Page 368«..1020..367368369370..380390..»

Regenerative Medicine Market Industry Outlook, Growth Prospects and Key Opportunities – Health News Office

By daniellenierenberg

Regenerative Medicine Market: Snapshot

Regenerative medicine is a part of translational research in the fields of molecular biology and tissue engineering. This type of medicine involves replacing and regenerating human cells, organs, and tissues with the help of specific processes. Doing this may involve a partial or complete reengineering of human cells so that they start to function normally.

Order Brochure for more Detailed Information @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1889

Regenerative medicine also involves the attempts to grow tissues and organs in a laboratory environment, wherein they can be put in a body that cannot heal a particular part. Such implants are mainly preferred to be derived from the patients own tissues and cells, particularly stem cells. Looking at the promising nature of stem cells to heal and regenerative various parts of the body, this field is certainly expected to see a bright future. Doing this can help avoid opting for organ donation, thus saving costs. Some healthcare centers might showcase a shortage of organ donations, and this is where tissues regenerated using patients own cells are highly helpful.

There are several source materials from which regeneration can be facilitated. Extracellular matrix materials are commonly used source substances all over the globe. They are mainly used for reconstructive surgery, chronic wound healing, and orthopedic surgeries. In recent times, these materials have also been used in heart surgeries, specifically aimed at repairing damaged portions.

Cells derived from the umbilical cord also have the potential to be used as source material for bringing about regeneration in a patient. A vast research has also been conducted in this context. Treatment of diabetes, organ failure, and other chronic diseases is highly possible by using cord blood cells. Apart from these cells, Whartons jelly and cord lining have also been shortlisted as possible sources for mesenchymal stem cells. Extensive research has conducted to study how these cells can be used to treat lung diseases, lung injury, leukemia, liver diseases, diabetes, and immunity-based disorders, among others.

Global Regenerative Medicine Market: Overview

The global market for regenerative medicine market is expected to grow at a significant pace throughout the forecast period. The rising preference of patients for personalized medicines and the advancements in technology are estimated to accelerate the growth of the global regenerative medicine market in the next few years. As a result, this market is likely to witness a healthy growth and attract a large number of players in the next few years. The development of novel regenerative medicine is estimated to benefit the key players and supplement the markets growth in the near future.

Request TOC for Facts & Tables @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1889

Global Regenerative Medicine Market: Key Trends

The rising prevalence of chronic diseases and the rising focus on cell therapy products are the key factors that are estimated to fuel the growth of the global regenerative medicine market in the next few years. In addition, the increasing funding by government bodies and development of new and innovative products are anticipated to supplement the growth of the overall market in the next few years.

On the flip side, the ethical challenges in the stem cell research are likely to restrict the growth of the global regenerative medicine market throughout the forecast period. In addition, the stringent regulatory rules and regulations are predicted to impact the approvals of new products, thus hampering the growth of the overall market in the near future.

Global Regenerative Medicine Market: Market Potential

The growing demand for organ transplantation across the globe is anticipated to boost the demand for regenerative medicines in the next few years. In addition, the rapid growth in the geriatric population and the significant rise in the global healthcare expenditure is predicted to encourage the growth of the market. The presence of a strong pipeline is likely to contribute towards the markets growth in the near future.

Global Regenerative Medicine Market: Regional Outlook

In the past few years, North America led the global regenerative medicine market and is likely to remain in the topmost position throughout the forecast period. This region is expected to account for a massive share of the global market, owing to the rising prevalence of cancer, cardiac diseases, and autoimmunity. In addition, the rising demand for regenerative medicines from the U.S. and the rising government funding are some of the other key aspects that are likely to fuel the growth of the North America market in the near future.

Furthermore, Asia Pacific is expected to register a substantial growth rate in the next few years. The high growth of this region can be attributed to the availability of funding for research and the development of research centers. In addition, the increasing contribution from India, China, and Japan is likely to supplement the growth of the market in the near future.

Avail the Discount on this Report @https://www.tmrresearch.com/sample/sample?flag=D&rep_id=1889

Global Regenerative Medicine Market: Competitive Analysis

The global market for regenerative medicines is extremely fragmented and competitive in nature, thanks to the presence of a large number of players operating in it. In order to gain a competitive edge in the global market, the key players in the market are focusing on technological developments and research and development activities. In addition, the rising number of mergers and acquisitions and collaborations is likely to benefit the prominent players in the market and encourage the overall growth in the next few years.

Some of the key players operating in the regenerative medicine market across the globe are Vericel Corporation, Japan Tissue Engineering Co., Ltd., Stryker Corporation, Acelity L.P. Inc. (KCI Licensing), Organogenesis Inc., Medtronic PLC, Cook Biotech Incorporated, Osiris Therapeutics, Inc., Integra Lifesciences Corporation, and Nuvasive, Inc. A large number of players are anticipated to enter the global market throughout the forecast period.

Go here to read the rest:
Regenerative Medicine Market Industry Outlook, Growth Prospects and Key Opportunities - Health News Office

To Read More: Regenerative Medicine Market Industry Outlook, Growth Prospects and Key Opportunities – Health News Office
categoriaCardiac Stem Cells commentoComments Off on Regenerative Medicine Market Industry Outlook, Growth Prospects and Key Opportunities – Health News Office | dataOctober 25th, 2019
Read All

ReNeuron Presents Positive Data at the 27th Annual Congress of the European Society of Gene and Cell Therapy on Lead Cell Line – PRNewswire

By daniellenierenberg

PENCOED, Wales, Oct. 23, 2019 /PRNewswire/ --ReNeuron Group plc (AIM: RENE), a UK-based global leader in the development of cell-based therapeutics, is pleased to announce that new data relating to its CTX stem cell platform will be presented today at the 27th Annual Congress of the European Society of Gene and Cell Therapy(ESGCT), a leading scientific conference taking place this week in Barcelona, Spain.

Dr. Steve Pells, Principal Investigator at ReNeuron, will present new data showing the phenotypic stability and scalability of a mesenchymal stem cell line derived from the Company's proprietary, conditionally immortalized, human neural stem cell line (CTX) following re-programming to a pluripotent state.

The Company has previously presented data demonstrating that its CTX stem cell line, currently undergoing clinical evaluation for the treatment of stroke disability, can be successfully and rapidly re-programmed to an embryonic stem cell-like state enabling differentiation into any cell type. In essence, this means that the Company is able to take its neural stem cells back to being stem cells that can be made to develop into any other type of stem cell including bone, nerve, muscle and skin.

The new data being presented today show for the first time that these CTX-iPSCs (induced pluripotent stem cells) can indeed be differentiated along different cell lineages to generate, for example, mesenchymal stem cell lines. Further, the mesenchymal stem cell lines generated can be grown at scale by virtue of the Company's conditional immortalization technology, enabling the efficient production of clinical-grade cell therapy candidates.

These results are particularly encouraging as they demonstrate that CTX, a well-characterized, clinical-grade neural stem cell line, could be used to produce new conditionally immortalized allogeneic (i.e. non-donor-specific) cell lines from any of the three primary germ cell layers which form during embryonic development. ReNeuron is currently exploring the potential to develop further new allogeneic cell lines as potential therapeutic agents in diseases of unmet medical need for subsequent licensing to third parties.

Further information about the conference may be found at:

https://www.esgct.eu/congress/barcelona-2019.aspx

"The data we are presenting at the ESGCT Annual Congress represent a significant advance in the use of cell re-programming to generate new allogeneic cell lines as potential therapeutic candidates," commented Dr. Randolph Corteling, Head of Research at ReNeuron. "Importantly, the maintenance of the immortalization technology within these new cell lines may allow for the scaled production of 'off the shelf' allogeneic stem cells, such as haematopoietic stem cells as a potential alternative approach to those cancer immunotherapies currently in development that rely on the use of the patient's own T-cells."

About ReNeuronReNeuron is a global leader in cell-based therapeutics, harnessing its unique stem cell technologies to develop 'off the shelf' stem cell treatments, without the need for immunosuppressive drugs. The Company's lead clinical-stage candidates are in development for the blindness-causing disease, retinitis pigmentosa, and for disability as a result of stroke. ReNeuron is also advancing its proprietary exosome technology platform as a potential delivery system for drugs that would otherwise be unable to reach their site of action. ReNeuron's shares are traded on the London AIM market under the symbol RENE.L. For further information visit http://www.reneuron.com.

ENQUIRIES:

ReNeuron

+44 (0)20 3819 8400

Olav Helleb, Chief Executive Officer

Michael Hunt, Chief Financial Officer

Buchanan (UK)

+44 (0) 20 7466 5000

Mark Court, Tilly Abraham

Argot Partners (US)

Stephanie Marks, Claudia Styslinger

Stifel Nicolaus Europe Limited

+1 212 600 1902

+44 (0) 20 7710 7600

Jonathan Senior, Stewart Wallace, Ben Maddison (NOMAD and Joint Broker)

N+1 Singer

+44 (0) 20 7496 3000

Aubrey Powell, James Moat, Mia Gardner

(Joint Broker)

SOURCE ReNeuron Group plc

Home

Read more here:
ReNeuron Presents Positive Data at the 27th Annual Congress of the European Society of Gene and Cell Therapy on Lead Cell Line - PRNewswire

To Read More: ReNeuron Presents Positive Data at the 27th Annual Congress of the European Society of Gene and Cell Therapy on Lead Cell Line – PRNewswire
categoriaSkin Stem Cells commentoComments Off on ReNeuron Presents Positive Data at the 27th Annual Congress of the European Society of Gene and Cell Therapy on Lead Cell Line – PRNewswire | dataOctober 25th, 2019
Read All

Stem Cell Therapy Market Latest Report with Forecast to 2025 – Health News Office

By daniellenierenberg

Stem Cell Therapy Market: Snapshot

Of late, there has been an increasing awareness regarding the therapeutic potential of stem cells for management of diseases which is boosting the growth of the stem cell therapy market. The development of advanced genome based cell analysis techniques, identification of new stem cell lines, increasing investments in research and development as well as infrastructure development for the processing and banking of stem cell are encouraging the growth of the global stem cell therapy market.

Order Brochure for more Detailed Information @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787

One of the key factors boosting the growth of this market is the limitations of traditional organ transplantation such as the risk of infection, rejection, and immunosuppression risk. Another drawback of conventional organ transplantation is that doctors have to depend on organ donors completely. All these issues can be eliminated, by the application of stem cell therapy. Another factor which is helping the growth in this market is the growing pipeline and development of drugs for emerging applications. Increased research studies aiming to widen the scope of stem cell will also fuel the growth of the market. Scientists are constantly engaged in trying to find out novel methods for creating human stem cells in response to the growing demand for stem cell production to be used for disease management.

It is estimated that the dermatology application will contribute significantly the growth of the global stem cell therapy market. This is because stem cell therapy can help decrease the after effects of general treatments for burns such as infections, scars, and adhesion. The increasing number of patients suffering from diabetes and growing cases of trauma surgery will fuel the adoption of stem cell therapy in the dermatology segment.

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Request TOC for Facts & Tables @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1787

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Avail the Discount on this Report @https://www.tmrresearch.com/sample/sample?flag=D&rep_id=1787

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Read the original:
Stem Cell Therapy Market Latest Report with Forecast to 2025 - Health News Office

To Read More: Stem Cell Therapy Market Latest Report with Forecast to 2025 – Health News Office
categoriaSkin Stem Cells commentoComments Off on Stem Cell Therapy Market Latest Report with Forecast to 2025 – Health News Office | dataOctober 25th, 2019
Read All

What is aplastic anemia? Symptoms, causes, and treatment – Medical News Today

By daniellenierenberg

Aplastic anemia is a medical condition that damages stem cells in a person's bone marrow. These cells are responsible for making red blood cells, white blood cells, and platelets, which are vital to human health.

Doctors believe various conditions can cause aplastic anemia, while the disease itself ranges in severity from mild to life threatening.

Medical advancements mean that aplastic anemia is more treatable than ever. In this article, learn more about this rare medical disorder.

When a person has aplastic anemia, their bone marrow does not create the blood cells it needs. This causes them to feel ill and increases their risk of getting infections.

Doctors also call aplastic anemia bone marrow failure.

Doctors do not know exactly how many people in the United States have aplastic anemia.

According to the National Organization for Rare Disorders (NORD), doctors diagnose approximately 500 to 1,000 cases every year. It is most common in older children, teenagers, and young adults.

Researchers believe that most cases of aplastic anemia are due to the immune system attacking healthy bone marrow cells, according to NORD.

Doctors have also identified some of the possible causes of this immune system response, including:

However, doctors usually cannot pinpoint the underlying cause in most aplastic anemia cases.

When the cause is unknown, doctors refer to the condition as idiopathic aplastic anemia.

Symptoms of aplastic anemia include:

These symptoms may be severe. Some people may have heart-related symptoms, such as chest pain.

A doctor will start by asking about a person's symptoms and their medical history.

They will usually use a blood test known as a complete blood count (CBC) to evaluate a person's red blood cells, white blood cells, and platelets. If all three of these components are low, a person has pancytopenia.

A doctor may also recommend taking a sample of bone marrow, which comes from a person's pelvis or hip.

A laboratory technician will examine the bone marrow. If a person has aplastic anemia, the bone marrow will not have typical stem cells.

Aplastic anemia can also have similar symptoms as other medical conditions, such as myelodysplastic syndrome and paroxysmal nocturnal hemoglobinuria. A doctor will want to rule out these conditions.

Sometimes, a person with other medical conditions can develop aplastic anemia. These conditions include:

If a person has these conditions, a doctor will recognize that they are more likely to get aplastic anemia.

Doctors usually have two goals when treating aplastic anemia. The first is to reduce the person's symptoms, and the second is to stimulate the bone marrow to create new blood cells.

People with aplastic anemia can receive blood and platelet transfusions to correct low blood counts.

A doctor may also prescribe antibiotics as a person needs white blood cells to fight infections. Ideally, these drugs will prevent infections until a person can build more new white blood cells.

Doctors usually recommend a bone marrow transplant to stimulate new cell growth in the long term.

For this, a doctor may first prescribe chemotherapy medications to kill off abnormal bone marrow cells that are affecting a person's overall bone marrow function.

Next, a doctor performs a bone marrow transplant by injecting the bone marrow into a patient's body.

Ideally, the individual will receive bone marrow from a close family member. However, even a sibling donor is only a match in 2030% of cases.

People can also receive bone marrow from someone who is not related to them if doctors can find a compatible donor.

Some people cannot tolerate bone marrow transplants, especially older adults, and those having difficulty recovering from chemotherapy. Others may not be able to find a donor that matches their bone marrow. In these instances, a doctor can prescribe immunosuppressive therapy.

Immunosuppressive medicines suppress the immune system, which ideally stops it from attacking healthy bone marrow cells. Examples of these medications include antithymocyte globulin (ATG) and cyclosporine.

According to NORD, an estimated one-third of people with aplastic anemia do not respond to immunosuppressive drugs.

If this is the case, doctors may consider other treatments, such as hematopoietic stem cell transplantation and a medication called eltrombopag (Promacta).

Those with aplastic anemia may face complications due to their disease as well as their treatment.

Sometimes, a person's body rejects a bone marrow transplant. Doctors call this graft-versus-host disease or GVHD.

GVHD can make a person feel extremely ill and can cause symptoms that include:

According to 2015 research, about 15% of aplastic anemia patients who receive immunosuppressive therapy will develop myelodysplastic syndromes or acute myeloid leukemia.

These conditions can develop years after a person's initial diagnosis.

Some people do not respond to aplastic anemia treatments. When this is the case, they are more vulnerable to infections that can be life threatening.

The outlook for a person with aplastic anemia depends on many factors, including:

A doctor will discuss a person's treatment outlook when considering the various therapies.

Aplastic anemia damages stem cells in a person's bone marrow. The bone marrow makes red blood cells, white blood cells, and platelets, which are all essential for the body.

A person with aplastic anemia may experience severe anemia symptoms. Treatment may include chemotherapy, stem cell transplants, and immunotherapy.

Here is the original post:
What is aplastic anemia? Symptoms, causes, and treatment - Medical News Today

To Read More: What is aplastic anemia? Symptoms, causes, and treatment – Medical News Today
categoriaBone Marrow Stem Cells commentoComments Off on What is aplastic anemia? Symptoms, causes, and treatment – Medical News Today | dataOctober 25th, 2019
Read All

A Discussion With Jennifer Delgado on Life After Cancer and Weathering the Storm – Thrive Global

By daniellenierenberg

JenniferDelgado grew up in St. Louis, Missouri. She attended Webster University, whereshe received her Bachelor of Arts in Media Communications. She then went to MississippiState University, where she received a Bachelor of Science in Geosciences witha concentration in Broadcast Meteorology.

In 2006,Jennifer Delgado worked as a morning and noon meteorologist for WTVR-TV inRichmond, Virginia. Then in 2008, she began working at CNN International inAtlanta, Georgia, as their primary meteorologist, as well as a fill-inmeteorologist on all CNN networks. In 2010, she won a Peabody Award for CNNscoverage on the Deepwater Horizon oil spill in the Gulf of Mexico.

In 2013,Delgado was hired as a co-host of AMHQ (Americas Morning Headquarters) at TheWeather Channel. She anchored continuous coverage of breaking news and weatherevents, including live interviews with state and local officials, experts andresidents. She was also their fill-in co-host of Wake-Up with Al.

JenniferDelgado began freelancing as a meteorologist/anchor for WXIA-TV in 2017. Shepresented weathercasts every six minutes during a two-hour morning newscast andproduced weathercasts for radio, web, and the 24-hour weather channel.

Two yearsago, Jennifer Delgado was diagnosed with blood cancer. She underwent treatmentand received a bone marrow/stem cell transplant. Since the transplant, she hasbeen receiving treatment at the Emory Winship Cancer Institute and advocatingfor cancer awareness and more bone marrow donors.

No one is ever prepared tohear the words, you have cancer. It literally blew up my world. I had to stopworking because beating cancer became my full-time job. I knew something waswrong for months based on my symptoms. I was tiredall the time, my bones were aching, had migraines, vertigo andconfusion. Dealing with any illness is stressful, especially if you arent ableto work. Some people say cancer changed their life for the better; however, Idont want to credit cancer for anything positive. It was a wake-up call. Lifeis short, and you have to enjoy every moment.

I immediately went into adeep depression. I hid and only shared the news with my close friends andfamily. I was trying to hide the awful chemo port in my chest and made excuses for my appearanceand fatigue. It was very stressful. I think anyone dealing with a seriousmedical condition should reach out to people going through the same battle. I got some amazing tips from fellow blood cancersurvivors on Instagram and Facebook support groups. I have formed many closebonds and when I am feeling down they completely understand. Cancer patients caneasily go through their savings in a short amount of time. I was lucky to haveamazing health insurance but not everyone is that fortunate. There is a lot of grant money out there forpeople struggling financially. The Leukemia & Lymphoma Society is anamazing organization and helps patients with everything from financial help,information on clinical trials etc.

If you are strong enough, Isay its important to be your own health advocate. You know your body best. Ialso suggest if you have one, reaching out to a friend or family member whoworks in medicine (nurse, PA, doctor) to be your medical advocate. The advocatecan come to your appointments or even join a conference call during yourappointments when you need help understanding your treatment options. I waslucky to have both my mom and one of my best friends to help me interpreteverything. Never be afraid to ask your doctor questions, and dont forgetabout the physicians assistant, who often has more availability.

I was going back and forthto the doctor for nearly a year, and they keep dismissing my symptoms. At onepoint, one doctor told me to take probiotics. I finally decided it was time toget a second opinion when I was having trouble walking. Luckily, I found Dr.Drew Freilich, whom I credit with saving my life. He recognized that mysymptoms were severe and insisted that I needed an MRI. Thats how theydiscovered I had a blood cancer that was attacking my bones. I could havebecome disabled if I had waited longer to get help. If you know something iswrong, you have to be persistent about getting answers.

I know it sounds clich, butmy friends, family, and neighbors. They all took excellent care of me. Theydrove me to the hospital for chemotherapy or bone marrow biopsies. My friends were great and woulddrop by to bring me food or help clean up myhouse.

I know it may sound sillybut my dogs really helped keep my spirits up. Quite often, it was just me and the dogs and duringisolation. I truly believe that pets are healing, and studies show that havingone improves your mental health. There were several weeks when I had to be awayfrom my dogs because my immune system was too weak. I was lucky enough to havegreat friends watch my fur babies. I even tried to convince my friends to driveby Emory Hospital so that I could see them.

I would say you have to bepositive. It seems like its a long way away, and you wonder at times whetheror not everything you did is going to pay off when you finally get toremission. So, I think you have to be positive because you get very paranoid. Ibelieve positive thinking can be healing and improve your health. Keeping inmind that everyones journey is different, I think its also important to see apsychologist or therapist. Sometimes its easier to share your real concernswith a stranger. We always try and put on a brave face for family and friends.

Aftereverything, I felt like I had to give back to the cancer community and EmoryWinship Cancer Center. I got my dogs certified to be Happy Tails therapydogs, and now we visit patients battling cancer while they are getting chemo.Its amazing and emotional all at the same time. Many times, patients will say,your puppy made my day.

Iam also trying to raise awareness for the need of more bone marrow donors.Right now, the majority of donors come from Europe. It would be awesome if morepeople would register to be a bone marrow donor. Its a simple swab test. Ithink its a small price to pay, considering more than 170,000 people arediagnosed with blood cancer every year. Check out Be The Match or The Leukemia& Lymphoma Society.

I am not going to sugarcoatit, staying motivated is extremely challenging and a daily battle. I thinkevery cancer survivor questions, why did this happen to me? Is it gone? How longwill I stay in remission? It can be quite depressing, but you have to live forthe day and stick to a routine. I try to remind myself that there is a reasonwhy I am still alive, and I want to give back to others who are struggling.

Everything. I had months ofchemo to get my cancer level down enough to collect my stem cells for thetransplant. I wondered constantly, will I be in remission? And then once Iwas in remission, how long will I stay in remission before I relapse? Whenyoure dealing with blood cancers, most have no cure. So, theres always thatchance of relapse, and youre always worrying about it.

I did six rounds of chemobefore I was even ready to get a transplant. The stem cell transplant wassomething I was dreading because of the high dose of chemotherapy and losing myhair. That can be a very difficult experience, especially for women. After thosesix rounds, they collected my stem cells, which is not a fun process. Then theyprepped me, and I had the transplant.

After, I was in isolation atthe hospital for three weeks. Then I went home, and I was still under isolationfor another 100+ days. I felt like I was ready to lose my mind. During thistime, your white blood cells are regenerating, which means you dont have animmune system, and you suffer from extreme fatigue and pain. Walking up a shortflight of stairs would wipe me out. I couldnt eat salads, fruits, basicallyanything raw. When I left the house, Id have to wear a mask to protect myimmune system. I really hated that because everyone would stare and pretty muchknew I had cancer.

However, to put a positivespin on it, because of my time in isolation at home, I really felt my creativejuices start to flow. I began brainstorming and thinking of a lot of differentthings because life is short, and the cancer was my wake-up call.

So, my best advice duringthat period is to make a reading list and binge-watch shows on Netflix. I readthe Game of Thrones series. Iliterally had a calendar counting down to 100 days. Thats also the time whenyour hair finally starts to grow back!

View post:
A Discussion With Jennifer Delgado on Life After Cancer and Weathering the Storm - Thrive Global

To Read More: A Discussion With Jennifer Delgado on Life After Cancer and Weathering the Storm – Thrive Global
categoriaBone Marrow Stem Cells commentoComments Off on A Discussion With Jennifer Delgado on Life After Cancer and Weathering the Storm – Thrive Global | dataOctober 25th, 2019
Read All

Ewing sarcoma: Causes, symptoms, and treatment – Medical News Today

By daniellenierenberg

Ewing sarcoma is a form of bone cancer that usually affects children and adolescents.

Ewing sarcoma can be very aggressive, but the cells tend to respond well to radiation therapy. Ideally, doctors will diagnose the cancer before it has spread.

According to the National Library of Medicine, an estimated 250 children in the United States receive a diagnosis of Ewing sarcoma each year.

In this article, learn more about Ewing sarcoma, including the symptoms, causes, and treatment options.

Ewing sarcoma is a rare type of cancer that usually starts in the bone typically in the pelvis, chest wall, or legs and occurs mostly in children and teenagers.

Dr. James Ewing first described Ewing sarcoma in 1921. He identified cancer cells that looked different than the cells in osteosarcoma, another type of bone tumor.

Doctors may also refer to this cancer type as the Ewing family of tumors. These tumors have distinct cells that usually respond well to radiation treatments.

This rare cancer type accounts for just 1.5% of all childhood cancers and is the second most common bone cancer type in childhood, after osteosarcoma.

Although researchers are unsure why some people develop Ewing sarcoma, they have identified mutations in certain genes in the tumor cells that cause this cancer.

These include the EWSR1 gene on chromosome 22 and the FLI1 gene on chromosome 11.

These genetic mutations occur spontaneously during a person's lifetime. The individual does not inherit them from a family member.

There are no known risk factors for Ewing sarcoma that make one person more likely than another to develop this cancer.

Ewing sarcoma can cause the following symptoms:

An estimated 87% of Ewing sarcomas are sarcoma of the bone. The other types form in the soft tissues, such as cartilage, that surround the bones.

Ewing sarcoma can spread to other areas of the body. Doctors call this process metastasis.

Areas that the cancer can spread to include other bones, bone marrow, and the lungs.

Doctors categorize Ewing sarcoma as one of three types according to its extent:

Before diagnosing Ewing sarcoma, a doctor will take a person's full medical history and ask them what symptoms they are having, when they noticed them, and what makes them better or worse. They will also perform a thorough physical exam, focusing on the area of concern.

A doctor will usually recommend an imaging study to view the bone or bones. These tests include:

If it looks as though a tumor may be present, a doctor will perform a biopsy, which involves taking a sample of bone tissue. They will send this tissue to a laboratory, where a specialist called a pathologist will check it for the presence of cancerous cells.

A doctor may also order blood tests, a bone marrow biopsy, and other scans when necessary. These tests can help determine whether the cancer has spread to other locations.

A doctor will work with a team of cancer specialists and surgeons to recommend and implement particular treatments.

Possible treatments for Ewing sarcoma include:

Doctors may use a combination of treatments depending on how far the cancer has spread and a person's overall health.

Research into new treatments for Ewing sarcoma is ongoing. Some doctors may inform their patients about clinical trials, which help test new treatments.

Possible complications of Ewing sarcoma include:

If Ewing sarcoma has spread to other areas of the body, it can be life threatening. For this reason, it is vital for a doctor to evaluate any symptoms as quickly as possible.

According to the American Academy of Orthopaedic Surgeons, an estimated two-thirds of people in whom cancer has not spread to other areas of the body survive at least 5 years after their diagnosis.

People who are more likely to have positive outcomes include those who have:

The likelihood of successful treatment is different for every individual, so people should speak to a doctor about their or their child's expected outlook.

Ewing sarcoma is a rare type of cancer that mostly affects young people.

When doctors detect it early enough, the condition usually responds well to treatment.

Anyone who notices signs or symptoms of Ewing sarcoma, such as a bone that breaks for no apparent reason or a painful lump or swelling, should speak to a doctor.

The rest is here:
Ewing sarcoma: Causes, symptoms, and treatment - Medical News Today

To Read More: Ewing sarcoma: Causes, symptoms, and treatment – Medical News Today
categoriaBone Marrow Stem Cells commentoComments Off on Ewing sarcoma: Causes, symptoms, and treatment – Medical News Today | dataOctober 25th, 2019
Read All

BrainStorm Cell Therapeutics’ President and CEO to be Featured as Keynote Speaker at Cell Series UK 2019 – GlobeNewswire

By daniellenierenberg

NEW YORK, Oct. 24, 2019 (GLOBE NEWSWIRE) -- BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leader in the development of innovative autologous cellular therapies for highly debilitating neurodegenerative diseases, today announced, Chaim Lebovits, President and CEO, will serve as a Keynote Speaker at Cell Series UK.Cell Series UK, will be held October 29-30, 2019, at London Novotel West, London, UK. The Conference, organized by Oxford Global, is one of the foremost events in Europe focused on regenerative medicine and cellular innovation.

Ralph Kern MD, MHSc, Chief Operating and Chief Medical Officer of Brainstorm, who will also participate at Cell Series UK stated, We are very pleased to have Chaim Lebovits presenting at this prestigious conference where global leaders in stem cell and regenerative medicine will have the opportunity to learn more about NurOwn and the critical research being conducted by the Company. Mr. Lebovits Keynote Address, Stem Cell Therapeutic Approaches For ALS, will be presented to leading members of the scientific and business community including potential partners and investors.

About NurOwnNurOwn (autologous MSC-NTF cells) represent a promising investigational approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. NurOwn is currently being evaluated in a Phase 3 ALS randomized placebo-controlled trial and in a Phase 2 open-label multicenter trial in Progressive MS.

AboutBrainStorm Cell Therapeutics Inc. BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn Cellular Therapeutic Technology Platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (U.S. FDA) and the European Medicines Agency (EMA) in ALS. BrainStorm has fully enrolled the Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six sites in the U.S., supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a BLA filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. BrainStorm received U.S. FDA clearance to initiate a Phase 2 open-label multi-center trial of repeat intrathecal dosing of MSC-NTF cells in Progressive Multiple Sclerosis (NCT03799718) in December 2018 and has been enrolling clinical trial participants since March 2019. For more information, visit the company's website.

Safe-Harbor Statements Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could causeBrainStorm Cell Therapeutics Inc.'sactual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorms need to raise additional capital, BrainStorms ability to continue as a going concern, regulatory approval of BrainStorms NurOwn treatment candidate, the success of BrainStorms product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorms NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorms ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorms ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

CONTACTS

Corporate:Uri YablonkaChief Business OfficerBrainStorm Cell Therapeutics Inc.Phone: 646-666-3188uri@brainstorm-cell.com

Media:Sean LeousWestwicke/ICR PR Phone: +1.646.677.1839sean.leous@icrinc.com

See the rest here:
BrainStorm Cell Therapeutics' President and CEO to be Featured as Keynote Speaker at Cell Series UK 2019 - GlobeNewswire

To Read More: BrainStorm Cell Therapeutics’ President and CEO to be Featured as Keynote Speaker at Cell Series UK 2019 – GlobeNewswire
categoriaBone Marrow Stem Cells commentoComments Off on BrainStorm Cell Therapeutics’ President and CEO to be Featured as Keynote Speaker at Cell Series UK 2019 – GlobeNewswire | dataOctober 25th, 2019
Read All

Dad who called on the public for stem cells for his son is up for an award – Chronicle Live

By daniellenierenberg

Doting dad Stephen Armstrong knows all too well what its like to be waiting for a transplant donor.

His son Jacob was diagnosed at two years old with a rare blood disorder and called on the public to donate stem cells to find him a match.

He then set out to raise as much money as he could for the blood cancer charity Anthony Nolan in a bid to save lives.

And now, after raising over 20,000, his efforts have been recognised by the charity as they honour him at an awards ceremony held at the Tower of London in November.

Stephen, 33, of Wallsend, North Tyneside, has been shortlisted for the Individual Fundraiser of the Year Award at the Anthony Nolan Supporter Awards 2019.

The prestigious awards are back for their seventh year and will recognise the outstanding achievements of the volunteers, fundraisers and campaigners who help the pioneering blood cancer charity save lives.

Stephens nomination is in recognition of his incredible fundraising efforts, leading a group of 19 friends and family in a series of physical challenges, all while his son was undergoing treatment.

After Jacob was diagnosed in 2017, Stephen set out to find a matching stem cell donor, as well as raise awareness of the need for more people on the register.

From here Jacobs Journey was born, and through a series of challenges including the Great North Run, the Great North Bike Ride and climbing Ben Nevis, Stephen has helped raise over 20,000 for the charity.

Jacob, who turns four in November, and his family have been told he does not need a transplant, but Stephen and his family want to continue raising awareness for others who arent so lucky.

When Jacob was diagnosed, we were stunned by how few people were on the stem cell donor register. I couldnt believe how a stranger in the street could potentially save our little boys life, said Stephen, an assistant manager for Dixons Carphone.

Anthony Nolan helped us massively while Jacob was ill and provided a great support network. I feel very proud to be nominated for an award, and I hope it can help build even more awareness for the cause.

Stephen and mum Kirsty, 28, received the news in December 2017 that Jacob was suffering from bone marrow failure, which affects between 30 and 40 children each year.

They first became concerned about his health when they went abroad to get married and noticed he was getting bruised easily. The marks would take weeks to disappear, so when the couple returned to the UK they decided to take Jacob to the doctor for a check up.

After tests he was then diagnosed and was treated at the Great North Childrens Hospital in Newcastle, where he received two blood transfusions.

Stephen added: When we were told Jacob did not need the transplant it was the best news in the world, a total relief. He still needs check ups every three months and his consultants is keeping an eye on him. There are so few people on the stem cell donor register so I just wanted to create a ripple effect with awareness and get more people on it.

Stephen, who has raised a further 8,000 for other smaller charities, has also been nominated for our Chronicle Champions Award in the Champion Fundraiser category.

Henny Braund, Chief Executive of Anthony Nolan, said: It is remarkable to see how many people support our work to find a match for those in need of a stem cell transplant. Without them, none of our lifesaving work would be possible.

Stephen has shown tremendous commitment to Anthony Nolan by continually going above and beyond in his fundraising efforts.

Henny added: We want to extend a huge congratulations to Stephen and look forward to celebrating with him at the awards.

The awards take place on Thursday 28 November at the Tower of London, and all winners will be revealed on the night.

Anthony Nolan is the charity that finds matching stem cell donors for people with blood cancer and blood disorders and gives them a second chance at life. It also carries out ground-breaking research to save more lives and provide information and support to patients after a stem cell transplant, through its clinical nurse specialists and psychologists, who help guide patients through their recovery.

To see the full shortlist, and find out more about the charity visit http://www.anthonynolan.org/awards

Continue reading here:
Dad who called on the public for stem cells for his son is up for an award - Chronicle Live

To Read More: Dad who called on the public for stem cells for his son is up for an award – Chronicle Live
categoriaBone Marrow Stem Cells commentoComments Off on Dad who called on the public for stem cells for his son is up for an award – Chronicle Live | dataOctober 25th, 2019
Read All

BrainStorm Cell Therapeutics to Present at the Dawson James Securities 5th Annual Small Cap Growth Conference – GlobeNewswire

By daniellenierenberg

NEW YORK, Oct. 25, 2019 (GLOBE NEWSWIRE) -- BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leader in the development of innovative autologous cellular therapies for highly debilitating neurodegenerative diseases, today announced that it will be presenting at the Dawson James Securities 5th Annual Small Cap Growth Conference, being held on October 28-29, 2019 at the Wyndham Grand Hotel in Jupiter, Florida.

Preetam Shah, PhD, MBA, Chief Financial Officer is scheduled to present on Tuesday, October 29th at 3:40 p.m. Eastern Time, in Track 2 - Preserve Ballroom B, with one-on-one meetings to be held throughout the conference.

Chaim Lebovits, President and CEO of BrainStorm said, We are pleased to have the opportunity to have Dr. Shah present at the Dawson James Small Cap Growth Conference. Dr. Shah, joined BrainStorm in September 2019, and we look forward to having him present the Companys growth strategy and future to a wide audience of accreditied investors.

About NurOwn NurOwn (autologous MSC-NTF cells) represent a promising investigational approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. NurOwn is currently being evaluated in a Phase 3 ALS randomized placebo-controlled trial and in a Phase 2 open-label multicenter trial in Progressive MS.

AboutBrainStorm Cell Therapeutics Inc.BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn Cellular Therapeutic Technology Platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (U.S. FDA) and the European Medicines Agency (EMA) in ALS. BrainStorm has fully enrolled the Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six sites in the U.S., supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a BLA filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. BrainStorm received U.S. FDA clearance to initiate a Phase 2 open-label multi-center trial of repeat intrathecal dosing of MSC-NTF cells in Progressive Multiple Sclerosis (NCT03799718) in December 2018 and has been enrolling clinical trial participants since March 2019. For more information, visit the company's website.

Safe-Harbor Statements Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could causeBrainStorm Cell Therapeutics Inc.'sactual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorms need to raise additional capital, BrainStorms ability to continue as a going concern, regulatory approval of BrainStorms NurOwn treatment candidate, the success of BrainStorms product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorms NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorms ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorms ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

CONTACTS

Corporate:Uri YablonkaChief Business OfficerBrainStorm Cell Therapeutics Inc.Phone: 646-666-3188uri@brainstorm-cell.com

Media:Sean LeousWestwicke/ICR PR Phone: +1.646.677.1839sean.leous@icrinc.com

Visit link:
BrainStorm Cell Therapeutics to Present at the Dawson James Securities 5th Annual Small Cap Growth Conference - GlobeNewswire

To Read More: BrainStorm Cell Therapeutics to Present at the Dawson James Securities 5th Annual Small Cap Growth Conference – GlobeNewswire
categoriaBone Marrow Stem Cells commentoComments Off on BrainStorm Cell Therapeutics to Present at the Dawson James Securities 5th Annual Small Cap Growth Conference – GlobeNewswire | dataOctober 25th, 2019
Read All

Cannabis use and the immune system: white blood cell count – Health Europa

By daniellenierenberg

The study, published in the Journal of Cannabis Research, looked at a number of studies covering cannabis use and the immune system, noting that little is known on circulating white blood cell counts and cannabis use.

The researchers looked at the National Health and Nutrition Examination Survey (20052016), a survey designed to be nationally representative of United States non-institutionalised population, and found that there was a modest association between heavy cannabis use and higher white blood cell count but that neither former nor occasional cannabis use was associated with total or differential WBC counts.

White blood cells are the cells in our body that function mainly as immune cells originating in the bone marrow.

Today, it is known that cigarette smoking generates several chemicals that are implicated in oxidative stress pathways and systemic inflammation and elevated white blood cell count in tobacco cigarette smokers have been well documented, whereas tobacco abstinence is associated with sustained decrease in white blood cell count.

The study highlights how cannabis is able to mediate its effects through the cannabinoid-1 (CB1) and cannabinoid-2 (CB2) receptors.

CB2 receptors can be found in numerous parts of the body related to the immune system, including bone marrow, thymus, tonsils and spleen. CB1 receptors are present in the central nervous system, and at lower levels in the immune system.

The effects of cannabinoids on hematopoiesis, and immune cell proliferation using animal and cell based models has been widely demonstrated and a number of studies have examined the association of cannabis use and white blood cell counts in human immunodeficiency virus (HIV).

The studies have shown a higher white blood cell count in HIV positive men who used cannabis.

Last year a study discovered certain cannabinoids that enhance the immunogenicity of tumour cells, rendering them more susceptible to recognition by the immune system. This discovery is important because the leading class of new cancer fighting agents, termed checkpoint inhibitors, activates the immune system to destroy cancer cells.

Enhancing recognition of cancer cells with cannabinoids may greatly improve the efficacy of this drug class. The Pascal study was the first to identify a mechanism in which cannabinoids may provide a direct benefit in immunotherapy.

When looking at white blood cell counts the study noted that: Several of the important study limitations merit attention. The observational nature of the study constrained causal inferences. Even though NHANES collects blood and urine specimens, drug testing is not conducted, and cannabis use was self-reported which may lead to non-differential misclassification bias. There was no available information on the route of administration of cannabis (smoking, ingestion, etc.) or cannabis preparation/potency.

In addition, the study is based on fairly recent NHANES surveys (200516) which might be more representative of the increasing cannabis potency compared to NHANES III (19881994) surveys.

A number of laboratory studies have reported suppression of immune responses with cannabinoid administration, and some epidemiological studies found lower levels of inflammatory biomarkers such as fibrinogen, C-reactive protein and interleukin-6 in adult cannabis users.

The study also noted that the reported anti-inflammatory effects of cannabis were greatly attenuated when body weight is controlled for and suggests that the inverse cannabis-body weight association might explain the lower levels of circulating inflammatory biomarkers in adult cannabis users.

The study highlights that these alterations of immune responses by cannabis use might be associated with increased susceptibility to infections and hence the higher white blood cell count, however, it notes that it is possible that the elevated white blood cell count and suboptimal health status contributed to cannabis use rather than cannabis use caused suboptimal health.

The study states: This hypothesis, though, cannot be tested as NHANES does not collect information on cannabis use motives. Another potential mechanism can be through the effect of cannabinoids on stem cells. Pre-clinical studies suggest that cannabinoids stimulate hematopoiesis and hence this stimulation to bone marrow tissues can be associated with increased circulating white blood cell count in cannabis users.

Positive associations between heavy cannabis use, and total white blood cell and neutrophil counts were detected. Clinicians should consider heavy cannabis use in patients presenting with elevated white blood cell count.

Research on cannabis use and the immune system is lacking and the study suggests further research is needed to understand the immune related effects of different modes of cannabis use.

The study noted: Research on heavy cannabis use and cardiovascular health is needed as systemic inflammation, increased cardiovascular risk and increased mortality risk have been all associated with white blood cell elevation within the normal physiologic range.

Studies with repeated measures are needed to study immunomodulatory changes in cannabis users, and whether the mode of cannabis use can differentially affect immune responses.

Additional research is needed to understand the immune related effects of different modes of cannabis use and to elucidate the role of proinflammatory chemicals generated from smoking cannabis.

See the original post here:
Cannabis use and the immune system: white blood cell count - Health Europa

To Read More: Cannabis use and the immune system: white blood cell count – Health Europa
categoriaBone Marrow Stem Cells commentoComments Off on Cannabis use and the immune system: white blood cell count – Health Europa | dataOctober 25th, 2019
Read All

Baby dies from AML, the same cancer his identical twin has – TODAY

By daniellenierenberg

Nicole Duhaney couldnt believe her luck when she learned she was having identical twins.

I felt like had won the lottery, Duhaney, 21, told TODAY Parents. "It was the happiest surprise."

After being pregnant for what felt like an eternity, Duhaney and her boyfriend, Niles Liburd, finally welcomed sons Emre pronounced Em-ree" and Elijah on Dec. 23, 2018.

Our life seemed perfect, the mom from Huddersfield, England, said.

But just three weeks later, Elijah developed a lump on his cheek, and both babies developed colds they couldnt seem to kick. Suddenly, they were projectile vomiting.

Trending stories,celebrity news and all the best of TODAY.

At just 4 months old, Emre and Elijah were both diagnosed with childhood acute myeloid leukemia. The disease, also known as AML, is a type of cancer in which the bone marrow makes a large number of abnormal white blood cells, according to the National Cancer Institute.

Myeloid leukemia is the second most common pediatric blood cancer, but it's still relatively rare. In the United States there are roughly 500 children a year between the ages of 0 and 14 that are diagnosed with AML, according to Dr. Richard Aplenc, a physician-scientist within the Division of Oncology at Children's Hospital of Philadelphia.

Aplenc said it is not surprising that Emre and Elijah were diagnosed at the same time.

"If the twins are identical, then they share the same placenta and the same blood supply, so that leukemic cell goes to the other twin," Aplenc explained. "We know that if leukemia is diagnosed before a year or so, there is 100 percent chance that the other twin will develop it."

Tragically, 10-month-old Elijah passed away at home in Tuesday. Doctors allowed Emre, who is currently undergoing chemotherapy, to leave the hospital so he could say goodbye to his brother.

The love they had for each other was just unbreakable, Duhaney noted. "They didn't like to be separated."

She recalled how Elijah pulled his brother in for a kiss after a recent stem cell transplant.

Elijah was beautiful. Every person he met, he touched their heart," Duhaney said. There were times when I cried and he rubbed my tears away. I wish God took me instead of him.

As Duhaney and Liburd, 26, make funeral arrangements a GoFundMe has been set up to help the couple with expenses they are finding comfort in knowing Elijah took his final breaths at home.

He spent six months of his life in a hospital, Duhaney told TODAY Parents. His final night he was where he wanted to be, with the people who loved him him the most.

Related video:

Read this article:
Baby dies from AML, the same cancer his identical twin has - TODAY

To Read More: Baby dies from AML, the same cancer his identical twin has – TODAY
categoriaBone Marrow Stem Cells commentoComments Off on Baby dies from AML, the same cancer his identical twin has – TODAY | dataOctober 25th, 2019
Read All

The global nerve repair and regeneration market size is expected to reach USD 17.8 billion by 2026 registering a CAGR of 10.7% – Yahoo Finance

By daniellenierenberg

Nerve Repair And Regeneration Market Size, Share & Trends Analysis Report By Surgery (Nerve Grafting, Neurorrhaphy), By Product (Biomaterials Neurostimulation & Neuromodulation Device), And Segment Forecasts, 2019 - 2026

New York, Oct. 24, 2019 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Nerve Repair And Regeneration Market Size, Share & Trends Analysis Report By Surgery, By Product And Segment Forecasts, 2019 - 2026" - https://www.reportlinker.com/p05807210/?utm_source=GNW

The global nerve repair and regeneration market size is expected to reach USD 17.8 billion by 2026 registering a CAGR of 10.7%. Demand for neurological disorder therapies owing to increasing incidence and rising awareness about the same will drive the market. Moreover, government funding and reimbursement policies and uninterrupted technological advances are also projected to help boost the market growth.

In January 2016, the EU Horizon 2020 program funded a research project Autostem, launched by the NUI Galways Regenerative Medicine Institute (REMEDI), costing about USD 6.73 million. This project was to develop a robotic stem cell production factory, having an edge over the old traditional techniques. This technique offers prospects of new therapies for a range of diseases, such as cancers, diabetes, and arthritis. Increased R&D and investments by key companies in emerging countries are also driving the market growth. In July 2018, the Stem Cells Australia (SCA) received USD 3 million for stem cell research from the Medical Research Future Fund (MRFF).

In addition, government and private funded organizations are conducting clinical trials to develop a safe and effective therapy for different neurological disorders, such as Stem Cells in Umbilical Blood Infusion for Cerebral Palsy (Phase II) and usage of Polyethylene glycol (PEG) drug (Phase I) to promote axonal fusion technique to repair peripheral nerve injuries in humans.

Furthermore, in October 2017, Stryker Corporation acquired VEXIM, a France-based medical device company.VEXIMs portfolio is complementary to Strykers Interventional Spine (IVS) portfolio.

With this acquisition, Stryker will strengthen its distribution channels in Eastern Europe, Middle East, Asia, and Latin America. In January 2018, Boston Scientific Corporation received U.S. FDA approval for the first and only Spectra WaveWriter spinal cord stimulator system. This system is used for paresthesia-based therapy.

Further key findings from the study suggest: In 2018, neuromodulation and neurostimulation devices segment led the market due to increased cases of Central Nervous System (CNS) disorders and awareness about mental disorders and available treatments Biomaterials is anticipated to expand at the fastest CAGR during the forecast period due to technological advancements and development of biodegradable polymers that can help enhance spinal stabilization, healing of fractures, and reduce hospitalization North America led the market in 2018 owing to technological advancements and advent of new devices. Government initiatives and funding and increased cases of injured CNS, such as injuries to the spinal cord and brain, were some of the major reasons responsible for the regions growth Asia Pacific is expected to be the fastest-growing market during the forecast period. Growing geriatric population, technological advancements, and many unmet medical needs are some of the factors driving the regions growth In February 2016, Indian scientists working for Revita Life Sciences were approved to conduct clinical trials in 20 clinically dead patients to bring specific parts of their CNS back to life Combination of therapies including cocktail of peptides, nerve stimulation techniques, injecting the brain with stem cells and other techniques that were successful in bringing patients out of coma were to be used Existing medical devices were combined with regenerative biological medicines with an objective to achieve such a complex initiative Some of the key companies include Boston Scientific, Inc.; Stryker Corporation; St. Jude Medical, Inc.; Medtronic plc.; Baxter International, Inc.; AxoGen, Inc.; Polyganics B.V.; Integra; Cyberonics, Inc.; and Lifesciences CorporationRead the full report: https://www.reportlinker.com/p05807210/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Story continues

Clare: clare@reportlinker.comUS: (339)-368-6001Intl: +1 339-368-6001

More here:
The global nerve repair and regeneration market size is expected to reach USD 17.8 billion by 2026 registering a CAGR of 10.7% - Yahoo Finance

To Read More: The global nerve repair and regeneration market size is expected to reach USD 17.8 billion by 2026 registering a CAGR of 10.7% – Yahoo Finance
categoriaSpinal Cord Stem Cells commentoComments Off on The global nerve repair and regeneration market size is expected to reach USD 17.8 billion by 2026 registering a CAGR of 10.7% – Yahoo Finance | dataOctober 25th, 2019
Read All

Speaking Multiple Sclerosis: A Glossary of Common Terms – Everyday Health

By daniellenierenberg

Whether youve been recently diagnosed with multiple sclerosis (MS) or have been living with the condition for a while, chances are youll sometimes hear terms from your healthcare team that are new to you.

The following is a quick, alphabetical guide to the terminology you may need to know as you manage your condition:

Ankle-Foot Orthosis (AFO) A brace designed to support the position of the foot and motion of the ankle to compensate for nerve damage and muscle weakness in the area caused by MS and other movement disorders. An AFO is typically used to stabilize weak limbs or to reposition a limb with contracted muscles into a more normal position.

Autoimmune Disease Your immune system plays a major part of your bodys defense against bacteria and viruses by sending out cells to attack them once they enter your body. However, if you have an autoimmune disease, your immune system mistakenly attacks healthy cells in your body, causing them to weaken or break down. MS is thought to be just one example of an autoimmune disease. It has been suggested that in MS, your immune system may mistakenly attack the cells in your central nervous system.

Axon Long threadlike structures of nerve cells that send impulses to other cells in your body. Research suggests that damage to or loss of these fibers in progressive MS may be linked to worsening disability and more severe progression.

Central Nervous System (CNS) The group of organs in your body that includes the brain, spinal cord, and optic nerves. If you have MS, your bodys immune system may be working against the CNS, producing neurological symptoms such as muscle weakness and vision problems.

Cerebrospinal Fluid (CSF) A clear, colorless liquid that surrounds the brain and spinal cord to protect the CNS and assist in the circulation of nutrients and removal of waste products. In MS, damage to the myelin sheath of nerve cells causes certain types of proteins to be released into the spinal fluid. The presence of these proteins in the CSF, but not in the blood, may point to a diagnosis of MS.

Clinically Isolated Syndrome (CIS) A first episode of neurologic symptoms that lasts at least 24 hours and is caused by inflammation or demyelination (loss of the myelin that covers the nerve cells) in the CNS. People who experience CIS may or may not go on to develop MS. However, when CIS is accompanied by magnetic resonance imaging (MRI)detected brain lesions similar to those found in MS, you have a 60 to 80 percent chance of a second neurologic event and diagnosis of MS within several years, according to the National MS Society.

Cog Fog A commonly used term that refers to the cognitive changes experienced by many people with MS. According to MS Australia, approximately 50 percent of people with the condition will develop some degree of cog fog, or inhibited ability to think, reason, concentrate, or remember. For some, cognitive problems will become severe enough to interfere in a significant way with daily activities.

Corticosteroids (or Steroids) Prescription medication used to treat relapses in relapsing-remitting MS. Your doctor may prescribe intravenous (IV) corticosteroids if the symptoms of your relapse are causing significant problems, like poor vision or difficulty walking. These drugs work by suppressing the immune system and reducing inflammation in the CNS, and they may help relapse symptoms resolve more quickly. But they wont affect your ultimate level of recovery from a relapse or the long-term course of your MS. Methylprednisolone is a commonly used corticosteroid in MS.

Diplopia (or Double Vision) An eye problem in which you see two images of a single object. It may be present when only one eye is open (monocular) or disappear when either eye is closed (binocular). Diplopia is a common symptom of MS, and it occurs because of damage to the optic nerve.

Disease-Modifying Therapies (DMTs) Drugs designed to reduce new relapses, delay progression of disability, and limit new CNS inflammation in people with MS. Although there are multiple DMTs that have been approved by the U.S. Food and Drug Administration (FDA) for use in MS, these drugs generally work by reducing inflammation in nerve cells in theCNS.

Dysarthria A speech disorder caused by neuromuscular impairment and resulting in disturbances in motor control of the muscles used in speech. Its believed the demyelinating lesions in MS may result in spasticity, weakness, slowness, or ataxic incoordination of the lips, tongue, mandible, soft palate, vocal cords, and diaphragm, causing this speech impairment.

Dysphagia (Difficulty Swallowing) A condition that may occur in people with MS, leading to difficulty in eating solid foods or liquids, frequent throat clearing during eating or drinking, a feeling that food is stuck in the throat, or coughing or a choking sensation when eating or drinking. Its the result of nerve damage within the muscles that control swallowing.

Epstein-Barr Virus (EBV) A virus believed to be a possible cause or trigger for MS. Although the exact cause of MS remains unknown, researchers suggest an infectious agent may be involved in its development. Studies have found that antibodies (immune proteins that indicate a person has been exposed to a given virus) to EBV are significantly higher in people who eventually develop MS than in those who dont. Other research has noted that people with a specific immune-related gene and high levels of antibodies to EBV in their blood are 9 times more likely to develop MS than others.

Evoked Potentials A test that measures the speed of nerve messages along sensory nerves to the brain, which can be detected on your scalp using electrodes attached with sticky pads. Its sometimes used in the diagnosis of MS, because nerve damage can slow down the transmission of nerve signals. Evoked potential tests can indicate nerve pathways that are damaged prior to the onset of MS symptoms.

Exacerbation An occurrence of new symptoms or the worsening of old symptoms that may also be referred to as a relapse, attack, or flare-up. Exacerbations can be very mild, or severe enough to interfere with a person's ability to perform day-to-day activities.

Expanded Disability Status Scale (EDSS) A scale used for measuring MS disability and monitoring changes in the level of disability over time. Developed by neurologist John Kurtzke, MD, in 1983, the EDSS scale ranges from 0 to 10 in 0.5-unit increments (scoring is based on a neurological exam) and relies on walking as its main measure of disability. People with an EDSS of 1 have no disability and minimal loss of function, while those with an EDSS of 9.5 are confined to bed and totally dependent on others for functions of daily living.

Foot Drop (or Drop Foot) A symptom of MS caused by weakness in the ankle or disruption in the nerve pathway between the legs and the brain, making it difficult to lift the front of the foot to the correct angle during walking. If you have foot drop, your foot hangs down and may catch or drag along the ground, resulting in trips and falls. Foot drop can be managed with an AFO or other treatments.

Hematopoietic Stem Cell Transplantation (HSCT) A procedure designed to reboot the immune system, the National MS Society says, using hematopoietic (blood cellproducing) stem cells derived from a persons own bone marrow or blood. If your doctor recommends HSCT, youll undergo a chemotherapy regimen before these cells are reintroduced to the body via IV injection, where they will migrate to your bone marrow to rebuild the immune system.

John Cunningham (JC) Virus A common infection completely unrelated to MS that is found in as many as 90 percent of people, according to the UK's MS Trust. JC virus has no symptoms and is normally controlled by the immune system. However, if your immune system is weakened, the JC virus can reactivate, causing potentially fatal inflammation and damage to the brain known as progressive multifocal leukoencephalopathy (PML). Certain MS disease-modifying therapies have been linked with increased risk for PML.

Lhermittes Sign An electric shock-like sensation experienced by some with MS when the neck is moved in a particular way. The sensation can travel down to the spine, arms, and legs.

Lesion (or Plaque) Refers to an area of damage or scarring (sclerosis) in the CNS caused by inflammation in MS. These lesions can be spotted on an MRI scan, with active lesions appearing as white patches. With regular MRIs, a neurologist can tell how active your MS is.

Lumbar Puncture (or Spinal Tap) A procedure used for the collection of cerebrospinal fluid (CSF), sometimes done to help diagnose MS. For this procedure, your doctor will ask you to lie on your side or bend forward while seated, before cleansing an area of your lower back and injecting a local anesthetic. He will then insert a hollow needle and extract a small amount of spinal fluid using a syringe.

Magnetic Resonance Imaging (MRI) The diagnostic tool that currently offers the most sensitive noninvasive way of imaging the brain, spinal cord, or other areas of the body, according to the National MS Society. Its the preferred imaging method for diagnosis of MS and to monitor the course of the disease. MRI uses magnetic fields and radio waves to measure the relative water content in tissues, which is notable in MS because the layer of myelin that protects nerve cell fibers is fatty and repels water. In areas where myelin has been damaged by MS, fat is stripped away and the tissue holds more water. This shows up on an MRI as a bright white spot or darkened area, depending on how the images are made.

McDonald Criteria A guidance used in the diagnosis of MS, authored by an international panel of experts on the condition, originally in 2010. The guidance was updated in 2017. Among the key changes: advising for the use of brain MRI as part of the diagnostic process.

MS Hug A common symptom of MS. If you experience the MS hug, you may feel like you have a tight band around your chest or ribs, or pressure on one side of your torso. Some people find that it is painful to breathe. The MS hug can last for seconds, minutes, hours, or even longer.

Myelin A substance rich in lipids (fatty substances) and proteins that helps form the myelin sheath. In MS, particularly relapsing-remitting MS, an abnormal immune response produces inflammation in the CNS, effectively attacking the myelin in the cells.

Myelin Sheath An insulating layer of fatty substances and proteins that forms around the nerves in body, including those in the CNS. It allows electrical impulses to transmit quickly and efficiently along the nerve cells, but these impulses can be slowed if the sheath is damaged, causing MS.

Neurodegeneration Refers to the process by which the myelin sheath of cells in the CNS is damaged in MS. Its believed to be a major contributor to neurological disability in the condition, and may be the reason immune modulation treatments (disease-modifying therapy) are generally less effective in the progressive MS than in the relapsing-remitting MS.

Neurologist The point person for monitoring your MS treatment and managing MS symptoms. This specialist typically focuses on conditions affecting the CNS.

Neuropathic Pain A type of pain common in MS that results from changes or damage to the myelin sheath and the axons, or nerve fibers, it normally covers. MS-caused neuropathic pain may be chronic, intermittent, or occur only in response to a stimulus.

Neuropsychologist A specialist you may be referred to who helps you manage the cognitive effects of MS. Neuropsychological testing (or testing of the functioning of your brain) involves identifying memory or learning difficulties associated with MS. Cognitive rehabilitation may improve functioning.

Nociceptive Pain Caused by damage to muscles and joints, it can be either acute or chronic, and may not result from MS itself, but be caused by changes in posture or walking or the overuse of assistive devices in those with the condition.

Nystagmus A common eye abnormality in MS, its characterized by involuntary, rhythmic, back-and-forth motion of the eyeball, either horizontally or vertically. For those with nystagmus, the perception of the rhythmic movement of the surrounding stationary world (oscillopsia) can be disorienting and disabling.

Oligoclonal Bands (OCBs) Immunoglobulins, or proteins, that collect in blood plasma or cerebrospinal fluid (CSF). Although not every person with MS has OCBs, their presence can support a diagnosis of MS. Having OCBs is generally associated with a younger age of MS onset and a poorer prognosis.

Optic Neuritis An inflammatory condition that damages the optic nerve, a bundle of nerve fibers that transmits visual information from your eye to your brain, causing pain and temporary vision loss in one eye. Its been linked with nerve damage resulting from MS, and may be among the first symptoms a person with the condition experiences.

Pseudobulbar Affect (PBA) A neurologic effect experienced by roughly 10 percent of people with MS as well as some with Parkinsons disease or amyotrophic lateral sclerosis (ALS), according to the Multiple Sclerosis Association of America (MSAA). Its characterized by sudden, uncontrollable expressions of laughter or crying without an obvious cause, which can be distressing as well as embarrassing to those who experience it. PBA is believed to be a mood disorder related to the disruption of nerve impulses in the CNS, but its different from depression, which is also common in MS.

Pseudoexacerbation A temporary worsening of symptoms without actual myelin inflammation or damage. It is often triggered by other illnesses or infection, exercise, a warm environment, depression, exhaustion, and stress. Urinary tract infection (UTI) is the most common type of infection to cause a pseudoexacerbation.

Sclerosis A general hardening of the body tissue. The term multiple sclerosis refers to the multiple areas of scar tissue often called lesions that develop along affected nerve fibers and that are visible in MRI scans.

Spasticity A symptom of MS that causes your muscles to feel stiff, heavy, or difficult to move. When a muscle spasms, youll experience a sudden stiffening that may cause a limb to jerk. This may be painful.

Trigeminal Neuralgia (or Tic Douloureux) A type of neuropathic pain that occurs on the face (usually on one side only). Its a known symptom of MS, and you may experience it in your cheek; upper or lower jaw; inside the mouth; or in the area around your eyes, ears, or forehead. In MS, its typically caused by damage to the myelin sheath around the trigeminal nerve, which among other functions controls the muscles used in chewing. The condition is triggered by everyday activities, like tensing facial muscles while shaving or when chewing.

Vertigo An intense sensation of the surrounding environment spinning around one. In MS, vertigo is typically caused by growth of an existing lesion or development of a new lesion on the brain stem or cerebellum, the area in the brain that controls balance. It can also be a symptom of a problem with the inner ear, or it can be side effect of medication used to treat MS or other health conditions you may have.

Link:
Speaking Multiple Sclerosis: A Glossary of Common Terms - Everyday Health

To Read More: Speaking Multiple Sclerosis: A Glossary of Common Terms – Everyday Health
categoriaSpinal Cord Stem Cells commentoComments Off on Speaking Multiple Sclerosis: A Glossary of Common Terms – Everyday Health | dataOctober 25th, 2019
Read All

Stem Cell Assay Market Analysis On Trends & Need 2025 – Health News Office

By daniellenierenberg

Stem Cell Assay Market: Snapshot

Stem cell assay refers to the procedure of measuring the potency of antineoplastic drugs, on the basis of their capability of retarding the growth of human tumor cells. The assay consists of qualitative or quantitative analysis or testing of affected tissues and tumors, wherein their toxicity, impurity, and other aspects are studied.

Download Brochure of This Market Report at https://www.tmrresearch.com/sample/sample?flag=B&rep_id=40

With the growing number of successful stem cell therapy treatment cases, the global market for stem cell assays will gain substantial momentum. A number of research and development projects are lending a hand to the growth of the market. For instance, the University of Washingtons Institute for Stem Cell and Regenerative Medicine (ISCRM) has attempted to manipulate stem cells to heal eye, kidney, and heart injuries. A number of diseases such as Alzheimers, spinal cord injury, Parkinsons, diabetes, stroke, retinal disease, cancer, rheumatoid arthritis, and neurological diseases can be successfully treated via stem cell therapy. Therefore, stem cell assays will exhibit growing demand.

Another key development in the stem cell assay market is the development of innovative stem cell therapies. In April 2017, for instance, the first participant in an innovative clinical trial at the University of Wisconsin School of Medicine and Public Health was successfully treated with stem cell therapy. CardiAMP, the investigational therapy, has been designed to direct a large dose of the patients own bone-marrow cells to the point of cardiac injury, stimulating the natural healing response of the body.

Newer areas of application in medicine are being explored constantly. Consequently, stem cell assays are likely to play a key role in the formulation of treatments of a number of diseases.

Global Stem Cell Assay Market: Overview

The increasing investment in research and development of novel therapeutics owing to the rising incidence of chronic diseases has led to immense growth in the global stem cell assay market. In the next couple of years, the market is expected to spawn into a multi-billion dollar industry as healthcare sector and governments around the world increase their research spending.

The report analyzes the prevalent opportunities for the markets growth and those that companies should capitalize in the near future to strengthen their position in the market. It presents insights into the growth drivers and lists down the major restraints. Additionally, the report gauges the effect of Porters five forces on the overall stem cell assay market.

Global Stem Cell Assay Market: Key Market Segments

For the purpose of the study, the report segments the global stem cell assay market based on various parameters. For instance, in terms of assay type, the market can be segmented into isolation and purification, viability, cell identification, differentiation, proliferation, apoptosis, and function. By kit, the market can be bifurcated into human embryonic stem cell kits and adult stem cell kits. Based on instruments, flow cytometer, cell imaging systems, automated cell counter, and micro electrode arrays could be the key market segments.

In terms of application, the market can be segmented into drug discovery and development, clinical research, and regenerative medicine and therapy. The growth witnessed across the aforementioned application segments will be influenced by the increasing incidence of chronic ailments which will translate into the rising demand for regenerative medicines. Finally, based on end users, research institutes and industry research constitute the key market segments.

The report includes a detailed assessment of the various factors influencing the markets expansion across its key segments. The ones holding the most lucrative prospects are analyzed, and the factors restraining its trajectory across key segments are also discussed at length.

Global Stem Cell Assay Market: Regional Analysis

Regionally, the market is expected to witness heightened demand in the developed countries across Europe and North America. The increasing incidence of chronic ailments and the subsequently expanding patient population are the chief drivers of the stem cell assay market in North America. Besides this, the market is also expected to witness lucrative opportunities in Asia Pacific and Rest of the World.

Global Stem Cell Assay Market: Vendor Landscape

A major inclusion in the report is the detailed assessment of the markets vendor landscape. For the purpose of the study the report therefore profiles some of the leading players having influence on the overall market dynamics. It also conducts SWOT analysis to study the strengths and weaknesses of the companies profiled and identify threats and opportunities that these enterprises are forecast to witness over the course of the reports forecast period.

Some of the most prominent enterprises operating in the global stem cell assay market are Bio-Rad Laboratories, Inc (U.S.), Thermo Fisher Scientific Inc. (U.S.), GE Healthcare (U.K.), Hemogenix Inc. (U.S.), Promega Corporation (U.S.), Bio-Techne Corporation (U.S.), Merck KGaA (Germany), STEMCELL Technologies Inc. (CA), Cell Biolabs, Inc. (U.S.), and Cellular Dynamics International, Inc. (U.S.).

Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=40

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

TMR Research,3739 Balboa St # 1097,San Francisco, CA 94121United StatesTel: +1-415-520-1050

Go here to read the rest:
Stem Cell Assay Market Analysis On Trends & Need 2025 - Health News Office

To Read More: Stem Cell Assay Market Analysis On Trends & Need 2025 – Health News Office
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Assay Market Analysis On Trends & Need 2025 – Health News Office | dataOctober 25th, 2019
Read All

In a first, 26-year-old DMD patient in UP survives with stem cell therapy – India TV News

By daniellenierenberg

Image Source : PTI

Children, suffering from DMD, usually die of cardio-respiratory failure. Represtational image

Duchenne Muscular Dystrophy (DMD) is a deadly genetic disorder, 99.9 per cent people suffering from which, die between the age of 13 to 23 years. However, in a first, a 26-year-old patient from Lucknow has survived DMD by regularly taking stem cells for the last five years.

Children, suffering from DMD, usually die of cardio-respiratory failure. But with the stem cell therapy, this patient has not lost muscle power in last five years and heart and lung muscles and the upper half of the body are working well.

Dr. B.S Rajput, the surgeon who is treating this patient, said, "DMD is a type of muscular dystrophy and being a genetic disorder, it is very difficult to treat. Autologous (from your own body) bone marrow cell transplant or stem cell therapy in such cases was started in Mumbai about 10 years back.

Dr Rajput, who was recently appointed as visiting professor at GSVM Medical College, Kanpur, said he has treated several hundred DMD patients and recently this combination protocol was published in the international Journal of Embryology and stem cell research.

The patient's father is elated that his son has maintained well with this treatment and now has even started earning by working on computers.

According to Dr Rajput, this disease is endemic in eastern UP, especially Azamgarh, Jaunpur, Ballia and some of the adjoining districts of Bihar, and one out of every 3,500 male child, suffers from the disease.

Yet the disease is not given as much attention as it should be.

Dr Rajput, who is consultant bone cancer and stem cell transplant surgeon from Mumbai, said though patients in Uttar Pradesh and Bihar get financial support from the Chief Minister's Relief Funds, the treatment of autologous bone marrow cell transplant is not included in the package list of Ayushman Bharat scheme, which deprives many from getting the treatment.

The doctor further informed that efforts are being made to establish the department of regenerative medicine in the medical college, where bone marrow cell transplant and stem cell therapy would be done even for other intractable problems like spinal cord injury, arthritis knee and motor neurone disease.

ALSO READ |Fasting triggers regeneration of stem cells capacity: Study

ALSO READ |UK patient 'free' of HIV after stem cell treatment

Go here to read the rest:
In a first, 26-year-old DMD patient in UP survives with stem cell therapy - India TV News

To Read More: In a first, 26-year-old DMD patient in UP survives with stem cell therapy – India TV News
categoriaSpinal Cord Stem Cells commentoComments Off on In a first, 26-year-old DMD patient in UP survives with stem cell therapy – India TV News | dataOctober 25th, 2019
Read All

Meet the axolotl: A cannibalistic salamander that regenerates its limbs and might help us better understand human stem cell therapy -…

By daniellenierenberg

Imagine youre a smiley-faced, feathery-gilled Mexican salamander called an axolotl. Youve just been born, along with hundreds of brothers and sisters. But salamanders like you live in the wild only in one lake near Mexico City, and that habitat isnt big enough for all of you. Theres not enough food. Only the strongest can survive. What do you do?

If youre an axolotl, you have two choiceseat your siblings arms, or have your arms eaten.

But even if you are the unfortunate victim of this sibling violence, not all hope is lost. In a few months, youll grow a whole new armbones, muscle, skin, nerves and all.

Its pretty gruesome, but cannibalism is a possible reason why they grow their arms back, says associate biology professor James Monaghan. His lab studies regeneration in axolotls, a peculiar species that can grow back limbs and other organs to various degrees.

When an injury occurs, some cues are released in that animal that tells cells near the injury to go from a resting state into a regenerative state, Monaghan says.

His lab is trying to figure out what those cues are, and how we might induce that response in humans, who have very limited regenerative abilities.

Humans are notoriously bad at regenerating, Monaghan says. After were done growing, the genes that tell our cells to grow new organs are turned off.

Thats a good thing because otherwise itd be chaos, he says. No one wants to spontaneously grow an extra finger.

Axolotls can turn back on those genes that we turn off permanently, Monaghan says.

Understanding the specific mechanisms that induce regenerative responses in axolotls is no small task since axolotls have the largest genome ever sequenced.

So far, the lab has identified one molecule, neuregulin-1, which is essential for regeneration of limbs, lungs, and possibly hearts.

When we removed it, regeneration stopped. And when we added it back in, it induced the regenerative response, Monaghan says. Im not saying its a golden bullet for inducing regeneration in humans, too, but it could be part of the puzzle.

A lot of researchers study limb regeneration in axolotls. But Monaghans lab is interested in extending this research to other organs, as well.

When you think of the human condition, most of our issues with disease are with internal organs, Monaghan says.

Take retina regeneration, for example. Monaghan says we can either learn the process axolotls undergo that allows their specialized cells to return back to developmental cells, and then mimic that process in human eyes. Or, we can learn which elements of the axolotl enable their cells to behave this way, and then add those elements to human stem cell therapy.

To test the latter, Monaghan has teamed up with a Northeastern associate professor of chemical engineering, Rebecca Carrier, and her lab to figure out the best way to transplant mammalian retinal cells using molecules found in the axolotl.

In the experiment, Monaghan and Carrier used pig eyes, which are similar to human eyes. When they transplanted stem cells from the retina of one pig into the retina of another, 99 percent of the transplanted cells died. Somethings missing, Monaghan says. The cells dont have the right cues.

But when Carrier and Monaghan injected those same pig stem cells into the axolotl eye, fewer cells died. They were much happier, Monaghan says. Theres something in the axolotl retina that the mammalian cells like.

One reason axolotls are so good at receiving transplants is because, unlike humans, they dont have a learned immune system, meaning they cant distinguish between themselves and foreign entities.

Its really easy to do grafts between animals because the axolotls cant tell that the new tissue isnt theirs, he says. They dont reject it like we might.

An obvious example of this can be seen in axolotls that are genetically modified with a green fluorescent protein found in jellyfish. These naturally white axolotls glow neon green in certain lighting.

With this we can ask really basic questions, like do cells change their fate when they participate in regeneration? Monaghan says.

For example, if Monaghan grafts muscle tissue from a green fluorescent animal onto a white axolotl and then that axolotl regenerates, does the axolotl grow green muscle? Do its bones glow green, too? What about its skin?

Researchers have found, however, that cells dont actually change. Green muscle yields green muscle only.

The axolotl isnt the only animal that can regrow organs. Starfish, worms, frogs, and other species of salamanders can also regenerate. But axolotls are special because, unlike other animals, they can regrow organs that are just as robust as the originals, no matter how old they get.

For example, tadpoles can regenerate limbs. But once they undergo metamorphosis and become frogs, they can only regrow a spike, Monaghan says. They lose the ability to grow back their digits.

The axolotls ability to fully regrow organs, even as it ages, could be partially due to its perpetual juvenile state. Axolotls, unlike most other amphibians, dont undergo metamorphosis naturally, which means they never technically reach adulthood, even though they can reproduce. This condition is called neoteny.

Axolotls come from a species that used to walk on land, Monaghan says. They do have legs, after all. But some mutation occurred that keeps them in the lake and from reaching adulthood.

To test whether their neotenic state is responsible for their ability to regenerate, Monaghan took a group of axolotl siblings and induced metamorphosis in one half by exposing them to thyroid hormones, a chemical that flips on the maturity switch in these amphibians. The other half was kept in the juvenile state.

In the experiment, the juveniles regenerated normally, but all of their adult siblings regenerated slower than usual, and had deformities in their regrown limbs.

There is some association with neoteny and the ability to regenerate, Monaghan says. But its not the main factor.

That main factor is yet to be discovered. But even though some of this might sound like science fiction, you already made an arm once, Monaghan says. If we could just learn how to turn back on those programs, our bodies might do the rest of the work.

For media inquiries, please contact media@northeastern.edu.

More here:
Meet the axolotl: A cannibalistic salamander that regenerates its limbs and might help us better understand human stem cell therapy -...

To Read More: Meet the axolotl: A cannibalistic salamander that regenerates its limbs and might help us better understand human stem cell therapy -…
categoriaSkin Stem Cells commentoComments Off on Meet the axolotl: A cannibalistic salamander that regenerates its limbs and might help us better understand human stem cell therapy -… | dataOctober 23rd, 2019
Read All

More Breakthroughs in Nanotechnology Could Lead to Improvements in Drug Delivery and Medicine – BioSpace

By daniellenierenberg

Researchers have developed a precise and non-toxic nanoscale technology that can deliver oncology drugs directly to cancer cells. The minuscule tubes are called peptoids.

The research was led by Yuehe Lin, professor at Washington State Universitys School of Mechanical and Materials Engineering and Chun-Long Chen, senior research scientist at the Department of Energys Pacific Northwest National Laboratory (PNNL) and joint faculty member at University of Washington. The study was published in the journal Small.

The peptoids are about a thousand times thinner than a human hair. The researchers took the nanotubes, which were inspired by biological models, and rolled them into nanosheet membranes. They were then able to use a variety of drugs, fluorescent dyes and cancer-targeting molecules and place them into the nanotubes, which allowed them to track the drug delivery.

The two drugs they used were a chemotherapy agent and a less-invasive photodynamic therapy. Photodynamic therapeutic compounds release reactive oxygen species (ROS) that kill cancer cells when exposed to light. The combination therapy allowed the researchers to use lower doses of the chemotherapeutic, which decreased the toxicity.

By precisely engineering these nanotubes with fluorescent dyes and cancer targeting molecules, scientists can clearly locate tumor cells and track how the drug regimen is performing, said Lin. We can also track how nanotubes enter and deliver the drugs inside the cancer cell.

They evaluated the peptoids on lung cancer cells. The chemotherapy drug was doxorubicin. The system delivered the drug directly to the cancer cells, which resulted in what it describes as highly efficient cancer killing, all while using much lower doses of doxorubicin.

This is a promising approach for precision targeting with little damage to healthy surrounding cells, Lin said.

What is new about the research is the use of the peptoids. Other research has been conducted using carbon nanotubes and other nanomaterials, but there are toxicity issues. They also werent as effective at precisely recognizing molecules.

By using these peptoids, we were able to develop highly programmable nanotubes and a biocompatible delivery mechanism, Chen said. We also harnessed the high stability of peptoid and its well-controlled packing to develop nanotubes that are highly stable.

Research into nanotechnology is making progress, although its not clear just how much of it, if any, is making it into clinical applications. In August, researchers at Rutgers University-New Brunswick published research about a nanotechnology platform that helps identify what happens to specific stem cells.

Stem cells are key building blocks that can differentiate into all the different types of cells in the body, including brain cells and heart cells and skin cells. Increasingly, researchers are utilizing adult human-induced pluripotent stem cells (iPSCs) to develop drugs and work on therapies.

The researchers monitored the creation of neurons from human stem cells by identifying next-generation biomarkers called exosomes. Exosomes are particles released by cells and they play a critical function in cell-to-cell communication.

One of the major hurdles in the current cell-based therapies is the destructive nature of the standard cell characterization step, stated senior author KiBum Lee, professor in the Department of Chemistry and Chemical Biology. With our technology, we can sensitively and accurately characterize the cells without compromising their viabilities.

The technology platform utilizes minuscule nanotubes for sensing. Specifically, the authors reported using a multifunctional magneto-plasmonic nanorid (NR)-based detection platform.

Researchers at Texas Heart Institute (THI) recently used bio-compatible nanotubes invented at Rice University to restore electrical function to damaged hearts.

Instead of shocking and defibrillating, we are actually correcting diseased conduction of the largest major pumping chamber of the heart by creating a bridge to bypass and conduct over a scarred area of a damaged heart, stated Mehdi Razavi, a cardiologist and director of Electrophysiology Clinical Research and Innovations at THI. Razavi co-led the study with Matteo Pasquali, a chemical and biomolecular engineer at Rice University.

Visit link:
More Breakthroughs in Nanotechnology Could Lead to Improvements in Drug Delivery and Medicine - BioSpace

To Read More: More Breakthroughs in Nanotechnology Could Lead to Improvements in Drug Delivery and Medicine – BioSpace
categoriaSkin Stem Cells commentoComments Off on More Breakthroughs in Nanotechnology Could Lead to Improvements in Drug Delivery and Medicine – BioSpace | dataOctober 23rd, 2019
Read All

Multiple Myeloma Experts, Patients, Advocates and Caregivers Team Up to Hike Through Patagonia – Business Wire

By daniellenierenberg

CRANBURY, N.J.--(BUSINESS WIRE)--As a part of a fundraising effort by Moving Mountains for Multiple Myeloma (MM4MM), 13 individuals will traverse Patagonias awe-inspiring and incredible landscape from Nov. 9-19. MM4MM is a joint initiative between the Multiple Myeloma Research Foundation (MMRF), CURE Media Group and Celgene. The upcoming climb includes survivors, caregivers, family members, myeloma doctors and team members from the organizing partners.

Since MM4MM began with its first climb in 2016, the program has raised over $2.7 million. All the funds raised go directly to the MMRF to accelerate new treatment options for patients with multiple myeloma.

As a patient founded organization, the MMRF stands together with those who are battling multiple myeloma patients, families, physicians, researchers, and our pharmaceutical partners. This team represents a microcosm of that myeloma community and demonstrates that together, we can collaborate with ever increasing momentum towards a cure, said Paul Giusti, CEO of the Multiple Myeloma Research Foundation. We are thrilled to enter the fifth year of this inspiring program and to have Celgene join us in this effort to raise awareness and critical funds to continue our mission.

The MM4MM team will include four patients living with multiple myeloma:

We are so honored to be a part of yet another hike with the MMRF and Celgene, said Mike Hennessy Jr., president and CEO of MJH Life Sciences, parent company of CURE magazine. This initiative organized by Moving Mountains for Multiple Myeloma not only raises awareness and research funding for multiple myeloma but has brought together the myeloma community to take action and fight for a cure for myeloma patients.

The team will embark on a five-day trek of a lifetime through Patagonia and take on the rewarding and beautiful landscape that includes glaciers, deep valleys and challenging peaks. During this trek, the team will travel through El Chaltn and acclimatize while they experience the mighty range of peaks dominated by Monte Fitz Roy, an 11,020-foot tower with a sheer face of more than 6,000 feet. Next, the team will reach Lago San Martin, where they will traverse the terrain in daily treks, exploring a 10-mile peninsula, climbing to a condor rookery and reaching remote Andean lakes.

Celgene, Cure and the MMRF share an unwavering commitment to improving the lives of patients with multiple myeloma and we are very proud to continue our role in the Moving Mountains for Multiple Myeloma initiative, said Chad Saward, senior director, patient advocacy at Celgene Corp. We are amazed and inspired by all who are participating in this unique awareness program.

To learn more about MM4MM and to donate to multiple myeloma research, click here.

About Moving Mountains for Multiple Myeloma

Moving Mountains for Multiple Myeloma (MM4MM) is a collaboration between CURE Media Group and the Multiple Myeloma Research Foundation (MMRF) to raise awareness and funds for myeloma research. This year, Celgene Corporation and GSK join the effort as sponsors. In addition to Patagonia, the program also led hikes up Mt. Washington and through Iceland in 2019. To date, MM4MM has raised over $2.7 million for myeloma research and included 51 patients with multiple myeloma on 7 climbs. Funds raised go directly to research, supporting the MMRF mission. For more information, visit https://www.themmrf.org/events/.

About Multiple Myeloma

Multiple myeloma (MM) is a cancer of the plasma cell. It is the second most common blood cancer. An estimated 32,110 adults (18,130 men and 13,980 women) in the United States will be diagnosed with MM in 2019 and an estimated 12,960 people are predicted to die from the disease. The five-year survival rate for MM is approximately 50.7%, versus 31% in 1999.

About the Multiple Myeloma Research Foundation

A pioneer in precision medicine, the Multiple Myeloma Research Foundation (MMRF) seeks to find a cure for all multiple myeloma patients by relentlessly pursuing innovations that accelerate the development of precision treatments for cancer. Founded in 1998 by Kathy Giusti, a multiple myeloma patient, and her twin sister Karen Andrews as a 501(c)(3) nonprofit organization, the MMRF has created the business model around cancerfrom data to analytics to the clinic. The MMRF identifies barriers and then finds the solutions to overcome them, bringing in the best partners and aligning incentives in the industry to drive better outcomes for patients. Since its inception, the organization has collected thousands of samples and tissues, opened nearly 100 trials, helped bring 10 FDA-approved therapies to market, and built CoMMpass, the single largest genomic dataset for any cancer. Today, the MMRF is building on its legacy in genomics and is expanding into immune-oncology, as the combination of these two fields will be critical to making precision medicine possible for all patients. The MMRF has raised nearly $500 million and directs nearly 90% of the total funds to research and related programs. To learn more, visit http://www.themmrf.org.

About CURE Media Group

CURE Media Group is the leading resource for cancer updates, research and education. It combines a full suite of media products, including its industry-leading website, CUREtoday.com; innovative video programs, such as CURE Connections; a series of widely attended live events; and CURE magazine, which reaches over 1 million readers, as well as the dynamic website for oncology nurses, OncNursingNews.com, and its companion publication, Oncology Nursing News. CURE Media Group is a brand of MJH Life Sciences, the largest privately held, independent, full-service medical media company in the U.S. dedicated to delivering trusted health care news across multiple channels.

See the original post:
Multiple Myeloma Experts, Patients, Advocates and Caregivers Team Up to Hike Through Patagonia - Business Wire

To Read More: Multiple Myeloma Experts, Patients, Advocates and Caregivers Team Up to Hike Through Patagonia – Business Wire
categoriaSkin Stem Cells commentoComments Off on Multiple Myeloma Experts, Patients, Advocates and Caregivers Team Up to Hike Through Patagonia – Business Wire | dataOctober 23rd, 2019
Read All

Bloomington Vet Joins Study For Stem Cell Therapy To Treat Dogs With Arthritis – WGLT News

By daniellenierenberg

The Eastland Companion Animal Hospital in Bloomington is asking dog owners if they want to participate in research on using stem cells to treat dogs with arthritis.

Local dogs wouldjoin a double-blind, placebo-controlled studyto show the effectiveness of stem cells in treating large dogs(70 pounds or more) with arthritis in up to two joints of the knee, hip, elbow, or shoulder. The veterinary clinic has partnered with Animal Cell Therapies, who it's worked with before, to bring this study to Bloomington.

Dr. Kathy Petrucci, founder and CEO of Animal Cell Therapies, explained how dogs will receive the treatment.

The dogs that will receive the stem cells will be sedated, Petrucci said. Depending on what joints are affected, they will receive up to two injections in the joint and they will also receive an IV dose of stem cells.

The FDA oversees the cells that are received from donors for the study. Mothers donating these cells are screened for diseases, and cells are tested for any infections to ensure safety.

Stem cell therapy has been controversial, especially related to humans.

I think a lot of the controversy comes from the misunderstanding of the cell types, Petrucci said. The research in stem cells first started centered around embryonic or fetal tissue use. Its controversial to use embryos and fetal tissues for treatment for anything. The fact that we are using a disposable tissue as our cell sources makes it not controversial at all.

Why Umbilical-Derived Cells

Petrucci explained why umbilical-derived cells are more effective in treating arthritis versus other sources.

We looked at fat, bone marrow, embryonic cells, Petrucci said. The embryonic cells are a lot more unpredictable, and the bone marrow cells are more difficult to work with and less predictable. We didnt think the fat cells are as potent as umbilical-derived cells. Umbilical-derived cells are a lot younger and theyre a little bit more predictable. They are more easy to collect. We obtain cells from donors when the tissue would be normally thrown away. Theres no surgery required, no extra biopsies to obtain fat, no bone marrow from research animals. Its a good, ethical source of stem cells.

Umbilical-derived stem cells have proven successful in past studies on treatment for arthritis, according to Petrucci.

We did a study at the University of Florida on elbows only and we had success with that study, Petrucci said. We had good success with dogs under 70 pounds and (less) success with dogs over 70 pounds, so we changed our dose, which is why were testing dogs 70 pounds and over in this study.

Criteria for eligibility includes dogs weighing 70 pounds or more, being one year of age or older, in general good health, no neurologic issues, arthritis in up to two joints of the knee, hip, elbow, or shoulder, and have all four functioning limbs.

Owners must bring their dogs back to the clinic after 30 days to check for progress and complete a questionnaire. About 50 to 100 dogs are expected to participate in the study.

People like you value experienced, knowledgeable and award-winning journalism that covers meaningful stories in Bloomington-Normal. To support more stories and interviews like this one,please consider making a contribution.

Stem Cell Treatment - Excerpt

Stem Cell Research - Full Story

See the original post:
Bloomington Vet Joins Study For Stem Cell Therapy To Treat Dogs With Arthritis - WGLT News

To Read More: Bloomington Vet Joins Study For Stem Cell Therapy To Treat Dogs With Arthritis – WGLT News
categoriaBone Marrow Stem Cells commentoComments Off on Bloomington Vet Joins Study For Stem Cell Therapy To Treat Dogs With Arthritis – WGLT News | dataOctober 23rd, 2019
Read All

United Therapeutics receives permit for cell therapy facility build-out at Mayo – Jacksonville Daily Record

By daniellenierenberg

United Therapeutics received a building permit Tuesday for a $9.5 million build-out of its cell therapy facility on the second floor of Mayo Clinics Discovery and Innovation Building.

The 21,843-square-foot space will house an automated stem cell manufacturing site, which is one of the first of its kind in the country. The Whiting-Turner Contracting Co. is the project contractor.

The technology, approved by the FDA in 2018, allows the Mayo Clinic Center for Regenerative Medicine to produce cells from the bone marrow of a stem cell donor in large enough quantities to be used as treatments in clinical trials. It allows for the treatment of multiple patients at the same time.

Construction began in 2017 on the $32.4 million building at 14221 Kendall Hench Drive. It held a grand opening in August.

The first floor houses three ex-vivo lung perfusion surgical suites used for lung restoration, another form of regenerative medicine. It turns donor lungs, which previously would have previously been unusable, into viable transplant organs. United Therapeutics also collaborates with Mayo Clinic on lung restoration.

The third floor houses the Life Sciences Incubator for biotech entrepreneurs, which offers coworking space, wet labs, business resources, networking and entrepreneurial training.

Read more:
United Therapeutics receives permit for cell therapy facility build-out at Mayo - Jacksonville Daily Record

To Read More: United Therapeutics receives permit for cell therapy facility build-out at Mayo – Jacksonville Daily Record
categoriaBone Marrow Stem Cells commentoComments Off on United Therapeutics receives permit for cell therapy facility build-out at Mayo – Jacksonville Daily Record | dataOctober 23rd, 2019
Read All

Page 368«..1020..367368369370..380390..»


Copyright :: 2025