right. The top images show the 3D setup and the bottom shows just one layer. The indications for increased precision and speed are significant for bioprinting and the ultimate goal of 3D printing patient-specific organs for transplants. (Image courtesy of TU Wien.)
The 3D scaffold and bioink developed at TU Wien will allow researchers to achieve new levels of accuracy in ongoing studies about the behavior of cells. The cell behavior as diseases spread is an important aspect of discovering new treatment methods. The introduction of stem cells to the new process makes it possible to create fully customized tissue.
3D bioprinting techniques differ in many ways. Some are less precise while others produce cells that do not last very long. Some cells produced through 3D bioprinting have material properties that limit their efficacy.
Cell behavior can differ greatly depending the chemical properties, shape and mechanical nature of the environment. For example, it is important for the environment to be permeable in order to ensure the survival and multiplication of cells embedded within. Countering that, the environment must strike the right type of balance in respect to stiffness and flexibility so that the structures do not degrade.
The key is to have new environments for embedding the cells, either liquids or gels, that solidify exactly where they are shot with a focused laser beam. The catch-22 is that the laser beam and the materials must not in any way harm the embedded living cells, and it has to happen as rapidly as possible.
TU Wien researchers solved this complex issue by using two-photon polymerization methods. These methods use a chemical reaction that has specific prerequisites for activation. When a molecule of the material that makes up the environment where the living cells are embedded absorbs two photons, an extremely intense laser beam activates a chemical reaction. At the precise point where the two photons are absorbed, the environmental substance stiffens but the surroundings remain liquid. The level of precision and intricacy at which structures can be constructed increases.
This process alone is slow, but using scaffolds has helped researchers develop a method that enables them to print structures in a few hours. Additionally, these new structures have an increased likelihood of surviving and living longer.
Researchers can now define exactly how an environmental structure should behave to foster specific types of cell migration and growth. They also can predict with greater accuracy how long a structure will last and when it will degrade.
Go here to read the rest:
Discovery of New Method Speeds Up Precision 3D Bioprinting - ENGINEERING.com
This is why you should switch to vegan skin care products – Hindustan Times
By daniellenierenberg
The era of environmentally conscious users has hit the market; and theres a sharp increase of customers who prefer sustainable life choices. They tend to seek out and promote cruelty-free products and brands. Consumers today are becoming more and more vigilant about the ingredients used in their favourite merchandise, the technology, and science behind it all, especially when it comes to cosmetics.
This change in mindset has created a completely new sector of skincare: vegan products. Completely warding off any animal products or by-products, veganism is becoming the popular choice of the modern world. Having a vegan outlook helps in the detoxing of your body and gives great health benefits to your skin. Plabita Sharma, a skincare expert at The Body Shop, India, underlines some benefits of vegan skincare products:
Skin-friendly: Vegan products are a rich source of nourishment and natural goodness as they are made from plants, minerals, and some safe synthetic ingredients.
Animal-friendly/not tested on animals: While not everyone is an animal rights activist, but knowing the essentials used on your skin are not tested on animals is guilt-free in itself.
Safe from harmful chemicals: Choosing vegan products will save you from harmful chemicals and cruel cosmetics and give you glowing skin.
Prevents various skin problems: Vegan products decreases the chances of skin problems such as rashes, allergies, eczemas, acne, skin inflammation and skin diseases due to lack of chemicals used. These are perfect for sensitive skin.
Remedy for all skin concerns: Ingredients such as Vitamin E, Vitamin A, Red Algae, Coconut Oil, Plant stem cells and alike products benefit the skin addressing all kinds of concerns. Like Vitamin C for radiance, Tea tree oil for grumpy acne, aloe vera to soothe the skin, wheat germ oil to nourish the skin and many more.
(This story has been published from a wire agency feed without modifications to the text. Only the headline has been changed.)
Follow more stories on Facebook and Twitter
More:
This is why you should switch to vegan skin care products - Hindustan Times
"I was 18 when I came home and told my mum I was being sexually harassed at work." – Mamamia
By daniellenierenberg
Tonight, the ABC will air a three-part documentary series tackling sexual harassment in the workplace.
Among many other brave and formidable women, one of the people featured in the documentary is me.
Except, ironically, you cant actually know what happened to me. What precisely was done to me, which led me to being on your TV screens. You also cant know how my employers handled the situation. You cant know what happened to that perpetrator.
Despite the name of the documentary, Silent No More, I, for a large part, am legally silenced.
This is absolutely through no fault of the incredible documentary makers, who fought so hard for the inclusion of my story. Rather, the non-disclosure agreement (NDA) I signed when I resigned from the workplace after experiencing ongoing sexual harassment from this one employee.
I suppose one of the questions on your mind must be what compelled me to sign an NDA. I had just turned 18 when the perpetrator walked into my life. I was also 18 when I resigned and the settlement, including the NDA, was processed.
Now 21, I dont think Im far enough away from the experience to truly understand how my age impacted the situation. However, I am certain that when youre 18 and your employers, colleagues and perpetrator arent, the imbalance of power between all parties is only tipped further.
At no age is it easy to stare down the barrel of a sexual harassment case, but when youre 18 years old and receiving letters from lawyers, my mind said to get out. Fast.
When I first told my mum what this man was doing to me at work, I just wanted to resign. I didnt want to report. I just so desperately wanted to get out. I had become terrified and physically sick with fear at work, that I wanted the fastest one-way route out of that place: resignation.
With some convincing from my mum and a lawyer, we started some very simple proceedings. Opening up conversations with the employer about my options. To be transparent, I could have escalated my claim to the states Workplace Health and Safety regulator or taken it to court. It was explained that both of those could be quite long and rigorous processes to endure.
And, like many people who dont report allegations of violence, they were simply processes I could not endure. Few people warned me the process of reporting, which I cant talk about, would incur a different type of trauma to the harassment itself. I still had uni to go to the next day, work in my other jobs, and also be an 18-year-old who didnt run home fuelled by bottled panic from the train station.
So, thats how we came to me resigning and settling. Settlement involves a whole bunch of things and agreements, which you cant know about, but the biggest part of the settlement is the NDA inclusion.
I balanced what the settlement gave me; my safety, against what it took away from me; my ability to explain what had been done to me, and I chose my safety.
Despite the way it tears at my heart that people cant know about my experiences, I would choose my safety again. Because, unfortunately, we still do live in a cruel structure that makes many of us choose.
Safety.
Or, your voice.
Link:
"I was 18 when I came home and told my mum I was being sexually harassed at work." - Mamamia
Solve Your Problem (Skin) With These Top-Rated Acne Products From Sephora – POPSUGAR
By daniellenierenberg
Acne is a bummer, whether it shows up on your big day . . . or just a Monday. Chances are you've had to deal with it at some point in your life. (That's why you're reading this, right?) Whether the problem is hormonal, cystic, or something else entirely, it's pretty safe to say no one is excited when they see a new pimple in the mirror.
Now's the time to break up with breakouts for good. Here are top-rated products to add to your clear skin arsenal, straight from Sephora.
You'll find solutions to brighten and treatments to lighten (old scars), not to mention products that exfoliate skin and zap zits. There's even makeup for pimple-prone skin, too.
If you're ready to stage an acne attack (that's an attack on acne, not of acne), find the blemish-blasting products from Sephora that other shoppers are loving ahead.
Read more:
Solve Your Problem (Skin) With These Top-Rated Acne Products From Sephora - POPSUGAR
The fountain of youth? I tested a better anti-ageing program in Switzerland – Metro.co.uk
By daniellenierenberg
In Switzerland we know how to make watches. We also know how to stop time, reads the giant poster in the lobby.
Im at Victoria-Jungfrau Grand Hotel and Spa in Interlaken to sample their Better Aging program and find out if you really can stop the clock and stay looking young or if such ideas are just cuckoo.
The area certainly has a feel of youthful exuberance about it when I arrive Im greeted by paragliders, their colourful canopies drifting down onto the green across from the hotel. During my stay, not a day goes by without seeing the red and yellow wings in death-defying loops.
I can watch them from my room a smart black, brown and gold chamber housing a hard double bed with two single duvets, the traditional Swiss arrangement presumably designed to prevent greedy partners from hogging the covers. Every evening theres a Swiss truffle on my pillow.
The balcony looks out towards the Bernese Alps and the snowy peaks of Jungfrau, which means young woman or maiden. The setting of my anti-ageing quest really couldnt be better.
My journey begins at Nescens Spa, a bright space with lots of natural light, candles and trailing plants.
Spa director Hans-Peter notes down my vitals and bids me stand on a body analysis machine before Im whisked off to a room with personal trainer Brigitte, an intimidatingly fit-looking 49-year-old with a blonde crop.
Its not all bad news I have more muscle than her but I have a lot of body fat (not exactly news to me). She tells me my visceral fat is of particular concern and, among other things, advises me to avoid fruit with a high sugar content such as pineapple and grapes.
The next step is easier to take a de-stressing massage using anti-ageing Nescens oil. This should smoothe the skin and boost cell recapitalisation. The massage is gentler than others Ive had, and quite relaxing, but I cant say my skin looked different afterwards.
The spa does boast outstanding relaxation areas, however. Comfortable couches with mountain views, a smart sauna and the apex of steam rooms with twinkly lights in its starry ceiling, a fountain in middle and a gentle mint scent wafting through the air.
The next morning we come at the ageing issue via exercise with a morning of gentle Pilates. Its run by another uber-fit blonde, Iris.
Then its time for a Better Aging lunch beetroot, goats cheese and orange salad followed by a delicious sea bream with basillicum and vegetables.
Usually guests on the programme stay for at least four days, during which time meals are matched to help them achieve their fitness goals but this cant be easy with a pizzeria, Sapori, as part of the hotel.
The afternoon is dedicated to more exercise a brisk 5km walk with Iris again, through woodland and along the river, emerald with glacier water.
I have the highest hopes for todays anti-ageing treatment a classic silk bliss facial using Sensai products.
My beautician, Nicole, explains how the silk in the range was previously reserved for the Emperor of Japan. Apparently the products can activate your stem cells to help remove wrinkles.
The facial begins with Sensai Silky Purifying Creamy Soap followed by a steamer to open the pores, and some seriously thorough extraction work.
Next came the Silky Purifying Silk Peeling Mask and a mud soap wash and mask, left for six minutes. Finally came four more serums and creams.
My skin looked blotchy but felt very soft afterwards like a velvety cushion. The blotchiness was gone within half an hour, replaced with a glow. The next morning I could feel a spot coming on my neck but my face was plump, smooth and even.
The next day, after a Better Aging breakfast of light bites including tomatos, olives and smoothies, Im back with Brigitte for Nescens Full Body Training. Im cheered by the sight of some pensioners in the class. How hard can it be?
Quite hard, is the answer a full-on but not unbearable 45 minutes of planks, sit ups, star jumps and stretching giant blue elastic bands.
Afterwards I reward myself with a swim in the stunning pool. The main spa has a white, black and gold theme and incredible views.
It also has a lovely outdoor jacuzzi which you swim out to, with bubble beds, jets to massage your feet and back, and a clearer look at the mountains.
At the end of my trip I was more relaxed, my skin felt smoother and I felt fitter. While I may not look younger, as someone approaching 40 Im certainly less stressed about ageing.
Victoria-Jungfrau Grand Hotel and Spa (Picture: Yvette Caster/Metro.co.uk)
Where to stay in Switzerland
Rooms at Victoria-Jungfrau Grand Hotel and Spa cost from 296 per night, with breakfast. Better Aging guests get a 50 per cent discount in high season and 25 per cent discount in low season.
The Better Aging program lasts from four days and costs from 2,499 per person, which includes treatments, personal training and meals.
I flew with Swiss Air from Heathrow to Zrich. Flights cost from 177 return.
To get to the spa I took the train from Zrich airport to Interlaken OST via Bern. Return tickets cost from 116 via Switzerland Tourism. The hotel was about five minutes from the station by taxi.
A Swiss Travel Pass offers unlimited travel throughout the rail, bus and boat network. It includes entrance to 500 museums and costs from 185.
For more on Switzerland visit http://www.MySwitzerland.com.
Where to stay in Heathrow
I stayed at the Radisson Blu Edwardian Heathrow a decadent way to extend the spa experience.
The lobby features an impressive chandelier and theres dark wood and bronzes throughout.
The hotels spa has just had a revamp, and has a relaxation area, cosy sauna, powerful jacuzzi and beautiful blue and gold steam room.
The revamped Radisson spa at the hotel (Picture: Yvette Caster/Metro.co.uk)
I loved the showers you use between each part of the spa. Im sure they would delight fellow Pratchett fans, bringing to mind the Archchancellors bathroom as they do. There were buttons for cold mist, Caribbean storm and waterfall (but thankfully no Old Faithful).
I also tried their chocolate orange massage a thorough, full body treatment. I wasnt overpowered by scent and only really noticed the mild smell of cocoa when it was applied to my chest. It left me feeling refreshed and smelling sweet.
The hotel has two places to dine, Indian restaurant Anayu and Steak and Lobster. My T-bone steak was pleasant, although the blue cheese sauce was a bit bland, while the skinny fries were deliciously seasoned.
I enjoyed chatting to Radissons virtual host, Edward. You can text him anything 24/7 order room service, ask for late checkout and enquire about hotel services. It was like having my own PA.
Rooms at Radisson Blu Edwardian cost from 76.50 per night. They are offering Stay, Park and Fly packages from 102.50 per night, including parking for trips for eight to 15 days.
See the article here:
The fountain of youth? I tested a better anti-ageing program in Switzerland - Metro.co.uk
‘It was unreal’: Mother of injured Bronco Ryan Straschnitzki stunned by his progress after surgery – The Province
By daniellenierenberg
The mother of a hockey player paralyzed in the Humboldt Broncos bus crash says shes stunned by the progress he has made since receiving spinal surgery in Thailand.
Doctors implanted an epidural stimulator in Ryan Straschnitzkis spine earlier this month and a week later injected stem cells above and below the injury in the hope that will help reverse some of the damage.
Ryan Straschnitzki was presented a jersey as hockey players from the non-profit PX3 AMP Sledge Hockey Academy have been endorsed by the Calgary Flames as its affiliate sledge hockey team at the upcoming 2019 USA Hockey Sled Classic presented by the NHL in St. Louis from Nov. 21 Nov. 24, 2019 at the Scotiabank Saddledome in Calgary on Wednesday, October 30, 2019. Darren Makowichuk/PostmediaDarren Makowichuk / DARREN MAKOWICHUK/Postmedia
The 20-year-old from Airdrie, Alta., is to remain in Thailand until early December.
Hands down Im 200 per cent behind this. I didnt expect this kind of result this quickly, Michelle Straschnitzki said in an interview. Its definitely not a quick fix. Its not a cure, but its certainly progress and its more than weve had in 19 months.
Tom Straschnitzki, who is also in Thailand, has posted a number of videos of his sons rehab, including one where the young man was able to move a leg. Another video shows him strapped into a harness as physiotherapists slowly help him walk with the use of a machine on wheels.
Bout time he got off his ass. 1st time since he boarded the bus that horrendous day, Straschnitzki tweeted.
Therapist helping with knees and ankles so they dont buckle. Ryan did so good, I sent him to the beer store for me.
Straschnitzki was one of 13 players who were injured when an inexperienced truck driver blew through a stop sign and into the path of the Saskatchewan junior hockey teams bus in April 2018. Sixteen others on the bus died.
Straschnitzki, who was paralyzed from the chest down, has said he isnt expecting a cure but hopes the implant will restore some muscle movement and things such as bladder control.
A small device like a remote control is to send electrical currents to his spinal cord to try to stimulate nerves and move limbs. The implant is being programmed to stimulate certain nerves mapped out by surgeons and therapists.
The surgery can cost up to $100,000 and isnt covered by public health care or insurance, because the epidural procedure has not been approved by Health Canada. The family is paying for it themselves. It is also performed in countries such as the United States and Switzerland, but it is much cheaper in Thailand.
The players mother, who didnt go to Thailand, said hes been low key when shes talked to him.
In typical Ryan fashion hes very quiet. All he says is hes very tired and you can tell. His body, his mind, everything is tired because hes pushing as far as he can.
Her son takes part in nerve mapping in the morning, does physio in the afternoon and then does more work with the implant, she said. He still plans to hit the ice in Bangkok with his hockey sledge before returning home.
Straschnitzki said seeing her boys progress on the videos stunned her.
I was just absolutely floored. It obviously brought the tears. I was bawling. It was unreal, she said.
Tom said the last time Ryan walked was when he walked on the bus and then, to watch him moving his legs, walking essentially, that just rocked me.
Humboldt Broncos crash survivor Ryan Straschnitzki takes a moment during practice at Winsport in Calgary, on Aug. 7, 2018.Leah Hennel / Postmedia
Scientists find a cell that helps tadpoles tails regrow – Fourways Review
By daniellenierenberg
Aristotle already observed in the fourth century B.C. that some animals can regrow their tails after losing them, but the mechanisms that support this kind of regeneration remain difficult to understand.
Using single-cell genomics, scientists at the Wellcome Trust / Cancer Research UK Gurdon Institute at the University of Cambridge developed an innovative strategy to show what happens in different tadpole cells when they regenerate their tails.
Recent advances at Cambridge in next-generation single-cell sequencing mean that scientists can now track which genes are turned on throughout a whole organism or tissue, at the resolution of individual cells. This technique, known as single-cell genomics, makes it possible to distinguish between cell types in more detail based on their characteristic selection of active genes.
These groundbreaking discoveries are beginning to reveal a map of cellular identities and lineages, as well as the factors involved in controlling how cells choose between alternative pathways during embryo development to produce the range of cell types in adults.
Using this technology, Can Aztekin and Dr Tom Hiscock under the direction of Dr Jerome Jullien made a detailed analysis of cell types involved in regeneration after damage in African clawed frog tadpoles (Xenopus laevis). Details were published in the journal Science.
Dr Tom Hiscock said: Tadpoles can regenerate their tails throughout their life; but there is a two-day period at a precise stage in development where they lose this ability. We exploited this natural phenomenon to compare the cell types present in tadpoles capable of regeneration and those no longer capable.
The researchers found that the regenerative response of stem cells is orchestrated by a single sub-population of skin cells, which they named Regeneration-Organizing Cells, or ROCs.
Can Aztekin said: Its an astonishing process to watch unfold. After tail amputation, ROCs migrate from the body to the wound and secrete a cocktail of growth factors that coordinate the response of tissue precursor cells. These cells then work together to regenerate a tail of the right size, pattern and cell composition.
In mammals, many tissues such as the skin epidermis, the intestinal epithelium and the blood system, undergo constant turnover through life. Cells lost through exhaustion or damage are replenished by stem cells. However, these specialised cells are usually dedicated to tissue sub-lineages, while the ability to regenerate whole organs and tissues has been lost in all but a minority of tissues such as liver and skin.
Professor Benjamin Simons, a co-author of the study said: Understanding the mechanisms that enable some animals to regenerate whole organs represents a first step in understanding whether a similar phenomenon could be reawakened and harnessed in mammalian tissues, with implications for clinical applications.
This research was funded by the University of Cambridge, the Cambridge Trust andthe Wellcome Trust;and supported by theEuropean Molecular Biology Organization, the Royal Society,theEuropean Molecular Biology Laboratory, and Cancer Research UK.
Source: University of Cambridge Research
Visit link:
Scientists find a cell that helps tadpoles tails regrow - Fourways Review
Calquence approved in the US for adult patients with chronic lymphocytic leukaemia | Small Molecules | News Channels – PipelineReview.com
By daniellenierenberg
DetailsCategory: Small MoleculesPublished on Friday, 22 November 2019 14:04Hits: 311
Two Phase III Calquence trials demonstrated superior progression-free survival across multiple settings while maintaining favourable tolerability
Calquence combined with obinutuzumab and as monotherapy reducedthe risk of disease progression or death by 90% and 80%, respectively in ELEVATE-TN
LONDON, UK I November 21, 2019 I AstraZeneca today announced that the US Food and Drug Administration (FDA) has approved Calquence (acalabrutinib) for adult patients with chronic lymphocytic leukaemia (CLL) or small lymphocytic lymphoma (SLL).1 The US approval was granted under the FDAs Real-Time Oncology Review and newly established Project Orbis programmes.
The approval is based on positive results from the interim analyses of two Phase III clinical trials, ELEVATE-TN in patients with previously untreated CLL and ASCEND in patients with relapsed or refractory CLL. Together, the trials showed that Calquence in combination with obinutuzumab or as a monotherapy significantly reduced the relative risk of disease progression or death versus the comparator arms in both 1st-line and relapsed or refractory CLL. Across both trials, the safety and tolerability of Calquence were consistent with its established profile.1
Dave Fredrickson, Executive Vice President, Oncology Business Unit said: With over 20,000 new cases anticipated this year in the US alone, todays approval of Calquence provides new hope for patients with one of the most common types of adult leukaemia, offering outstanding efficacy and a favourable tolerability profile. The chronic lymphocytic leukaemia patient population is known to face multiple comorbidities, and tolerability is a critical factor in their treatment.
Dr Jeff Sharman, Director of Research at Willamette Valley Cancer Institute, Medical Director of Hematology Research for The US Oncology Network, and a lead author of the ELEVATE-TN trial, said: Tolerability remains an issue in the current treatment landscape of chronic lymphocytic leukaemia, which may require ongoing therapy for many years. In the ELEVATE-TN and ASCEND trials comparing Calquence to commonly used treatment regimens, Calquence demonstrated a clinically meaningful improvement in progression-free survival in patients across multiple settings, while maintaining its favourable tolerability and safety profile.
The results of the interim analysis of the ELEVATE-TN trial will be presented at the upcoming American Society of Hematology congress.2
The trial showed a statistically significant and clinically meaningful improvement in progression-free survival (PFS) for patients treated with either Calquence in combination with obinutuzumab or Calquence monotherapy versus chlorambucil chemotherapy plus obinutuzumab, a current standard-of-care combination used in the control arm.1
In the Calquence combination arm, risk of disease progression or death was reduced by 90% (HR 0.10; 95% CI, 0.06-0.17, p<0.0001) and in the monotherapy arm it was reduced by 80% (HR 0.20; 95% CI, 0.13-0.30, p<0.0001).1
The median time to disease progression for patients treated with Calquence in combination with obinutuzumab or as a monotherapy has not yet been reached versus 22.6 months (95% CI, 20-28) for chlorambucil plus obinutuzumab.1
ELEVATE-TN safety overview (most common ARs, 15%):1
Includes multiple ADR terms.
In patients treated with the combination of Calquence plus obinutuzumab, adverse reactions (ARs) led to treatment discontinuation in 11% of patients and a dose reduction of Calquence in 7% of patients. In the monotherapy arm, ARs led to discontinuation in 10% and dose reduction in 4% of patients.1 In the control arm, ARs led to regimen discontinuation in 14% of patients with a dose reduction of chlorambucil in 28% of patients.3 There were no dose reductions for obinutuzumab.1,3
In 1,029 patients with haematologic malignancies who were treated with Calquence 100mg approximately every 12 hours across multiple clinical trials, where 88% received treatment for at least six months and 79% received treatment for at least one year, serious or Grade 3 infections occurred in 19%, and Grade 3 atrial fibrillation and flutter occurred in 1.1% of patients.In the same patient population, major haemorrhage occurred in 3.0% (serious or Grade 3 bleeding or any central nervous system bleeding), with fatal haemorrhage occurring in 0.1% of patients. Second primary malignancies (all grades) including skin cancers occurred in 12% of patients.1
The US approval is among the first to be granted under Project Orbis, an initiative of the US FDA Oncology Center of Excellence, which provides a framework for concurrent submission and review of oncology medicines among international partners. The FDA, the Australian Therapeutic Goods Administration, and Health Canada collaborated on this review. 4
About Calquence
In the US, Calquence (acalabrutinib) is indicated for the treatment of adult patients with chronic lymphocytic leukaemia (CLL)/small lymphocytic lymphoma (SLL). In the US, Canada, Australia, Brazil, Qatar, the United Arab Emirates, Mexico, Argentina, Singapore, Chile, and recently India, Calquence is indicated for adult patients with mantle cell lymphoma (MCL) who have received at least one prior therapy. Approved under accelerated review in the US, continued approval for previously treated MCL is contingent upon verification and confirmation of clinical benefit in confirmatory trials.
Calquence is a next-generation selective inhibitor of Brutons tyrosine kinase (BTK). Calquence binds covalently to BTK, thereby inhibiting its activity.1,5,6,7 In B-cells, BTK signalling results in activation of pathways necessary for B-cell proliferation, trafficking, chemotaxis, and adhesion.1
As part of an extensive clinical development programme, AstraZeneca and Acerta Pharma are currently evaluating Calquence in 23 company-sponsored clinical trials. Calquence is being developed for the treatment of multiple B-cell blood cancers including CLL, MCL, diffuse large B-cell lymphoma, Waldenstrm macroglobulinaemia and follicular lymphoma and other haematologic malignancies. Several Phase III clinical trials in CLL are ongoing, including ASCEND, ELEVATE-TN, ELEVATE-RR (ACE-CL-006) evaluating Calquence versus ibrutinib in patients with previously treated high-risk CLL, and ACE-CL-311 evaluating Calquence in combination with venetoclax and with/without obinutuzumab versus chemoimmunotherapy in patients with previously untreated CLL without 17p deletion or TP53 mutation.
About ELEVATE-TN
ELEVATE-TN (ACE-CL-007) is a randomised, multicentre, open-label Phase III trial evaluating the safety and efficacy ofCalquence in combination with obinutuzumab, a CD20 monoclonal antibody, or Calquence alone versus chlorambucil, a chemotherapy, in combination with obinutuzumab in previously untreated patients with CLL. In the trial, 535 patients were randomised (1:1:1) into three arms. Patients in the first arm received chlorambucil in combination with obinutuzumab. Patients in the second arm received Calquence (100mg twice daily until disease progression or unacceptable toxicity) in combination with obinutuzumab. Patients in the third arm received Calquence monotherapy (100mg twice daily until disease progression or unacceptable toxicity).1,8
The primary endpoint is PFS in the Calquence and obinutuzumab arm compared to the chlorambucil and obinutuzumab arm, assessed by an independent review committee (IRC), and a key secondary endpoint is IRC-assessed PFS in the Calquence monotherapy arm compared to the chlorambucil and obinutuzumab arm. Other secondary endpoints include objective response rate, time to next treatment and overall survival.1,8
About ASCEND
ASCEND (ACE-CL-309) is a global, randomised, multicentre, open-label Phase III trial evaluating the efficacy of Calquence in previously treated patients with CLL. In the trial, 310 patients were randomised (1:1) into two arms. Patients in the first arm received Calquence monotherapy (100mg twice daily until disease progression or unacceptable toxicity). Patients in the second arm received investigators choice of either rituximab, a CD20 monoclonal antibody, in combination with idelalisib, a PI3K inhibitor, or rituximab in combination with bendamustine, a chemotherapy.1,9
The primary endpoint is PFS assessed by an IRC, and key secondary endpoints include physician-assessed PFS, IRC- and physician-assessed overall response rate and duration of response, as well as overall survival, patient-reported outcomes and time to next treatment.1,9
About CLL
Chronic lymphocytic leukaemia (CLL) is one of the most common types of leukaemia in adults, with an estimated 105,000 new cases globally each year and 20,720 new cases in the US in 2019, and the number of people living with CLL is expected to grow with improved treatment as patients live longer with the disease.10,11,12,13 In CLL, too many blood stem cells in the bone marrow become abnormal lymphocytes and these abnormal cells have difficulty fighting infections.10 As the number of abnormal cells grows there is less room for healthy white blood cells, red blood cells and platelets.10 This could result in anaemia, infection and bleeding.10 B-cell receptor signalling through BTK is one of the essential growth pathways for CLL.
About AstraZeneca in haematology
Leveraging its strength in oncology, AstraZeneca has established haematology as one of four key oncology disease areas of focus. The Companys haematology franchise includes two US FDA-approved medicines and a robust global development programme for a broad portfolio of potential blood cancer treatments. Acerta Pharma serves as AstraZenecas haematology research and development arm. AstraZeneca partners with like-minded science-led companies to advance the discovery and development of therapies to address unmet need.
About AstraZeneca in oncology
AstraZeneca has a deep-rooted heritage in oncology and offers a quickly-growing portfolio of new medicines that has the potential to transform patients lives and the Companys future. With at least six new medicines to be launched between 2014 and 2020, and a broad pipeline of small molecules and biologics in development, the Company is committed to advance oncology as a key growth driver for AstraZeneca focused on lung, ovarian, breast and blood cancers. In addition to AstraZenecas main capabilities, the Company is actively pursuing innovative partnerships and investments that accelerate the delivery of our strategy, as illustrated by the investment in Acerta Pharma in haematology.
By harnessing the power of four scientific platforms Immuno-Oncology, Tumour Drivers and Resistance, DNA Damage Response and Antibody Drug Conjugates and by championing the development of personalised combinations, AstraZeneca has the vision to redefine cancer treatment and, one day, eliminate cancer as a cause of death.
About AstraZeneca
AstraZeneca is a global, science-led biopharmaceutical company that focuses on the discovery, development and commercialisation of prescription medicines, primarily for the treatment of diseases in three therapy areas - Oncology, Cardiovascular, Renal and Metabolism, and Respiratory. AstraZeneca operates in over 100 countries and its innovative medicines are used by millions of patients worldwide. Please visit astrazeneca.com and follow the Company on Twitter @AstraZeneca.
References
1. CALQUENCE (acalabrutinib) [prescribing information]. Wilmington, DE; AstraZeneca Pharmaceuticals LP; 2019.
2. Sharman JP, et al. ELEVATE TN: Phase 3 Study of Acalabrutinib Combined with Obinutuzumab (O) or Alone Vs O Plus Chlorambucil (Clb) in Patients (Pts) with Treatment-Naive Chronic Lymphocytic Leukemia (CLL). Abstract 31 at: American Society of Hematology 2019 Annual Meeting and Exposition. Available online. Accessed November 2019.
3. Data on File. REF-64711. AstraZeneca Pharmaceuticals LP, Wilmington, DE.
4. US Food and Drug Administration. Project Orbis. Available online. Accessed November 2019.
5. Wu J, Zhang M & Liu D. Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor. J Hematol Oncol. 2016;9(21).
6. Khan Y & OBrien S. Acalabrutinib and its use in treatment of chronic lymphocytic leukemia. Future Oncol. 2018;15(6).
7. Byrd JC, et al. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. 2016; 374:323-332.
8. ClinicalTrials.gov. Elevate CLL TN: Study of Obinutuzumab + Chlorambucil, Acalabrutinib (ACP-196) + Obinutuzumab, and Acalabrutinib in Subjects With Previously Untreated CLL. NCT02475681. Available online. Accessed November 2019.
9. ClinicalTrials.gov. A Study of Acalabrutinib vs Investigator's Choice of Idelalisib Plus Rituximab or Bendamustine Plus Rituximab in R/R CLL. NCT02970318. Available online. Accessed November 2019.
10. National Cancer Institute. Chronic Lymphocytic Leukemia Treatment (PDQ)Patient Version. Available online. Accessed November 2019.
11. Global Burden of Disease Cancer Collaboration. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016. JAMA Oncol. 2018;4(11):1553-1568.
12. American Cancer Society. Key Statistics for Chronic Lymphocytic Leukemia. Available online. Accessed November 2019.
13. Jain N, et al. Prevalence and Economic Burden of Chronic Lymphocytic Leukemia (CLL) in the Era of Oral Targeted Therapies. Blood. 2015;126:871.
SOURCE: AstraZeneca
Vor Biopharma and MaxCyte announce clinical and commercial licence agreement for engineered hematopoietic stem cells to treat cancer – Pharmaceutical…
By daniellenierenberg
');},success: function(response) {$('.megamenuthird[data-menu=' + $data_megamenu + '-articles]').html(response);},error: function(xhr) { // if error occured$('.megamenuthird[data-menu=' + $data_megamenu + '-articles]').html("Error occured.please try again"); }});}}//Child Level Menu Hoverfunction get_childlevelmenu(currentid){//console.log('current id '+currentid);var $currentelement = $('#'+currentid);$('.menu-item-'+$('#'+currentid).closest('.themegamenu').attr('cid').split('-')[3]).removeClass('defaultajax-1');var $data_menu = $('#'+currentid).closest('li').data('menu');var ajaxreplaceContent = $('#'+currentid).closest('.themegamenu').data('megamenu')+'-articles';var submenu = $data_menu.split('-');var data_menu_class=submenu[0];//$('.megamenuthird').empty();$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').empty();$('li.level_2').removeClass('activeli');$currentelement.closest('li').siblings().removeClass('activeli');$currentelement.closest('li').addClass('activeli');var current_megamenu_second = $('.megamenusecond[data-menu='+$data_menu+']').length;$('.megamenuopen .megamenusecond').removeClass('megamenusecond-show');//$currentelement.closest('li').find('.megamenuopen .megamenusecond').removeClass('megamenusecond-show');$('.megamenusecond[data-menu=' + $data_menu + ']').addClass('megamenusecond-show');//if(current_megamenu_seconda').html();/********* End level3 checking menu ********/// checking 4th level menu /*** 4th level Objec code here **///getting parent data-menuvar levelfour_data_menu = $('.megamenusecond[data-menu='+$data_menu+']').find('li.level_3.activeli').data('menu');// End getting parent data-menuvar subofSubChildLevel_cat_id = $('.megamenusecond[data-menu='+levelfour_data_menu+']').find('li.level_4.activeli').data('cat');var subofSubChildLevel_data_menu = $('.megamenusecond[data-menu='+levelfour_data_menu+']').find('li.level_4.activeli').data('menu');var subofSubChildLevel_taxnomy_type= $('.megamenusecond[data-menu='+levelfour_data_menu+']').find('li.level_4.activeli').data('type');var subofSubChildLevel_title = $('.megamenusecond[data-menu='+levelfour_data_menu+']').find('li.level_4.activeli>a').html();if(subofSubChildLevel_title!=''){var ajx_title=subofSubChildLevel_title;}else{var ajx_title=subChildLevel_title;}/*** End 4th level Objec code here **/if(subofSubChildLevel_cat_id!=''){var data_obj ={'title':ajx_title,'subofSubChildLevel_cat_id':subofSubChildLevel_cat_id,'subofSubChildLevel_taxnomy_type':subofSubChildLevel_taxnomy_type,'subChildLevel_cat_id': subChildLevel_cat_id,'subChildLevel_taxnomy_type' :subChildLevel_taxnomy_type,'ChildLevel_data_type':ChildLevel_data_type,'ChildLevel_data_cat_id':ChildLevel_data_cat_id,'parent_data_cat_id':parent_data_cat_id,'parent_data_type':parent_data_type};}else{var data_obj ={'title':ajx_title,'subChildLevel_cat_id': subChildLevel_cat_id,'subChildLevel_taxnomy_type' :subChildLevel_taxnomy_type,'ChildLevel_data_type':ChildLevel_data_type,'ChildLevel_data_cat_id':ChildLevel_data_cat_id,'parent_data_cat_id':parent_data_cat_id,'parent_data_type':parent_data_type};}} if( ajaxRequestProject != null ) {ajaxRequestProject.abort();ajaxRequestProject = null;}ajaxRequestProject = $.ajax({type: 'POST',url: 'https://pharmaceutical-business-review.com/wp-admin/admin-ajax.php?action=mega_posts',data: data_obj, dataType: "html",beforeSend: function() {$('.megamenuthird[data-menu=' + ajaxreplaceContent+ ']').html('');},success: function(response) {$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html(response);},error: function(xhr) { // if error occured$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html("Error occured.please try again");}});}//Subchild Level Menu Hover//Child Level Menu Hoverfunction get_subchildlevelmenu(currentid){var $currentelement = $('#'+currentid);$('.menu-item-'+$('#'+currentid).closest('.themegamenu').attr('cid').split('-')[3]).removeClass('defaultajax-1');var $data_menu = $currentelement.closest('li').attr('data-menu'); var submenu = $data_menu.split('-'); var data_menu_class=submenu[0];var ajaxreplaceContent = $('#'+currentid).closest('.themegamenu').data('megamenu')+'-articles';$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').empty();$('.megamenuthird').removeClass('megamenuthird-show');$('.megamenuthird[data-menu=' + $data_menu + ']').addClass('megamenuthird-show');$('li.level_3').removeClass('activeli');$currentelement.closest('li').addClass('activeli');var subChildLevel_title = $currentelement.html();//last child level$currentelement.closest('li').parent().closest('li').find('.megamenusecond-new[data-menu=' + $data_menu + ']').find('li.level_4').removeClass('activeli');var $data_menu = $('#'+currentid).closest('li').data('menu');$('.megamenuopen .megamenusecond-new').removeClass('megamenusecond-show');$currentelement.closest('li').parent().closest('li').find('.megamenusecond-new[data-menu=' + $data_menu + ']').addClass('megamenusecond-show');$currentelement.closest('li').parent().closest('li').find('.megamenusecond-new[data-menu=' + $data_menu + ']').find('li.level_4:first-child').addClass('activeli');//console.log('subchild-'+title);var subChildLevel_cat_id=$currentelement.closest('li').data("cat");var subChildLevel_taxnomy_type = $currentelement.closest('li').data("type");var ChildLevel_data_type= $(".mega-options > li.project_m.activeli").data("type");var ChildLevel_data_cat_id= $(".mega-options > li.project_m.activeli").data("cat_id");var parent_data_cat_id= $currentelement.closest('.themegamenu').data("main_cat_id");var parent_data_type= $currentelement.closest('.themegamenu').data("main_type");// checking 4th level menu /*** 4th level Objec code here **/// End getting parent data-menuif($('.megamenusecond.megamenusecond-new').length > 0){var subofSubChildLevel_cat_id = $('.megamenusecond[data-menu='+$data_menu+']').find('li.level_4.activeli').data('cat');var subofSubChildLevel_data_menu = $('.megamenusecond[data-menu='+$data_menu+']').find('li.level_4.activeli').data('menu');var subofSubChildLevel_taxnomy_type= $('.megamenusecond[data-menu='+$data_menu+']').find('li.level_4.activeli').data('type');var subofSubChildLevel_title = $('.megamenusecond[data-menu='+$data_menu+']').find('li.level_4.activeli>a').html();if(subofSubChildLevel_title!==''){var ajx_title=subofSubChildLevel_title;}else{var ajx_title=subChildLevel_title;}if(subofSubChildLevel_cat_id!=''){var data_obj= {'title':ajx_title,'subofSubChildLevel_cat_id':subofSubChildLevel_cat_id,'subofSubChildLevel_taxnomy_type':subofSubChildLevel_taxnomy_type,'subChildLevel_cat_id': subChildLevel_cat_id,'subChildLevel_taxnomy_type' :subChildLevel_taxnomy_type,'ChildLevel_data_type':ChildLevel_data_type,'ChildLevel_data_cat_id':ChildLevel_data_cat_id,'parent_data_cat_id':parent_data_cat_id,'parent_data_type':parent_data_type};}else{var data_obj= {'title':ajx_title,'subChildLevel_cat_id': subChildLevel_cat_id,'subChildLevel_taxnomy_type' :subChildLevel_taxnomy_type,'ChildLevel_data_type':ChildLevel_data_type,'ChildLevel_data_cat_id':ChildLevel_data_cat_id,'parent_data_cat_id':parent_data_cat_id,'parent_data_type':parent_data_type};}}else{var data_obj= {'title':subChildLevel_title,'subChildLevel_cat_id': subChildLevel_cat_id,'subChildLevel_taxnomy_type' :subChildLevel_taxnomy_type,'ChildLevel_data_type':ChildLevel_data_type,'ChildLevel_data_cat_id':ChildLevel_data_cat_id,'parent_data_cat_id':parent_data_cat_id,'parent_data_type':parent_data_type};} if( ajaxRequestProject != null ) {ajaxRequestProject.abort();ajaxRequestProject = null;}ajaxRequestProject = $.ajax({ type: 'POST', url: 'https://pharmaceutical-business-review.com/wp-admin/admin-ajax.php?action=mega_posts', dataType: "html", data: data_obj, beforeSend: function() {$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html('');},success: function(response) {$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html(response);},error: function(xhr) { // if error occured$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html("Error occured.please try again"); }});}//last child levelfunction get_lastchildlevelmenu(currentid){var $currentelement = $('#'+currentid);$('.menu-item-'+$('#'+currentid).closest('.themegamenu').attr('cid').split('-')[3]).removeClass('defaultajax-1');var $data_menu = $currentelement.closest('li').attr('data-menu'); var submenu = $data_menu.split('-'); var data_menu_class=submenu[0];var $ajax_data_menu = $currentelement.closest('li').attr('data-ajax'); var ajax_submenu = $ajax_data_menu.split('-'); var ajax_data_menu_class=ajax_submenu[0]+'-'+ajax_submenu[1];var ajaxreplaceContent = $('#'+currentid).closest('.themegamenu').data('megamenu')+'-articles';$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').empty();$('.megamenuthird').removeClass('megamenuthird-show');$('.megamenuthird[data-menu=' + $data_menu + ']').addClass('megamenuthird-show');$('li.level_4').removeClass('activeli');$currentelement.closest('li').addClass('activeli');var title = $currentelement.html();var subofSubChildLevel_cat_id=$currentelement.closest('li').data("cat");var subofSubChildLevel_taxnomy_type = $currentelement.closest('li').data("type");var subofSubChildLevel_title = $currentelement.closest('li').find('li.level_4.activeli>a').html();var subChildLevel_cat_id=$('.megamenusecond[data-menu='+ajax_data_menu_class+']').find('li.level_3.activeli').data('cat');var subChildLevel_data_menu=$('.megamenusecond[data-menu='+ajax_data_menu_class+']').find('li.level_3.activeli').data('menu');var subChildLevel_taxnomy_type = $('.megamenusecond[data-menu='+ajax_data_menu_class+']').find('li.level_3.activeli').data('type');var ChildLevel_data_type= $(".mega-options > li.project_m.activeli").data("type");var ChildLevel_data_cat_id= $(".mega-options > li.project_m.activeli").data("cat_id");var parent_data_cat_id= $currentelement.closest('.themegamenu').data("main_cat_id");var parent_data_type= $currentelement.closest('.themegamenu').data("main_type");var data_obj= {'title':title,'subofSubChildLevel_cat_id':subofSubChildLevel_cat_id,'subofSubChildLevel_taxnomy_type':subofSubChildLevel_taxnomy_type,'subChildLevel_cat_id': subChildLevel_cat_id,'subChildLevel_taxnomy_type' :subChildLevel_taxnomy_type,'ChildLevel_data_type':ChildLevel_data_type,'ChildLevel_data_cat_id':ChildLevel_data_cat_id,'parent_data_cat_id':parent_data_cat_id,'parent_data_type':parent_data_type};if( ajaxRequestProject != null ) {ajaxRequestProject.abort();ajaxRequestProject = null;}ajaxRequestProject = $.ajax({ type: 'POST', url: 'https://pharmaceutical-business-review.com/wp-admin/admin-ajax.php?action=mega_posts', dataType: "html", data:data_obj, beforeSend: function() {$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html('');},success: function(response) {$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html(response);},error: function(xhr) { // if error occured$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html("Error occured.please try again"); }});} $(document).ready(function(){//$('body').addClass('loaded');/********* End Third Level on over show/hide ****/$('.news-box-big').hover(function() {$(this).closest('.news').children('.big_title').toggleClass("bordertop");});$('.news-box-medium').hover(function() {$(this).closest('.medium_title').children('.tbt').toggleClass("bordertop");}); /********* Newsletter onclick events start here *******/ $(".header-cta a").click(function(e){ var $elem = $('.newsletter-box').position(); $('html,body').animate({ scrollTop: $(".newsletter-box").offset().top - 80}, 'fast'); }); /***** Newsletter onclick events End here *******/ /* Close guided tour */ $(".close-guided-tour").click(function(){$(".home_timeline").hide(); }); /* Close guided tour */ $(".close-guided-tour2").click(function(){ $(".timeline-tour2").hide(); }); /* $( ".fa-search" ).click(function() { $( 'body' ).toggleClass('search-open'); //$('.search-form').toggle(); }); $('.search-toggle').click(function () {$('.search-form').toggleClass('expanded');}); */ // Search toggle$('.navbar .search-toggle, .mobilesearch').click(function(e){e.preventDefault();$(this).parent().toggleClass('active').find('input[type="search"]').focus();});$('.search-submit').click(function(e){if( $(this).parent().find('.search-field').val() == '' ) {e.preventDefault();$(this).parent().parent().removeClass('active');}}); }); /* Reached newsletter */ $(function(){ $(document).scroll(function(){ if($(this).scrollTop() >= $('.email-capture').offset().top - 50) { $('body').addClass("email-capture-reached"); } else{ $('body').removeClass("email-capture-reached"); } if($(this).scrollTop() >= $('.timeline').offset().top - 50) { $('body').addClass("timeline-tour-open"); } else{ $('body').removeClass("timeline-tour-open"); } }); }); /****** Article page Share n/w ********/ $('.social-toggle').on('click', function() { $(this).next().toggleClass('open-menu'); }); /*** End Article page Share n/w ********/ /* Close guided tour */ $(".close-guided-tour2").click(function(){ $("body").addClass("timeline-closed"); }); /* End Timeline guided tour Track the news */ /* Reached related headline */ $(function(){ $(document).ready(function(){ $('body').addClass("headline-reached"); }); }); /* Reached start */ /*$(function(){ $(document).scroll(function(){ if($(this).scrollTop() >= $('#start').offset().top - 50) { $('body').addClass("start-reached"); } else{ $('body').removeClass("start-reached"); } }); });*/ /* Reached share-content */ $(function(){ $(document).scroll(function(){ if($(this).scrollTop() >= $('.share-content').offset().top - 50) { $('body').addClass("share-content-reached"); } else{ $('body').removeClass("share-content-reached"); } }); }); /* share copy-link section */ function myFunction() { var copyText = document.getElementById("copylink"); copyText.select(); document.execCommand("Copy"); } /* Reached first sidebar mpu */ $(function(){ $(document).scroll(function(){ if($(this).scrollTop() >= $('.mpu1').offset().top - 50) { $('body').addClass("reached-mpu1"); } else{ $('body').removeClass("reached-mpu1"); } }); }); /* Sticky sidebar banner */ /* $(function(){ $(document).scroll(function(){ if ($(window).width() > 1400) { if($(this).scrollTop() >= $('#sticky-mpu').offset().top - 250 ) { $('.sidebar').addClass("banner-fixed"); } else{ $('.sidebar').removeClass("banner-fixed"); } } }); });*/ // Select all links with hashes $('a[href*="#"]') // Remove links that don't actually link to anything .not('[href="#"]') .not('[href="#0"]') .click(function(event) { // On-page links if ( location.pathname.replace(/^//, '') == this.pathname.replace(/^//, '') && location.hostname == this.hostname ) { // Figure out element to scroll to var target = $(this.hash); target = target.length ? target : $('[name=' + this.hash.slice(1) + ']'); // Does a scroll target exist? if (target.length) { // Only prevent default if animation is actually gonna happen event.preventDefault(); $('html, body').animate({ scrollTop: target.offset().top }, 1000, function() { // Callback after animation // Must change focus! var $target = $(target); $target.focus(); if ($target.is(":focus")) { // Checking if the target was focused return false; } else { $target.attr('tabindex','-1'); // Adding tabindex for elements not focusable $target.focus(); // Set focus again }; }); } } }); /******** onclick share button in catgeory page ******/ $(".share-button").click(function(){ if($(this).parent('.open-share').length == 0){ $('.share').removeClass('open-share'); $(this).parent('.share').addClass("open-share"); }else{ $('.share').removeClass('open-share'); } }); /************* Mobile menu js *******/ function openNav() { document.getElementById("mobilemenu").style.width = "100%"; document.getElementById("mobilemenu").style.left = "0px"; } function closeNav() { document.getElementById("mobilemenu").style.width = "0"; } $( ".mobilemenuicon" ).click(function() { setTimeout(function(){ $( '.mobile-menu-cta' ).addClass("mobilectashow"); }, 500); }); $( ".closebtn" ).click(function() { $( '.mobile-menu-cta' ).removeClass("mobilectashow") }); /********** End mobile menu js *******/ /********* contractors Single page close Header**/ $(".close_section").click(function(){ $('.headersf').hide(1000); $('.headersf').addClass('section_closed'); $('.header-singleproduct').addClass('margin_top_added'); $('.small_header_sf').addClass('small_header_sf_display'); }); /******* End contractors Single page close Header**/ /*** My accout drop down menu */ $('.ctanav .dropdown-menu a').on('click', function() { window.location.href = $(this).attr('href'); }); /*** cookie-popup **/ $("#cookiepopup-continue").click(function(){ $.cookie("cookie_compelo", 'https://pharmaceutical-business-review.com'); $('.home_timeline').hide(); }); $(window).on("load",function(){ var data = $.cookie("cookie_compelo"); if(data){ $('.home_timeline').hide(); }else{ $('.home_timeline').show(); } }); $(".home_timeline .close").click(function(){ $.cookie("cookie_compelo", 'https://pharmaceutical-business-review.com'); $('.home_timeline').hide(); }); $(window).on("load",function(){ var data = $.cookie("cookie_compelo"); if(data){ $('.home_timeline').hide(); }else{ $('.home_timeline').show(); } }); /*** End cookie popup **/ /**** New add js code ***/ if ($(window).width() > 960) { // Initialization $(function(){ $('[data-scroll-speed]').moveIt(); }); } /* Sticky sidebar banner EVENT PAGE */ $(function(){ $(document).scroll(function(){ var scroll = $(window).scrollTop(); if (scroll >= 655) { $('.sticky-mpu-event').addClass("banner-fixed"); } else{ $('.sticky-mpu-event').removeClass("banner-fixed"); } }); }); //advertising page jQuery.fn.moveIt = function(){ var $window = jQuery(window); var instances = []; jQuery(this).each(function(){ instances.push(new moveItItem($(this))); }); window.addEventListener('scroll', function(){ var scrollTop = $window.scrollTop(); instances.forEach(function(inst){ inst.update(scrollTop); }); }, {passive: true}); } var moveItItem = function(el){ this.el = jQuery(el); this.speed = parseInt(this.el.attr('data-scroll-speed')); }; moveItItem.prototype.update = function(scrollTop){ this.el.css('transform', 'translateY(' + -(scrollTop / this.speed) + 'px)');};// InitializationjQuery(function(){jQuery('[data-scroll-speed]').moveIt();}); /**** end new add js code **/
Bone Marrow Processing System Market Incisive Insights Regarding Major Regions, Key Players And Opportunities Up To 2025 – Crypto News Byte
By daniellenierenberg
Bone marrow aspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.
The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.Europe and North America spearheaded the market as of 2016, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.
Get More Information:https://www.trendsmarketresearch.com/report/sample/3184
In 2016, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy.
Request For Table of Contents:https://www.trendsmarketresearch.com/report/requesttoc/3184
Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.
Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others
Report Description:https://www.trendsmarketresearch.com/report/bone-marrow-processing-system-market
Oliver and Elizabeth Hedgepeth column: Human donations are a gift of life – Richmond.com
By daniellenierenberg
By Oliver and Elizabeth Hedgepeth
There are special suppliers of life in our great country, from North Carolina to Virginia to Alaska. They are those hospitals that collect the basic raw material for giving life. They work with a network of donor service organizations across the United States. In Virginia, it is Donate Life Virginia. In North Carolina, it is Carolina Donor Services. In Alaska, it is Life Alaska Donor Services.
The raw material that comprises those supply items are you, me, anyone from 3 months old to 75 years old, so far in our experience. Yes, a 3-month-old can die of many causes some accidents, others an incurable disease. But, that 3 month-old can give life and sight and other helpful body parts to others, as can that 75-year-old. The final person to receive such a gift is you, your wife, child, husband, mother, father, a teacher, a prisoner in jail anyone and everyone.
There are more than 50 different parts of a persons body that can be donated to help others live a better life. Those supply items are organs, corneas, tissues, hands and face, blood stem cells, cord blood, bone marrow, blood and platelets. The number of people given this gift of life exceeded 113,000 in 2019.
Real-life experience: We recently attended a Donor Family Tribute in Greenville, N.C. The sponsor of this event was Carolina Donor Services. The building was huge and looked like a country club. We were not sure if we were at the right place, and we even questioned why we should spend our Sunday afternoon there.
This nice-looking building clearly was a place to hold a special event. When we reached the register desk, we discovered our name was not on the list. We debated for three months after the invitation arrived whether we wanted to be around a group of people who lost their loved ones.
There was a meeting and dining area, much as you would expect at a professional conference. There was nice, light music playing in the background, the walls were black and there were quilts hanging all over the front of the room. The quilts had small 12-inch squares on them. It was obvious that the quilt was a remembrance of the ones who had died.
We sat at a table that had many place settings and chairs. We sat quietly for about 30 minutes, as around 200 people entered the room and took their seats. When the room filled, the talking was in whispers, as if we were in church waiting for a service to begin. We thought about quietly getting up and leaving. We did not fit in here.
The 200 people were a mix of races, ages and abilities. A spokesperson on stage invited all the guests to join the buffet line. We all did, and the group ate for about 30 minutes, again like a church social. Then it began.
The speaker asked if anyone would like to tell about a loved one who donated to help others live. Slowly, people many of whom had never spoken in front of a group walked to the microphone. One woman, smiling and happy with tears of joy running down her face, spoke about finding her 15-year-old son in his room at home, hanged. She described how it took three days for him to die of his suicide.
Then, she happily said his hand was being used by another young boy who had lost his in an accident and how her sons eyes would make another person see for the first time in years.
Another person shared the story of how a 3-month-olds death from an incurable disease helped other life-threatened babies live. The sharing of stories went on for about three hours.
When we gathered to leave, we and those 200 people were all the same. We were friends, like long-lost relatives. There was no age or race or illness separating us. We all treated each other as the same.
People are waiting: When someone you love dies, grief memoirs seem the same. Being around those who also have lost someone and are grieving seems to be a logical connection. The topic of conversation is similar and shared. But the loss is still there for the person so loved. Something changed with this donor tribute.
The 200 or so people with their common loss encountered a gain. Many of them know the person who has received a new hand, or can see, or can talk for the first time in years. Knowing that their loved one is still alive in a small part of someone else, maybe even the heart itself, gives comfort to us who have been left with such grief in the past.
The donor process of giving was not around when our parents died. If it had been, our visits to the gravesites would hold a little more light of happiness, knowing someone was walking around on a farm or in an office with our loved ones heart or arteries or hands.
Donate Life Virginia is a small part of life-giving across all of America. Please, donate in your state when your time comes. We are.
Oliver Hedgepeth is professor of logistics for the American Military University. Elizabeth Hedgepeth is former managing editor of the Petersburg Progress-Index. Contact them at: blh4835@gmail.com
Read this article:
Oliver and Elizabeth Hedgepeth column: Human donations are a gift of life - Richmond.com
A Comprehensive Analysis of the Rheumatoid Arthritis Stem Cell Therapy Market Available in the Latest Report – Tech Admirers
By daniellenierenberg
Share
Share
Share
With a multi-disciplinary approach, Fact.MR elaborates an extensive analysis of the historical, current and future outlook of the global rheumatoid arthritis stem cell therapy market as well as the factors responsible for such a growth. Our highly dedicated professionals have inputted critical and accurate insights associated with every industry, and region by doing thorough primary and secondary research.
We leverage space-age industrial and digitalization tools to provide avant-garde actionable insights to our clients regarding the rheumatoid arthritis stem cell therapy market. For enhancing readers experience, the report starts with a basic overview about the rheumatoid arthritis stem cell therapy market and its classification. Further, we have considered 2028 as the estimated year, 2018 2028 as the stipulated timeframe.
Competitive Assessment
The rheumatoid arthritis stem cell therapy market report includes global as well as emerging players:
The insights for each vendor consists of:
Obtain the Report TOC: https://www.factmr.com/connectus/sample?flag=T&rep_id=1001
Regional Analysis
Important regions covered in the rheumatoid arthritis stem cell therapy market report include:
The rheumatoid arthritis stem cell therapy market report also provides data regarding the key countries in the defined regions.
Segmentation Analysis
By Treatment Type:
By Distribution Channel:
What insights does the rheumatoid arthritis stem cell therapy market report provide to the readers?
Get the Report Sample here: https://www.factmr.com/connectus/sample?flag=S&rep_id=1001
Questionnaire answered in the rheumatoid arthritis stem cell therapy market report include:
‘It was unreal’: Mother of injured Bronco Ryan Straschnitzki stunned by his progress after surgery – Edmonton Sun
By daniellenierenberg
The mother of a hockey player paralyzed in the Humboldt Broncos bus crash says shes stunned by the progress he has made since receiving spinal surgery in Thailand.
Doctors implanted an epidural stimulator in Ryan Straschnitzkis spine earlier this month and a week later injected stem cells above and below the injury in the hope that will help reverse some of the damage.
Ryan Straschnitzki was presented a jersey as hockey players from the non-profit PX3 AMP Sledge Hockey Academy have been endorsed by the Calgary Flames as its affiliate sledge hockey team at the upcoming 2019 USA Hockey Sled Classic presented by the NHL in St. Louis from Nov. 21 Nov. 24, 2019 at the Scotiabank Saddledome in Calgary on Wednesday, October 30, 2019. Darren Makowichuk/PostmediaDarren Makowichuk / DARREN MAKOWICHUK/Postmedia
The 20-year-old from Airdrie, Alta., is to remain in Thailand until early December.
Hands down Im 200 per cent behind this. I didnt expect this kind of result this quickly, Michelle Straschnitzki said in an interview. Its definitely not a quick fix. Its not a cure, but its certainly progress and its more than weve had in 19 months.
Tom Straschnitzki, who is also in Thailand, has posted a number of videos of his sons rehab, including one where the young man was able to move a leg. Another video shows him strapped into a harness as physiotherapists slowly help him walk with the use of a machine on wheels.
Bout time he got off his ass. 1st time since he boarded the bus that horrendous day, Straschnitzki tweeted.
Therapist helping with knees and ankles so they dont buckle. Ryan did so good, I sent him to the beer store for me.
Straschnitzki was one of 13 players who were injured when an inexperienced truck driver blew through a stop sign and into the path of the Saskatchewan junior hockey teams bus in April 2018. Sixteen others on the bus died.
Straschnitzki, who was paralyzed from the chest down, has said he isnt expecting a cure but hopes the implant will restore some muscle movement and things such as bladder control.
A small device like a remote control is to send electrical currents to his spinal cord to try to stimulate nerves and move limbs. The implant is being programmed to stimulate certain nerves mapped out by surgeons and therapists.
The surgery can cost up to $100,000 and isnt covered by public health care or insurance, because the epidural procedure has not been approved by Health Canada. The family is paying for it themselves. It is also performed in countries such as the United States and Switzerland, but it is much cheaper in Thailand.
The players mother, who didnt go to Thailand, said hes been low key when shes talked to him.
In typical Ryan fashion hes very quiet. All he says is hes very tired and you can tell. His body, his mind, everything is tired because hes pushing as far as he can.
Her son takes part in nerve mapping in the morning, does physio in the afternoon and then does more work with the implant, she said. He still plans to hit the ice in Bangkok with his hockey sledge before returning home.
Straschnitzki said seeing her boys progress on the videos stunned her.
I was just absolutely floored. It obviously brought the tears. I was bawling. It was unreal, she said.
Tom said the last time Ryan walked was when he walked on the bus and then, to watch him moving his legs, walking essentially, that just rocked me.
Humboldt Broncos crash survivor Ryan Straschnitzki takes a moment during practice at Winsport in Calgary, on Aug. 7, 2018.Leah Hennel / Postmedia
Biobots are hybrid machines that have muscles and nerves – DesignNews
By daniellenierenberg
An artist rendering of a new generation of biobots developed by researchers at the University of Illinois--soft robotic devices powered by skeletal muscle tissue stimulated by on-board motor neurons. (Image source: Michael Vincent)
The next-generation of medical treatment and diagnosis likely will include tiny robots that can explore inside the human body and perform appointed tasks.
To drive this technological aim, researchers at the University of Illinois have developed soft, biological robotic devices that are self-driven using light-stimulated neuromuscular tissue and have intelligence, memory, and learning ability. The work brings researchers a step closer toward the development of autonomous biobots.
This is the first milestone towards intelligent biorobots that make themselves through self assembly, project leader Taher Saif, a mechanical science and engineering professor from the University of Illinois, told Design News.
Muscle cells mixed with an extra cellular matrix is dropped on the tail part, where muscle cells form the muscle tissue by self assembly, Saif told Design News. Neurons are placed on the head part of the swimmer from where they spread out and form junctions with the muscle. These neurons then fire and make the muscle contract.
The researchers published a paper on their recent work in the journal Proceedings of the National Academy of Sciences.
The recent work is a continuation of Saifs research on similar technology. In 2014, research teams led by Saif and a colleague, bioengineering professor Rashid Bashir, developed the first self-propelled biohybrid robots that could swim and walk, powered by beating cardiac muscle cells derived from rats.
While those robots could move on their own using biomaterials, they couldnt sense the environment or make decisions, Saif said.
The current work takes this technology a step further with biobots powered by skeletal muscle tissue and stimulated by on-board motor neurons, he said. The neurons have optogenetic properties derived from mouse stem cells; when exposed to light, they fire to actuate the muscle tissue.
Neurons make connections between each other forming a neural network, Saif explained. Some of the neurons form junctions with the muscle. The neurons fire and stimulate the muscle.
Once the muscle is stimulated, it contracts and moves the tails of the swimming biobot, Saif said. This motion of the tails make the swimmer propel forward.
Once the researchers ensured that the neuromuscular tissue used in the biobots was compatible with the synthetic biobot skeletons, they then set about to optimize the abilities of the swimming device. In particular, they aimed for the bot to be able to respond intelligently to environment cues by integrating neural units within biohybrid systems.
Given our understanding of neural control in animals, it may be possible to move forward with biohybrid neuromuscular design by using a hierarchical organization of neural networks, Saif said in a press statement.
Once these smart biobots are optimized, Saif and his team believe they can be used for various applications in bioengineering, medicine, and self-healing materials and technologies.
In the future, it is possible that such intelligent micro biorobots may swim towards a target tissue inside the body and deliver drugs on an on-demand basis, Saif told Design News.
The team plans to continue its work by exploring the use of multiple types of neurons in the biobot as well as to test the robots ability to sense and fire when a threshold signal such as a chemical gradient is exceeded.
Elizabeth Montalbano is a freelance writer who has written about technology and culture for more than 20 years. She has lived and worked as a professional journalist in Phoenix, San Francisco and New York City. In her free time she enjoys surfing, traveling, music, yoga and cooking. She currently resides in a village on the southwest coast of Portugal.
January 28-30:North America's largest chip, board, and systems event,DesignCon, returns to Silicon Valleyfor its 25th year!The premier educational conference and technology exhibition, this three-day event brings together the brightest minds across the high-speed communications and semiconductor industries, who are looking to engineer the technology of tomorrow. DesignCon is your rocket to the future. Ready to come aboard?Register to attend!
See the article here:
Biobots are hybrid machines that have muscles and nerves - DesignNews
CALQUENCE Approved in the US for Adult Patients With Chronic Lymphocytic Leukemia – Business Wire
By daniellenierenberg
WILMINGTON, Del.--(BUSINESS WIRE)--AstraZeneca today announced that the US Food and Drug Administration (FDA) has approved CALQUENCE (acalabrutinib) for adult patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). The US approval was granted under the FDAs Real-Time Oncology Review and newly established Project Orbis programs.
The approval is based on positive results from the interim analyses of two Phase III clinical trials, ELEVATE-TN in patients with previously untreated CLL and ASCEND in patients with relapsed or refractory CLL. Together, the trials showed that CALQUENCE in combination with obinutuzumab or as a monotherapy significantly reduced the relative risk of disease progression or death versus the comparator arms in both 1st-line and relapsed or refractory CLL. Across both trials, the safety and tolerability of CALQUENCE were consistent with its established profile.
Dave Fredrickson, Executive Vice President, Oncology Business Unit said: With over 20,000 new cases anticipated this year in the US alone, todays approval of CALQUENCE provides new hope for patients with one of the most common types of adult leukemia, offering outstanding efficacy and a favorable tolerability profile. The chronic lymphocytic leukemia patient population is known to face multiple comorbidities, and tolerability is a critical factor in their treatment.
Dr. Jeff Sharman, Director of Research at Willamette Valley Cancer Institute, Medical Director of Hematology Research for The US Oncology Network, and a lead author of the ELEVATE-TN trial, said: Tolerability remains an issue in the current treatment landscape of chronic lymphocytic leukemia, which may require ongoing therapy for many years. In the ELEVATE-TN and ASCEND trials comparing CALQUENCE to commonly used treatment regimens, CALQUENCE demonstrated a clinically meaningful improvement in progression-free survival in patients across multiple settings, while maintaining its favorable tolerability and safety profile.
The results of the interim analysis of the ELEVATE-TN trial will be presented at the upcoming American Society of Hematology congress.
The trial showed a statistically significant and clinically meaningful improvement in progression-free survival (PFS) for patients treated with either CALQUENCE in combination with obinutuzumab or CALQUENCE monotherapy versus chlorambucil chemotherapy plus obinutuzumab, a current standard-of-care combination used in the control arm.
In the CALQUENCE combination arm, risk of disease progression or death was reduced by 90% (HR 0.10; 95% CI, 0.06-0.17, p<0.0001) and in the monotherapy arm it was reduced by 80% (HR 0.20; 95% CI, 0.13-0.30, p<0.0001).
The median time to disease progression for patients treated with CALQUENCE in combination with obinutuzumab or as a monotherapy has not yet been reached vs. 22.6 months (95% CI, 20-28) for chlorambucil plus obinutuzumab.
ELEVATE-TN safety overview (most common ARs*, 15%):
Adverse reaction
CALQUENCE plus obinutuzumab(n=178)
CALQUENCE monotherapy(n=179)
Chlorambucil plus obinutuzumab(n=169)
Any
Grade 3
Any
Grade 3
Any
Grade 3
Infection
69%
22%
65%
14%
46%
13%
Neutropenia
53%
37%
23%
13%
78%
50%
Anemia
52%
12%
53%
10%
54%
14%
Thrombocytopenia
51%
12%
32%
3.4%
61%
16%
Headache
40%
1.1%
39%
1.1%
12%
0
Diarrhea
39%
4.5%
35%
0.6%
21%
1.8%
Musculoskeletal pain
37%
2.2%
32%
1.1%
16%
2.4%
Fatigue
34%
2.2%
23%
1.1%
24%
1.2%
Bruising
31%
0
21%
0
5%
0
Rash
26%
2.2%
25%
0.6%
9%
0.6%
Arthralgia
22%
1.1%
16%
0.6%
4.7%
1.2%
Dizziness
20%
0
12%
Visit link:
CALQUENCE Approved in the US for Adult Patients With Chronic Lymphocytic Leukemia - Business Wire
Scientists find a cell that helps tadpoles tails regrow – North Coast Courier
By daniellenierenberg
Aristotle already observed in the fourth century B.C. that some animals can regrow their tails after losing them, but the mechanisms that support this kind of regeneration remain difficult to understand.
Using single-cell genomics, scientists at the Wellcome Trust / Cancer Research UK Gurdon Institute at the University of Cambridge developed an innovative strategy to show what happens in different tadpole cells when they regenerate their tails.
Recent advances at Cambridge in next-generation single-cell sequencing mean that scientists can now track which genes are turned on throughout a whole organism or tissue, at the resolution of individual cells. This technique, known as single-cell genomics, makes it possible to distinguish between cell types in more detail based on their characteristic selection of active genes.
These groundbreaking discoveries are beginning to reveal a map of cellular identities and lineages, as well as the factors involved in controlling how cells choose between alternative pathways during embryo development to produce the range of cell types in adults.
Using this technology, Can Aztekin and Dr Tom Hiscock under the direction of Dr Jerome Jullien made a detailed analysis of cell types involved in regeneration after damage in African clawed frog tadpoles (Xenopus laevis). Details were published in the journal Science.
Dr Tom Hiscock said: Tadpoles can regenerate their tails throughout their life; but there is a two-day period at a precise stage in development where they lose this ability. We exploited this natural phenomenon to compare the cell types present in tadpoles capable of regeneration and those no longer capable.
The researchers found that the regenerative response of stem cells is orchestrated by a single sub-population of skin cells, which they named Regeneration-Organizing Cells, or ROCs.
Can Aztekin said: Its an astonishing process to watch unfold. After tail amputation, ROCs migrate from the body to the wound and secrete a cocktail of growth factors that coordinate the response of tissue precursor cells. These cells then work together to regenerate a tail of the right size, pattern and cell composition.
In mammals, many tissues such as the skin epidermis, the intestinal epithelium and the blood system, undergo constant turnover through life. Cells lost through exhaustion or damage are replenished by stem cells. However, these specialised cells are usually dedicated to tissue sub-lineages, while the ability to regenerate whole organs and tissues has been lost in all but a minority of tissues such as liver and skin.
Professor Benjamin Simons, a co-author of the study said: Understanding the mechanisms that enable some animals to regenerate whole organs represents a first step in understanding whether a similar phenomenon could be reawakened and harnessed in mammalian tissues, with implications for clinical applications.
This research was funded by the University of Cambridge, the Cambridge Trust andthe Wellcome Trust;and supported by theEuropean Molecular Biology Organization, the Royal Society,theEuropean Molecular Biology Laboratory, and Cancer Research UK.
Source: University of Cambridge Research
Visit link:
Scientists find a cell that helps tadpoles tails regrow - North Coast Courier