Page 386«..1020..385386387388..400410..»

plant stem cells – PCA SKIN

By JoanneRUSSELL25

Stem cells are a huge trend in skincare, but what do they really do for your skin? Stem cells are often called blank cells because they are undifferentiated, meaning they can be duplicated and made into any type of cell. Think of stem cells as blank scrabble pieces, they can fill in where there are needed because they have the ability to turn into specialized cells. They can boost collagen, protect against sun damage, brighten and repair damaged cells.

PCA SKIN uses plant stem cell extracts from oranges, lilac and grapes as ingredients in several products. All plant stem cells provide antioxidant protection, adding an extra boost of skin-health benefits to an established regimen. Specifically, they guard against inflammation, neutralize free radicals and reverse sun damage. Plant stem cell extracts, versus the actual stem cell, are used in skincare because they are the purest, most-stable way of ensuring the quality of the ingredient. While the actual stem cell cant survive outside of the plant, the extract is just as effective.

More:
plant stem cells - PCA SKIN

To Read More: plant stem cells – PCA SKIN
categoriaSkin Stem Cells commentoComments Off on plant stem cells – PCA SKIN | dataSeptember 15th, 2018
Read All

Adult Cardiac Stem Cells Don’t Exist: Study | The …

By Sykes24Tracey

Cardiac stem cell research has a turbulent history. Studies revealing the presence of regenerative progenitors in adult rodents hearts formed the basis of numerous clinical trials, but several experiments have cast doubt on these cells ability to produce new tissue. Some scientists are now lauding the results of a report published in April in Circulation as undeniable evidence against the idea that resident stem cells can give rise to new cardiomyocytes.

The concept of [many] clinical trials arose from the basic science in labs of a few individuals more than 15 years ago, and that basic science is whats now being called into question, says Jeffery Molkentin, a cardiovascular biologist at Cincinnati Childrens Hospital who penned an editorial about the latest work.

The first evidence supporting the notion of cardiac stem cells in adults emerged in the early 2000s, when researchers reported that cells derived from bone marrow or adult heart expressing the protein c-kit could give rise to new muscle tissue when injected into damaged myocardium in rodents. These studies caused some controversy right from the start, Molkentin says. The main reason that this struck a raw nerve with people is because we already know that heart, in human patients, doesnt regenerate itself after an infarct.

Early skepticism arose in 2004, when two separate groups of researchers published back-to-back papers refuting the claims that bone marrowderived c-kit cells could regenerate damaged heart tissue. Still, the concept of endogenous cardiac stem cells remained a mainstream idea until Molkentin and his colleagues published a study in 2014 reporting that c-kit cells in the adult mouse heart almost never produced new cardiomyocytes, says Bin Zhou, a cell biologist at the Chinese Academy of Sciences and a coauthor of the new study.

Although Molkentins findings were replicated shortly afterwards by two independent groups (including Zhous), some researchers held fast to the idea that cardiac progenitors could regenerate injured heart tissue. Earlier this year, a team of researchersincluding Bernardo Nadal-Ginard and Daniele Torella of Magna Graecia University in Italy and several other scientists who conducted the early work on c-kit cellspublished a paper reporting the flaws in the cell lineage tracing technique employed by Molkentin, Zhou, and their colleagues. For example, they noted that the method, which involved tagging c-kitexpressing cells and their progeny with a fluorescent marker, compromised the gene required to express the c-kit protein, impairing the progenitors regenerative abilities.

In the new Circulationstudy, Zhou and his colleagues used a different approach to examine endogenous stem cell populations in mice. Instead of tagging c-kit cells, the team applied a technique that would fluorescently label nonmyocytes and newly generated muscle cells a different color from existing myocytes. This method allowed the researchers to investigate all proposed stem cell populations, rather than specifically addressing c-kit cells. We wanted to ask the broader question of whether there are any stem cells in the adult heart, Zhou says.

These experiments revealed that, while nonmyocytes generate cardiomyocytes in mouse embryos, they do not give rise to new muscle cells in adult rodents hearts. The results also address the concerns raised about c-kit lineage tracing, Zhou tells The Scientist. We think our system can conclude that nonmyocytes cannot become myocytes in adults in homeostasis and after injury.

Torella says that hes not convinced by Zhous evidence. The main issue, he explains, is that the researchers did not explicitly test whether cardiac stem cells were indeed labeled as nonmyocytes to ensure that they were not inadvertently tagging them as myocytes instead.

Molkentin disagrees with this critique, stating that the only way the system would label a myocyte progenitor as a myocyte is if it was no longer a true stem cell, but instead an immature myocyte. Zhous group uses an exhausting and very rigorous genetic approach, he adds. My opinion is that we need to go back to the bench and conduct additional research to truly understand the mechanisms at play to better inform how we design the next generation of clinical trials.

Other scientists note that stem cells may not need to become new myocytes to help repair the injured heart. According to Phillip Yang, a cardiologist at Stanford University who did not take part in the work, many scientists now agree that stem cells are not regenerating damaged cardiomyocytes. Instead, he explains, a growing body of research now supports an alternative theory, which posits that progenitor cells secrete small molecules called paracrine factors that help repair injured heart cells. (Yang is involved in several stem cell clinical trials).

When you inject these stem cells, its pretty incontrovertible that they help heart function in a mouse injury model, Yang says. But the truth is, most of these cells are dead upon arrival [to the site of injury]. So the question is: Why is heart function still improving if these cells are dying?

Y. Li et al., Genetic lineage tracing of nonmyocyte population by dual recombinases, Circulation, 138:793-805, 2018.

See more here:
Adult Cardiac Stem Cells Don't Exist: Study | The ...

To Read More: Adult Cardiac Stem Cells Don’t Exist: Study | The …
categoriaCardiac Stem Cells commentoComments Off on Adult Cardiac Stem Cells Don’t Exist: Study | The … | dataSeptember 8th, 2018
Read All

Spinal Cord Injury Types of Injury, Diagnosis and Treatment

By LizaAVILA

According to the National Spinal Cord Injury Association, as many as 450,000 people in the U.S. are living with a spinal cord injury (SCI). Other organizations conservatively estimate this figure to be about 250,000.

The spinal cord is about 18 inches long, extending from the base of the brain to near the waist. Many of the bundles of nerve fibers that make up the spinal cord itself contain upper motor neurons (UMNs). Spinal nerves that branch off the spinal cord at regular intervals in the neck and back contain lower motor neurons (LMNs).

Types and Levels of SCI

The severity of an injury depends on the part of the spinal cord that is affected. The higher the SCI on the vertebral column, or the closer it is to the brain, the more effect it has on how the body moves and what one can feel. More movement, feeling and voluntary control are generally present with injuries at lower levels.

Tetraplegia (a.k.a. quadriplegia) results from injuries to the spinal cord in the cervical (neck) region, with associated loss of muscle strength in all four extremities.

Paraplegia results from injuries to the spinal cord in the thoracic or lumbar areas, resulting in paralysis of the legs and lower part of the body.

Complete SCI

A complete SCI produces total loss of all motor and sensory function below the level of injury. Nearly 50 percent of all SCIs are complete. Both sides of the body are equally affected. Even with a complete SCI, the spinal cord is rarely cut or transected. More commonly, loss of function is caused by a contusion or bruise to the spinal cord or by compromise of blood flow to the injured part of the spinal cord.

Incomplete SCI

In an incomplete SCI, some function remains below the primary level of the injury. A person with an incomplete injury may be able to move one arm or leg more than the other or may have more functioning on one side of the body than the other. An incomplete SCI often falls into one of several patterns.

Anterior cord syndrome results from injury to the motor and sensory pathways in the anterior parts of the spinal cord. These patients can feel some types of crude sensation via the intact pathways in the posterior part of the spinal cord, but movement and more detailed sensation are lost.

Central cord syndrome usually results from trauma and is associated with damage to the large nerve fibers that carry information directly from the cerebral cortex to the spinal cord. Symptoms may include paralysis and/or loss of fine control of movements in the arms and hands, with far less impairment of leg movements. Sensory loss below the site of the SCI and loss of bladder control may also occur, with the overall amount and type of functional loss related to the severity of damage to the nerves of the spinal cord.

Brown-Sequard syndrome is a rare spinal disorder that results from an injury to one side of the spinal cord. It is usually caused by an injury to the spine in the region of the neck or back. In many cases, some type of puncture wound in the neck or in the back that damages the spine may be the cause. Movement and some types of sensation are lost below the level of injury on the injured side. Pain and temperature sensation are lost on the side of the body opposite the injury because these pathways cross to the opposite side shortly after they enter the spinal cord.

Injuries to a specific nerve root may occur either by themselves or together with a SCI. Because each nerve root supplies motor and sensory function to a different part of the body, the symptoms produced by this injury depend upon the pattern of distribution of the specific nerve root involved.

"Spinal concussions" can also occur. These can be complete or incomplete, but spinal cord dysfunction is transient, generally resolving within one or two days. Football players are especially susceptible to spinal concussions and spinal cord contusions. The latter may produce neurological symptoms including numbness, tingling, electric shock-like sensations and burning in the extremities. Fracture-dislocations with ligamentous tears may be present in this syndrome.

Penetrating SCI

"Open" or penetrating injuries to the spine and spinal cord, especially those caused by firearms, may present somewhat different challenges. Most gunshot wounds to the spine are stable; i.e., they do not carry as much risk of excessive and potentially dangerous motion of the injured parts of the spine. Depending upon the anatomy of the injury, the patient may need to be immobilized with a collar or brace for several weeks or months so that the parts of the spine that were fractured by the bullet may heal. In most cases, surgery to remove the bullet does not yield much benefit and may create additional risks, including infection, cerebrospinal fluid leak and bleeding. However, occasional cases of gunshot wounds to the spine may require surgical decompression and/or fusion in an attempt to optimize patient outcome.

Diagnosis

When SCI is suspected, immediate medical attention is required. SCI is usually first diagnosed when the patient presents with loss of function below the level of injury.

Signs and Symptoms of Possible SCI:

Clinical Evaluation

A physician may decide that significant SCI does not exist simply by examining a patient who does not have any of the above symptoms, as long as the patient meets the following criteria: unaltered mental status, no neurological deficits, no intoxication from alcohol, drugs or medications and no other painful injuries that may divert his or her attention away from a SCI.

In other cases, such as when patients complain of neck pain, when they are not fully awake, or when they have obvious weakness or other signs of neurological injury, the cervical spine is kept in a rigid collar until appropriate radiological studies are completed.

Radiological Evaluation

The radiological diagnosis of SCI has traditionally begun with X-rays. In many cases, the entire spine may be X-rayed. Patients with a SCI may also receive both computerized tomography (CT or CAT scan) and magnetic resonance imaging (MRI) of the spine. In some patients, centers may proceed directly to CT scanning as the initial radiological test. For patients with known or suspected injuries, MRI is helpful for looking at the actual spinal cord itself, as well as for detecting any blood clots, herniated discs or other masses that may be compressing the spinal cord. CT scans may be helpful in visualizing the bony anatomy, including any fractures.

Even after all radiological tests have been performed, it may be advisable for a patient to wear a collar for a variable period of time. If patients are awake and alert, but still complaining of neck pain, a physician may send them home in a collar, with plans to repeat X-rays in the near future, such as in one to two weeks. The concern in these cases is that muscle spasm caused by pain might be masking an abnormal alignment of the bones in the spinal column. Once this period of spasm passes, repeat X-rays may reveal abnormal alignment or excessive motion that was not visible immediately after the injury. In patients who are comatose, confused or not fully cooperative for some other reason, adequate radiographic visualization of parts of the spine may be difficult. This is especially true of the bones at the very top of the cervical spine. In such cases, the physician may keep the patient in a collar until the patient is more cooperative. Alternatively, the physician may obtain other imaging studies to look for a radiologically-evident injury.

Treatment

Treatment of SCI begins before the patient is admitted to the hospital. Paramedics or other emergency medical services personnel carefully immobilize the entire spine at the scene of the accident. In the emergency department, this immobilization is continued while more immediate life-threatening problems are identified and addressed. If the patient must undergo emergency surgery because of trauma to the abdomen, chest or another area, immobilization and alignment of the spine are maintained during the operation.

Intensive Care Unit Treatment

If a patient has a SCI, he or she will usually be admitted to an intensive care unit (ICU). For many injuries of the cervical spine, traction may be indicated to help bring the spine into proper alignment. Standard ICU care, including maintaining a stable blood pressure, monitoring cardiovascular function, ensuring adequate ventilation and lung function and preventing and promptly treating infection and other complications, is essential so that SCI patients can achieve the best possible outcome.

Surgery

Occasionally, a surgeon may wish to take a patient to the operating room immediately if the spinal cord appears to be compressed by a herniated disc, blood clot or other lesion. This is most commonly done for patients with an incomplete SCI or with progressive neurological deterioration.

Even if surgery cannot reverse damage to the spinal cord, surgery may be needed to stabilize the spine to prevent future pain or deformity. The surgeon will decide which procedure will provide the greatest benefit to the patient.

Outcome

Persons with neurologically complete tetraplegia are at high risk for secondary medical complications. The percentages of complications for individuals with neurologically complete tetraplegia have been reported as follows:

Pressure ulcers are the most frequently observed complications, beginning at 15 percent during the first year post-injury and steadily increasing thereafter. The most common pressure ulcer location is the sacrum, the site of one third of all reported ulcers.

Source: National Spinal Cord Injury Statistical Center, University of Alabama at Birmingham, Annual Statistical Report, June 2004

Neurological Improvement

Recovery of function depends upon the severity of the initial injury. Unfortunately, those who sustain a complete SCI are unlikely to regain function below the level of injury. However, if there is some degree of improvement, it usually evidences itself within the first few days after the accident.

Incomplete injuries usually show some degree of improvement over time, but this varies with the type of injury. Although full recovery may be unlikely in most cases, some patients may be able to improve at least enough to ambulate and to control bowel and bladder function. Patients with anterior cord syndrome tend to do poorly, but many of those with Brown-Sequard syndrome can expect to reach these goals. Patients with central cord syndrome often recover to the point of being ambulatory and controlling bowel and bladder function, but they often are not able to perform detailed or intricate work with their hands.

Once a patient is stabilized, care and treatment focuses on supportive care and rehabilitation. Family members, nurses or specially trained aides all may provide supportive care. This care might include helping the patient bathe, dress, change positions to prevent bedsores and other assistance.

Rehabilitation often includes physical therapy, occupational therapy and counseling for emotional support. The services may initially be provided while the patient is hospitalized. Following hospitalization, some patients are admitted to a rehabilitation facility. Other patients can continue rehab on an outpatient basis and/or at home.

Mortality

Mortality associated with SCI is influenced by several factors. Perhaps the most important of these is the severity of associated injuries. Because of the force that is required to fracture the spine, it is not uncommon for a SCI patient to suffer significant damage to the chest and/or abdomen. Many of these associated injuries can be fatal. In general, younger patients and those with incomplete injuries have a better prognosis than older patients and those with complete injuries.

Respiratory diseases are the leading cause of death in people with SCI, pneumonia accounting for 71.2 percent of these deaths. The second and third leading causes of death, respectively, are heart disease and infections.

The cumulative 20-year survival rate for SCI patients is 70.65 percent, but due to underreporting and cases that are lost in follow-up, the mortality rates may be higher.

Source: National Spinal Cord Injury Statistical Center, University of Alabama at Birmingham, Annual Statistical Report, June 2004

SCI Prevention

While recent advances in emergency care and rehabilitation allow many SCI patients to survive, methods for reducing the extent of injury and for restoring function are still limited. Currently, there is no cure for SCI. However, ongoing research to test surgical and drug therapies continues to make progress. Drug treatments,decompression surgery,nerve cell transplantation,nerve regeneration, stem cells and complex drug therapies are all being examined in clinical trials as ways to overcome the effects of SCI. However, SCI prevention is crucial to decreasing the impact of these injuries on individual patients and on society.

Motor Vehicle Safety Tips:

Tips to Prevent Falls in the Home:

Water and Sports Safety Tips:

Firearms Safety:

SCI Resources

The AANS does not endorse any treatments, procedures, products or physicians referenced in these patient fact sheets. This information is provided as an educational service and is not intended to serve as medical advice. Anyone seeking specific neurosurgical advice or assistance should consult his or her neurosurgeon, or locate one in your area through the AANS Find a Board-certified Neurosurgeon online tool.

The rest is here:
Spinal Cord Injury Types of Injury, Diagnosis and Treatment

To Read More: Spinal Cord Injury Types of Injury, Diagnosis and Treatment
categoriaSpinal Cord Stem Cells commentoComments Off on Spinal Cord Injury Types of Injury, Diagnosis and Treatment | dataSeptember 8th, 2018
Read All

IPS and G-CON Launch iCON Cell Therapy Facility Platform …

By daniellenierenberg

Information contained on this page is provided by an independent third-party content provider. Frankly and this Site make no warranties or representations in connection therewith. If you are affiliated with this page and would like it removed please contact pressreleases@franklyinc.com

SOURCE G-CON Manufacturing

iCON Cell Therapy Platform Launched with Shipment of the 1st BERcellFLEX PODs

COLLEGE STATION, Texas, Sept. 5, 2018 /PRNewswire-PRWeb/ --Following up on the launch of the iCON Turnkey Facility Platform for a mAb manufacturing facility late last year, IPS-Integrated Project Services, LLC and G-CON Manufacturing have successfully designed and delivered the first BERcellFLEX PODs for the manufacturing of autologous cell therapies. The iCON solution provides a pre-fabricated modular cleanroom infrastructure for the drug manufacturers' requirements for both clinical and commercial manufacture of critical therapies. Following the iCON model, IPS provided the engineering design while G-CON built, tested and delivered the BERcellFLEX CAR-T processing suites in both twelve (12) foot and twenty-four (24) foot wide POD configurations.

"This is an exciting time for our companies as the iCON platform is being adopted by clients who recognize that new innovative approaches are needed to meet the growing demand for cell and gene therapy manufacturing" said Dennis Powers, Vice President of Business Development and Sales Engineering at G-CON Manufacturing Inc. "We believe that the iCON platform approach with its faster and more predictable project schedules for new facility construction are essential for supplying life changing therapies to the patients that need them."

"The gene therapy industry needs standardized solutions to meet its speed to market requirements," said Tom J. Piombino, Vice President & Process Architect at IPS. "In addition to our larger 2K mAb facility platform that we rolled out earlier this year, the BERcellFLEX12 and 24 represent a line of gene/cell therapy products that operating companies can buy today, ready-to-order, in either an open or closed-processing format with little to no engineering time we start fabricating almost immediately after URS alignment. Multiple cellFLEX units can be installed to scale up/out from Phase 1 Clinical production to Commercial Manufacturing and serve the needs of thousands of CAR-T patients per year. Being able to meet this critical need is consistent with our vision; we're thrilled to be able to offer this modular solution to help our clients get therapies to their patients."

About iCON The iCON platform, the collaborative efforts of IPS and G-CON Manufacturing, Inc., is redefining facility project execution for the biopharma industry where there is a growing need for more rapidly deployable and flexible manufacturing capability. iCON has launched turnkey designs for monoclonal antibody facilities and autologous cell therapies, and is developing platforms for cell and gene therapies, vaccines, OSD, and aseptic filling. An iCON solution can be deployed for:

About G-CON G-CON Manufacturing designs, produces and installs prefabricated cleanroom PODs. G-CON's cleanroom POD portfolio encompasses a variety of different dimensions and purposes, from laboratory environments to personalized medicine and production process platforms. The POD cleanroom units are unique from traditional cleanroom structures due to the ease of scalability, mobility and the ability to repurpose the PODs once the production process reaches the end of its lifecycle. For more information, please visit the Company's website at http://www.gconbio.com.

About IPS IPS is a global leader in developing innovative facility and bioprocess solutions for the biotechnology and pharmaceutical industries. Through operational expertise and industry-leading knowledge, skill and passion, IPS provides consulting, architecture, engineering, construction management, and compliance services that allow clients to create and manufacture life-impacting products around the world. Headquartered in Blue Bell, PA-USA, IPS is one of the largest multi-national companies servicing the life sciences industry with over 1,100 professionals in the US, Canada, Brazil, UK, Ireland, Switzerland, Singapore, China, and India. Visit our website at http://www.ipsdb.com.

2017 PR Newswire. All Rights Reserved.

Go here to read the rest:
IPS and G-CON Launch iCON Cell Therapy Facility Platform ...

To Read More: IPS and G-CON Launch iCON Cell Therapy Facility Platform …
categoriaIPS Cell Therapy commentoComments Off on IPS and G-CON Launch iCON Cell Therapy Facility Platform … | dataSeptember 6th, 2018
Read All

Susan Solomon: The promise of research with stem cells …

By daniellenierenberg

There was a very sad example of this in the last decade.There's a wonderful drug, and a class of drugs actually,but the particular drug was Vioxx, andfor people who were suffering from severe arthritis pain,the drug was an absolute lifesaver,but unfortunately, for another subset of those people,they suffered pretty severe heart side effects,and for a subset of those people, the side effects wereso severe, the cardiac side effects, that they were fatal.But imagine a different scenario,where we could have had an array, a genetically diverse array,of cardiac cells, and we could have actually testedthat drug, Vioxx, in petri dishes, and figured out,well, okay, people with this genetic type are going to havecardiac side effects, people with these genetic subgroupsor genetic shoes sizes, about 25,000 of them,are not going to have any problems.The people for whom it was a lifesavercould have still taken their medicine.The people for whom it was a disaster, or fatal,would never have been given it, andyou can imagine a very different outcome for the company,who had to withdraw the drug.

See original here:
Susan Solomon: The promise of research with stem cells ...

To Read More: Susan Solomon: The promise of research with stem cells …
categoriaCardiac Stem Cells commentoComments Off on Susan Solomon: The promise of research with stem cells … | dataAugust 23rd, 2018
Read All

Stem Cell Therapy and Stem Cell Injection Provider Finder …

By raymumme

Stem cell therapy can be described as a means or process by which stem cells are used for the prevention, treatment or the cure of diseases. Stem cells are a special kind of cells that have features other types of cells dont have. As an illustration, stem cells are capable of proliferation. This implies that they can develop into any type of cell, and grow to start performing the functions of the tissue. In addition, they can regenerate. This means they can multiply themselves. This is most important when a new tissue has to be formed. Also, they modulate immune reactions. This has made them useful for the treatment of autoimmune diseases, especially those that affect the musculoskeletal system such as rheumatoid arthritis, systemic lupus erythematosus and so on. Stem cells can be derrived from different sources. They can be extracted from the body, and in some specific parts of the body. This includes the blood, bone marrow, umbilical cord in newborns, adipose tissue, and from embryos. There are 2 main types of stem cell transplant. These are autologous stem cell transplant, and allogeneic stem cell transplant. The autologous stem cell transplant means that stem cells are extracted from the patient, processed, and then transplanted back to the patient, for therapeutic purposes. On the other hand, allogeneic stem cell transplant means the transplant of stem cells or from another individual, known as the donor, to another person, or recipient. Some treatments must be given to the receiver to prevent any cases of rejections, and other complications. The autologous is usually the most preferred type of transplant because of its almost zero side effects. Below are some of the stem cell treatments. Our goal is to provide education, research and an opportunity to connect with Stem Cell Doctors, as well as provide stem cell reviews

Adipose Stem Cell TreatmentsAdipose stem cell treatment is one of the most commonly used. This is because large quantities of stem cells can be derrived from them. According to statistics, the number of stem cells in adipose tissue are usually hundreds of times higher than what can be obtained from other sources, such as the bone marrow stem cells. Adipose stem cells have taken the center stage in the world of stem cell therapy. Apart from the ease that comes with the harvesting of these cells from the adipose tissue, they also have some special features, that separates them from other types of cells. Adipose stem cells are capable of regulating and modulating the immune system. This includes immune suppression, which is important for the treatment of autoimmune diseases. In addition, adipose stem cells can differentiate to form other types of cells. Some of them include the bone forming cells, cardiomyocytes, and cells of the nervous system.

This process can be divided into four parts. These are

Stem cell joint injection is fast becoming the new treatment of joint diseases. Stem cells derived from bone marrow, adipose and mesenchymal stem cells are the most commonly used. The stem cells are injected into the joints, and they proceed to repair and replace the damaged tissues. The cells also modulate the inflammatory process going on. Overall, stem cell joint injections significantly reduce the recovery time of patients and also eliminates pain and risks associated with surgery. Examples of diseases where this treatment is used include osteoarthritis, rheumatoid arthritis, and so on. Researchers and physicians have rated this procedure to be the future of joint therapy.

Losing a tooth as a kid isnt news because youd eventually grow them back, but losing one as an adult isnt a pleasant experience. Youd have to go through the pains of getting a replacement from your dentist. Apart from the cost of these procedures, the pain and number of days youd have to stay at home nursing the pain is also a problem. Nevertheless, there are great teeth replacement therapies available for all kinds of dental problems. Although there are already good dental treatment methods, stem cell therapy might soon become the future of dental procedures. Currently, a lot of research is being done on how stem cells can be used to develop teeth naturally, especially in patients with dental problems. The aim of the project is to develop a method whereby peoples stem cells are used in regenerating their own teeth and within the shortest time possible. Some of the benefits of the stem cell tooth would be:

The quality of life of those that underwent serious procedures, especially those that had an allogeneic hematopoietic stem cell transplantation done was studied. It was discovered that this set of people had to cope with some psychological problems, even years after the procedure. In addition, allogeneic stem cell transplantation often comes with some side effects. However, this a small price to pay, considering that the adverse effects are not usually life-threatening. Also theses types of procedures are used for severe disorders or even terminal diseases. On the other hand, autologous stem cell transplantation bears the minimum to no side effects. Patients do have a great quality of life, both in the short term and in the long term.

This is one of the many uses of stem cells. The stem cell gun is a device that is used in treating people with wounds or burns. This is done by simply triggering it, and it sprays stem cells on the affected part. This kind of treatment is crucial for victims of a severe burn. Usually, people affected by severe burns would have to endure excruciating pain. The process of recovery is usually long, which might vary from weeks to months, depending on the severity of the burn. Even after treatment, most patients are left with scars forever. However, the stem cell gun eliminates these problems, the skin can be grown back in just a matter of days. The new skin also grows evenly and blends perfectly with the other part of the body. This process is also without the scars that are usually associated with the traditional burns therapy. The stem cell gun is without any side effects.

There is one company that focuses on the production of stem cell supplements. These stem cells are usually natural ingredients that increase the development of stem cells, and also keeps them healthy. The purpose of the stem cell supplements is to help reduce the aging process and make people look younger. These supplements work by replacing the dead or repairing the damaged tissues of the body. There have been a lot of testimonials to the efficacy of these supplements.

It is the goal of researchers to make stem cell therapy a good alternative for the millions of patients suffering from cardiac-related diseases. According to some experiments carried out in animals, stem cells were injected into the ones affected by heart diseases. A large percentage of them showed great improvement, even within just a few weeks. However, when the trial was carried out in humans, some stem cells went ahead to develop into heart muscles, but overall, the heart function was generally improved. The reason for the improvement has been attributed to the formation of new vessels in the heart. The topic that has generated a lot of arguments have been what type of cells should be used in the treatment of heart disorders. Stem cells extracted from the bone marrow, embryo have been in use, although bone marrow stem cells are the most commonly used. Stem cells extracted from bone marrow can differentiate into cardiac cells, while studies have shown that other stem cells cannot do the same. Even though the stem cell therapy has a lot of potential in the future, more research and studies have to be done to make that a reality.

The use of stem cells for the treatment of hair loss has increased significantly. This can be attributed to the discovery of stem cells in bone marrow, adipose cells, umbilical cord, and so on. Stem cells are extracted from the patient, through any of the sources listed above. Adipose tissue stem cells are usually the most convenient in this scenario, as they do not require any special extraction procedure. Adipose tissue is harvested from the abdominal area. The stem cells are then isolated from the other cells through a process known as centrifugation. The stem cells are then activated and are now ready for use. The isolated stem cells are then introduced into the scalp, under local anesthesia. The entire process takes about three hours. Patients are free to go home, after the procedure. Patients would begin to see improvements in just a few months, however, this depends largely on the patients ability to heal. Every patient has a different outcome.

Human umbilical stem cells are cells extracted from the umbilical cord of a healthy baby, shortly after birth. Umbilical cord tissue is abundant in stem cells, and the stem cells can differentiate into many types of cells such as red blood cells, white blood cells, and platelets. They are also capable of differentiating into non-blood cells such as muscle cells, cartilage cells and so on. These cells are usually preferred because its' extraction is minimally non invasive. It also is nearly painless. It also has zero risks of rejecting, as it does not require any form of matching or typing.Human umbilical stem cell injections are used for the treatment of spinal cord injuries. A trial was done on twenty-five patients that had late-stage spinal cord injuries. They were placed on human umbilical stem cell therapy, while another set of 25 patients were simultaneously placed on the usual rehabilitation therapy. The two groups were studied for the next twelve months. The results of the trial showed that those people placed on stem cell therapy by administering the human umbilical cell tissue injections had a significant recovery, as compared to the other group that underwent the traditional rehabilitation therapy. It was concluded that human umbilical tissue injections applied close to the injured part gives the best outcomes.

Stem cell therapy has been used for the treatment of many types diseases. This ranges from terminal illnesses such as cancer, joint diseases such as arthritis, and also autoimmune diseases. Stem cell therapy is often a better alternative to most traditional therapy today. This is because stem cell procedure is minimally invasive when compared to chemotherapy and so on. It harnesses the bodys own ability to heal. The stem cells are extracted from other parts of the body and then transplanted to other parts of the body, where they would repair and maintain the tissues. They also perform the function of modulating the immune system, which makes them important for the treatment of autoimmune diseases. Below are some of the diseases that stem cell therapies have been used successfully:

A stem cell bank can be described as a facility where stem cells are stored for future purposes. These are mostly amniotic stem cells, which are derived from the amnion fluid. Umbilical cord stem cells are also equally important as it is rich in stem cells and can be used for the treatment of many diseases. Examples of these diseases include cancer, blood disorders, autoimmune diseases, musculoskeletal diseases and so on. According to statistics, umbilical stem cells can be used for the treatment of over eighty diseases. Storing your stem cells should be seen as an investment in your health for future sake. Parents do have the option of either throwing away their babys umbilical cord or donating it to stem cell banks.

The adipose tissue contains a lot of stem cells, that has the ability to transform into other cells such as muscle, cartilage, neural cells. They are also important for the treatment of some cardiovascular diseases. This is what makes it important for people to want to store their stem cells. The future health benefit is huge. The only way adults can store their stem cells in sufficient amounts is to extract the stem cells from their fat tissues. This process is usually painless and fast. Although, the extraction might have to be done between 3 to 5 times before the needed quantity is gotten. People that missed the opportunity to store their stem cells, using their cord cells, can now store it using their own adipose tissues. This can be used at any point in time.

Side effects often accompany every kind of treatment. However, this depends largely on the individual. While patients might present with side effects, some other people wouldnt. Whether a patient will present with adverse effects, depends on the following factors;

Some of the common side effects of stem cell transplant are;

Stem cell treatment has been largely successful so far, however, more studies and research needs to be done. Stem cell therapy could be the future.

Stem cells are unique cells that have some special features such as self-regeneration, tissue repair, and modulation of the immune system. These are the features that are employed in the treatment of diseases.

Our doctors are certified by iSTEMCELL but operate as part of a medical group or as independent business owners and as such are free to charge what the feel to be the right fit for their practice and clients. We have seen Stem Cell Treatment costs range from $3500 upwards of $30,000 depending on the condition and protocol required for intended results. Find the Best Stem Cell Doctor Near me If you are interested in saving money, try our STEM CELL COUPON!

Travel Medcations are becoming very popular around the globe for several reasons but not for what one might think. It is not about traveling to Mexico to save money, but to get procedures or protocols that are not yet available in your home country. Many procedures are started in your home country, then the tissue is set to the tissue lab where it is then grown in a process to maximize live cells, then sent to a hospital in Mexico designed to treat or provide different therapies for different conditions. If you're ready to take a medical vacation call 972-800-6670 for our"WHITE GLOVE" service.

Chen, C. and Hou, J. (2016). Mesenchymal stem cell-based therapy in kidney transplantation. Stem Cell Research & Therapy, 7(1).

Donnelly, A., Johar, S., OBrien, T. and Tuan, R. (2010). Welcome to Stem Cell Research & Therapy. Stem Cell Research & Therapy, 1(1), p.1.

Groothuis, S. (2015). Changes in Stem Cell Research. Stem Cell Research, 14(1), p.130.

Rao, M. (2012). Stem cells and regenerative medicine. Stem Cell Research & Therapy, 3(4), p.27.

Vunjak-Novakovic, G. (2013). Physical influences on stem cells. Stem Cell Research & Therapy, 4(6), p.153.

Here is the original post:
Stem Cell Therapy and Stem Cell Injection Provider Finder ...

To Read More: Stem Cell Therapy and Stem Cell Injection Provider Finder …
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy and Stem Cell Injection Provider Finder … | dataAugust 19th, 2018
Read All

Induced Pluripotent Stem Cell (iPS Cell): 2018-2022 …

By Dr. Matthew Watson

Dublin, Aug. 02, 2018 (GLOBE NEWSWIRE) -- The "Global Induced Pluripotent Stem Cell (iPS Cell) Industry Report 2018-19" report has been added to ResearchAndMarkets.com's offering.

Groundbreaking experimentation in 2006 led to the introduction of induced pluripotent stem cells (iPSCs). These are adult cells which are isolated and then transformed into embryonic-like stem cells through the manipulation of gene expression, as well as other methods. Research and experimentation using mouse cells by Shinya Yamanaka's lab at Kyoto University in Japan was the first instance in which there was a successful generation of iPSCs.

In 2007, a series of follow-up experiments were done at Kyoto University in which human adult cells were transformed into iPSCs. Nearly simultaneously, a research group led by James Thomson at the University of Wisconsin-Madison accomplished the same feat of deriving iPSC lines from human somatic cells.

Since the discovery of iPSCs a large and thriving research product market has grown into existence, largely because the cells are non-controversial and can be generated directly from adult cells. While it is clear that iPSCs represent a lucrative product market, methods for commercializing this cell type are still being explored, as clinical studies investigating iPSCs continue to increase in number.

iPS Cell Therapies

2013 was a landmark year in Japan because it saw the first cellular therapy involving the transplant of iPS cells into humans initiated at the RIKEN Center in Kobe, Japan. Led by Masayo Takahashi of the RIKEN Center for Developmental Biology (CDB). Dr. Takahashi was investigating the safety of iPSC-derived cell sheets in patients with wet-type age-related macular degeneration.

Although the study was suspended in 2015 due to safety concerns, in June 2016 RIKEN Institute announced that it would resume the clinical study using allogeneic rather than autologous iPSC-derived cells, because of the cost and time efficiencies.

In a world-first, Cynata Therapeutics received approval in September 2016 to launch the world's first formal clinical trial of an allogeneic iPSC-derived cell product, called CYP-001. The study involves centers in the UK and Australia. In this trial, Cynata is testing an iPS cell-derived mesenchymal stem cell (MSC) product for the treatment of GvHD.

On 16 May 2018, Nature News then reported that Japan's health ministry gave doctors at Osaka University permission to take sheets of tissue derived from iPS cells and graft them onto diseased human hearts. The team of Japanese doctors, led by cardiac surgeon Yoshiki Sawa at Osaka University, will use iPS cells to create a sheet of 100 million heart-muscle cells. From preclinical studies in pigs, the medical team determined that thin sheets of cell grafts can improve heart function, likely through paracrine signaling.

Kyoto University Hospital in Kobe, Japan also stated it would be opening an iPSC therapy center in 2019, for purposes of conducting clinical studies on iPS cell therapies. Officials for Kyoto Hospital said it will open a 30-bed ward to test the efficacy and safety of the therapies on volunteer patients, with the hospital aiming to initiate construction at the site in February of 2016 and complete construction by September 2019.

iPS Cell Market Competitors

In 2009 ReproCELL, a company established as a venture company originating from the University of Tokyo and Kyoto University was the first to make iPSC products commercially available with the launch of its human iPSC-derived cardiomyocytes, which it called ReproCario.

Cellular Dynamics International, a Fujifilm company, is another major market player in the iPSC sector. Similar to ReproCELL, CDI established its control of the iPSC industry after being founded in 2004 by Dr. James Thomson at the University of Wisconsin-Madison, who in 2007 derived iPSC lines from human somatic cells for the first time ever (the feat was accomplished simultaneously by Dr. Shinya Yamanaka's lab in Japan).

A European leader within the iPSC market is Ncardia, formed through the merger of Axiogenesis and Pluriomics. Founded in 2001 and headquartered in Cologne, Germany, Axiogenesis initially focused on generating mouse embryonic stem cell-derived cells and assays. After Yamanaka's groundbreaking iPSC technology became available, Axiogenesis was the first European company to license and adopt Yamanaka's iPSC technology in 2010.

Ncardia's focus lies on preclinical drug discovery and drug safety through the development of functional assays using human neuronal and cardiac cells, although it is expanding into new areas. Its flagship offering is its Cor.4U human cardiomyocyte product family, including cardiac fibroblasts.

In summary, market leaders have emerged in all areas of iPSC development, including:

iPS Cell Commercialization

Key Findings

Key Topics Covered

1. SCOPE AND METHODOLOGY

2. EXECUTIVE SUMMARY

3. BACKGROUND - iPSC RESEARCH

4. MARKET ANALYSIS BY PRODUCT CATEGORY

5. MARKET ANALYSIS BY APPLICATION

6. MARKET ANALYSIS BY GEOGRAPHY

7. PATENTS

8. COMPANIES

9. COMPANY PROFILES

10. CONCLUSIONS

For more information about this report visit https://www.researchandmarkets.com/research/njhzjc/induced?w=12

Read the original here:
Induced Pluripotent Stem Cell (iPS Cell): 2018-2022 ...

To Read More: Induced Pluripotent Stem Cell (iPS Cell): 2018-2022 …
categoriaIPS Cell Therapy commentoComments Off on Induced Pluripotent Stem Cell (iPS Cell): 2018-2022 … | dataAugust 5th, 2018
Read All

How Bone Marrow and Stem Cell Transplants Work

By JoanneRUSSELL25

If you or a loved one will be having a bone marrow transplant or donating stem cells, what does it entail? What are the different types of bone marrow transplants and what is the experience like for both the donor and recipient?

A bone marrow transplant is a procedure in which when special cells (called stem cells) are removed from the bone marrow or peripheral blood, filtered and given back either to the same person or to another person.

Since we now derive most stem cells needed from the blood rather than the bone marrow, a bone marrow transplant is now more commonly referred to as stem cell transplant.

Bone marrow is found in larger bones in the body such as the pelvic bones. This bone marrow is the manufacturing site for stem cells. Stem cells are "pluripotential" meaning that the cells are the precursor cells which can evolve into the different types of blood cells, such as white blood cells, red blood cells, and platelets.

If something is wrong with the bone marrow or the production of blood cells is decreased, a person can become very ill or die. In conditions such as aplastic anemia, the bone marrow stops producing blood cells needed for the body. In diseases such as leukemia, the bone marrow produces abnormal blood cells.

The purpose of a bone marrow transplant is thus to replace cells not being produced or replace unhealthy stem cells with healthy ones. This can be used to treat or even cure the disease.

In addition to leukemias, lymphomas, and aplastic anemia, stem cell transplants are being evaluated for many disorders, ranging from solid tumors to other non-malignant disorders of the bone marrow, to multiple sclerosis.

There are two primary types of bone marrow transplants, autologous and allogeneic transplants.

The Greek prefix "auto" means "self." In an autologous transplant, the donor is the person who will also receive the transplant. This procedure, also known as a "rescue transplant" involves removing your stem cells and freezing them. You then receive high dose chemotherapy followed by infusion of the thawed out frozen stem cells. It may be used to treat leukemias, lymphomas, or multiple myeloma.

The Greek prefix "allo" means "different" or "other." In an allogeneic bone marrow transplant, the donor is another person who has a genetic tissue type similar to the person needing the transplant. Because tissue types are inherited, similar to hair color or eye color, it is more likely that you will find a suitable donor in a family member, especially a sibling. Unfortunately, this occurs only 25 to 30 percent of the time.

If a family member does not match the recipient, the National Marrow Donor Program Registry database can be searched for an unrelated individual whose tissue type is a close match. It is more likely that a donor who comes from the same racial or ethnic group as the recipient will have the same tissue traits. Learn more about finding a donor for a stem cell transplant.

Bone marrow cells can be obtained in three primary ways. These include:

The majority of stem cell transplants are done using PBSC collected by apheresis (peripheral blood stem cell transplants.) This method appears to provide better results for both the donor and recipient. There still may be situations in which a traditional bone marrow harvest is done.

Donating stem cells or bone marrow is fairly easy. In most cases, a donation is made using circulating stem cells (PBSC) collected by apheresis. First, the donor receives injections of a medication for several days that causes stem cells to move out of the bone marrow and into the blood. For the stem cell collection, the donor is connected to a machine by a needle inserted in the vein (like for donating blood). Blood is taken from the vein, filtered by the machine to collect the stem cells, then returned back to the donor through a needle in the other arm. There is almost no need for a recovery time with this procedure.

If stem cells are collected by bone marrow harvest (much less likely), the donor will go to the operating room and while asleep under anesthesia and a needle will be inserted into either the hip or the breastbone to take out some bone marrow. After awakening, there may be some pain where the needle was inserted.

A bone marrow transplant can be a very challenging procedure for the recipient.

The first step is usually receiving high doses of chemotherapy and/or radiation to eliminate whatever bone marrow is present. For example, with leukemia, it is first important to remove all of the abnormal bone marrow cells.

Once a person's original bone marrow is destroyed, the new stem cells are injected intravenously, similar to a blood transfusion. The stem cells then find their way to the bone and start to grow and produce more cells (called engraftment).

There are many potential complications. The most critical time is usually when the bone marrow is destroyed so that few blood cells remain. Destruction of the bone marrow results in greatly reduced numbers of all of the types of blood cells (pancytopenia). Without white blood cells there is a serious risk of infection, and infection precautions are used in the hospital (isolation). Low levels of red blood cells (anemia) often require blood transfusions while waiting for the new stem cells to begin growing. Low levels of platelets (thrombocytopenia) in the blood can lead to internal bleeding.

A common complication affecting 40 to 80 percent of recipients is graft versus host disease. This occurs when white blood cells (T cells) in the donated cells (graft) attack tissues in the recipient (the host), and can be life-threatening.

An alternative approach referred to as a non-myeloablative bone marrow transplant or "mini-bone marrow transplant" is somewhat different. In this procedure, lower doses of chemotherapy are given that do not completely wipe out or "ablate" the bone marrow as in a typical bone marrow transplant. This approach may be used for someone who is older or otherwise might not tolerate the traditional procedure. In this case, the transplant works differently to treat the disease as well. Instead of replacing the bone marrow, the donated marrow can attack cancerous cells left in the body in a process referred to as "graft versus malignancy."

If you'd like to become a volunteer donor, the process is straightforward and simple. Anyone between the ages of 18 and 60 and in good health can become a donor. There is a form to fill out and a blood sample to give; you can find all the information you need at the National Marrow Donor Programwebsite. You can join a donor drive in your area or go to a local Donor Center to have the blood test done.

When a person volunteers to be a donor, his or her particular blood tissue traits, as determined by a special blood test (histocompatibility antigen test,) are recorded in the Registry. This "tissue typing" is different from a person's A, B, or O blood type. The Registry record also contains contact information for the donor, should a tissue type match be made.

Bone marrow transplants can be either autologous (from yourself) or allogeneic (from another person.) Stem cells are obtained either from peripheral blood, a bone marrow harvest or from cord blood that is saved at birth.

For a donor, the process is relatively easy. For the recipient, it can be a long and difficult process, especially when high doses of chemotherapy are needed to eliminate bone marrow. Complications are common and can include infections, bleeding, and graft versus host disease among others.

That said, bone marrow transplants can treat and even cure some diseases which had previously been almost uniformly fatal. While finding a donor was more challenging in the past, the National Marrow Donor Program has expanded such that many people without a compatible family member are now able to have a bone marrow/stem cell transplant.

Link:
How Bone Marrow and Stem Cell Transplants Work

To Read More: How Bone Marrow and Stem Cell Transplants Work
categoriaBone Marrow Stem Cells commentoComments Off on How Bone Marrow and Stem Cell Transplants Work | dataAugust 3rd, 2018
Read All

Myocyte – Wikipedia

By raymumme

"Muscle fiber" and "Myofiber" redirect here. For protein structures inside cells, see Myofibril.

A myocyte (also known as a muscle cell)[1] is the type of cell found in muscle tissue. Myocytes are long, tubular cells that develop from myoblasts to form muscles in a process known as myogenesis.[2] There are various specialized forms of myocytes: cardiac, skeletal, and smooth muscle cells, with various properties. The striated cells of cardiac and skeletal muscles are referred to as muscle fibers.[3] Cardiomyocytes are the muscle fibres that form the chambers of the heart, and have a single central nucleus.[4] Skeletal muscle fibers help support and move the body and tend to have peripheral nuclei.[5][6] Smooth muscle cells control involuntary movements such as the peristalsis contractions in the oesophagus and stomach.

The unusual microstructure of muscle cells has led cell biologists to create specialized terminology. However, each term specific to muscle cells has a counterpart that is used in the terminology applied to other types of cells:

The sarcoplasm is the cytoplasm of a muscle fiber. Most of the sarcoplasm is filled with myofibrils, which are long protein cords composed of myofilaments. The sarcoplasm is also composed of glycogen, a polysaccharide of glucose monomers, which provides energy to the cell with heightened exercise, and myoglobin, the red pigment that stores oxygen until needed for muscular activity.[7]

There are three types of myofilaments:[7]

Together, these myofilaments work to produce a muscle contraction.

The sarcoplasmic reticulum, a specialized type of smooth endoplasmic reticulum, forms a network around each myofibril of the muscle fiber. This network is composed of groupings of two dilated end-sacs called terminal cisternae, and a single transverse tubule, or T tubule, which bores through the cell and emerge on the other side; together these three components form the triads that exist within the network of the sarcoplasmic reticulum, in which each T tubule has two terminal cisternae on each side of it. The sarcoplasmic reticulum serves as reservoir for calcium ions, so when an action potential spreads over the T tubule, it signals the sarcoplasmic reticulum to release calcium ions from the gated membrane channels to stimulate a muscle contraction.[7][8]

The sarcolemma is the cell membrane of a striated muscle fiber and receives and conducts stimuli. At the end of each muscle fiber, the outer layer of the sarcolemma combines with tendon fibers.[9] Within the muscle fiber pressed against the sarcolemma are multiple flattened nuclei; this multinuclear condition results from multiple myoblasts fusing to produce each muscle fiber, where each myoblast contributes one nucleus.[7]

The cell membrane of a myocyte has several specialized regions, which may include the intercalated disk and the transverse tubular system. The cell membrane is covered by a lamina coat which is approximately 50nm wide. The laminar coat is separable into two layers; the lamina densa and lamina lucida. In between these two layers can be several different types of ions, including calcium.[10]

The cell membrane is anchored to the cell's cytoskeleton by anchor fibers that are approximately 10nm wide. These are generally located at the Z lines so that they form grooves and transverse tubules emanate. In cardiac myocytes this forms a scalloped surface.[10]

The cytoskeleton is what the rest of the cell builds off of and has two primary purposes; the first is to stabilize the topography of the intracellular components and the second is to help control the size and shape of the cell. While the first function is important for biochemical processes, the latter is crucial in defining the surface to volume ratio of the cell. This heavily influences the potential electrical properties of excitable cells. Additionally deviation from the standard shape and size of the cell can have negative prognostic impact.[10]

Each muscle fiber contains myofibrils, which are very long chains of sarcomeres, the contractile units of the cell. A cell from the biceps brachii muscle may contain 100,000 sarcomeres.[11][verification needed] The myofibrils of smooth muscle cells are not arranged into sarcomeres. The sarcomeres are composed of thin and thick filaments. Thin filaments are made of actin and attach at Z lines which help them line up correctly with each other.[12] Troponins are found at intervals along the thin filaments. Thick filaments are made of the elongated protein myosin.[13] The sarcomere does not contain organelles or a nucleus. Sarcomeres are marked by Z lines which show the beginning and the end of a sarcomere. Individual myocytes are surrounded by endomysium.

Myocytes are bound together by perimysium into bundles called fascicles; the bundles are then grouped together to form muscle tissue, which is enclosed in a sheath of epimysium. The perimysium contains blood vessels and nerves which provide for the muscle fibers. Muscle spindles are distributed throughout the muscles and provide sensory feedback information to the central nervous system. Myosin is shaped like a long shaft with a rounded end pointed out towards the surface. This structure forms the cross bridge that connects with the thin filaments.[13]

A myoblast is a type of embryonic progenitor cell that differentiates to give rise to muscle cells.[14] Differentiation is regulated by myogenic regulatory factors, including MyoD, Myf5, myogenin, and MRF4.[15] GATA4 and GATA6 also play a role in myocyte differentiation.[16]

Skeletal muscle fibers are made when myoblasts fuse together; muscle fibers therefore are cells with multiple nuclei, known as myonuclei, with each cell nucleus originating from a single myoblast. The fusion of myoblasts is specific to skeletal muscle (e.g., biceps brachii) and not cardiac muscle or smooth muscle.

Myoblasts in skeletal muscle that do not form muscle fibers dedifferentiate back into myosatellite cells. These satellite cells remain adjacent to a skeletal muscle fiber, situated between the sarcolemma and the basement membrane[17] of the endomysium (the connective tissue investment that divides the muscle fascicles into individual fibers). To re-activate myogenesis, the satellite cells must be stimulated to differentiate into new fibers.

Myoblasts and their derivatives, including satellite cells, can now be generated in vitro through directed differentiation of pluripotent stem cells.[18]

Kindlin-2 plays a role in developmental elongation during myogenesis.[19]

Muscle fibers grow when exercised and shrink when not in use. This is due to the fact that exercise stimulates the increase in myofibrils which increase the overall size of muscle cells. Well exercised muscles can not only add more size but can also develop more mitochondria, myoglobin, glycogen and a higher density of capillaries. However muscle cells cannot divide to produce new cells, and as a result we have fewer muscle cells as an adult than a newborn.[20]

When contracting, thin and thick filaments slide with respect to each other by using adenosine triphosphate. This pulls the Z discs closer together in a process called sliding filament mechanism. The contraction of all the sarcomeres results in the contraction of the whole muscle fiber. This contraction of the myocyte is triggered by the action potential over the cell membrane of the myocyte. The action potential uses transverse tubules to get from the surface to the interior of the myocyte, which is continuous within the cell membrane. Sarcoplasmic reticula are membranous bags that transverse tubules touch but remain separate from. These wrap themselves around each sarcomere and are filled with Ca2+.[13]

Excitation of a myocyte causes depolarization at its synapses, the neuromuscular junctions, which triggers action potential. With a singular neuromuscular junction, each muscle fiber receives input from just one somatic efferent neuron. Action potential in a somatic efferent neuron causes the release of the neurotransmitter acetylcholine.[21]

When the acetylcholine is released it diffuses across the synapse and binds to a receptor on the sarcolemma, a term unique to muscle cells that refers to the cell membrane. This initiates an impulse that travels across the sarcolemma.[20]

When the action potential reaches the sarcoplasmic reticulum it triggers the release of Ca2+ from the Ca2+ channels. The Ca2+ flows from the sarcoplasmic reticulum into the sarcomere with both of its filaments. This causes the filaments to start sliding and the sarcomeres to become shorter. This requires a large amount of ATP, as it is used in both the attachment and release of every myosin head. Very quickly Ca2+ is actively transported back into the sarcoplasmic reticulum, which blocks the interaction between the thin and thick filament. This in turn causes the muscle cell to relax.[20]

There are four main different types of muscle contraction: twitch, treppe, tetanus and isometric/isotonic. Twitch contraction is the process previously described, in which a single stimulus signals for a single contraction. In twitch contraction the length of the contraction may vary depending on the size of the muscle cell. During treppe (or summation) contraction muscles do not start at maximum efficiency; instead they achieve increased strength of contraction due to repeated stimuli. Tetanus involves a sustained contraction of muscles due to a series of rapid stimuli, which can continue until the muscles fatigue. Isometric contractions are skeletal muscle contractions that do not cause movement of the muscle. However, isotonic contractions are skeletal muscle contractions that do cause movement.[20]

Specialized cardiomyocytes located in the sinoatrial node are responsible for generating the electrical impulses that control the heart rate. These electrical impulses coordinate contraction throughout the remaining heart muscle via the electrical conduction system of the heart. Sinoatrial node activity is modulated, in turn, by nerve fibres of both the sympathetic and parasympathetic nervous systems. These systems act to increase and decrease, respectively, the rate of production of electrical impulses by the sinoatrial node.

There are numerous methods employed for fiber-typing, and confusion between the methods is common among non-experts. Two commonly confused methods are histochemical staining for myosin ATPase activity and immunohistochemical staining for Myosin heavy chain (MHC) type. Myosin ATPase activity is commonlyand correctlyreferred to as simply "fiber type", and results from the direct assaying of ATPase activity under various conditions (e.g. pH).[22] Myosin heavy chain staining is most accurately referred to as "MHC fiber type", e.g. "MHC IIa fibers", and results from determination of different MHC isoforms.[22] These methods are closely related physiologically, as the MHC type is the primary determinant of ATPase activity. Note, however, that neither of these typing methods is directly metabolic in nature; they do not directly address oxidative or glycolytic capacity of the fiber. When "type I" or "type II" fibers are referred to generically, this most accurately refers to the sum of numerical fiber types (I vs. II) as assessed by myosin ATPase activity staining (e.g. "type II" fibers refers to type IIA + type IIAX + type IIXA... etc.).

Below is a table showing the relationship between these two methods, limited to fiber types found in humans. Note the sub-type capitalization used in fiber typing vs. MHC typing, and that some ATPase types actually contain multiple MHC types. Also, a subtype B or b is not expressed in humans by either method.[23] Early researchers believed humans to express a MHC IIb, which led to the ATPase classification of IIB. However, later research showed that the human MHC IIb was in fact IIx,[23] indicating that the IIB is better named IIX. IIb is expressed in other mammals, so is still accurately seen (along with IIB) in the literature. Non human fiber types include true IIb fibers, IIc, IId, etc.

Further fiber typing methods are less formally delineated, and exist on more of a spectrum. They tend to be focused more on metabolic and functional capacities (i.e., oxidative vs. glycolytic, fast vs. slow contraction time). As noted above, fiber typing by ATPase or MHC does not directly measure or dictate these parameters. However, many of the various methods are mechanistically linked, while others are correlated in vivo.[26][27] For instance, ATPase fiber type is related to contraction speed, because high ATPase activity allows faster crossbridge cycling.[22] While ATPase activity is only one component of contraction speed, type I fibers are "slow", in part, because they have low speeds of ATPase activity in comparison to type II fibers. However, measuring contraction speed is not the same as ATPase fiber typing.

Because of these types of relationships, Type I and Type II fibers have relatively distinct metabolic, contractile, and motor-unit properties. The table below differentiates these types of properties. These types of propertieswhile they are partly dependent on the properties of individual fiberstend to be relevant and measured at the level of the motor unit, rather than individual fiber.[22]

Traditionally, fibers were categorized depending on their varying color, which is a reflection of myoglobin content. Type I fibers appear red due to the high levels of myoglobin. Red muscle fibers tend to have more mitochondria and greater local capillary density. These fibers are more suited for endurance and are slow to fatigue because they use oxidative metabolism to generate ATP (adenosine triphosphate). Less oxidative type II fibers are white due to relatively low myoglobin and a reliance on glycolytic enzymes.

Fibers can also be classified on their twitch capabilities, into fast and slow twitch. These traits largely, but not completely, overlap the classifications based on color, ATPase, or MHC.

Some authors define a fast twitch fiber as one in which the myosin can split ATP very quickly. These mainly include the ATPase type II and MHC type II fibers. However, fast twitch fibers also demonstrate a higher capability for electrochemical transmission of action potentials and a rapid level of calcium release and uptake by the sarcoplasmic reticulum. The fast twitch fibers rely on a well-developed, short term, glycolytic system for energy transfer and can contract and develop tension at 23 times the rate of slow twitch fibers. Fast twitch muscles are much better at generating short bursts of strength or speed than slow muscles, and so fatigue more quickly.[28]

The slow twitch fibers generate energy for ATP re-synthesis by means of a long term system of aerobic energy transfer. These mainly include the ATPase type I and MHC type I fibers. They tend to have a low activity level of ATPase, a slower speed of contraction with a less well developed glycolytic capacity. They contain high mitochondrial volumes, and the high levels of myoglobin that give them a red pigmentation. They have been demonstrated to have high concentrations of mitochondrial enzymes, thus they are fatigue resistant. Slow twitch muscles fire more slowly than fast twitch fibers, but are able to contract for a longer time before fatiguing.[28]

Individual muscles tend to be a mixture of various fiber types, but their proportions vary depending on the actions of that muscle and the species. For instance, in humans, the quadriceps muscles contain ~52% type I fibers, while the soleus is ~80% type I.[29] The orbicularis oculi muscle of the eye is only ~15% type I.[29] Motor units within the muscle, however, have minimal variation between the fibers of that unit. It is this fact that makes the size principal of motor unit recruitment viable.

The total number of skeletal muscle fibers has traditionally been thought not to change.It is believed there are no sex or age differences in fiber distribution; however, proportions of fiber types vary considerably from muscle to muscle and person to person.Sedentary men and women (as well as young children) have 45% type II and 55% type I fibers.[citation needed]People at the higher end of any sport tend to demonstrate patterns of fiber distribution e.g. endurance athletes show a higher level of type I fibers.Sprint athletes, on the other hand, require large numbers of type IIX fibers.Middle distance event athletes show approximately equal distribution of the two types. This is also often the case for power athletes such as throwers and jumpers.It has been suggested that various types of exercise can induce changes in the fibers of a skeletal muscle.[30]It is thought that if you perform endurance type events for a sustained period of time, some of the type IIX fibers transform into type IIA fibers. However, there is no consensus on the subject.It may well be that the type IIX fibers show enhancements of the oxidative capacity after high intensity endurance training which brings them to a level at which they are able to perform oxidative metabolism as effectively as slow twitch fibers of untrained subjects. This would be brought about by an increase in mitochondrial size and number and the associated related changes, not a change in fiber type.

Continued here:
Myocyte - Wikipedia

To Read More: Myocyte – Wikipedia
categoriaCardiac Stem Cells commentoComments Off on Myocyte – Wikipedia | dataJuly 31st, 2018
Read All

Market Players Developing iPS Cell Therapies – BioInformant

By raymumme

1. Cellular Dynamics International, Owned by FujiFilm Holdings

Founded in 2004 and listed on NASDAQ in July 2013, Cellular Dynamics International (CDI) is headquartered in Madison, Wisconsin. The company is known for its extremely robust patent portfolio containing more than 900 patents.

According to the company, CDI is the worlds largest producer of fully functional human cells derived from induced pluripotent stem (iPS) cells.[1] Their trademarked, iCell Cardiomyocytes, derived from iPSCs, are human cardiac cells used to aid drug discovery, improve the predictability of a drugs worth, and screen for toxicity. In addition, CDI provides: iCell Endothelial Cells for use in vascular-targeted drug discovery and tissue regeneration, iCell Hepatocytes, and iCell Neurons for pre-clinical drug discovery, toxicity testing, disease prediction, and cellular research.[2]

Induced pluripotent stem cells were first produced in 2006 from mouse cells and in 2007 from human cells, by Shinya Yamanaka at Kyoto University,[3] who also won the Nobel Prize in Medicine or Physiology for his work on iPSCs.[4] Yamanaka has ties to Cellular Dynamics International as a member of the scientific advisory board of iPS Academia Japan. IPS Academia Japan was originally established to manage the patents and technology of Yamanakas work, and is now the distributor of several of Cellular Dynamics products, including iCell Neurons, iCell Cardiomyocytes, and iCell Endothelial Cells.[5]

Importantly, in 2010 Cellular Dynamics became the first foreign company to be granted rights to use Yamanakas iPSC patent portfolio. Not only has CDI licensed rights to Yamanakas patents, but it also has a license to use Otsu, Japan-based Takara Bios RetroNectin product, which it uses as a tool to produce its iCell and MyCell products.[6]

Furthermore, in February 2015, Cellular Dynamics International announced it would be manufacturing cGMP HLA Superdonor stem cell lines that will support cellular therapy applications through genetic matching.[8] Currently, CDI has two HLA super donor cell lines that provide a partial HLA match to approximately 19% of the population within the U.S., and it aims to expand its master stem cell bank by collecting more donor cell lines that will cover 95% of the U.S. population.[9] The HLA super donor cell lines were manufactured using blood samples and used to produce pluripotent iPSC lines, giving the cells the capacity to differentiate into nearly any cell within the human body.

On March 30, 2015, Fujifilm Holdings Corporation announced that it was acquiring CDI for $307 million, allowing CDI to continue to run its operations in Madison, Wisconsin, and Novato, California as a consolidated subsidiary of Fujifilm.[14] A key benefit of the merger is that CDIs technology platform enables the production of high-quality fully functioning iPSCs (and other human cells) on an industrial scale, while Fujifilm has developed highly-biocompatible recombinant peptides that can be shaped into a variety of forms for use as a cellular scaffold in regenerative medicine when used in conjunction with CDIs products.[15]

Additionally, Fujifilm has been strengthening its presence in the regenerative medicine field over the past several years, including a recent A$4M equity stake in Cynata Therapeutics and an acquisition of Japan Tissue Engineering Co. Ltd. in December 2014. Most commonly called J-TEC, Japan Tissue Engineering Co. Ltd. successfully launched the first two regenerative medicine products in the country of Japan. According to Kaz Hirao, CEO of CDI, It is very important for CDI to get into the area of therapeutic products, and we can accelerate this by aligning it with strategic and technical resources present within J-TEC.

Kaz Hirao also states, For our Therapeutic businesses, we will aim to file investigational new drugs (INDs) with the U.S. FDA for the off-the-shelf iPSC-derived allogeneic therapeutic products. Currently, we are focusing on retinal diseases, heart disorders, Parkinsons disease, and cancers. For those four indicated areas, we would like to file several INDs within the next five years.

Finally, in September 2015, CDI again strengthened its iPS cell therapy capacity by setting up a new venture, Opsis Therapeutics. Opsis is focused on discovering and developing novel medicines to treat retinal diseases and is a partnership with Dr. David Gamm, the pioneer of iPS cell-derived retinal differentiation and transplantation.

In summary, several key events indicate CDIs commitment to developing iPS cell therapeutics, including:

Australian stem cell company Cynata Therapeutics (ASX:CYP) is taking a unique approach by creating allogeneic iPSC derived mesenchyal stem cell (MSCs) on a commercial scale. Cynatas Cymerus technology utilizes iPSCs provided by Cellular Dynamics International, a Fujifilm company, as the starting material for generating mesenchymoangioblasts (MCAs), and subsequently, for manufacturing clinical-grade MSCs. According to Cynatas Executive Chairman Stewart Washer who was interviewed by The Life Sciences Report, The Cymerus technology gets around the loss of potency with the unlimited iPS cellor induced pluripotent stem cellwhich is basically immortal.

On January 19, 2017, Fujifilm took an A$3.97 million (10%) strategic equity stake in Cynata, positioning the parties to collaborate on the further development and commercialization of Cynatas lead Cymerus therapeutic MSC product CYP-001 for graft-versus-host disease (GvHD). (CYP-001 is the product designation unique to the GVHD indication). The Fujifilm partnership also includes potential future upfront and milestone payments in excess of A$60 million and double-digit royalties on CYP-001 product net sales for Cynata Therapeutics, as well as a strategic relationship for the potential future manufacture of CYP-001 and certain rights to other Cynata technology.

One of the key inventors of Cynatas technology is Igor Slukvin, MD, Ph.D., Scientific Founder of Cellular Dynamics International (CDI) and Cynata Therapeutics. Dr. Slukvin has released more than 70 publications about stem cell topics, including the landmark article in Cell describing the now patented Cymerus technique. Dr. Slukvins co-inventor is Dr. James Thomson, the first person to isolate an embryonic stem cell (ESC) and one of the first people to create a human induced pluripotent stem cell (hiPSC). Dr. James Thompson was the Founder of CDI in 2004.

There are three strategic connections between Cellular Dynamics International (CDI) and Cynata Therapeutics, which include:

Recently, Cynata received advice from the UK Medicines and Healthcare products Regulatory Agency (MHRA) that its Phase I clinical trial application has been approved, titled An Open-Label Phase 1 Study to Investigate the Safety and Efficacy of CYP-001 for the Treatment of Adults With Steroid-Resistant Acute Graft Versus Host Disease. It will be the worlds first clinical trial involving a therapeutic product derived from allogeneic (unrelated to the patient) induced pluripotent stem cells (iPSCs).

Participants for Cynatas upcoming Phase I clinical trial will be adults who have undergone an allogeneic haematopoietic stem cell transplant (HSCT) to treat a hematological disorder and subsequently been diagnosed with steroid-resistant Grade II-IV GvHD. The primary objective of the trial is to assess safety and tolerability, while the secondary objective is to evaluate the efficacy of two infusions of CYP-001 in adults with steroid-resistant GvHD.

Using Professor Yamanakas Nobel Prize-winning achievement of ethically uncontentious iPSCs and CDIs high-quality iPSCs as source material, Cynata has achieved two world firsts:

Cynata has also released promising pre-clinical data in Asthma, Myocardial Infarction (Heart Attack), and Critical Limb Ischemia.

There are four key advantages of Cynatas proprietary Cymerus MSC manufacturing platform. Because the proprietary Cymerus technology allows nearly unlimited production of MSCs from a single iPSC donor, there is batch-to-batch uniformity. Utilizing a consistent starting material allows for a standardized cell manufacturing process and a consistent cell therapy product. Unlike other companies involved with MSC manufacturing, Cynata does not require a constant stream of new donors in order to source fresh stem cells for its cell manufacturing process, nor does it require the massive expansion of MSCs necessitated by reliance on freshly isolated donations.

Finally, Cynata has achieved a cost-savings advantage through its unique approach to MSC manufacturing. Its proprietary Cymerus technology addresses a critical shortcoming in existing methods of production of MSCs for therapeutic use, which is the ability to achieve economic manufacture at commercial scale.

On June 22, 2016, RIKEN announced that it is resuming its retinal induced pluripotent stem cell (iPSC) study in partnership with Kyoto University.

2013 was the first time in which clinical research involving transplant of iPSCs into humans was initiated, led by Masayo Takahashi of the RIKEN Center for Developmental Biology (CDB) in Kobe, Japan. Dr. Takahashi and her team were investigating the safety of iPSC-derived cell sheets in patients with wet-type age-related macular degeneration. Although the trial was initiated in 2013 and production of iPSCs from patients began at that time, it was not until August of 2014 that the first patient, a Japanese woman, was implanted with retinal tissue generated using iPSCs derived from her own skin cells.

A team of three eye specialists, led by Yasuo Kurimoto of the Kobe City Medical Center General Hospital, implanted a 1.3 by 3.0mm sheet of iPSC-derived retinal pigment epithelium cells into the patients retina.[196] Unfortunately, the study was suspended in 2015 due to safety concerns. As the lab prepared to treat the second trial participant, Yamanakas team identified two small genetic changes in the patients iPSCs and the retinal pigment epithelium (RPE) cells derived from them. Therefore, it is major news that the RIKEN Institute will now be resuming the worlds first clinical study involving the use of iPSC-derived cells in humans.

According to the Japan Times, this attempt at the clinical study will involve allogeneic rather than autologous iPSC-derived cells for purposes of cost and time efficiency. Specifically, the researchers will be developing retinal tissues from iPS cells supplied by Kyoto Universitys Center for iPS Cell Research and Application, an institution headed by Nobel prize winner Shinya Yamanaka. To learn about this announcement, view this article from Asahi Shimbun, a Tokyo- based newspaper.

In November 2015 Astellas Pharma announced it was acquiring Ocata Therapeutics for $379M. Ocata Therapeutics is a biotechnology company that specializes in the development of cellular therapies, using both adult and human embryonic stem cells to develop patient-specific therapies. The companys main laboratory and GMP facility are in Marlborough, Massachusetts, and its corporate offices are in Santa Monica, California.

When a number of private companies began to explore the possibility of using artificially re-manufactured iPSCs for therapeutic purposes, one such company that was ready to capitalize on the breakthrough technology was Ocata Therapeutics, at the time called Advanced Cell Technology. In 2010, the company announced that it had discovered several problematic issues while conducting experiments for the purpose of applying for U.S. Food and Drug Administration approval to use iPSCs in therapeutic applications. Concerns such as premature cell death, mutation into cancer cells, and low proliferation rates were some of the problems that surfaced. [17]

As a result, the company shifted its induced pluripotent stem cell approach to producing iPS cell-derived human platelets, as one of the benefits of a platelet-based product is that platelets do not contain nuclei, and therefore, cannot divide or carry genetic information. While the companys Induced Pluripotent Stem Cell-Derived Human Platelet Program received a great deal of media coverage in late 2012, including being awarded the December 2012 honor of being named one of the 10 Ideas that Will Shape the Year by New Scientist Magazine,[178]. Unfortunately, the company did not succeed in moving the concept through to clinical testing in 2013.

Nonetheless, Astellas is clearly continuing to develop Ocatas pluripotent stem cell technologies involving embryonic stem cells (ESCs) and induced pluripotent stem cells (iPS cells). In a November 2015 presentation by Astellas President and CEO, Yoshihiko Hatanaka, he indicated that the company will aim to develop an Ophthalmic Disease Cell Therapy Franchise based around its embryonic stem cell (ESC) and induced pluripotent stem cell (iPS cell) technology. [19]

What other companies are developing iPSC derived therapeutics and products? Share your thoughts in the comments below.

BioInformant is the first and only market research firm to specialize in the stem cell industry. BioInformant research has been cited by major news outlets that include the Wall Street Journal, Nature Biotechnology, Xconomy, and Vogue Magazine. Serving Fortune 500 leaders that include GE Healthcare, Pfizer, and Goldman Sachs. BioInformant is your global leader in stem cell industry data.

Footnotes[1] CellularDynamics.com (2014). About CDI. Available at: http://www.cellulardynamics.com/about/index.html. Web. 1 Apr. 2015.[2] Ibid.[3] Takahashi K, Yamanaka S (August 2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (4): 66376.[4] 2012 Nobel Prize in Physiology or Medicine Press Release. Nobelprize.org. Nobel Media AB 2013. Web. 7 Feb 2014. Available at: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2012/press.html. Web. 1 Apr. 2015.[5] Striklin, D (Jan 13, 2014). Three Companies Banking on Regenerative Medicine. Wall Street Cheat Sheet. Retrieved Feb 1, 2014 from, http://wallstcheatsheet.com/stocks/3-companies-banking-on-regenerative-medicine.html/?a=viewall.%5B6%5D Striklin, D (2014). Three Companies Banking on Regenerative Medicine. Wall Street Cheat Sheet [Online]. Available at: http://wallstcheatsheet.com/stocks/3-companies-banking-on-regenerative-medicine.html/?a=viewall. Web. 1 Apr. 2015.[7] Cellular Dynamics International (July 30, 2013). Cellular Dynamics International Announces Closing of Initial Public Offering [Press Release]. Retrieved from http://www.cellulardynamics.com/news/pr/2013_07_30.html.%5B8%5D Investors.cellulardynamics.com,. Cellular Dynamics Manufactures Cgmp HLA Superdonor Stem Cell Lines To Enable Cell Therapy With Genetic Matching (NASDAQ:ICEL). N.p., 2015. Web. 7 Mar. 2015.[9] Ibid.[10] Cellulardynamics.com,. Cellular Dynamics | Mycell Products. N.p., 2015. Web. 7 Mar. 2015.[11]Sirenko, O. et al. Multiparameter In Vitro Assessment Of Compound Effects On Cardiomyocyte Physiology Using Ipsc Cells.Journal of Biomolecular Screening 18.1 (2012): 39-53. Web. 7 Mar. 2015.[12] Sciencedirect.com,. Prevention Of -Amyloid Induced Toxicity In Human Ips Cell-Derived Neurons By Inhibition Of Cyclin-Dependent Kinases And Associated Cell Cycle Events. N.p., 2015. Web. 7 Mar. 2015.[13] Sciencedirect.com,. HER2-Targeted Liposomal Doxorubicin Displays Enhanced Anti-Tumorigenic Effects Without Associated Cardiotoxicity. N.p., 2015. Web. 7 Mar. 2015.[14] Cellular Dynamics International, Inc. Fujifilm Holdings To Acquire Cellular Dynamics International, Inc.. GlobeNewswire News Room. N.p., 2015. Web. 7 Apr. 2015.[15] Ibid.[16] Cyranoski, David. Japanese Woman Is First Recipient Of Next-Generation Stem Cells. Nature (2014): n. pag. Web. 6 Mar. 2015.[17] Advanced Cell Technologies (Feb 11, 2011). Advanced Cell and Colleagues Report Therapeutic Cells Derived From iPS Cells Display Early Aging [Press Release]. Available at: http://www.advancedcell.com/news-and-media/press-releases/advanced-cell-and-colleagues-report-therapeutic-cells-derived-from-ips-cells-display-early-aging/.%5B18%5D Advanced Cell Technology (Dec 20, 2012). New Scientist Magazine Selects ACTs Induced Pluripotent Stem (iPS) Cell-Derived Human Platelet Program As One of 10 Ideas That Will Shape The Year [Press Release]. Available at: http://articles.latimes.com/2009/mar/06/science/sci-stemcell6. Web. 9 Apr. 2015.[19] Astellas Pharma (2015). Acquisition of Ocata Therapeutics New Step Forward in Ophthalmology with Cell Therapy Approach. Available at: https://www.astellas.com/en/corporate/news/pdf/151110_2_Eg.pdf. Web. 29 Jan. 2017.

Read the original here:
Market Players Developing iPS Cell Therapies - BioInformant

To Read More: Market Players Developing iPS Cell Therapies – BioInformant
categoriaIPS Cell Therapy commentoComments Off on Market Players Developing iPS Cell Therapies – BioInformant | dataJuly 27th, 2018
Read All

Cardiac stem cells rejuvenate rats’ aging hearts … – CNN

By JoanneRUSSELL25

The old rats appeared newly invigorated after receiving their injections. As hoped, the cardiac stem cells improved heart function yet also provided additional benefits. The rats' fur fur, shaved for surgery, grew back more quickly than expected, and their chromosomal telomeres, which commonly shrink with age, lengthened.

The old rats receiving the cardiac stem cells also had increased stamina overall, exercising more than before the infusion.

"It's extremely exciting," said Dr. Eduardo Marbn, primary investigator on the research and director of the Cedars-Sinai Heart Institute. Witnessing "the systemic rejuvenating effects," he said, "it's kind of like an unexpected fountain of youth."

"We've been studying new forms of cell therapy for the heart for some 12 years now," Marbn said.

Some of this research has focused on cardiosphere-derived cells.

"They're progenitor cells from the heart itself," Marbn said. Progenitor cells are generated from stem cells and share some, but not all, of the same properties. For instance, they can differentiate into more than one kind of cell like stem cells, but unlike stem cells, progenitor cells cannot divide and reproduce indefinitely.

Since heart failure with preserved ejection fraction is similar to aging, Marbn decided to experiment on old rats, ones that suffered from a type of heart problem "that's very typical of what we find in older human beings: The heart's stiff, and it doesn't relax right, and it causes fluid to back up some," Marbn explained.

He and his team injected cardiosphere-derived cells from newborn rats into the hearts of 22-month-old rats -- that's elderly for a rat. Similar old rats received a placebo injection of saline solution. Then, Marbn and his team compared both groups to young rats that were 4 months old. After a month, they compared the rats again.

Even though the cells were injected into the heart, their effects were noticeable throughout the body, Marbn said

"The animals could exercise further than they could before by about 20%, and one of the most striking things, especially for me (because I'm kind of losing my hair) the animals ... regrew their fur a lot better after they'd gotten cells" compared with the placebo rats, Marbn said.

The rats that received cardiosphere-derived cells also experienced improved heart function and showed longer heart cell telomeres.

Why did it work?

The working hypothesis is that the cells secrete exosomes, tiny vesicles that "contain a lot of nucleic acids, things like RNA, that can change patterns of the way the tissue responds to injury and the way genes are expressed in the tissue," Marbn said.

It is the exosomes that act on the heart and make it better as well as mediating long-distance effects on exercise capacity and hair regrowth, he explained.

Looking to the future, Marbn said he's begun to explore delivering the cardiac stem cells intravenously in a simple infusion -- instead of injecting them directly into the heart, which would be a complex procedure for a human patient -- and seeing whether the same beneficial effects occur.

Dr. Gary Gerstenblith, a professor of medicine in the cardiology division of Johns Hopkins Medicine, said the new study is "very comprehensive."

"Striking benefits are demonstrated not only from a cardiac perspective but across multiple organ systems," said Gerstenblith, who did not contribute to the new research. "The results suggest that stem cell therapies should be studied as an additional therapeutic option in the treatment of cardiac and other diseases common in the elderly."

Todd Herron, director of the University of Michigan Frankel Cardiovascular Center's Cardiovascular Regeneration Core Laboratory, said Marbn, with his previous work with cardiac stem cells, has "led the field in this area."

"The novelty of this bit of work is, they started to look at more precise molecular mechanisms to explain the phenomenon they've seen in the past," said Herron, who played no role in the new research.

One strength of the approach here is that the researchers have taken cells "from the organ that they want to rejuvenate, so that makes it likely that the cells stay there in that tissue," Herron said.

He believes that more extensive study, beginning with larger animals and including long-term followup, is needed before this technique could be used in humans.

"We need to make sure there's no harm being done," Herron said, adding that extending the lifetime and improving quality of life amounts to "a tradeoff between the potential risk and the potential good that can be done."

Capicor hasn't announced any plans to do studies in aging, but the possibility exists.

After all, the cells have been proven "completely safe" in "over 100 human patients," so it would be possible to fast-track them into the clinic, Marbn explained: "I can't tell you that there are any plans to do that, but it could easily be done from a safety viewpoint."

Read the original:
Cardiac stem cells rejuvenate rats' aging hearts ... - CNN

To Read More: Cardiac stem cells rejuvenate rats’ aging hearts … – CNN
categoriaCardiac Stem Cells commentoComments Off on Cardiac stem cells rejuvenate rats’ aging hearts … – CNN | dataJuly 24th, 2018
Read All

iPSC | Induced Pluripotent Stem Cells | Human | HiPSC …

By daniellenierenberg

Consistency

Quality Control and Testing

Product Selection & Support

HiPSC Custom Services

Human Induced Pluripotent Stem Cells (HiPSC)Top:HiPSC express pluriotency markers OCT4, Nanog, LIN28 and SSEA-4.Bottom:HiPSC differentiate into cell derivatives from the 3 embryonic layers: Neuronal marker beta III tubulin (TUJ1), Smooth Muscle Actin (SMA) and Hepatocyte Nuclear Factor 3 Beta (HNF3b).

Cutting-edge development and manufacturing provides high quality, thoroughly-characterized HiPSC cells to researchers around the world. HiPSC are generated from somatic cells, eliminating ethical considerations associated with scientific work based on embryonic stem cells. Furthermore, being donor/patient-specific, they open possibilities for a wide variety of studies in biomedical research. Donor somatic cells carry the genetic makeup of the diseased patient, hence HiPSC can be used directly to model disease on a dish.

Thus, one of the main uses of HiPSC has been in genetic disease modeling in organs and tissues, such as the brain (Alzheimers, Autism Spectrum Disorders), heart (Familial Hypertrophic, Dilated, and Arrhythmogenic Right Ventricular Cardiomyopathies), and skeletal muscle (Amyotrophic Lateral Sclerosis, Spinal Muscle Atrophy). The combination of HiPSC technology and gene editing strategies such as the CRISPR/Cas9 system creates a powerful platform in which disease-causing mutations can be created on demand and sets of isogenic cell lines (with and without mutations) serve as convenient tools for disease modeling studies.

Other applications of HiPSC and iPSC-differentiated cells include drug screening, development, efficacy and toxicity assessment. As an example, through the FDA-backed CiPA (Comprehensive in vitro Pro-Arrhythmia Assessment) initiative, HiPSC-derived cardiac muscle cells (cardiomyocytes) are poised to constitute a new standard model for the evaluation of cardiotoxicity of new drugs, which is the main reason of drug withdrawal from the market. Finally, HiPSC-differentiated cells are being used in early stage technology development for applications in regenerative medicine. Bio-printing and tissue constructs have also been considered as attractive applications for HiPSC.

Human iPSC and Derived Cells are forResearch Use Only (RUO). Not for human clinical or therapeutic use.

See original here:
iPSC | Induced Pluripotent Stem Cells | Human | HiPSC ...

To Read More: iPSC | Induced Pluripotent Stem Cells | Human | HiPSC …
categoriaCardiac Stem Cells commentoComments Off on iPSC | Induced Pluripotent Stem Cells | Human | HiPSC … | dataJuly 13th, 2018
Read All

Skin & Human Stem Cells – BareFacedTruth.com

By LizaAVILA

We have a lot of knowledge to share with you about stem cells and their value in skin care. We thought we would start with a current review of ongoing work in human stem cell science to give you some context. In the next few days we will be getting a lot more specific about wound healing, anti-aging, and related applications.

Human Stem Cells: Introduction

Future advances in many medical fields are thought to be dependent on continued progress in stem cell research. In this section, BTF briefly looks at the future of stem cell based therapies in the treatment of traumatic injury, degenerative diseases, and other ailments, and concludes with a review of current cell based therapies (stem cell and non-stem cell) in the field of skin care.

While the possible indications for stem cell based therapies are numerous,the field of stem cell science is young and years (or decades) may pass before todays promising laboratory results translate into useful clinical treatments. Only time will tell whether successes evolve or remain frustratingly elusive. We do know that success is possible.

The first stem cell therapy was bone marrow transplantation, originally accomplished in the mid 1960s. Last year, there were more than 50,000 such transplants worldwide. In earlier years, infusion of filtered bone marrow cells was performed with stem cells comprising but a very small part of the volume. Newer techniques have made it possible to separate cellular types to enable use of much higher concentrations of stem cells.

Much progress has been made in characterizing stem cells and understanding how they function. There is much more to the story than differentiation into tissue specific cells. Recent research shows that perhaps even more important is the fact that stem cells, especially certain types of stem cells, communicate with the cells around them by producing cellular signals called cytokines, of which there are hundreds.

Cytokines trigger specific receptors on cell membranes that result in precise responses. This phenomenon is considered an essential element in the healing response of all tissues. Identifying and characterizing the large number of cytokines is an important part of stem cell research.

Not every induced response is necessarily beneficial. It is the symphony of responses that is important. How to promote helpful responses while inhibiting non-beneficial ones is a continuing focus of cellular biochemical research as well as the basis upon which drug companies spend huge resources developing drugs to either trigger or block particular cytokine receptors. Good examples in the field of dermatology are EGFR (epidermal growth factor receptor) blocking compounds for use in treating susceptible cells, most notably cancers stimulated by EGF.

Potential Treatments

Stem cell therapies hold potential to treat many conditions and diseases that affect millions of people in the U.S.

From the Laboratory to the Bedside

Going from the research laboratory to the bedside takes time. Only one month ago, the FDA granted marketing approval for the first licensed stem cell product. Derived from donated umbilical cord blood, the product contains stem cells that can restore a recipients blood cell levels and function. In the chart below, the type of cells recovered from umbilical cord blood are those designated as HSC cell. They are the exact cells responsible for the success of bone marrow transplantation.

Of particular note are the cells designated in the chart as MSC or mesenchymal stem cells. MSC cells are the focus of intense research in the treatment of a number of conditions because this type of stem cell can differentiate into a variety of cell types including bone, cartilage, muscles, nerve, and skin (fibroblast.)

Recent announcements about stem cells being used to fabricate replacement parts (bone, cartilage, heart muscle) are based on MSC research. They truly are the duct tape of the bodys repair tool box; a phrase coined because of their importance in the healing of injuries.

Research has shown MSC cells reside in a number of tissues, including the bone marrow. Through precise chemical signaling that originate from sites of injury, MSC cells have the ability to become mobile, enter the blood stream and travel through the circulation to the injury. Upon arrival, MSCs orchestrate the healing response. Local resident stem cells are also called into action, to produce more stem cells or to produce needed tissue specific cells. In large part, MSCs accomplish their tasks bio-chemically.

Secreted cytokines have been identified as themajormechanism by which MSCs perform their important reparative functions. There are hundreds of cytokines identified thus far. The healing response is an intricate and balanced process in which many cytokines participate.

Despite their inherent ability to differentiate into essentially any type of cell, embryonic stem cells are unlikely to be a major research focus in the foreseeable future. Ethical and political considerations limit the acceptability of their use. Federal regulations permit research only on existing cell lines which are few in number. It is difficult to see how this prohibition will end any time soon.

Getting Closer butNot There Yet

MSC (mesenchymal stem cell) therapies include use ofcellsanduse of MSC factors, the cytokines or chemical messengers mentioned above. Methods of administration will likely include intravenous infusion, injections into tissues or body spaces, or development of drugs that activate or block certain cytokine effects. Drugs already in development include epidermal growth factor receptor (EGFR) blockers for use in cancer treatment.

Stem Cells and Skin Health

From fetal life to death, the numbers and activity of stem cells diminish. The chart at left shows how the population of mesenchymal stem cells in the bone marrow dwindles with age.

Knowing that stem cells are important in producing differentiated daughter cells (such as fibroblasts within the dermis) and are instrumental in orchestrating the bodys response to injury, it is easy to understand how skin damage from sun exposure, gravity, smoking, trauma, toxins, even repetitive facial movement, accumulates over time.

This is one line of evidence (we will look at others) that mesenchymal stem cells (or more specifically the relative lack of same) has a lot to do with aging. Skin aging included.

Products Claiming to Activate Skin Stem Cells

The number of skin products claiming to activate human skin stem cells is large and growing. As discussed previously on BFT, a whole slew of plant derived stem cell products are being marketing, NONE of which can actually or theoretically activate anything, especially not a human stem cell.

Other products claim to have essential nutrients or antioxidants or some other magical ingredient that will suddenly make stem cells take notice and unleash their regenerative power. It is highly unlikely, except in the most extreme case of malnourishment, that any nutrient or antioxidant is deficient enough to cause a cell not to function.

These and the botanical stem cell products are marketing ploys. Human stem cells deep within the dermis will never know whether or not these substances are applied. Moisturizers and other recognized ingredients in these products can be beneficial to skin appearancebut not because a stem cell is involved.

This is worse than junk science. This is scamming.

Link:
Skin & Human Stem Cells - BareFacedTruth.com

To Read More: Skin & Human Stem Cells – BareFacedTruth.com
categoriaSkin Stem Cells commentoComments Off on Skin & Human Stem Cells – BareFacedTruth.com | dataJuly 13th, 2018
Read All

iPS Cell Therapy: Is Japan the Market Leader?

By NEVAGiles23

Although there are key players in markets like the U.S., Australia, and the EU, Japan continues to accelerates its position as a hub for induced pluripotent stem cell (iPS cell) therapy with generous funding, acquisitions, and strategic partnerships.

Pluripotent stem cells are cells that are capable of developing into any type of cell or tissue in the human body. These cells have the capability to replicate and help in repairing damaged tissues within the body. In 2006, the Japanese scientist Shinya Yamanaka demonstrated that an ordinary cell can be turned into a pluripotent cell by genetic modification. These genetically reprogrammed cells are known as induced pluripotent cells, also called iPS cells or iPSCs.

An induced pluripotent stem cell (iPS cell) is a type of pluripotent stem cell that has the capacity to divide indefinitely and create any cell found within the three germ layers of an organism. These layers include the ectoderm (cells giving rise to the skin and nervous system), endoderm (cells forming gastrointestinal and respiratory tracts, endocrine gland, liver, and pancreas), and mesoderm (cells forming bones, cartilage, most of the circulatory system, muscles, connective tissues, and other related tissues.).

iPS cells have significant potential for therapeutic applications. For autologous applications, the cells are extracted from the patients own body, making them genetically identical to the patient and eliminating the issues associated with tissue matching and tissue rejection.

iPS cells have the potential to be used to treat a wide range of diseases, including diabetes, heart diseases, autoimmune diseases, and neural complications, such as Parkinsons disease, Alzheimers disease.

Over the past few years, Japan has accelerated its position as a hub for regenerative medicine research, largely driven by support from Prime Minister Shinzo Abe who has identified regenerative medicine and cellular therapy as key to the Japans strategy to drive economic growth.

The Prime Minister has encouraged a growing range of collaborations between private industry and academic partners through an innovative legal framework approved last fall.

He has also initiated campaigns to drive technological advances in drugs and devices by connecting private companies with public funding sources. The result has been to drive progress in both basic and applied research involving induced pluripotent stem cells (iPS cells) and related stem cell technologies.

2013 was a landmark year in Japan, because it saw the first cellular therapy involving transplant of iPS cells into humans initiated at the RIKEN Center in Kobe, Japan.[1]Led by Masayo Takahashi of theRIKEN Center for Developmental Biology (CDB).Dr. Takahashi and her team wereinvestigating the safety of iPSC-derived cell sheets in patients with wet-type age-related macular degeneration.

To speed things along, RIKEN did not seek permission for a clinical trial involving iPS cells, but instead applied for a type of pretrial clinical research allowed under Japanese regulations.The RIKEN Center is Japans largest, most comprehensive research institution, backed by both Japans Health Ministry and government.

This pretrial clinical research allowed the RIKEN research team to test the use of iPS cells for the treatment of wet-type age-related macular degeneration (AMD) on a very small scale, in only a handful of patients.Unfortunately, the study was suspended in 2015 due to safety concerns. As the lab prepared to treat the second trial participant, Yamanakas team identified two small genetic changes in the patients iPSCs and the retinal pigment epithelium (RPE) cells derived from them.

However, in June 2016 RIKEN Institute announced that it would be resuming the clinical study involving the use of iPSC-derived cellsin humans.According to theJapan Times, this second attempt at the clinical studyis using allogeneic rather than autologous iPSC-derived cells, because of the greater cost and time efficiencies.

Specifically,the researchers will be developing retinal tissues from iPS cells supplied by Kyoto Universitys Center for iPS Cell Research and Application, an institution headed by Nobel prize winner Shinya Yamanaka.

Japan has a unique affection for iPS cells, as the cells were originally discovered by the Japanese scientist, Shinya Yamanaka of Kyoto University. Mr. Yamanaka was awarded the Nobel Prize in Physiology or Medicine for 2012, an honor shared jointly with John Gurdon, for the discovery that mature cells can be reprogrammed to become pluripotent.

In addition, Japans Education Ministry said its planning to spend 110 billion yen ($1.13 billion) on induced pluripotent stem cell research during the next 10 years, and the Japanese parliament has been discussing bills that would speed the approval process and ensure the safety of such treatments.[3]

In April, Japanese parliament even passed a law calling for Japan to make regenerative medical treatments like iPSC technology available for its citizens ahead of the rest of the world.[4] If those forces were not enough, Masayo Takahashi of the RIKEN Center for Developmental Biology in Kobe, Japan, who is heading the worlds first clinical research using iPSCs in humans, was also chosen by the journal Natureas one of five scientists to watch in 2014.[5]

Clearly, Japan is the global leader in iPS cell technologies and therapies. However, progress with stem cells has not been without setbacks within Japan, including a recent scandal at the RIKEN Institute that involved falsely manipulated research findings and a hold on the first clinical trial involving transplant of an iPS cell product into humans.

Nonetheless, Japan has emerged from these troubles to become the most liberalized nation pursuing the development of iPS cell products and services.

iPS cells represent one of the most promising advances within the field of stem cell research, because of their diverse ability to differentiate into any of the approximately 200 cell types that compose the human body.

Even though there is growing evidence to support the safety of iPS cells within cell therapy applications,some people remain concerned that patients who receive implants of iPS derived cells might be at risk of cancer, as genetic manipulation is required to create the cell type.

In a world-first, Cynata Therapeutics (ASX:CYP) received approval in September 2016 to launch a clinical trial in the UK with the worlds first first formal clinical trial of an allogeneic iPSC-derived cell product, which it calls CYP-001.The study involves centers in both the UK and Australia.

In this landmark trial, the Australian regenerative medicine company is testing an iPS cell-derived mesenchymal stem cell (MSC) product for the treatment of Graft-vs-Host-Disease (GvHD).Not surprisingly, the Japanese conglomerate Fujifilm is also involved with this historic trial.

Headquartered in Tokyo, Fujifilm is one of the largest players in regenerative medicine field and has invested significantly into stem cells through their acquisition of Cellular Dynamics International (CDI). Additionally, Fujifilm has invested in Japan Tissue Engineering Co. Ltd. (J-Tec), giving it a broad base in regenerative medicine across multiple therapeutic areas.

For a young company like Cynata, having validation from an industry giant like Fujifilm is a huge boost. As stated by Cynata CEO, Dr. Ross Macdonald, The decision by Fujifilm confirms that our technology is very exciting in their eyes. It is a useful yardstick for other investors as well. Of course, the effect of the relationship with Fujifilm on our balance sheet is also important.

If Fujifilm exercises their option to license Cynatas GvHD product, then the costs of the product and commercialization will become the responsibility of Fujifilm. Cynata would also receive milestone payments from Fujifilm of approximately $60M AUS and a double-digit royalty payment.

Cynata was also the first to scale-up manufacture of an allogeneic cGMP iPS celll line. It sourced the cell line from Cellular Dynamics International (CDI) when CDI was still an independent company listed on NASDAQ. In April 2015, CDI was subsequently acquired by Fujifilm, who as mentioned, is a major shareholder in Cynata and its strategic partner for GvHD.

Although Cynata is showing promising early-stage data from its GvHD trial, methods for commercializing iPS cells are still being explored and clinical studies investigating iPS cells remain extremely low in number.

Footnotes[1] Dvorak, K. (2014).Japan Makes Advance on Stem-Cell Therapy [Online]. Available at: http://online.wsj.com/news/articles/SB10001424127887323689204578571363010820642. Web. 14 Apr. 2015.[2] Note: In the United States, some patients have been treated with retina cells derived from embryonic stem cells (ESCs) to treat macular degeneration. There was a successful patient safety test for this stem cell treatment last year that was conducted at the Jules Stein Eye Institute in Los Angeles. The ESC-derived cells used for this study were developed by Advanced Cell Technology, Inc, a company located in Marlborough, Massachusetts.[3] Dvorak, K. (2014).Japan Makes Advance on Stem-Cell Therapy [Online]. Available at: http://online.wsj.com/news/articles/SB10001424127887323689204578571363010820642. Web. 8 Apr. 2015.[4] Ibid.[5] Riken.jp. (2014).RIKEN researcher chosen as one of five scientists to watch in 2014 | RIKEN [Online]. Available at: http://www.riken.jp/en/pr/topics/2014/20140107_1/. Web. 14 Apr. 2015.

View original post here:
iPS Cell Therapy: Is Japan the Market Leader?

To Read More: iPS Cell Therapy: Is Japan the Market Leader?
categoriaIPS Cell Therapy commentoComments Off on iPS Cell Therapy: Is Japan the Market Leader? | dataJuly 11th, 2018
Read All

Groundbreaking Cellular Therapy Applications | Cellular …

By daniellenierenberg

iPSCells Represent a Superior Approach

iPS cell-derived cardiomyocyte patch demonstrates spontaneous and synchronized contractions after 4 days in culture.

One of the greatest promises of human stem cells is to transform these early-stage cells into treatments for devastating diseases. Stem cells can potentially be used to repair damaged human tissues and to bioengineer transplantable human organs using various technologies, such as 3D printing. Using stem cells derived from another person (allogeneic transplantation) or from the patient (autologous transplantation), research efforts are underway to develop new therapies for historically difficult to treat conditions. In the past, adult stem and progenitor cells were used, but the differentiation of these cell types has proven to be difficult to control. Initial clinical trials using induced pluripotent stem (iPS) cells indicate that they are far superior for cellular therapy applications because they are better suited to scientific manipulation.

CDIs iPS cell-derived iCell and MyCell products are integral to the development of a range ofcell therapyapplications. A study using iCell Cardiomyocytesas part of a cardiac patch designed to treat heart failure is now underway. This tissue-engineered implantable patch mayemerge as apotential myocardial regeneration treatment.

Another study done with iPS cell-derived cells and kidney structures has marked an important first step towards regenerating, and eventually transplanting, a functioning human organ. In this work, iCell Endothelial Cellswere used to help to recapitulatethe blood supply of a laboratory-generated kidney scaffold. This type of outcome will be crucial for circulation and nutrient distribution in any rebuilt organ.

iCell Endothelial Cells revascularize kidney tissue. (Data courtesy of Dr. Jason Wertheim, Northwestern University)

CDI and its partners are leveraging iPS cell-derived human retinal pigment epithelial (RPE) cells to develop and manufacture autologous treatments for dry age-related macular degeneration (AMD). The mature RPE cells will be derivedfrom the patients own blood cells using CDIs MyCell process. Ifapproved by the FDA, this autologous cellular therapy wouldbe one of the first of its kind in the U.S.

Learn more about the technologybehind the development of these iPScell-derived cellular therapies.

Read the original here:
Groundbreaking Cellular Therapy Applications | Cellular ...

To Read More: Groundbreaking Cellular Therapy Applications | Cellular …
categoriaIPS Cell Therapy commentoComments Off on Groundbreaking Cellular Therapy Applications | Cellular … | dataJuly 11th, 2018
Read All

Stem Cell Treatment/Therapy COST in India| DheerajBojwani.Com

By LizaAVILA

Get your Stem Cell Treatment in India with Dheeraj Bojwani Consultants

Stem Cell treatment is an intricate process. Stem Cell transplant patients need utmost care with respect to both emotionally and physically. Dheeraj Bojwani Consultants is a prominent medical tourism company in India making world-class medical facilities from best surgeons and hospitals accessible for international patients looking for budget-friendly treatment abroad.

Mrs. Marilyn Obiora - Nigeria Stem Cell Therapy For her Daughter in India

Hi, my name is Mrs. Marilyn Obiora, and I am from Nigeria. I came to India for my daughter's Stem Cell Therapy in India. My daughter had her first stroke in 2011. She couldn't sit, talk and had lost control of her neck. We could not find suitable help for her condition and searched for treatment in India.

We sent a query to the dheerajbojwani.com and received fast reply. Within no time we were in India for my daughter's treatment. We are very pleased with the treatment offered and there has been serious improvement in her condition in just two weeks. Thanks to the Dheeraj Bojwani Consultants, my daughter is regaining proper body functions and recuperating well.

Medical science has come a long way since its practice began thousands of years ago. Scientists are finding superior and more resourceful ways to cure diseases of different organs. Stem cells are undifferentiated parent cells that can transform into specialized cell types, divide further and produce more stem cells of the same group. Stem Cell therapy is performed to prevent or treat a health condition. Stem Cell Treatment is a reproductive therapy where nourishing tissues reinstate damaged tissues for relief from incurable diseases. Stem cell treatment is one of the approaches with a potential to heal a wide range of diseases in the near future. Science has always provided ground-breaking answers to obdurate health conditions, but the latest medical miracle that the medical fraternity has gifted to mankind is the Stem Cell Therapy.

Stem cell therapy is an array of techniques intended to replace cells damaged or destroyed by disease with healthy functioning ones. Even though the techniques are relatively new, their applications and advantages are broad and surprising the medical world with every new research. Stem cells are obtained from bone marrow or human umbilical cord. They are also known as the fundamental cells of our body and have the power to develop into any type of tissue cell in the body. Stem cell treatment is based on the principle that the cells move to the site of injury and transform themselves to form new tissue cells to replace the damaged ones. They have the capacity to proliferate and renew themselves indefinitely and can form mature muscle cells, nerve cells, and blood cells. In this type of therapy, they are derived from the body, kept under artificial conditions where they mature into the type of cells that are required to heal a certain part of the body or disease.

Stem cells are being studied and used to treat different types of cancers, disorders related to the blood, immune disorders, and metabolic disorders. Some other diseases and health conditions that may be healed using stem cell treatment are,

Recently, a team of researchers successfully secured the peripheral nerves in the upper arms of a patient suffering peripheral nerve damage, by using skin-derived stem cells (SDSCs) and a previously developed collagen tube, premeditated to successfully bridge gaps in injured nerves.

A research has found potential in bone marrow stem cell therapy to treat TB. Patients injected with new mesenchymal stromal cells derived from their own bone marrow showed positive response against the TB bacteria. The therapy also didnt show any serious adverse effects.

Stem cells are also used to treat hair loss. A small amount of fat is taken from the waist area of the patient by a mini-liposuction process. This fat contains dormant stem cells, and is then spun to separate the stem cells from the fat. An activation solution is added to the cells, and may be multiplied in number, depending on the size of the bald area. Once activated, the solution is washed off so that only cells remain. Now, the stem cells are injected into the scalp. One can find some hair growth in about two to four weeks.

Damaged cones in retinas can be regenerated and eyesight restored through stem cell. Stem cell therapy could regenerate damaged cones in people, especially in the cone-rich regions of the retina that provide daytime/color vision.

Kidney transplants have become more common and easier thanks stem cell therapy. Normally patients who undergo organ transplants need a lifetime of costly anti-rejection drugs but the new procedure may negate this need, with organ donors stem cells. Unless there is a perfect match donor, patients have to wait long for an organ transplant. Though still in early stages, the stem cell research is being considered as a potential player in the field of transplantation.

Transplanted stem cells serve as migratory signals for the brain's own neurogenic cells, guiding the new host cells towards the injured brain tissue. Stem cells have the potential to give rise to many different cell types that carry out different functions. While the stem cells in adult bone marrow tend to develop into the cells that make up the organ system from which they originated. These multipotent stem cells can be manipulated to take up the characteristics of neural cells.

Experts are using Stem cell Transplant to treat the symptoms of spinal cord injury by transplantation of cells directly into the gray matter of the patients spinal cord. Expectedly, the cells will integrate into the patients own neural tissue and create new circuitry to help transmit nerve signals to muscles. The transplanted cells may also promote reorganization of the spinal cord segmental circuitry, possibly leading to improved motor function.

Stem cells are capable of differentiating into a variety of different cell types, and if the architecture of damaged tendon is restored, it would improve the management of patients with these injuries significantly.

A promising benefit of stem cell therapy is its potential for cardiac tissue regeneration to reverse tissue loss underlying the development of heart failure after cardiac injury. Possible mechanisms of recovery include generation of heart muscle cells, stimulation of new blood vessels growth, secretion of growth factors.

It is a complex and multifarious procedure, with several risks and complications involved and is thus recommended to a few patients when other treatments have failed. Stem Cell therapy is recommended when other treatments fail to give positive results. The best candidates for Stem cell Treatment are those in good health and have stem cells available from a sibling, or any other family member.

India has been recognized as the new medical destination for Stem Cell therapies. Hundreds of international patients from around the world visit to India for high quality medical care at par with developed nations like the US, UK, at the most affordable costs. The Hospitals in India have the most extensive diagnostic and imaging facilities including Asias most advanced MRI and CT technology. India provides services of the most leading doctors and Stem Cell Therapy professionals at reasonable cost budget in the following cities

India offers outstanding Stem Cell Treatment at rates far below that prevailing in USA or other Western countries. Even with travel expenses taken into account, the comprehensive medical tourism packages still provide a savings measured in the thousands of dollars for major procedures. A cost comparison can give you the exact idea about the difference:

There are many reasons for India becoming a popular medical tourism spot is the low cost stem cell treatment in the area. When in contrast to the first world countries like, US and UK, medical care in India costs as much as 60-90% lesser, that makes it a great option for the citizens of those countries to opt for stem cell treatment in India because of availability of quality healthcare in India, affordable prices strategic connectivity, food, zero language barrier and many other reasons.

The maximum number of patients for Stem Cell Treatment comes from Nigeria, Kenya, Ethiopia, USA, UK, Australia, Saudi Arabia, UAE, Uzbekistan, Bangladesh

Below are the downloadable links that will help you to plan your medical trip to India in a more organized and better way. Attached word and pdf files gives information that will help you to know India more and make your trip to India easy and memorable one.

Back

View original post here:
Stem Cell Treatment/Therapy COST in India| DheerajBojwani.Com

To Read More: Stem Cell Treatment/Therapy COST in India| DheerajBojwani.Com
categoriaIPS Cell Therapy commentoComments Off on Stem Cell Treatment/Therapy COST in India| DheerajBojwani.Com | dataJune 25th, 2018
Read All

Repairing the Damaged Spinal Cord – Scientific American

By Dr. Matthew Watson

Editor's Note: This story, originally printed in the September 1999 issue of Scientific American, is being posted due to a new study showing that nerve cells can be regenerated by knocking out genes that typically inhibit their growth.

For Chinese gymnast Sang Lan, the cause was a highly publicized headfirst fall during warm-ups for the 1998 Goodwill Games. For Richard Castaldo of Littleton, Colo., it was bullets; for onetime football player Dennis Byrd, a 1992 collision on the field; and for a child named Samantha Jennifer Reed, a fall during infancy. Whatever the cause, the outcome of severe damage to the spinal cord is too often the same: full or partial paralysis and loss of sensation below the level of the injury.

Ten years ago doctors had no way of limiting such disability, aside from stabilizing the cord to prevent added destruction, treating infections and prescribing rehabilitative therapy to maximize any remaining capabilities. Nor could they rely on the cord to heal itself. Unlike tissue in the peripheral nervous system, that in the central nervous system (the spinal cord and brain) does not repair itself effectively. Few scientists held out hope that the situation would ever change.

Then, in 1990, a human trial involving multiple research centers revealed that a steroid called methylprednisolone could preserve some motor and sensory function if it was administered at high doses within eight hours after injury. For the first time, a therapy had been proved to reduce dysfunction caused by spinal cord trauma. The improvements were modest, but the success galvanized a search for additional therapies. Since then, many investigatorsincluding us have sought new ideas for treatment in studies of why an initial injury triggers further damage to the spinal cord and why the disrupted tissue fails to reconstruct itself.

In this article we will explain how the rapidly burgeoning knowledge might be harnessed to help people with spinal cord injuries. We should note, however, that workers have also been devising strategies that compensate for cord damage instead of repairing it. In the past two years, for example, the U.S. Food and Drug Administration has approved two electronic systems that regulate muscles by sending electrical signals through implanted wires. One returns certain hand movements (such as grasping a cup or a pen) to patients who have shoulder mobility; another restores a measure of control over the bladder and bowel.

A different approach can also provide grasping ability to certain patients. Surgeons identify tendons that link paralyzed forearm muscles to the bones of the hand, disconnect them from those muscles and connect them to arm muscles regulated by parts of the spine above the injury (and thus still under voluntary control). Further, many clinicians suspect that initiating rehabilitative therapy earlyexercising the limbs almost as soon as the spine is stabilizedmay enhance motor and sensory function in limbs. Those perceptions have not been tested rigorously in people, but animal studies lend credence to them.

The Cord at Work The organ receiving all this attention is no thicker than an inch but is the critical highway of communication between the brain and the rest of the body. The units of communication are the nerve cells (neurons), which consist of a bulbous cell body (home to the nucleus), trees of signal-detecting dendrites, and an axon that extends from the cell body and carries signals to other cells. Axons branch toward their ends and can maintain connections, or synapses, with many cells at once. Some traverse the entire length of the cord.

The soft, jellylike cord has two major systems of neurons. Of these, the descending, motor pathways control both smooth muscles of internal organs and striated muscles; they also help to modulate the actions of the autonomic nervous system, which regulates blood pressure, temperature and the bodys circulatory response to stress. The descending pathways begin with neurons in the brain, which send electrical signals to specific levels, or segments, of the cord. Neurons in those segments then convey the impulses outward beyond the cord.

The other main system of neurons the ascending, sensory pathwaystransmit sensory signals received from the extremities and organs to specific segments of the cord and then up to the brain. Those signals originate with specialized, transducer cells, such as sensors in the skin that detect changes in the environment or cells that monitor the state of internal organs. The cord also contains neuronal circuits (such as those involved in reflexes and certain aspects of walking) that can be activated by incoming sensory signals without input from the brain, although they can be influenced by messages from the brain.

The cell bodies in the trunk of the cord reside in a gray, butterfly-shaped core that spans the length of the spinal cord. The ascending and descending axonal fibers travel in a surrounding area known as the white matter, so called because the axons are wrapped in myelin, a white insulating material. Both regions also house glial cells, which help neurons to survive and work properly. The glia include star-shaped astrocytes, microglia (small cells that resemble components of the immune system) and oligodendrocytes, the myelin producers. Each oligodendrocyte myelinates as many as 40 different axons simultaneously.

The precise nature of a spinal cord injury can vary from person to person. Nevertheless, certain commonalities can be discerned.

When Injury Strikes When a fall or some other force fractures or dislocates the spinal column, the vertebral bones that normally enclose and protect the cord can crush it, mechanically killing and damaging axons. Occasionally, only the gray matter in the damaged area is significantly disrupted. If the injury ended there, muscular and sensory disturbances would be confined to tissues that send input to or receive it from neurons in the affected level of the cord, without much disturbing function below that level.

For instance, if only the gray matter were affected, a cervical 8 (C8) lesion involving the cord segment where the nerves labeled C8 originatewould paralyze the hands without impeding walking or control over the bowel and bladder. No signals would go out to, or be received from, the tissues connected to the C8 nerves, but the axons conveying signals up and down the surrounding white matter would keep working.

In contrast, if all the white matter in the same cord segment were destroyed, the injury would now interrupt the vertical signals, stopping messages that originated in the brain from traveling below the damaged area and blocking the flow to the brain of sensory signals coming from below the wound. The person would become paralyzed in the hands and lower limbs and would lose control over urination and defecation.

Sadly, the initial insult is only the beginning of the trouble. The early mechanical injury triggers a second wave of damageone that, over the subsequent minutes, hours and days, progressively enlarges the lesion and thus the extent of functional impairment. This secondary spread tends to occur longitudinally through the gray matter at first before expanding into the white matter (roughly resembling the inflation of a footballshaped balloon). Eventually the destruction can encompass several spinal segments above and below the original wound.

The end result is a complex state of disrepair. Axons that have been damaged become useless stumps, connected to nothing, and their severed terminals disintegrate. Often many axons remain intact but are rendered useless by loss of their insulating myelin. A fluid-filled cavity, or cyst, sits where neurons, other cells and axons used to be. And glial cells proliferate abnormally, creating clusters termed glial scars. Together the cyst and scars pose a formidable barrier to any cut axons that might somehow try to regrow and connect to cells they once innervated. A few axons may remain whole, myelinated and able to carry signals up or down the spine, but often their numbers are too small to convey useful directives to the brain or muscles.

First, Contain the Damage If all these changes had to be fully reversed to help patients, the prospects for new treatments would be grim. Fortunately, it appears that salvaging normal activity in as little as 10 percent of the standard axon complement would sometimes make walking possible for people who would otherwise lack that capacity. In addition, lowering the level of injury by just a single segment (about half an inch) can make an important difference to a persons quality of life. People with a C6 injury have no power over their arms, save some ability to move their shoulders and flex their elbows. But individuals with a lower, C7 injury can move the shoulders and elbow joints and extend the wrists; with training and sometimes a tendon transfer, they can make some use of their arms and hands.

Because so much damage arises after the initial injury, clarifying how that secondary destruction occurs and blocking those processes are critical. The added wreckage has been found to result from many interacting mechanisms.

Within minutes of the trauma, small hemorrhages from broken blood vessels appear, and the spinal cord swells. The blood vessel damage and swelling prevent the normal delivery of nutrients and oxygen to cells, causing many of them to starve to death.

Meanwhile damaged cells, axons and blood vessels release toxic chemicals that go to work on intact neighboring cells. One of these chemicals in particular triggers a highly disruptive process known as excitotoxicity. In the healthy cord the end tips of many axons secrete minute amounts of glutamate. When this chemical binds to receptors on target neurons, it stimulates those cells to fire impulses. But when spinal neurons, axons or astrocytes are injured, they release a flood of glutamate. The high levels overexcite neighboring neurons, inducing them to admit waves of ions that then trigger a series of destructive events in the cellsincluding production of free radicals. These highly reactive molecules can attack membranes and other components of formerly healthy neurons and kill them.

Until about a year ago, such excitotoxicity, also seen after a stroke, was thought to be lethal to neurons alone, but new results suggest it kills oligodendrocytes (the myelin producers) as well. This effect may help explain why even unsevered axons become demyelinated, and thus unable to conduct impulses, after spinal cord trauma.

Prolonged inflammation, marked by an influx of certain immune system cells, can exacerbate these effects and last for days. Normally, immune cells stay in the blood, unable to enter tissues of the central nervous system. But they can flow in readily where blood vessels are damaged. As they and microglia become activated in response to an injury, the activated cells release still more free radicals and other toxic substances.

Methylprednisolone, the first drug found to limit spinal cord damage in humans, may act in part by reducing swelling, inflammation, the release of glutamate and the accumulation of free radicals. The precise details of how it helps patients remain unclear, however.

Studies of laboratory animals with damaged spinal cords indicate that drugs able to stop cells from responding to excess glutamate could minimize destruction as well. Agents that selectively block glutamate receptors of the so-called AMPA class, a kind abundant on oligodendrocytes and neurons, seem to be particularly effective at limiting the final extent of a lesion and the related disability. Certain AMPA receptor antagonists have already been tested in early human trials as a therapy for stroke, and related compounds could enter safety studies in patients with spinal cord injury within several years.

Much of the early cell loss in the injured spinal cord occurs by necrosis, a process in which cells essentially become passive victims of murder. In the past few years, neurobiologists have also documented a more active form of cell death, somewhat akin to suicide, in the cord. Days or weeks after the initial trauma, a wave of this cell suicide, or apoptosis, frequently sweeps through oligodendrocytes as many as four segments from the trauma site. This discovery, too, has opened new doors for protective therapy. Rats given apoptosisinhibiting drugs retained more ambulatory ability after a traumatic spinal cord injury than did untreated rats.

In the past few years, biologists have identified many substances, called neurotrophic factors, that also promote neuronal and glial cell survival. A related substance, GM-1 ganglioside (Sygen), is now being evaluated for limiting cord injury in humans. Ultimately, interventions for reducing secondary damage in the spinal cord will probably enlist a variety of drugs given at different times to thwart specific mechanisms of death in distinct cell populations.

The best therapy would not only reduce the extent of an injury but also repair damage. A key component of that repair would be stimulating the regeneration of damaged axonsthat is, inducing their elongation and reconnection with appropriate target cells.

Although neurons in the central nervous system of adult mammals generally fail to regenerate damaged axons, this lapse does not stem from an intrinsic property of those cells. Rather the fault lies with shortcomings in their environment. After all, neurons elsewhere in the body and in the immature spinal cord and brain regrow axons readily, and animal experiments have shown that the right environment can induce axons of the spinal cord to extend quite far.

Then, Induce Regeneration One shortcoming of the cord environment turns out to be an overabundance of molecules that actively inhibit axonal regenerationsome of them in myelin. The scientists who discovered these myelin-related inhibitors have produced a molecule named IN-1 (inhibitorneutralizing antibody) that blocks the action of those inhibitors. They have also demonstrated that infusion of mouse-derived IN-1 into the injured rat spinal cord can lead to long-distance regrowth of some interrupted axons. And when pathways controlling front paw activity are severed, treated animals regain some paw motion, whereas untreated animals do not. The rodent antibody would be destroyed by the human immune system, but workers are developing a humanized version for testing in people.

Many other inhibitory molecules have now been found as well, including some produced by astrocytes and a number that reside in the extracellular matrix (the scaffolding between cells). Given this array, it seems likely that combination therapies will be needed to counteract or shut down the production of multiple inhibitors at once.

Beyond removing the brakes on axonal regrowth, a powerful tactic would supply substances that actively promote axonal extension. The search for such factors began with studies of nervous system development. Decades ago scientists isolated nerve growth factor (NGF), a neurotrophic factor that supports the survival and development of the peripheral nervous system. Subsequently, this factor turned out to be part of a family of proteins that both enhance neuronal survival and favor the outgrowth of axons. Many other families of neurotrophic factors with similar talents have been identified as well. For instance, the molecule neurotrophin- 3 (NT-3) selectively encourages the growth of axons that descend into the spinal cord from the brain.

Luckily, adult neurons remain able to respond to axon-regenerating signals from such factors. Obviously, however, natural production of these substances falls far short of the amount needed for spinal cord repair. Indeed, manufacture of some of the compounds apparently declines, instead of rising, for weeks after a spinal trauma occurs. According to a host of animal studies, artificially raising those levels after an injury can enhance regeneration. Some regeneration- promoting neurotrophic factors, such as basic fibroblast growth factor, have been tested in stroke patients. None has been evaluated as an aid to regeneration in people with spinal cord damage, but many are being assessed in animals as a prelude to such studies.

Those considering neurotrophic factors for therapy will have to be sure that the agents do not increase pain, a common long-term complication of spinal cord injury. This pain has many causes, but one is the sprouting of nascent axons where they do not belong (perhaps in a failed attempt to address the injury) and their inappropriate connection to other cells. The brain sometimes misinterprets impulses traveling through those axons as pain signals. Neurotrophic factors can theoretically exacerbate that problem and can also cause pain circuits in the spiral cord and pain-sensing cells in the skin to become oversensitive.

After axons start growing, they will have to be guided to their proper targets, the cells to which they were originally wired. But how? In this case, too, studies of embryonic development have offered clues.

During development, growing axons are led to their eventual targets by molecules that act on the leading tip, or growth cone. In the past five years especially, a startling number of substances that participate in this process have been uncovered. Some, such as a group called netrins, are released or displayed by neurons or glial cells. They beckon axons to grow in some directions and repel growth in others. Additional guidance molecules are fixed components of the extracellular matrix. Certain of the matrix molecules bind well to specific molecules (cell adhesion molecules) on the growth cones and thus provide anchors for growing axons. During development, the required directional molecules are presented to the growth cones in specific sequences.

Establish Proper Connections At the moment, no one knows how to supply all the needed chemical road signs in the right places. But some findings suggest that regeneration may be aided by supplying just a subset of those targeting moleculessay, a selection of netrins and components from the extracellular matrix. Substances already in the spinal cord may well be capable of supplying the rest of the needed guidance.

A different targeting approach aims to bridge the gap created by cord damage. It directs injured axons toward their proper destinations by supplying a conduit through which they can travel or by providing another friendly scaffolding able to give physical support to the fibers as they try to traverse the normally impenetrable cyst. The scaffolding can also serve as a source of growth-promoting chemicals.

For instance, researchers have implanted tubes packed with Schwann cells into the gap where part of the spinal cord was removed in rodents. Schwann cells, which are glia of the peripheral nervous system, were chosen because they have many attributes that favor axonal regeneration. In animal experiments, such grafts spurred some axonal growth into the tubes.

A second bridging material consists of olfactory-ensheathing glial cells, which are found only in the tracts leading from the nose to the olfactory bulbs of the brain. When those cells were put into the rat spinal cord where descending tracts had been cut, the implants spurred partial regrowth of the axons over the implant. Transplanting the olfactory-ensheathing glia with Schwann cells led to still more extensive growth.

In theory, a biopsy could be performed to obtain the needed olfactory ensheathing glia from a patient. But once the properties that enable them (or other cells) to be competent escorts for growing axons are determined, researchers may instead be able to genetically alter other cell types if desired, giving them the required combinations of growthpromoting properties.

Fibroblasts (cells common in connective tissue and the skin) are among those already being engineered to serve as bridges. They have been altered to produce the neurotrophic molecule NT-3 and then transplanted into the cut spinal cord of rodents. The altered fibroblasts have resulted in partial regrowth of axons. Along with encouraging axonal regrowth, NT-3 stimulates remyelination. In these studies the genetically altered fibroblasts have enhanced myelination of regenerated axons and improved hind limb activity.

Replace Lost Cells Other transplantation schemes would implant cells that normally occur in the central nervous system. In addition to serving as bridges and potentially releasing proteins helpful for axonal regeneration, certain of these grafts might be able to replace cells that have died.

Transplantation of tissue from the fetal central nervous system has produced a number of exciting results in animals treated soon after a trauma. This immature tissue can give rise to new neurons, complete with axons that travel long distances into the recipients tissues (up and down several segments in the spinal cord or out to the periphery). It can also prompt host neurons to send regenerating axons into the implanted tissue. In addition, transplant recipients, unlike untreated animals, may recover some limb function, such as the ability to move the paw in useful ways. What is more, studies of fetal tissue implants suggest that axons can at times find appropriate targets even in the absence of externally supplied guidance molecules. The transplants, however, are far more effective in the immature spinal cord than in the injured adult cordan indication that young children would probably respond to such therapy much better than adolescents or adults would.

Some patients with long-term spinal cord injuries have received human fetal tissue transplants, but too little information is available so far for drawing any conclusions. In any case, application of fetal tissue technology in humans will almost surely be limited by ethical dilemmas and a lack of donor tissue. Therefore, other ways of achieving the same results will have to be devised. Among the alternatives is transplanting stem cells: immature cells that are capable of dividing endlessly, of making exact replicas of themselves and also of spawning a range of more specialized cell types.

Various kinds of stem cells have been identified, including ones that generate all the cell types in the blood system, the skin, or the spinal cord and brain. Stem cells found in the human adult central nervous system have, moreover, been shown capable of producing neurons and all their accompanying glia, although these so-called neural stem cells seem to be quiescent in most regions of the system. In 1998 a few laboratories also obtained much more versatile stem cells from human tissue. These human embryonic stem cells (in common with embryonic stem cells obtained previously from other vertebrates) can be grown in culture and, in theory, can yield almost all the cell types in the body, including those of the spinal cord.

Stem Cell Strategies How might stem cells aid in spinal cord repair? A great deal will be possible once biologists learn how to obtain those cells readily from a patient and how to control the cells differentiation. Notably, physicians might be able to withdraw neural stem cells from a patients brain or spinal cord, expand the numbers of the still undifferentiated cells in the laboratory and place the enlarged population in the same persons cord with no fear that the immune system will reject the implant as foreign. Or they might begin with frozen human embryonic stem cells, coax those cells to become precursors, or progenitors, of spinal cells and implant a large population of the precursors. Studies proposing to examine the effects on patients with spinal cord injuries of transplanting neural stem cells (isolated from the patients brains by biopsy) are being considered.

Simply implanting progenitor cells into the cord may be enough to prod them to multiply and differentiate into the needed lineages and thus to replace useful numbers of lost neurons and glial cells and establish the proper synaptic connections between neurons. Stem cells transplanted into the normal and injured nervous systems of animals can form neurons and glia appropriate for the region of transplantation. Combined with the fetal tissue results, this outcome signifies that many important cues for differentiation and targeting preexist in the injured nervous system. But if extra help is needed, scientists might be able to deliver it through genetic engineering. As a rule, to be genetically altered easily, cells have to be able to divide. Stem cells, unlike mature neurons, fit that bill.

Scenarios involving stem cell transplants are admittedly futuristic, but one day they themselves may become unnecessary, replaced by gene therapy alone. Delivery of genes into surviving cells in the spinal cord could enable those cells to manufacture and release a steady supply of proteins able to induce stem cell proliferation, to enhance cell differentiation and survival, and to promote axonal regeneration, guidance and remyelination. For now, though, technology for delivering genes to the central nervous system and for ensuring that the genes survive and work properly is still being refined.

Until, and even after, cell transplants and gene therapies become commonplace for coping with spinal cord injury, patients might gain help through a different avenuedrugs that restore signal conduction in axons quieted by demyelination. Ongoing clinical tests are evaluating the ability of a drug called 4-aminopyridine to compensate for demyelination. This agent temporarily blocks potassium ion channels in axonal membranes and, in so doing, allows axons to transmit electrical signals past zones of demyelination. Some patients receiving the drug have demonstrated modest improvement in sensory or motor function.

At first glance, this therapy might seem like a good way to treat multiple sclerosis, which destroys the myelin around axons of neurons in the central nervous system. Patients with this disease are prone to seizures, however, and 4-aminopyridine can exacerbate that tendency.

Neurotrophic factors, such as NT-3, that can stimulate remyelination of axons in animals could be considered for therapy as well. NT-3 is already entering extensive (phase III) trials in humans with spinal cord injury, though not to restore myelin. It will be administered by injection in amounts capable of acting on nerves in the gut and of enhancing bowel function, but the doses will be too low to yield high concentrations in the central nervous system. If the drug proves to be safe in this trial, though, that success could pave the way for human tests of doses large enough to enhance myelination or regeneration.

The Years Ahead Clearly, the 1990s have seen impressive advances in understanding of spinal cord injury and the controls on neuronal growth. Like axons inching toward their targets, a growing number of investigators are pushing their way through the envelope of discovery and generating a rational game plan for treating such damage. That approach will involve delivery of multiple therapies in an orderly sequence. Some treatments will combat secondary injury, some will encourage axonal regrowth or remyelination, and some will replace lost cells.

When will the new ideas become real treatments? We wish we had an answer. Drugs that work well in animals do not always prove useful in people, and those that show promise in small human trials do not always pan out when examined more extensively. It is nonetheless encouraging that at least two human trials are now under way and that others could start in the next several years.

Limiting an injury will be easier than reversing it, and so treatments for ameliorating the secondary damage that follows acute trauma can be expected to enter human testing most quickly. Of the repair strategies, promoting remyelination will be the simplest to accomplish, because all it demands is the recoating of intact axons. Remyelination strategies have the potential to produce meaningful recovery of function, such as returning control over the bladder or bowel abilities that uninjured people take for granted but that would mean the world to those with spinal cord injuries.

Of course, tendon-transfer surgery and advanced electrical devices can already restore important functions in some patients. Yet for many people, a return of independence in daily activities will depend on reconstruction of damaged tissue through the regrowth of injured axons and the reconnection of disrupted pathways.

So far, few interventions in animals with well-established spinal cord injuries have achieved the magnitude of regrowth and synapse formation that would be needed to provide a hand grasp or the ability to stand and walk in human adults with long-term damage. Because of the great complexities and difficulties involved in those aspects of cord repair, we cannot guess when reconstructive therapies might begin to become available. But we anticipate continued progress toward that end.

Traditionally, medical care for patients with spinal cord injury has emphasized compensatory strategies that maximize use of any residual cord function. That focus is now expanding, as treatments designed to repair the damaged cord and restore lost functionscience fiction only a decade agoare becoming increasingly plausible.

See original here:
Repairing the Damaged Spinal Cord - Scientific American

To Read More: Repairing the Damaged Spinal Cord – Scientific American
categoriaSpinal Cord Stem Cells commentoComments Off on Repairing the Damaged Spinal Cord – Scientific American | dataJune 21st, 2018
Read All

Mending a Broken Heart: Stem Cells and Cardiac Repair …

By Sykes24Tracey

Charles A. Goldthwaite, Jr., Ph.D.

Cardiovascular disease (CVD), which includes hypertension, coronary heart disease (CHD), stroke, and congestive heart failure (CHF), has ranked as the number one cause of death in the United States every year since 1900 except 1918, when the nation struggled with an influenza epidemic.1 In 2002, CVD claimed roughly as many lives as cancer, chronic lower respiratory diseases, accidents, diabetes mellitus, influenza, and pneumonia combined. According to data from the 19992002 National Health and Nutrition Examination Survey (NHANES), CVD caused approximately 1.4 million deaths (38.0 percent of all deaths) in the U.S. in 2002. Nearly 2600 Americans die of CVD each day, roughly one death every 34 seconds. Moreover, within a year of diagnosis, one in five patients with CHF will die. CVD also creates a growing economic burden; the total health care cost of CVD in 2005 was estimated at $393.5 billion dollars.

Given the aging of the U.S. population and the relatively dramatic recent increases in the prevalence of cardiovascular risk factors such as obesity and type 2 diabetes,2,3 CVD will continue to be a significant health concern well into the 21st century. However, improvements in the acute treatment of heart attacks and an increasing arsenal of drugs have facilitated survival. In the U.S. alone, an estimated 7.1 million people have survived a heart attack, while 4.9 million live with CHF.1 These trends suggest an unmet need for therapies to regenerate or repair damaged cardiac tissue.

Ischemic heart failure occurs when cardiac tissue is deprived of oxygen. When the ischemic insult is severe enough to cause the loss of critical amounts of cardiac muscle cells (cardiomyocytes), this loss initiates a cascade of detrimental events, including formation of a non-contractile scar, ventricular wall thinning (see Figure 6.1), an overload of blood flow and pressure, ventricular remodeling (the overstretching of viable cardiac cells to sustain cardiac output), heart failure, and eventual death.4 Restoring damaged heart muscle tissue, through repair or regeneration, therefore represents a fundamental mechanistic strategy to treat heart failure. However, endogenous repair mechanisms, including the proliferation of cardiomyocytes under conditions of severe blood vessel stress or vessel formation and tissue generation via the migration of bone-marrow-derived stem cells to the site of damage, are in themselves insufficient to restore lost heart muscle tissue (myocardium) or cardiac function.5 Current pharmacologic interventions for heart disease, including beta-blockers, diuretics, and angiotensin-converting enzyme (ACE) inhibitors, and surgical treatment options, such as changing the shape of the left ventricle and implanting assistive devices such as pacemakers or defibrillators, do not restore function to damaged tissue. Moreover, while implantation of mechanical ventricular assist devices can provide long-term improvement in heart function, complications such as infection and blood clots remain problematic.6 Although heart transplantation offers a viable option to replace damaged myocardium in selected individuals, organ availability and transplant rejection complications limit the widespread practical use of this approach.

Figure 6.1. Normal vs. Infarcted Heart. The left ventricle has a thick muscular wall, shown in cross-section in A. After a myocardial infarction (heart attack), heart muscle cells in the left ventricle are deprived of oxygen and die (B), eventually causing the ventricular wall to become thinner (C).

2007 Terese Winslow

The difficulty in regenerating damaged myocardial tissue has led researchers to explore the application of embryonic and adult-derived stem cells for cardiac repair. A number of stem cell types, including embryonic stem (ES) cells, cardiac stem cells that naturally reside within the heart, myoblasts (muscle stem cells), adult bone marrow-derived cells, mesenchymal cells (bone marrow-derived cells that give rise to tissues such as muscle, bone, tendons, ligaments, and adipose tissue), endothelial progenitor cells (cells that give rise to the endothelium, the interior lining of blood vessels), and umbilical cord blood cells, have been investigated to varying extents as possible sources for regenerating damaged myocardium. All have been tested in mouse or rat models, and some have been tested in large animal models such as pigs. Preliminary clinical data for many of these cell types have also been gathered in selected patient populations.

However, clinical trials to date using stem cells to repair damaged cardiac tissue vary in terms of the condition being treated, the method of cell delivery, and the primary outcome measured by the study, thus hampering direct comparisons between trials.7 Some patients who have received stem cells for myocardial repair have reduced cardiac blood flow (myocardial ischemia), while others have more pronounced congestive heart failure and still others are recovering from heart attacks. In some cases, the patient's underlying condition influences the way that the stem cells are delivered to his/her heart (see the section, quot;Methods of Cell Deliveryquot; for details). Even among patients undergoing comparable procedures, the clinical study design can affect the reporting of results. Some studies have focused on safety issues and adverse effects of the transplantation procedures; others have assessed improvements in ventricular function or the delivery of arterial blood. Furthermore, no published trial has directly compared two or more stem cell types, and the transplanted cells may be autologous (i.e., derived from the person on whom they are used) or allogeneic (i.e., originating from another person) in origin. Finally, most of these trials use unlabeled cells, making it difficult for investigators to follow the cells' course through the body after transplantation (see the section quot;Considerations for Using These Stem Cells in the Clinical Settingquot; at the end of this article for more details).

Despite the relative infancy of this field, initial results from the application of stem cells to restore cardiac function have been promising. This article will review the research supporting each of the aforementioned cell types as potential source materials for myocardial regeneration and will conclude with a discussion of general issues that relate to their clinical application.

In 2001, Menasche, et.al. described the successful implantation of autologous skeletal myoblasts (cells that divide to repair and/or increase the size of voluntary muscles) into the post-infarction scar of a patient with severe ischemic heart failure who was undergoing coronary artery bypass surgery.8 Following the procedure, the researchers used imaging techniques to observe the heart's muscular wall and to assess its ability to beat. When they examined patients 5 months after treatment, they concluded that treated hearts pumped blood more efficiently and seemed to demonstrate improved tissue health. This case study suggested that stem cells may represent a viable resource for treating ischemic heart failure, spawning several dozen clinical studies of stem cell therapy for cardiac repair (see Boyle, et.al.7 for a complete list) and inspiring the development of Phase I and Phase II clinical trials. These trials have revealed the complexity of using stem cells for cardiac repair, and considerations for using stem cells in the clinical setting are discussed in a subsequent section of this report.

The mechanism by which stem cells promote cardiac repair remains controversial, and it is likely that the cells regenerate myocardium through several pathways. Initially, scientists believed that transplanted cells differentiated into cardiac cells, blood vessels, or other cells damaged by CVD.911 However, this model has been recently supplanted by the idea that transplanted stem cells release growth factors and other molecules that promote blood vessel formation (angiogenesis) or stimulate quot;residentquot; cardiac stem cells to repair damage.1214 Additional mechanisms for stem-cell mediated heart repair, including strengthening of the post-infarct scar15 and the fusion of donor cells with host cardiomyocytes,16 have also been proposed.

Regardless of which mechanism(s) will ultimately prove to be the most significant in stem-cell mediated cardiac repair, cells must be successfully delivered to the site of injury to maximize the restored function. In preliminary clinical studies, researchers have used several approaches to deliver stem cells. Common approaches include intravenous injection and direct infusion into the coronary arteries. These methods can be used in patients whose blood flow has been restored to their hearts after a heart attack, provided that they do not have additional cardiac dysfunction that results in total occlusion or poor arterial flow.12, 17 Of these two methods, intracoronary infusion offers the advantage of directed local delivery, thereby increasing the number of cells that reach the target tissue relative to the number that will home to the heart once they have been placed in the circulation. However, these strategies may be of limited benefit to those who have poor circulation, and stem cells are often injected directly into the ventricular wall of these patients. This endomyocardial injection may be carried out either via a catheter or during open-heart surgery.18

To determine the ideal site to inject stem cells, doctors use mapping or direct visualization to identify the locations of scars and viable cardiac tissue. Despite improvements in delivery efficiency, however, the success of these methods remains limited by the death of the transplanted cells; as many as 90% of transplanted cells die shortly after implantation as a result of physical stress, myocardial inflammation, and myocardial hypoxia.4 Timing of delivery may slow the rate of deterioration of tissue function, although this issue remains a hurdle for therapeutic approaches.

Embryonic and adult stem cells have been investigated to regenerate damaged myocardial tissue in animal models and in a limited number of clinical studies. A brief review of work to date and specific considerations for the application of various cell types will be discussed in the following sections.

Because ES cells are pluripotent, they can potentially give rise to the variety of cell types that are instrumental in regenerating damaged myocardium, including cardiomyocytes, endothelial cells, and smooth muscle cells. To this end, mouse and human ES cells have been shown to differentiate spontaneously to form endothelial and smooth muscle cells in vitro19 and in vivo,20,21 and human ES cells differentiate into myocytes with the structural and functional properties of cardiomyocytes.2224 Moreover, ES cells that were transplanted into ischemically-injured myocardium in rats differentiated into normal myocardial cells that remained viable for up to four months,25 suggesting that these cells may be candidates for regenerative therapy in humans.

However, several key hurdles must be overcome before human ES cells can be used for clinical applications. Foremost, ethical issues related to embryo access currently limit the avenues of investigation. In addition, human ES cells must go through rigorous testing and purification procedures before the cells can be used as sources to regenerate tissue. First, researchers must verify that their putative ES cells are pluripotent. To prove that they have established a human ES cell line, researchers inject the cells into immunocompromised mice; i.e., mice that have a dysfunctional immune system. Because the injected cells cannot be destroyed by the mouse's immune system, they survive and proliferate. Under these conditions, pluripotent cells will form a teratoma, a multi-layered, benign tumor that contains cells derived from all three embryonic germ layers. Teratoma formation indicates that the stem cells have the capacity to give rise to all cell types in the body.

The pluripotency of ES cells can complicate their clinical application. While undifferentiated ES cells may possibly serve as sources of specific cell populations used in myocardial repair, it is essential that tight quality control be maintained with respect to the differentiated cells. Any differentiated cells that would be used to regenerate heart tissue must be purified before transplantation can be considered. If injected regenerative cells are accidentally contaminated with undifferentiated ES cells, a tumor could possibly form as a result of the cell transplant.4 However, purification methodologies continue to improve; one recent report describes a method to identify and select cardiomyocytes during human ES cell differentiation that may make these cells a viable option in the future.26

This concern illustrates the scientific challenges that accompany the use of all human stem cells, whether derived from embryonic or adult tissues. Predictable control of cell proliferation and differentiation requires additional basic research on the molecular and genetic signals that regulate cell division and specialization. Furthermore, long-term cell stability must be well understood before human ES-derived cells can be used in regenerative medicine. The propensity for genetic mutation in the human ES cells must be determined, and the survival of differentiated, ES-derived cells following transplantation must be assessed. Furthermore, once cells have been transplanted, undesirable interactions between the host tissue and the injected cells must be minimized. Cells or tissues derived from ES cells that are currently available for use in humans are not tissue-matched to patients and thus would require immunosuppression to limit immune rejection.18

While skeletal myoblasts (SMs) are committed progenitors of skeletal muscle cells, their autologous origin, high proliferative potential, commitment to a myogenic lineage, and resistance to ischemia promoted their use as the first stem cell type to be explored extensively for cardiac application. Studies in rats and humans have demonstrated that these cells can repopulate scar tissue and improve left ventricular function following transplantation.27 However, SM-derived cardiomyocytes do not function in complete concert with native myocardium. The expression of two key proteins involved in electromechanical cell integration, N-cadherin and connexin 43, are downregulated in vivo,28 and the engrafted cells develop a contractile activity phenotype that appears to be unaffected by neighboring cardiomyocytes.29

To date, the safety and feasibility of transplanting SM cells have been explored in a series of small studies enrolling a collective total of nearly 100 patients. Most of these procedures were carried out during open-heart surgery, although a couple of studies have investigated direct myocardial injection and transcoronary administration. Sustained ventricular tachycardia, a life-threatening arrhythmia and unexpected side-effect, occurred in early implantation studies, possibly resulting from the lack of electrical coupling between SM-derived cardiomyocytes and native tissue.30,31 Changes in preimplantation protocols have minimized the occurrence of arrhythmias in conjunction with the use of SM cells, and Phase II studies of skeletal myoblast therapy are presently underway.

In 2001, Jackson, et.al. demonstrated that cardiomyocytes and endothelial cells could be regenerated in a mouse heart attack model through the introduction of adult mouse bone marrow-derived stem cells.9 That same year, Orlic and colleagues showed that direct injection of mouse bone marrow-derived cells into the damaged ventricular wall following an induced heart attack led to the formation of new cardiomyocytes, vascular endothelium, and smooth muscle cells.11 Nine days after transplanting the stem cells, the newly-formed myocardium occupied nearly 70 percent of the damaged portion of the ventricle, and survival rates were greater in mice that received these cells than in those that did not. While several subsequent studies have questioned whether these cells actually differentiate into cardiomyocytes,32,33 the evidence to support their ability to prevent remodeling has been demonstrated in many laboratories.7

Based on these findings, researchers have investigated the potential of human adult bone marrow as a source of stem cells for cardiac repair. Adult bone marrow contains several stem cell populations, including hematopoietic stem cells (which differentiate into all of the cellular components of blood), endothelial progenitor cells, and mesenchymal stem cells; successful application of these cells usually necessitates isolating a particular cell type on the basis of its' unique cell-surface receptors. In the past three years, the transplantation of bone marrow mononuclear cells (BMMNCs), a mixed population of blood and cells that includes stem and progenitor cells, has been explored in more patients and clinical studies of cardiac repair than any other type of stem cell.7

The results from clinical studies of BMMNC transplantation have been promising but mixed. However, it should be noted that these studies have been conducted under a variety of conditions, thereby hampering direct comparison. The cells have been delivered via open-heart surgery and endomyocardial and intracoronary catheterization. Several studies, including the Bone Marrow Transfer to Enhance ST-Elevation Infarct Regeneration (BOOST) and the Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI) trials, have shown that intracoronary infusion of BMMNCs following a heart attack significantly improves the left ventricular (LV) ejection fraction, or the volume of blood pumped out of the left ventricle with each heartbeat.3436 However, other studies have indicated either no improvement in LV ejection fraction upon treatment37 or an increased LV ejection fraction in the control group.38 An early study that used endomyocardial injection to enhance targeted delivery indicated a significant improvement in overall LV function.39 Discrepancies such as these may reflect differences in cell preparation protocols or baseline patient statistics. As larger trials are developed, these issues can be explored more systematically.

Mesenchymal stem cells (MSCs) are precursors of non-hematopoietic tissues (e.g., muscle, bone, tendons, ligaments, adipose tissue, and fibroblasts) that are obtained relatively easily from autologous bone marrow. They remain multipotent following expansion in vitro, exhibit relatively low immunogenicity, and can be frozen easily. While these properties make the cells amenable to preparation and delivery protocols, scientists can also culture them under special conditions to differentiate them into cells that resemble cardiac myocytes. This property enables their application to cardiac regeneration. MSCs differentiate into endothelial cells when cultured with vascular endothelial growth factor40 and cardiomyogenic (CMG) cells when treated with the dna-demethylating agent, 5-azacytidine.41 More important, however, is the observation that MSCs can differentiate into cardiomyocytes and endothelial cells in vivo when transplanted to the heart following myocardial infarct (MI) or non-injury in pig, mouse, or rat models.4245 Additionally, the ability of MSCs to restore functionality may be enhanced by the simultaneous transplantation of other stem cell types.43

Several animal model studies have shown that treatment with MSCs significantly increases myocardial function and capillary formation.5,41 One advantage of using these cells in human studies is their low immunogenicity; allogeneic MSCs injected into infarcted myocardium in a pig model regenerated myocardium and reduced infarct size without evidence of rejection.46 A randomized clinical trial implanting MSCs after MI has demonstrated significant improvement in global and regional LV function,47 and clinical trials are currently underway to investigate the application of allogeneic and autologous MSCs for acute MI and myocardial ischemia, respectively.

Recent evidence suggests that the heart contains a small population of endogenous stem cells that most likely facilitate minor repair and turnover-mediated cell replacement.7 These cells have been isolated and characterized in mouse, rat, and human tissues.48,49 The cells can be harvested in limited quantity from human endomyocardial biopsy specimens50 and can be injected into the site of infarction to promote cardiomyocyte formation and improvements in systolic function.49 Separation and expansion ex vivo over a period of weeks are necessary to obtain sufficient quantities of these cells for experimental purposes. However, their potential as a convenient resource for autologous stem cell therapy has led the National Heart, Lung, and Blood Institute to fund forthcoming clinical trials that will explore the use of cardiac stem cells for myocardial regeneration.

The endothelium is a layer of specialized cells that lines the interior surface of all blood vessels (including the heart). This layer provides an interface between circulating blood and the vessel wall. Endothelial progenitor cells (EPCs) are bone marrow-derived stem cells that are recruited into the peripheral blood in response to tissue ischemia.4 EPCs are precursor cells that express some cell-surface markers characteristic of mature endothelium and some of hematopoietic cells.19,5153 EPCs home in on ischemic areas, where they differentiate into new blood vessels; following a heart attack, intravenously injected EPCs home to the damaged region within 48 hours.12 The new vascularization induced by these cells prevents cardiomyocyte apoptosis (programmed cell death) and LV remodeling, thereby preserving ventricular function.13 However, no change has been observed in non-infarcted regions upon EPC administration. Clinical trials are currently underway to assess EPC therapy for growing new blood vessels and regenerating myocardium.

Several other cell populations, including umbilical cord blood (UCB) stem cells, fibroblasts (cells that synthesize the extracellular matrix of connective tissues), and peripheral blood CD34+ cells, have potential therapeutic uses for regenerating cardiac tissue. Although these cell types have not been investigated in clinical trials of heart disease, preliminary studies in animal models indicate several potential applications in humans.

Umbilical cord blood contains enriched populations of hematopoietic stem cells and mesencyhmal precursor cells relative to the quantities present in adult blood or bone marrow.54,55 When injected intravenously into the tail vein in a mouse model of MI, human mononuclear UCB cells formed new blood vessels in the infarcted heart.56 A human DNA assay was used to determine the migration pattern of the cells after injection; although they homed only to injured areas within the heart, they were also detected in the marrow, spleen, and liver. When injected directly into the infarcted area in a rat model of MI, human mononuclear UCB cells improved ventricular function.57 Staining for CD34 and other markers found on the cell surface of hematopoietic stem cells indicated that some of the cells survived in the myocardium. Results similar to these have been observed following the injection of human unrestricted somatic stem cells from UCB into a pig MI model.58

Adult peripheral blood CD34+ cells offer the advantage of being obtained relatively easily from autologous sources.59 Although some studies using a mouse model of MI claim that these cells can transdifferentiate into cardiomyocytes, endothelial cells, and smooth muscle cells at the site of tissue injury,60 this conclusion is highly contested. Recent studies that involve the direct injection of blood-borne or bone marrow-derived hematopoietic stem cells into the infarcted region of a mouse model of MI found no evidence of myocardial regeneration following injection of either cell type.33 Instead, these hematopoietic stem cells followed traditional differentiation patterns into blood cells within the microenvironment of the injured heart. Whether these cells will ultimately find application in myocardial regeneration remains to be determined.

Autologous fibroblasts offer a different strategy to combat myocardial damage by replacing scar tissue with a more elastic, muscle-like tissue and inhibiting host matrix degradation.4 The cells may be manipulated to express muscle-specific transcription factors that promote their differentiation into myotubes such as those derived from skeletal myoblasts.61 One month after these cells were implanted into the post-infarction scar in a rat model of MI, they occupied a large portion of the scar but were not functionally integrated.61 Although the effects on ventricular function were not evaluated in this study, authors noted that modified autologous fibroblasts may ultimately prove useful in elderly patients who have a limited population of autologous skeletal myoblasts or bone marrow stem cells.

As these examples indicate, many types of stem cells have been applied to regenerate damaged myocardium. In select applications, stem cells have demonstrated sufficient promise to warrant further exploration in large-scale, controlled clinical trials. However, the current breadth of application of these cells has made it difficult to compare and contextualize the results generated by the various trials. Most studies published to date have enrolled fewer than 25 patients, and the studies vary in terms of cell types and preparations used, methods of delivery, patient populations, and trial outcomes. However, the mixed results that have been observed in these studies do not necessarily argue against using stem cells for cardiac repair. Rather, preliminary results illuminate the many gaps in understanding of the mechanisms by which these cells regenerate myocardial tissue and argue for improved characterization of cell preparations and delivery methods to support clinical applications.

Future clinical trials that use stem cells for myocardial repair must address two concerns that accompany the delivery of these cells: 1) safety and 2) tracking the cells to their ultimate destination(s). Although stem cells appear to be relatively safe in the majority of recipients to date, an increased frequency of non-sustained ventricular tachycardia, an arrhythmia, has been reported in conjunction with the use of skeletal myoblasts.30,6264 While this proarrhythmic effect occurs relatively early after cell delivery and does not appear to be permanent, its presence highlights the need for careful safety monitoring when these cells are used. Additionally, animal models have demonstrated that stem cells rapidly diffuse from the heart to other organs (e.g., lungs, kidneys, liver, spleen) within a few hours of transplantation,65,66 an effect observed regardless of whether the cells are injected locally into the myocardium. This migration may or may not cause side-effects in patients; however, it remains a concern related to the delivery of stem cells in humans. (Note: Techniques to label stem cells for tracking purposes and to assess their safety are discussed in more detail in other articles in this publication).

In addition to safety and tracking, several logistical issues must also be addressed before stem cells can be used routinely in the clinic. While cell tracking methodologies allow researchers to determine migration patterns, the stem cells must target their desired destination(s) and be retained there for a sufficient amount of time to achieve benefit. To facilitate targeting and enable clinical use, stem cells must be delivered easily and efficiently to their sites of application. Finally, the ease by which the cells can be obtained and the cost of cell preparation will also influence their transition to the clinic.

The evidence to date suggests that stem cells hold promise as a therapy to regenerate damaged myocardium. Given the worldwide prevalence of cardiac dysfunction and the limited availability of tissue for cardiac transplantation, stem cells could ultimately fulfill a large-scale unmet clinical need and improve the quality of life for millions of people with CVD. However, the use of these cells in this setting is currently in its infancymuch remains to be learned about the mechanisms by which stem cells repair and regenerate myocardium, the optimal cell types and modes of their delivery, and the safety issues that will accompany their use. As the results of large-scale clinical trials become available, researchers will begin to identify ways to standardize and optimize the use of these cells, thereby providing clinicians with powerful tools to mend a broken heart.

Chapter 5|Table of Contents|Chapter 7

Continue reading here:
Mending a Broken Heart: Stem Cells and Cardiac Repair ...

To Read More: Mending a Broken Heart: Stem Cells and Cardiac Repair …
categoriaCardiac Stem Cells commentoComments Off on Mending a Broken Heart: Stem Cells and Cardiac Repair … | dataJune 21st, 2018
Read All

Combination of Mesenchymal and C-kit+ Cardiac Stem Cells …

By LizaAVILA

Brief Summary:

This is a phase II, randomized, placebo-controlled clinical trial designed to assess feasibility, safety, and effect of autologous bone marrow-derived mesenchymal stem cells (MSCs) and c-kit+ cardiac stem cells (CSCs) both alone and in combination (Combo), compared to placebo (cell-free Plasmalyte-A medium) as well as each other, administered by transendocardial injection in subjects with ischemic cardiomyopathy.

This is a randomized, placebo-controlled clinical trial designed to evaluate the feasibility, safety, and effect of Combo, MSCs alone, and CSCs alone compared with placebo as well as each other in subjects with heart failure of ischemic etiology. Following a successful lead-in phase, a total of one hundred forty-four (144) subjects will be randomized (1:1:1:1) to receive Combo, MSCs, CSCs, or placebo. After randomization, baseline imaging, relevant harvest procedures, and study product injection, subjects will be followed up at 1 day, 1 week, 1 month, 3 months, 6 months and 12 months post study product injection. All subjects will receive study product injection (cells or placebo) using the NOGA XP Mapping and Navigation System. Subjects will have delayed-enhanced magnetic resonance imaging (DEMRI) scans to assess scar size and LV function and structure at baseline and at 6 and 12 months post study product administration. All endpoints will be assessed at the 6 and 12 month visits which will occur 180 30 days and 365 30 days respectively from the day of study product injection (Day 0). For the purpose of the endpoint analysis and safety evaluations, the Investigators will utilize an "intention-to-treat" study population, however an as treated analysis will also be conducted.

Read more here:
Combination of Mesenchymal and C-kit+ Cardiac Stem Cells ...

To Read More: Combination of Mesenchymal and C-kit+ Cardiac Stem Cells …
categoriaCardiac Stem Cells commentoComments Off on Combination of Mesenchymal and C-kit+ Cardiac Stem Cells … | dataJune 21st, 2018
Read All

iPS Cell Therapy – Parent Project Muscular Dystrophy

By Dr. Matthew Watson

iPS Cells and Therapeutic Applications for Duchenne

We are currently in the optimization/validation phase of pre-clinical development.

This research is being done in the lab of Dr. Rita Perlingeiro at the University of Minnesota, in partnership with the University of Minnesota Center for Translational Medicine and the Molecular and Cellular Therapeutics Facility. This work is currently funded by the Department of Defense (DoD).

Induced pluripotent stem cells (iPS) are adult cells that have been reprogrammed to an embryonic stem cell-like state.There has been tremendous excitement for the therapeutic potential of iPS cells in treating genetic diseases. Our current research builds on our successful proof-of-principle studies for Duchenne performed with mouse wild-type and dystrophic iPS cells as well as control (healthy) human iPS cells. These studies demonstrate equivalent functional myogenic engraftment to that observed with their embryonic counterparts following their transplantation into dystrophic mice.

Our goal now is to apply this technology to clinical grade GMP-compliant iPS cells, and generate a cell product, iPS-derived myogenic progenitors, that can be delivered to muscular dystrophy patients.

Optimization of methodology, characterization of cell product, scalability with GMP-compliant method, followed by safety and efficacy studies. Once these have been achieved, we will be ready to move into a clinical trial.

2-3 years (it depends largely on how much funding we have available to conduct these studies).

University of Minnesota

In the first phase, adults with confirmed diagnosis of Duchenne (> 18 years old).

You can learn more about this research at the website for Dr. Perlingeiros lab: http://www.med.umn.edu/lhi/research/PerlingeiroLab/index.htm

http://www.ClinicalTrials.gov will post all clinical trials once they are actively recruiting patients.

See original here:
iPS Cell Therapy - Parent Project Muscular Dystrophy

To Read More: iPS Cell Therapy – Parent Project Muscular Dystrophy
categoriaIPS Cell Therapy commentoComments Off on iPS Cell Therapy – Parent Project Muscular Dystrophy | dataJune 14th, 2018
Read All

Page 386«..1020..385386387388..400410..»


Copyright :: 2025