Arctic drilling, controversial reforms and new views of Saturn – Nature.com
By raymumme
Space | Publishing | Funding | Conservation | Politics | Policy | People | Trend watch | Coming up
Cassini catches new views of Saturn NASAs Cassini spacecraft plunged between Saturn and its rings on 26 April, beginning the final stages of its 20-year mission. At its closest, Cassini whizzed just 300 kilometres from the innermost visible edge of Saturns rings and 3,000kilometres above the top of the planets clouds. The images sent back include this close-up shot of Saturns surface. The spacecraft is exploring this never-before-visited region of the Solar System on its way to a final plunge into Saturns atmosphere in September.
NASA/JPL-Caltech/Space Science Inst.
Physics for all Particle physicists will soon be able to publish open-access papers in three journals of the American Physical Society (APS), including Physical Review Letters, free of charge. The deal, announced on 27April, was struck between the APS and CERN, the European particle-physics laboratory in Switzerland. From January 2018, high-energy physics research done anywhere in the world will be able to be published open-access in the journals, and at no direct cost. Publication fees will be covered by the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP3), an international partnership set up in 2012 that is funded in large part by libraries. CERNs Large Hadron Collider already had an open-access agreement with the APS.
Cash boost BioRxiv, a free online archive for draft versions of biology research papers, is to receive a windfall from the philanthropic Chan Zuckerberg Initiative (CZI), founded by Facebook co-founder Mark Zuckerberg and his physician wife Priscilla Chan. On 26April, the initiative announced a multi-year funding package the terms of which have not been disclosed for expanding the popular preprint server, which posted its 10,000th manuscript last month. The new money will pay for staff and technology development at bioRxiv, says John Inglis, the executive director of Cold Spring Harbor Laboratory Press and co-founder of the 3-year-old site.
Poor protection A cross-party group of UK politicians has rebuked the countrys government over its ocean-protection record. In a report released on 25April, the Environmental Audit Committee says marine protected areas around the coasts of the British Isles are not managed properly and that vulnerable sites and species are not suitably protected. The committee says it is also shocked and disappointed that the government will not be creating reference sites to help gauge the success of the network of protected areas. Only 50marine conservation zones have been created in British waters, whereas 127 were recommended in 2011.
Legal concerns Hungarys revised higher-education law is incompatible with internal market freedoms and the right of academic freedom in the European Union (EU), the European Commission said on 26 April. The contentious law, which was passed by the Hungarian parliament on 4 April, bars international universities from operating in Hungary unless they have a campus in their home country. The commission sent Budapest a letter of formal notice, outlining legal concerns, to which the Hungarian government has one month to respond. Speaking in the European Parliament on 26 April, Hungarys Prime Minister Viktor Orbn rejected accusations that the law would specifically target the Central European University in Budapest.
Eric Vidal/Reuters
Hungarys Prime Minister Viktor Orbn.
UK research reform On 27April, the British parliament approved a controversial package of reforms to the organization of UK research and universities. Nine research-funding agencies, including Britains seven research councils, will now be merged into a new body, called UK Research and Innovation. The organization will oversee annual spending of more than 6billion (US$7.8 billion). Parliaments unelected upper chamber, the House of Lords, had forced the government into a number of compromises in the reform, including safeguards for institutional autonomy and the independence of research funding from political interference.
Stem-cell payout Allegations of fraud at a US stem-cell laboratory have led to an order for Partners HealthCare System and Brigham and Womens Hospital (BWH) of Boston, Massachusetts, to pay US$10million to the government. The settlement, announced by the US Department of Justice on 27April, came in response to charges that the laboratory of former BWH researcher Piero Anversa used manipulated and falsified data about his research involving cardiac stem cells in applications for federal research funds. Anversa and a colleague sued the hospital in 2014, charging that its investigation of the allegations had damaged their careers. That lawsuit was dismissed.
Offshore drilling President Donald Trump has asked the US Department of the Interior to reopen Arctic federal waters for oil and gas drilling. On 28April, Trump signed an executive order to lift restrictions on offshore mineral exploration in the Beaufort and Chukchi seas. The controls had been imposed by Barack Obamas administration in response to environmental concerns. The order also asks for a review of the five-year plan to sell oil and gas leases in parts of the Gulf of Mexico and Atlantic Ocean areas that the previous administration had closed to offshore exploration and development.
Fishy results Swedens Central Ethical Review Board has ruled that two researchers at Uppsala University have been guilty of scientific dishonesty in relation to a study published last year in Science (O. M. Lnnstedt and P. Eklv Science 352, 12131216; 2016). The board says that the paper by Oona Lnnstedt and Peter Eklv on the claimed harmful impact of microplastics on certain fish larvae should be withdrawn. Uppsala University says it will consider this report alongside an earlier report conducted by the university itself, which found no misconduct.
Leadership row Cell biologist Mary Beckerle has been invited to return to her position as head of the Huntsman Cancer Institute, housed at the University of Utah in Salt Lake City but mainly funded by billionaire Jon Huntsman. Last month, Vivian Lee, dean of the universitys school of medicine and senior vice-president for health sciences, fired Beckerle for undisclosed reasons. In response, institute staff raised protests and Huntsman threatened to revoke a planned donation. Following Beckerles reinstatement on 25 April, Huntsman released a statement pledging US$120million to the institute. On 28 April, Vivian Lee resigned from her leadership positions.
Preventive arrest Stem-cell maverick Davide Vannoni was arrested in Turin, Italy, on 26April after police phone taps indicated that he was seeking new foreign locations to continue his outlawed therapy, according to news reports. Vannoni had been sentenced to jail for conspiracy and fraud for administering unproven stem-cell therapy in Italy to people with incurable diseases through his Stamina Foundation. The sentence was suspended in March last year in a plea bargainon the condition that he cease offering the treatment. Vannoni continued treating people in the Republic of Georgia until the government there banned him in December.
Physicist fired Physicist Etienne Klein has been sacked as president of the Institute for Advanced Studies for Science and Technology (IHEST) in Paris following a series of allegations of plagiarism in his articles and books for the general public. Kleins dismissal was announced in the French governments official journal on 28April. He is replaced by Antoine Petit, head of INRIA, Frances national computer-science agency.
The Arctic is warming more than twice as fast as the rest of the planet. A report by the Arctic Monitoring and Assessment Programme finds that the region was warmer between 2011 and 2014 than at any time since records began around 1900. The rapid warming is hastening the melting of glaciers and sea ice, and boosting sea-level rise. The extent of snow cover across the Arctic regions of North America and Eurasia each June has halved compared with observations before 2000, the report finds.
Source: Snow, Water, Ice, and Permafrost in the Arctic
818 May Details of the Paris climate agreement are negotiated at a United Nations climate-change conference in Bonn, Germany.
89 May Scientists discuss trends in genome editing at a CRISPR congress in London.
913 May The annual Biology of Genomes meeting takes place in Cold Spring Harbor, New York.
See the original post:
Arctic drilling, controversial reforms and new views of Saturn - Nature.com
Amid uncertain future, state’s stem cell agency loses transformational leader – The San Diego Union-Tribune
By Sykes24Tracey
Californias stem cell agency is on the hunt for a new president and CEO after the surprise announcement this week that C. Randal Mills will be departing the California Institute for Regenerative Medicine. He will leave at the end of June.
Mills, who has headed the agency for three years, will become the next president and CEO of the National Marrow Donor Program. CIRM is replacing him on an interim basis with Maria Millan, M.D., the agencys vice president of therapeutics.
The state agency will soon begin a search for a permanent replacement, said Jonathan Thomas, CIRMs chairman. Millan is a candidate to fill that position, with Mills strong endorsement.
Mills is noted for reorganizing CIRM to provide greater systemic support for translating basic research into clinical science, and to provide quicker and more helpful responses to researchers seeking funding.
His initiative, called CIRM 2.0, was a response to criticism that the agency, funded with $3 billion in California bond money in 2004, has been too slow in getting treatments to patients.
Agency-supported treatments are now being tested in medical centers throughout the state, including San Diego County. Most prominently, CIRM has established an alpha stem cell clinic at UC San Diego. It is the cell therapy arm of UCSDs Sanford Stem Cell Clinical Center.
Mills said he decided to leave because the National Marrow Donor Program, which he was familiar with, resonated with his own goals of making personal connections with patients.
Before joining CIRM in 2014, Mills was president and CEO of Osiris Therapeutics, developer of a pediatric stem cell drug called Prochymal, used to treat a complication of bone marrow transplants called graft vs. host disease.
If you look at my office, the walls are covered with pictures of the children that we treated who went through bone marrow transplantation, Mills said. Getting to know them, and getting to know their families that had a tremendous effect.
The unexpected announcement drew surprise and concern from stem cell researchers and observers. As admirers of CIRM 2.0, they expressed uncertainty about what direction the agency would take. And with the $3 billion beginning to run out, looking for a new source of funding will be a top concern of Mills successor.
Confidence
But Mills said Wednesday the agency will do well.
If me leaving CIRM is a problem, then I didnt do a good job at CIRM, Mills said. Whether its because Im going to be the head of the National Marrow Donor Program or I get hit by a car, the success of this organization, or any organization thats healthy and functional, should never pivot on one person, Mills said. Ive assembled a team at CIRM that I have absolute, absolute confidence in.
Mills said he would be surprised if Millan didnt turn out to be the agency boards overwhelming choice to be his permanent successor. She assisted in developing the agencys strategic plan and helped it run smoothly, he said.
In 2015, Mills named Millan as senior director of medical affairs and stem cell centers, one of three appointments to CIRMs leadership team. Before joining CIRM, she was vice president and acting chief medical officer at StemCells, Inc. Before that, Millan was director of the Pediatric Liver and Kidney Transplant Program at Stanford University School of Medicine.
Millan said the agencys strategic plan is working, and taking the agency where it needs to go. That plan was developed to guide researchers, doctors and companies over the predictable hurdles they encounter in translating basic research into therapies testable in the clinic and that companies would want to commercialize.
Weve already done the challenging piece of identifying the how how to get to the mission, which is to accelerate these stem cell treatments to those with unmet medical needs, Millan said. Team members are all aligned in accomplishing these goals One cant help but be more energized and motivated to execute on the strategic plan.
About 30 stem cell clinical trials are under way that the agency has funded at one stage or another in research and development.
Jonathan Thomas, the CIRM chairman, said Mills has done what he promised when joining CIRM, and the agency is operating markedly better, in productivity, speed and efficiency.
He has made it, through CIRM 2.0 and beyond, a humming machine that is operating on all cylinders, Thomas said. In doing that, hes worked extensively and highly collaboratively with Maria (Millan) and the rest of the team. That has made CIRM an even better operation than it ever was. So we are in extremely good shape right now to go forward.
Goals accomplished
Jeanne Loring, a CIRM-funded stem cell scientist at The Scripps Research Institute, said Mills made the agency friendlier and more predictable for the scientists it funds.
The first and most dramatic thing he did was to end the process of independent grants, Loring said. Under that process, each grant proposal was considered on its own, with no consideration for success under a previous grant for an earlier stage of the research.
It was always very troubling to people, I think, that they could do very well with CIRM money on an early-stage grant, and that would earn them nothing in a further application to continue the work, Loring said.
As part of CIRM 2.0, Mills emphasized that once projects were accepted for funding, CIRM would become a partner with the scientists to help them accelerate research and development, and ultimately commercialization.
Loring leads a team researching the use of stem cells for Parkinsons therapy. The cells are collected from the patients to be treated, making them a genetic match. They are then genetically reprogrammed to resemble embryonic stem cells, and then matured into the brain cells destroyed in Parkinsons.
Lorings team was awarded $2.4 million in 2016 from CIRM to advance its research. A next-stage grant to translate the research to a clinically ready approach would need about $7 million, Loring said. The work is part of Summit for Stem Cell, a nonprofit alliance of scientists, doctors, patients and Parkinsons disease community supporters.
Veteran stem cell watcher David Jensen praised Mills on his blog, California Stem Cell Report.
"Dr. Mills made substantial contributions to the agency during his tenure, improving both efficiency of the grant making process and transparency of CIRM's operations, Jensen quoted stem cell observer John M. Simpson of Consumer Watchdog as saying.
Simpson added that as CIRM draws down the rest of its $3 billion with no new funding in sight, its not surprising that Mills would accept another job.
Paul Knoepfler, a CIRM-funded stem cell scientist and blogger, wrote Tuesday that Mills had a big positive impact on CIRM and helped it go to the next level.
About the only thing I wasnt a fan of in terms of his leadership was my perception of his negativity toward the FDA and toward FDA oversight of stem cells, and how that manifested at CIRM during his time there, Knoepfler wrote. But good people can strongly disagree on policy.
bradley.fikes@sduniontribune.com
(619) 293-1020
Football team hosts ‘Be the Match’ bone marrow drive – The Brown and White
By LizaAVILA
The Lehigh football team hosted a bone marrow drive in Lamberton Hallon April 27.
The drive, Be the Match,is a nationwide registry that started at Lehigh in 2009 when Andy Talley, the head football coach at Villanova, reached out to Lehighs head coach Donnie Roberts and asked if he would be interested in contributing to the bone marrow drive.
Roberts said he tries to have more students attend every year and join the cause. Each year, the team strives to get as many students to sign up because the chances of finding a perfect bone marrow match are slim. Since 2009, seven Lehigh students have been perfect matches, four of them football players. Roberts saidthe first student who donated in 2011 ended up having a relationship with the person he donated to.
Yales been (registering) over 400 people every year since theyve been involved, Roberts said. Were not even close to that. But its just the idea that here at Lehigh, if were over 100, I feel good. If we were one, I would feel good, because this is bigger than sports when you have the opportunity to save someones life.
Dan Scassera, 19, left, and Tyler Cavenas, 18, help, from left, Tyler Monaco, 20, Yannick Gbadouwey, 18, and Ben Pingrey, 17, fill out their bone marrow donation forms Thursday, April 27, 2017, in Lamberton Hall. To help donors make a decision, Scassera and Cavenas explain what happens if they are a match. (Roshan Giyanani/B&W Staff)
Participants remain on the registry until their 61st birthday unless they request to be removed from future searches for a match, or they do not meet medical requirements to be eligible. While it is a long-term commitment, Be the Match does its bestto cover all medical and travel costs of donating.
Assistant coach Tyler Ward, 14,said applicants fill out a form, their cheeks are swabbed to retrieve DNA and the samples are sent out to be analyzed.
I think one out of 432 people end up matching with someone, which is why we need so many more people to sign up, Wardsaid.
If applicants are matched with someone, they receive a phone call andgo to a nearby doctor to learn how they can donate. There are two different ways to donate,either through giving blood or bone marrow.
Giving bone marrow is similar to giving blood. Eighty percent ofpeople who donate at all donate blood while 20 percent donate bone marrow. Blood donations are processed through a machine that removes stem cellsand returns blood to the system. Bone marrow donations involve a surgery under anesthesia where marrow is removed from the pelvic bone.Ward saidboth procedures are minor.
At the last station, students are given the option to discreetly remove their consent. This allowed students to decide whether or not they wanted to continue with the donor process. (Roshan Giyanani/B&W Staff)
You dont feel it, youre under anesthesia, and both of them are pretty quick, pretty seamless processes, Ward said.
Roberts said after having the marrow removed, he foundthe pain comparable to lightly bruising a hip. He said whilethe thought of going under anesthesia and having a procedure done is intimidating, it could save someones life.
Julia Wise, 20, helped students with forms at the drive.
I think this is an awesome event, especially on a college campus, because you can recruit so many more people, Wise said. The youngest generation is whats really going to help this cause.
See the original post here:
Football team hosts 'Be the Match' bone marrow drive - The Brown and White
Princess Christina successful stem cell transplant – Royal Central
By raymumme
Anna-Lena Ahlstrm, Royal Court, Sweden
Princess Christina of Sweden, the youngest of King Carl XVI Gustafs four older sisters, has successfully undergone a stem cell transplant.
Swedish newspaper Expressen first reported the news with a confirmation from the Swedish Royal Courts Director of Information and Press Department,Margareta Thorgren. She explained to them, The stem cell operation is completed. Princess Christina is well under the circumstances.
The Princess will remain at home during her recuperation. After such operations, the immune system is considerably weakened, and as a result, doctors commonly advise patients stay isolated while they heal.
It was just last month that the Court made the announcement of the pending transplant, which can be stressful on the body,saying, Princess Christina, Mrs Magnuson has, since October, been treated for blood cancer with regular chemotherapy. The treatment has gone well. But the Princesss blood cancer cannot be cured with this treatment because it occurred in bone marrow stem cells that are resistant to chemotherapy.
In consultation with the family and doctors, the Princess has decided to undergo a stem cell transplant.
She was diagnosed with chronicleukaemia in October of last year. At the time, the Swedish Royal Court said that she was feeling relatively good. It was stated that the73-year-old would scale back her royal duties during her treatmentbut would fulfil her commitments when her health allowed.They also asked that she be able to undergo her chemotherapy in peace.
In 2010, Christina announced that she had undergone treatment for breast cancer including three surgeries and had beaten the disease. After defeating breast cancer, Christina devoted much of her time to bringing attention to cancer issues.
The Princess was born on 3 August 1943 at Haga Palace in Solna, Sweden. She married Tord Magnuson in 1974 at the Royal Chapel in Stockholm Palace. They have three sons: Gustaf, Oscar, and Victor.
Continue reading here:
Princess Christina successful stem cell transplant - Royal Central
Scientists turn human induced pluripotent stem cells into lung cells – Science Daily
By LizaAVILA
Science Daily | Scientists turn human induced pluripotent stem cells into lung cells Science Daily CReM scientists work with induced pluripotent stem cells, or iPSCs, which were discovered by Shinya Yamanaka in 2006. Yamanaka figured out how to take an adult cell in the human body -- like a blood cell or skin cell -- and "reprogram" it into a stem ... |
Go here to read the rest:
Scientists turn human induced pluripotent stem cells into lung cells - Science Daily
Cellaria and Biological Industries USA Partner on Stem Cell Media and Research – EconoTimes
By raymumme
Thursday, May 4, 2017 11:31 AM UTC
CAMBRIDGE, Mass. and CROMWELL, Conn., May 04, 2017 -- Cellaria, LLC, a scientific innovator that develops revolutionary new patient-specific models for challenging diseases, and Biological Industries USA (BI-USA), a subsidiary of Biological Industries (Israel), today announced a new sales and marketing agreement to promote custom stem cell services. The partnership combines BI-USAs strength in stem cell culture media and manufacturing with Cellarias comprehensive Stem Cell Services program, which includes industry leading RNA reprogramming and custom differentiation services. Together, the companies will offer one of the industrys most innovative and comprehensive stem cell service offerings available to biotechnology companies and academic institutions.
As part of the agreement, Cellaria will distribute BI-USAs stem cell media offering, including its NutriStem hPSC Medium, a cGMP xeno-free media specifically designed for human pluripotent stem cell culture. Cellaria will also incorporate the product into its stem cell services. BI-USA will market Cellaria's customized stem cell services, establishing an integrated, single source solution for iPS cell line derivation, culture maintenance, banking, characterization and differentiation services.
BI is one of the most respected names in life sciences today, said David Deems, chief executive officer at Cellaria. The companys strong market presence and innovative media products will enhance our stem cell and RNA reprogramming service offerings and significantly increase the availability and appeal of our combined offerings.
This is an important partnership for us, added Tanya Potcova, chief executive officer of BI-USA. In combination, our teams bring a wealth of stem cell experience but also share a common goal of creating higher quality, more consistent research outcomes for researchers in the life sciences field. We are pleased to be working with the team at Cellaria to put the best possible tools and support in the hands of our present and future customers.
Please visit Cellaria and BI at the International Society of Stem Cell Research Annual Meeting in Boston, MA June 14-17, 2017 at booth# 407.
About Cellaria Cellaria creates high quality, next generation in vitro disease models that reflect the unique nature of a patients biology. All models begin with tissue from a patient, capturing clinically relevant details that inform model characterization. For cancer, Cellarias cell models exhibit molecular and phenotypic characteristics that are highly concordant to the patient. For RNA-mediated iPS cell line derivation and stem cell services, Cellarias cell models enable interrogation of patient and disease-specific mechanisms of action. Cellarias innovative products and services help lead the research community to more personalized therapeutics, revolutionizing and accelerating the search for a cure. For more information, visitwww.cellariabio.com.
About Biological Industries Biological Industries (BI) is one of the worlds leading and trusted suppliers to the life sciences industry, with over 35 years experience in cell culture media development and cGMP manufacturing. BIs products range from classical cell culture media to supplements and reagents for stem cell research and potential cell therapy applications, to serum-free, xeno-free media. BI is committed to a Culture of Excellence through advanced manufacturing and quality-control systems, regulatory expertise, in-depth market knowledge, and extensive technical customer-support, training, and R&D capabilities.
Biological Industries USA (BI-USA) is the US commercialization arm of BI, with facilities in Cromwell, Connecticut. Members of the BI-USA team share a history and expertise of innovation and success in the development of leading-edge technologies in stem cell research, cellular reprogramming, and regenerative medicine. For more information, visit http://www.bioind.com or connect onLinkedIn,Twitter, andFacebook.
Human Life Could Be Extended Indefinitely, Study Suggests
Goosebumps, tears and tenderness: what it means to be moved
Are over-the-counter painkillers a waste of money?
Does an anomaly in the Earth's magnetic field portend a coming pole reversal?
Immunotherapy: Training the body to fight cancer
Do vegetarians live longer? Probably, but not because they're vegetarian
Could a contraceptive app be as good as the pill?
Some scientific explanations for alien abduction that aren't so out of this world
Society actually does want policies that benefit future generations
Six cosmic catastrophes that could wipe out life on Earth
Big Pharma Starts Using Cannabis For Making Drugs In Earnest
Do you need to worry if your baby has a flat head?
View original post here:
Cellaria and Biological Industries USA Partner on Stem Cell Media and Research - EconoTimes
Latest report on regenerative medicine market just published – WhaTech
By JoanneRUSSELL25
Details WhaTech Channel: Industrial Market Research Published: 04 May 2017 Submitted by John Vardon WhaTech Premium News from QY Research Groups Viewed: 7 times
This report studies the global Regenerative Medicine market, analyzes and researches the Regenerative Medicine development status and forecast in United States, EU, Japan, China, India and Southeast Asia.Learn details of the Size, Status and Forecast 2022
What is Regenerative Medicine?
Download Report atwww.qyresearchgroups.com/request-sample/339736
History
Applications
Report:www.qyresearchgroups.com/send-an-enquiry/339736
This report focuses on the top players in global market, like
.
Table of Contents
Global Regenerative Medicine Market Size, Status and Forecast 2022 1 Industry Overview of Regenerative Medicine 1.1 Regenerative Medicine Market Overview 1.1.1 Regenerative Medicine Product Scope 1.1.2 Market Status and Outlook 1.2 Global Regenerative Medicine Market Size and Analysis by Regions 1.2.1 United States 1.2.2 EU 1.2.3 Japan 1.2.4 China 1.2.5 India 1.2.6 Southeast Asia 1.3 Regenerative Medicine Market by Type 1.3.1 Cell Therapy 1.3.2 Tissue Engineering 1.3.3 Biomaterial 1.3.4 Others 1.4 Regenerative Medicine Market by End Users/Application 1.4.1 Dermatology 1.4.2 Cardiovascular 1.4.3 CNS
Report:www.qyresearchgroups.com/339736
1.4.4 Orthopedic 1.4.5 Others
2 Global Regenerative Medicine Competition Analysis by Players 2.1 Regenerative Medicine Market Size (Value) by Players (2016 and 2017) 2.2 Competitive Status and Trend 2.2.1 Market Concentration Rate 2.2.2 Product/Service Differences 2.2.3 New Entrants 2.2.4 The Technology Trends in Future
3 Company (Top Players) Profiles 3.1 Acelity 3.1.1 Company Profile 3.1.2 Main Business/Business Overview 3.1.3 Products, Services and Solutions 3.1.4 Regenerative Medicine Revenue (Value) (2012-2017) 3.1.5 Recent Developments 3.2 DePuy Synthes 3.2.1 Company Profile 3.2.2 Main Business/Business Overview 3.2.3 Products, Services and Solutions 3.2.4 Regenerative Medicine Revenue (Value) (2012-2017) 3.2.5 Recent Developments 3.3 Medtronic 3.3.1 Company Profile 3.3.2 Main Business/Business Overview
READ MORE atwww.qyresearchgroups.com/report/global-regenerative-medicine-market-size-status-and-forecast-2022
More here:
Latest report on regenerative medicine market just published - WhaTech
CIRM California’s stem cell research funding agency to lose … – San Francisco Business Times
By NEVAGiles23
CIRM California's stem cell research funding agency to lose ... San Francisco Business Times Randy Mills, who came in to right California's semi-public stem cell research funding agency, is leaving to head the National Marrow Donor Program. Mills three ... CA Stem Cell Agency Chief Randy Mills to Leave After Three Years ... |
See the article here:
CIRM California's stem cell research funding agency to lose ... - San Francisco Business Times
Stem cells were one of the biggest controversies of 2001. Where are they now? – Vox
By raymumme
Remember stem cells? They were one of the biggest scientific controversies during the early years of George W. Bushs presidency.
At the time, scientists had realized thatembryonic stem cells had the incredible capacity to transform into virtually any cell in the human body and so could potentially lead to new treatments or cures for a multitude of illnesses. On the other hand, extracting these stem cells required destroying human embryos, an action opposed by some pro-life individuals.
EMBRYONIC stem-cell THERAPIES ARE GETTING TESTED IN ACTUAL PATIENTS
The stem-cell debate got really heated. But then ... it just sort of fizzled out from public view. So whatever happened to stem cells?
A couple of things helped lessen the controversy. By the late 2000s, researchers discovered other ways to createcells similar to embryonic stem cells without destroying human embryos, a promising advance that helped defuse the culture-war aspect. Then, in 2009, Obama somewhat loosened the Bush-era restrictions on federal funding for stem-cell research and thecompromise seemed to quiet both sides down a fair amount.
So, lately, scientists have been patiently continuing their stem-cell research in a less noisy atmosphere. And that work has actually led to a few advances like restoring some sight in 10 patients with vision diseases. But the stem-cell controversy is far from dead. Researchers still might need cells from embryos to create certain treatments. If it turns out that non-embryonic stem cells aren't good enough, that could re-ignite the culture wars. So here's a guide to the debate:
Shinya Yamanaka (right) receiving flowers from Sweden's ambassador to Japan in 2012, after it was announced that Yamanaka won a Nobel Prize in medicine. (Jiji Press/AFP/Getty Images)
Embryonic stem cells attracted scientific attention because they have the potential to grow into virtually any cell in the human body say, insulin-producing cells for people with diabetes, brain cells for people with Parkinsons, or even wholenew organs to replace faulty ones.
But for many people, there was one huge ethical problem: creating them required destroying an embryo. That's why, in 2001,George W. Bush decided to limit federal funding of research to a list of 60 pre-existing embryonic stem-cell lines (so as to discourage the destruction of any more embryos). Many scientists viewed the rules as too strict. Hence the controversy.
Obama SOMEWHAT relaxed Bushs restrictions on embryonic stem cells
But then in 2007, Japanese scientistShinya Yamanaka and his colleagues managed to coax cells from adult humans into embryo-like flexibility. In other words, they were able to create cells that seemed to resemble embryonic stem cells but that didn't require destroying an embryo. (These new cells were named induced pluripotent stem cells, IPSCs.) Other researchers began finding that adult stem cells have similar, but more limited, properties, too.
Meanwhile, the politics shifted. In 2009, Barack Obama came into office and signed anexecutive order that somewhat relaxed Bushs restrictions on embryonic stem cells. Under the new rules, the federal government would fund work on new stem-cell lines, but only if they had been made from leftover embryos from fertility clinics andwith non-federal money. That compromise seemed tohelp thecontroversy settledown.
A figure of visual ability after an embryonic-stem-cell-derived treatment (red line) in patients with macular degeneration over the course of 360 days. (Schwartz et al., The Lancet, October 15, 2014)
While the controversy has calmed down, stem-cell research is taking off and scientists are making advances with both embryonic and non-embryonic cells.
Much of the initial research on stem-cell therapies has focused on eye treatments. (That's because stem-cell therapies can be unpredictable and have sometimes lead to tumors in previous experiments. A tumor in an eye would be relatively easier to deal with and remove than tumors hidden deeper inside the body.)
In October 2014, researchers from the company Advanced Cell Technology (now called Ocata Therapeutics)showed that they had created new retina cells from embryonic stem cells for 18 patients who were going blind. Afterward, 10 of them had improved eyesight. Another group of researchers in Japan is trying to do the same thing with non-embryonic cells (those aforementioned IPSCs).
10 PEOPLE WHO WERE GOING BLIND HAD Improved eyesight AFTER EMBRYONIC STEM-CELL THERAPY
Other embryonic stem-cell research has focused on developing cells that can help treat spinal-cord injuries. A company called Geron startedsafety tests in such patients in 2010.
Although a few groups are continuing to work on embryonic stem cells, many are now focusing on non-embryonic stem cells like IPSCs because they're less contentious. "Everyone jumped very, very quickly on the IPS[C] bandwagon because it was eligible for federal funding, and then also any of the controversy [regarding embryos] was dropped," says Susan Solomon, CEO of the nonprofit New York Stem Cell Foundation.
But Solomon also thinks researchers have moved away from embryonic stem cells too quickly. "We felt that it was way too early to do that," she adds. Her organization still studies embryonic stem cells, among others in part because they may be able to do things that non-embryonic stem cells can't. It's just too early to tell.
It's important to note that despite all the overhype over the years, stem-cell science has been moving at the same slow pace as most scientific fields. There are still no FDA-approved treatments that use either embryonic stem cells or IPSCs. And that means that controversy over whether embryonic stem cells are needed for science and medicine is still unresolved.
(Shutterstock)
That said, the fight over stem cells hasn't gone away forever. And there's likely to be more conflict in the future.
Even after the Obama administration relaxed the rules on funding stem-cell research, there are still plenty of hurdles. For example, federal funding is currently prohibited for research on embryonic stem-cell lines made through a technique calledSCNT or cloning, which requires creating embryos in the lab.
This technique could one day prove useful because it can turn a person's own cells into a customized embryonic stem-cell line and would therefore stop people's immune systems from rejecting stem-cell treatments.
In 2013 and 2014, two groups published the firstdemonstrations of this technique with human cells. But all such research in the US must be done with private funds.
On top of all of this, some states directly ban some or all stem-cell research within their borders no matter who's paying for it:
Note: Minnesota has a vague law on the books that's currently interpreted to mean that embryonic stem-cell research is ok. Missouri's law is a bit self-conflicting. For more details, check out The Hinxton Group's site, which includes quotations from the relevant regulations themselves.
"We went from more of a legislative vacuum to our current patchwork quilt, with legislation enacted in all of the jurisdictions where interest groups had enough clout to get the job done," Alan Regenberg, Director of Outreach and Research Support at the Johns Hopkins Berman Institute of Bioethics, told me in an email.
Several things could bring the stem-cell fight back. For example, a clinical trial could come out with some really impressive results on some sort of stem-cell treatment renewing the debate over whether regulations should be loosened. Conversely, a social conservative could run for president and bring up the ethical issues on the campaign trail. And no matter who lands in the White House in 2016, its reasonable to expect some major changes in federal policy and fast. Both George W. Bush and Barack Obama implemented their rules within the first year in office.
In 2013, Obama's stem-cell policy survived Supreme Court case Sherley v. Sebelius.
A piece on the first embryonic stem-cellmedical trials in people, by Sarah Boseley at the Guardian
Update: Clarified the current interpretation of Minnesota's stem cell laws and changed the map to match.
Go here to read the rest:
Stem cells were one of the biggest controversies of 2001. Where are they now? - Vox
US Stem Cell Inc (OTCMKTS:USRM) Receives Institutional Fund … – StockNewsUnion
By Sykes24Tracey
US Stem Cell Inc (OTCMKTS:USRM) is a biotechnology company that was formerly known as Bioheart, Inc. US Stem Cell, headquartered in Sunrise, FL, seeks to discover, develop, and commercialize autologous cell therapies for the treatment of chronic and acute heart damage. The companys current drug candidates include MyoCell, MyoCell SDF-1, and AdipoCell. On April 13, 2017 US Stem Cell Inc (OTCMKTS:USRM) announced that it had received a commitment to invest up to $5,000,000 from private equity firm General American Capital Partners LLC (GACP) in exchange for up to 63,873,275 shares of common stock.
MyoCell is being developed by US Stem Cell Inc (OTCMKTS:USRM) as a treatment to improve cardiac function months or years after a patient has experienced heart damage due to a heart attack. The treatment involves the removal of a small amount of muscle from the patients thigh. Muscle stem cells, called myoblasts, are isolated and expanded utilizing a proprietary cell-culturing process. These cells are then injected directly into the hearts scar tissue through an endoventricular needle-injection catheter by a surgeon. The stem cells then populate the area of scar tissue to, hopefully, improve cardiac function. The peer-reviewed American Heart Journal published the results of clinical trial Marvel-1. According to the article, when compared with a placebo, myoblast therapy was associated with sustained (six months) improvements in six-minute walk distance of >90 meters, a clinically meaningful improvement.
US Stem Cell Inc (OTCMKTS:USRM) is also developing MyoCell SDF-1. This treatment has recently received approval from the U.S Food and Drug Administration (FDA) to begin human clinical trials. MyoCell SDF-1 is being developed as an improvement to the MyoCell treatment. In preclinical studies, MyoCell SDF-1 provided a 54% improvement of heart function compared to 27% for the original MyoCell composition, while the placebo control treated animals declined by 10%. The preclinical studies also demonstrated that this product candidate can enhance blood vessel formation in damaged hearts.
Lastly, US Stem Cell Inc (OTCMKTS:USRM) is also developing its AdipoCell treatment. Adipose (fat) tissue is readily available and has been shown to be rich in microvascular, myogenic and angiogenic cells. In collaboration with the Regenerative Medicine Institute in Tijuana, Mexico, congestive heart failure patients are being treated in a Phase I/II trial at Hospital Angeles Tijuana. Reportedly, these patients have demonstrated, on average, an absolute improvement of 13% in ejection fraction and an increase of 100 meters in their six-minute walk distance. US Stem Cell Inc (OTCMKTS:USRM) has recently applied to the FDA to begin trials using adipose derived stem cells or AdipoCell in patients with chronic ischemic cardiomyopathy. The therapy involves the use of stem cells derived from the patients own fat (adipose tissue) obtained using liposuction. Transplantation of AdipoCell is accomplished through endocardial implantations with an injection catheter.
I have no positions in any stocks mentioned, and no plans to initiate any positions within the next 96 hours. All information, or data, is provided with no guarantees of accuracy.
About the author: Steve Clark is a 23-year Wall St professional with stints in M&A, risk management, and algorithm trading.
Original post:
US Stem Cell Inc (OTCMKTS:USRM) Receives Institutional Fund ... - StockNewsUnion
VistaGen Therapeutics’ Largest Stockholder Signs 6-Month Lock-Up Agreement – Yahoo Finance
By LizaAVILA
SOUTH SAN FRANCISCO, CA--(Marketwired - May 01, 2017) - VistaGen Therapeutics Inc. (VTGN), a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders, announced today that its largest institutional stockholder, holding both common stock and substantially all (99.3%) of the Company's outstanding preferred stock, entered into a 6-month lock-up agreement. Under the agreement, the stockholder and its affiliates agreed to not enter into any transaction involving the Company's securities during the term of the agreement, which runs through late-October 2017 and covers approximately 36% of the Company's issued and outstanding equity securities on an as converted basis.
About VistaGen
VistaGen Therapeutics, Inc. (VTGN), is a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders. VistaGen's lead CNS product candidate, AV-101, is in Phase 2 development as a new generation oral antidepressant drug candidate for major depressive disorder (MDD). AV-101's mechanism of action is fundamentally differentiated from all FDA-approved antidepressants and atypical antipsychotics used adjunctively to treat MDD, with potential to drive a paradigm shift towards a new generation of safer and faster-acting antidepressants. AV-101 is currently being evaluated by the U.S. National Institute of Mental Health (NIMH) in a Phase 2 monotherapy study in MDD being fully funded by the NIMH and conducted by Dr. Carlos Zarate Jr., Chief, Section on the Neurobiology and Treatment of Mood Disorders and Chief of Experimental Therapeutics and Pathophysiology Branch at the NIMH. VistaGen is preparing to launch a 180-patient Phase 2 study of AV-101 as an adjunctive treatment for MDD patients with inadequate response to standard, FDA-approved antidepressants. Dr. Maurizio Fava of Harvard University will be the Principal Investigator of the Company's Phase 2 adjunctive treatment study. AV-101 may also have the potential to treat multiple CNS disorders and neurodegenerative diseases in addition to MDD, including chronic neuropathic pain, epilepsy, and symptoms of Parkinson's disease and Huntington's disease, where modulation of the NMDAR, AMPA pathway and/or key active metabolites of AV-101 may achieve therapeutic benefit.
VistaStem Therapeutics is VistaGen's wholly owned subsidiary focused on applying human pluripotent stem cell technology, internally and with collaborators, to discover, rescue, develop and commercialize proprietary new chemical entities (NCEs), including small molecule NCEs with regenerative potential, for CNS and other diseases, and cellular therapies involving stem cell-derived blood, cartilage, heart and liver cells. In December 2016, VistaGen exclusively sublicensed to BlueRock Therapeutics LP, a next generation regenerative medicine company established by Bayer AG and Versant Ventures, rights to certain proprietary technologies relating to the production of cardiac stem cells for the treatment of heart disease.
For more information, please visit http://www.vistagen.com and connect with VistaGen on Twitter, LinkedIn and Facebook.
Forward-Looking Statements
The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to the successful launch, continuation and results of the NIMH's Phase 2 (monotherapy) and/or the Company's planned Phase 2 (adjunctive therapy) clinical studies of AV-101 in MDD, and other CNS diseases and disorders, protection of its intellectual property, and the availability of substantial additional capital to support its operations, including the Phase 2 clinical development activities described above. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.
Go here to read the rest:
VistaGen Therapeutics' Largest Stockholder Signs 6-Month Lock-Up Agreement - Yahoo Finance
Magenta Nabs More Cash, Licenses Drug To Boost Transplant Pipeline – Xconomy
By NEVAGiles23
Xconomy Boston
Magenta Therapeutics said today it has doubled its money with a $50 million Series B round led by GV, formerly Google Ventures. The Cambridge, MA-based startup spun out of Harvard University last year with nearly $50 million in launch money to develop improved bone marrow transplants.
Magenta has also licensed a drug from Novartis that it says could help boost the number of healthy stem cells that are delivered into a patients body, a key procedure in a transplant.
Used to treat people with cancer and other blood-borne diseases, a bone marrow transplant starts with a procedure to kill a patients diseased blood stem cells, which live in the bone marrow. The diseased cells are then replaced with healthy stem cells, usually from a donor. Though growing safer, its still a risky process, especially for elderly or frail patients. Deaths related to the treatment have dropped below 20 percent in recent years, but Magentas founders as well as researchers at Stanford University are among the groups working to improve the complicated steps.
Magenta is developing three types of drugs, each for a different procedure in the transplant process. It will test them as separate products but try to market them as a suite to transplant clinics, according to management.
The drug Magenta licensed from Novartis is applied to cells from donated umbilical cord blood, which have different properties than cells from blood donated by adults. The drug, which recently completed an early stage study, is meant to stimulate the blood cells to replicate faster outside the body, providing a bigger population to put back into the patient. The more cells, the better the chance that the new healthy cells will engraft, or survive in the patients bone marrow.
Magenta also aims to develop an alternative to chemotherapy or radiation, which a patient receives before a transplant to kill his or her diseased stem cells; and a treatment to coax an adult donors stem cells out of the bone marrow and into the bloodstream, where the cells are easier to harvest for the transplant.
Other investors in the new round are previous backers Third Rock Ventures, Atlas Venture, Partners Innovation Fund, and Access Industries, and new investors including Casdin Capital and BeTheMatch BioTherapies, which is affiliated with the nonprofit international bone marrow registry NMDP/Be The Match.
Magenta said it would work with BeTheMatch BioTherapies on research and development.
Photo Bone Marrow Donation by Andrew Ratto via a Creative Commons 2.0 license.
Alex Lash is Xconomy's National Biotech Editor. He is based in San Francisco.
Read this article:
Magenta Nabs More Cash, Licenses Drug To Boost Transplant Pipeline - Xconomy
California stem cell agency president steps down as worries mount about its future – Sacramento Bee
By Sykes24Tracey
Sacramento Bee | California stem cell agency president steps down as worries mount about its future Sacramento Bee Mills will leave at the end of June to become president of the National Marrow Donor Program in Minneapolis, the world's largest bone marrow donor program. Maria Millan, vice president of therapeutics at the agency, will become its interim president in ... CA Stem Cell Agency Chief Randy Mills to Leave After Three Years |
View post:
California stem cell agency president steps down as worries mount about its future - Sacramento Bee
Magenta Therapeutics Advances Stem Cell Transplantation Strategy … – Business Wire (press release)
By JoanneRUSSELL25
CAMBRIDGE, Mass.--(BUSINESS WIRE)--Magenta Therapeutics, a biotechnology company developing therapies to improve and expand the use of curative stem cell transplantation for more patients, today announced rapid progress in advancing the companys strategic vision, including the completion of a $50 million Series B financing; in-licensing a clinical-stage program from Novartis to support the use of stem cell transplantation in a variety of disease settings; and a strategic partnership with Be The Match BioTherapiesSM, an organization offering solutions for delivering autologous and allogeneic cellular therapies.
The financing announced today is intended to fuel development of innovative product candidates across multiple aspects of transplantation medicine, including more precise preparation of patients, stem cell harvesting and stem cell expansion. The Series B round, which was oversubscribed, was led by GV (formerly Google Ventures), with participation from all existing investors, including Atlas Venture, Third Rock Ventures, Partners Innovation Fund and Access Industries. The financing also included Casdin Capital and other crossover investors, as well as Be The Match BioTherapies, a subsidiary of National Marrow Donor Program(NMDP)/Be The Match, the worlds leading organization focused on saving lives through bone marrow and umbilical cord blood transplantation.
Magenta has quickly established itself as a nexus of innovation in stem cell science, catalyzing interest in this area of medicine with the recognition that improvements will have profound impact on patients, said Jason Gardner, D. Phil., chief executive officer, president and cofounder of Magenta Therapeutics. We aspire to accelerate products that could unleash the potential of transplantation to more patients, including those with autoimmune diseases, genetic blood disorders and cancer. The resounding interest in Magenta from such a high-quality set of investors is a testament to our solid progress since launch, including building a world-class team and a robust pipeline, and generating promising early data.
MGTA-456: Investigational Product Addressing Significant Unmet Need in Stem Cell Transplant
The clinical-stage program in-licensed by Magenta from Novartis, MGTA-456 (formerly HSC835), aims to expand the number of cord blood stem cells used in transplants to achieve superior clinical outcomes compared to standard transplant procedures, and to enable more patients to benefit from a transplant. Under this agreement, Magenta gains rights to use MGTA-456 in selected applications and will develop MGTA-456 in multiple diseases, including immune and blood diseases.
Early results published in Science1 demonstrated the ability of MGTA-456 to significantly increase the number of umbilical cord blood stem cells. Clinical results reported in Cell Stem Cell2 demonstrated that this approach yielded an increased expansion of stem cells.
John E. Wagner, M.D., executive medical director of the Bone Marrow Transplantation Program at the University of Minnesota and the studys lead author, stated: MGTA-456 markedly shortens time to recovery, addressing one of the most significant challenges in stem cell transplantation today. MGTA-456 achieved a remarkable increase in the number of blood-forming stem cells, greater than that observed by all other methods that have been tested to date. This product has the potential to further improve cord blood transplant outcomes.
Be The Match BioTherapies Strategic Partnership Agreement
Magenta and Be The Match BioTherapies also announced today that in addition to the equity investment, the two organizations have initiated a collaboration to support their shared goals of improving transplant medicine. Magenta and Be The Match BioTherapies will explore opportunities to work together across all of Magentas research efforts, from discovery through clinical development. Under this agreement, Magenta may leverage Be The Match BioTherapies capabilities, including its cell therapy delivery platform, industry relationships, clinical trial design and management, and patient outcomes data derived from the NMDP/Be The Match, which operates the largest and most diverse marrow registry in the world. NMDP/Be The Match has a network of more than 486 organizations that support marrow transplant worldwide, including 178 transplant centers in the United States and more than 45 international donor centers and cooperative registries.
We are proud to have made our first equity investment as an organization in Magenta Therapeutics, and we share a vision to improve and advance the use of curative stem cell transplantation for patients with a wide range of diseases, said Amy Ronneberg, president of Be The Match Biotherapies.
About Magenta Therapeutics
Magenta Therapeutics is a biotechnology company harnessing the power of stem cell science to revolutionize stem cell transplantation for patients with immune- and blood-based diseases. By creating a platform focused on critical areas of transplant medicine, Magenta Therapeutics is pioneering an integrated, but modular approach to stem cell therapies to create patient benefits. Founded by internationally recognized leaders in stem cell transplant medicine, Magenta Therapeutics was launched in 2016 by Third Rock Ventures and Atlas Venture and is headquartered in Cambridge, Mass. For more information, please visitwww.magentatx.com.
About Third Rock Ventures
Third Rock Ventures is a leading healthcare venture firm focused on investing and launching companies that make a difference in peoples lives. The Third Rock team has a unique vision for ideating and building transformative healthcare companies. Working closely with our strategic partners and entrepreneurs, Third Rock has an extensive track record for managing the value creation path to deliver exceptional performance. For more information, please visit the firms website atwww.thirdrockventures.com.
About Atlas Venture
Atlas Venture is a leading biotech venture capital firm. With the goal of doing well by doing good, we have been building breakthrough biotech startups since 1993. We work side by side with exceptional scientists and entrepreneurs to translate high impact science into medicines for patients. Our seed-led venture creation strategy rigorously selects and focuses investment on the most compelling opportunities to build scalable businesses and realize value. For more information, please visitwww.atlasventure.com.
About GV
GV provides venture capital funding to bold new companies. In the fields of life science, healthcare, artificial intelligence, robotics, transportation, cyber security, and agriculture, GV's companies aim to improve lives and change industries. GV's team of world-class engineers, designers, physicians, scientists, marketers, and investors work together to provide these startups exceptional support on the road to success.
Launched as Google Ventures in 2009, GV is the venture capital arm of Alphabet, Inc. GV helps startups interface with Google, providing unique access to the worlds best technology and talent. GV has $2.4 billion under management and is headquartered in Mountain View, California, with offices in San Francisco, Boston, New York, and London. Launched as Google Ventures in 2009, GV is the venture capital arm of Alphabet, Inc. For more information, please visit http://www.gv.com.
About Be The Match BioTherapies
Be The Match BioTherapies partners with organizations pursuing new life-saving treatments in cellular therapy. Built on the foundation established over the last 30 years by theNMDP/Be The Match, the organization has unparalleled experience in personalized patient management with a single point of contact, cell sourcing and collection, cell therapy delivery platform, immunogenetics and bioinformatics, research and regulatory compliance. By leveraging proven capabilities and established relationships, Be The Match BioTherapies can bring customizable solutions to organizations in every stage of cellular therapy developmentfrom discovery through commercialization. Discover how Be The Match BioTherapies can assist your company atBeTheMatchBioTherapies.com.
For more information on todays announcement, see Jason Gardners post in the Life Sci VC blog: https://lifescivc.com/2017/05/building-a-bioteth-a-triple-play/.
1Science.2010 Sep 10;329(5997):1345-8. 2Cell Stem Cell.2016 Jan 7;18(1):144-55.
See the rest here:
Magenta Therapeutics Advances Stem Cell Transplantation Strategy ... - Business Wire (press release)
How ‘smart’ stem cells could lead to arthritis vaccine – Futurity: Research News
By Sykes24Tracey
Researchers have modified mouse stem cells to combat the kind of inflammation that arthritis and other conditions cause. The stem cells may one day be used in a vaccine that would fight arthritis and other chronic inflammation conditions in humans, a new paper suggests.
Such stem cells, known as SMART cells (Stem cells Modified for Autonomous Regenerative Therapy), develop into cartilage cells that produce a biologic anti-inflammatory drug that, ideally, will replace arthritic cartilage and simultaneously protect joints and other tissues from damage that occurs with chronic inflammation.
Researchers initially worked with skin cells from the tails of mice and converted those cells into stem cells. Then, using the gene-editing tool CRISPR in cells grown in culture, they removed a key gene in the inflammatory process and replaced it with a gene that releases a biologic drug that combats inflammation. The research is availablein the journal Stem Cell Reports.
Our goal is to package the rewired stem cells as a vaccine for arthritis, which would deliver an anti-inflammatory drug to an arthritic joint but only when it is needed, says Farshid Guilak, the papers senior author and a professor of orthopedic surgery at Washington University School of Medicine. To do this, we needed to create a smart cell.
Many current drugs used to treat arthritisincluding Enbrel, Humira, and Remicadeattack an inflammation-promoting molecule called tumor necrosis factor-alpha (TNF-alpha). But the problem with these drugs is that they are given systemically rather than targeted to joints. As a result, they interfere with the immune system throughout the body and can make patients susceptible to side effects such as infections.
We want to use our gene-editing technology as a way to deliver targeted therapy in response to localized inflammation in a joint, as opposed to current drug therapies that can interfere with the inflammatory response through the entire body, says Guilak, also a professor of developmental biology and of biomedical engineering and codirector of Washington Universitys Center of Regenerative Medicine.
If this strategy proves to be successful, the engineered cells only would block inflammation when inflammatory signals are released, such as during an arthritic flare in that joint.
As part of the study, Guilak and his colleagues grew mouse stem cells in a test tube and then used CRISPR technology to replace a critical mediator of inflammation with a TNF-alpha inhibitor.
We hijacked an inflammatory pathway to create cells that produced a protective drug.
Exploiting tools from synthetic biology, we found we could re-code the program that stem cells use to orchestrate their response to inflammation, says Jonathan Brunger, the papers first author and a postdoctoral fellow in cellular and molecular pharmacology at the University of California, San Francisco.
Over the course of a few days, the team directed the modified stem cells to grow into cartilage cells and produce cartilage tissue. Further experiments by the team showed that the engineered cartilage was protected from inflammation.
We hijacked an inflammatory pathway to create cells that produced a protective drug, Brunger says.
The researchers also encoded the stem/cartilage cells with genes that made the cells light up when responding to inflammation, so the scientists easily could determine when the cells were responding. Recently, Guilaks team has begun testing the engineered stem cells in mouse models of rheumatoid arthritis and other inflammatory diseases.
If the work can be replicated in animals and then developed into a clinical therapy, the engineered cells or cartilage grown from stem cells would respond to inflammation by releasing a biologic drugthe TNF-alpha inhibitorthat would protect the synthetic cartilage cells that Guilaks team created and the natural cartilage cells in specific joints.
When these cells see TNF-alpha, they rapidly activate a therapy that reduces inflammation, Guilak explains. We believe this strategy also may work for other systems that depend on a feedback loop. In diabetes, for example, its possible we could make stem cells that would sense glucose and turn on insulin in response. We are using pluripotent stem cells, so we can make them into any cell type, and with CRISPR, we can remove or insert genes that have the potential to treat many types of disorders.
With an eye toward further applications of this approach, Brunger adds, The ability to build living tissues from smart stem cells that precisely respond to their environment opens up exciting possibilities for investigation in regenerative medicine.
The National Institute of Arthritis and Musculoskeletal and Skin Diseases and the National Institute on Aging of the National Institutes of Health supported this work. The Nancy Taylor Foundation for Chronic Diseases; the Arthritis Foundation; the National Science Foundation; and the Collaborative Research Center of the AO Foundation in Davos, Switzerland, provided additional funding.
Authors Farshid Guilak and Vincent Willard have a financial interest in Cytex Therapeutics of Durham, North Carolina, which may choose to license this technology. Cytex is a startup founded by some of the investigators. They could realize financial gain if the technology eventually is approved for clinical use.
Source: Washington University at St. Louis
Link:
How 'smart' stem cells could lead to arthritis vaccine - Futurity: Research News
VistaGen Therapeutics’ Largest Stockholder Signs 6-Month Lock-Up Agreement – Marketwired (press release)
By Sykes24Tracey
SOUTH SAN FRANCISCO, CA--(Marketwired - May 01, 2017) - VistaGen Therapeutics Inc. (NASDAQ: VTGN), a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders, announced today that its largest institutional stockholder, holding both common stock and substantially all (99.3%) of the Company's outstanding preferred stock, entered into a 6-month lock-up agreement. Under the agreement, the stockholder and its affiliates agreed to not enter into any transaction involving the Company's securities during the term of the agreement, which runs through late-October 2017 and covers approximately 36% of the Company's issued and outstanding equity securities on an as converted basis.
About VistaGen
VistaGen Therapeutics, Inc. (NASDAQ: VTGN), is a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders. VistaGen's lead CNS product candidate, AV-101, is in Phase 2 development as a new generation oral antidepressant drug candidate for major depressive disorder (MDD). AV-101's mechanism of action is fundamentally differentiated from all FDA-approved antidepressants and atypical antipsychotics used adjunctively to treat MDD, with potential to drive a paradigm shift towards a new generation of safer and faster-acting antidepressants. AV-101 is currently being evaluated by the U.S. National Institute of Mental Health (NIMH) in a Phase 2 monotherapy study in MDD being fully funded by the NIMH and conducted by Dr. Carlos Zarate Jr., Chief, Section on the Neurobiology and Treatment of Mood Disorders and Chief of Experimental Therapeutics and Pathophysiology Branch at the NIMH. VistaGen is preparing to launch a 180-patient Phase 2 study of AV-101 as an adjunctive treatment for MDD patients with inadequate response to standard, FDA-approved antidepressants. Dr. Maurizio Fava of Harvard University will be the Principal Investigator of the Company's Phase 2 adjunctive treatment study. AV-101 may also have the potential to treat multiple CNS disorders and neurodegenerative diseases in addition to MDD, including chronic neuropathic pain, epilepsy, and symptoms of Parkinson's disease and Huntington's disease, where modulation of the NMDAR, AMPA pathway and/or key active metabolites of AV-101 may achieve therapeutic benefit.
VistaStem Therapeutics is VistaGen's wholly owned subsidiary focused on applying human pluripotent stem cell technology, internally and with collaborators, to discover, rescue, develop and commercialize proprietary new chemical entities (NCEs), including small molecule NCEs with regenerative potential, for CNS and other diseases, and cellular therapies involving stem cell-derived blood, cartilage, heart and liver cells. In December 2016, VistaGen exclusively sublicensed to BlueRock Therapeutics LP, a next generation regenerative medicine company established by Bayer AG and Versant Ventures, rights to certain proprietary technologies relating to the production of cardiac stem cells for the treatment of heart disease.
For more information, please visit http://www.vistagen.com and connect with VistaGen on Twitter, LinkedIn and Facebook.
Forward-Looking Statements
The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to the successful launch, continuation and results of the NIMH's Phase 2 (monotherapy) and/or the Company's planned Phase 2 (adjunctive therapy) clinical studies of AV-101 in MDD, and other CNS diseases and disorders, protection of its intellectual property, and the availability of substantial additional capital to support its operations, including the Phase 2 clinical development activities described above. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.
Excerpt from:
VistaGen Therapeutics' Largest Stockholder Signs 6-Month Lock-Up Agreement - Marketwired (press release)
Mouse teeth shown to hold insight into future stem cell tissue regeneration – Bel Marra Health
By daniellenierenberg
Home Health News Mouse teeth shown to hold insight into future stem cell tissue regeneration
The use of stem cells throughout the years has been both a decisive topic and one that holds a lot of promise for potential medical therapy. They are essentially undifferentiated biological cells that havent yet been specialized for a specific purpose. The cells of your heart, stomach, and even your brain have all started out as stem cells, and it wasnt until some point during human development that biological processes channeled them to permanently becoming one type of cell. Scientists and researchers around the globe are always in search of the best way to learn about and harvest these valuable cells, and the latest reports suggest the teeth of rodents are an abundant source.
There are considered two main stem cell types in the body: one is from embryonic development when in the womb, and the other are adult stem cells that exist throughout the body. Harvesting embryonic stem cells has been controversial, as it often seen as unethical, but adult stem cellsfound in organs such as the bone marrow, blood vessel, and liver in mammalsis easier to obtain. Stomach linings, for example, require the constant shedding of their cell linings as the acid wears away at them, and having adult stems cells allows for quick replacement of these sloughed off cells.
Weve all seen mice before, and one of their defining characteristics are their front teeth. What most people arent aware of is that their front teeth, or incisors, constantly grow, as they rely on them to be consistently sharp for burrowing and self-defense, and of course, for eating away at your pantry food. As we grow older our teeth start to wear out, and in nature, once you dont have your teeth anymore, you die. As a result, mice and many other animals from elephants to some primates can grow their teeth continuously. Our labs objective is to learn the rules that let mouse incisors grow continuously to help us one day grow teeth in the lab, but also to help us identify general principles that could enable us to understand the processes of tissue renewal much more broadly, said UC San Franciscos Ophir Klein, MD, Ph.D., a professor of orofacial sciences in UCSFs School of Dentistry and of pediatrics in the School of Medicine.
While not all aspects of this process are fully understood just yet, as the exact signals triggering this process have yet to be identified. It, however, marks an advancement of knowledge in the field, and one that bodes well for the future of stem cell therapy. It may prove beneficial for tissue regeneration to treat everything from severe burns to growing entire organs from scratch.
Related:Stem cells from fat may be useful to prevent aging
Related Reading:
Stem cell technique may aid in bone repair
Osteoporosis can be reversed by stem cell therapy, new potential treatment
https://www.ucsf.edu/news/2017/04/406836/mouse-teeth-providing-new-insights-tissue-regeneration http://www.sciencedirect.com/science/article/pii/S1934590917300942 http://www.medicalnewstoday.com/info/stem_cell
Read more here:
Mouse teeth shown to hold insight into future stem cell tissue regeneration - Bel Marra Health
Benefit planned May 5-6 for area leukemia victim – SalemNews.net
By NEVAGiles23
A benefit rummage, bake and vendor sale will be held this Friday and Saturday for Trisha Suits, a Lisbon resident battling leukemia. She is shown with her mother, Alice Loy, and 6-year-old son Landon who proudly displays the jacket Trisha wore while serving as an assistant cross country coach at Lisbon. Despite being virtually blind, the David Anderson High School graduate ran cross country in high school. (Salem News photo by J.D.Creer)
WHAT: Rummage, bake and vendor sale to benefit area resident Trisha Suits who will be undergoing leukemia treatments at the Cleveland Clinic.
WHEN: From 9 a.m.-4 p.m. Friday and Saturday, May 5-6.
WHERE: Guilford Lake Ruritan Hall, state Route 172.
She was born weighing just a pound and eight ounces. But Trisha Suits is hardly a lightweight.
The courageous 30-year-old Lisbon resident, left virtually blind due to her premature birth, has taken on all comers throughout her life. Despite having only 2 percent vision in her right eye and none in her left, she has been a capable mom in helping to raise her son. She is a 2006 David Anderson High School graduate. Remarkably, she ran as a member of the cross-country team, memorizing her routes. Just putting one foot in front of the other, Trisha quipped, saying never fell. She later served as a Blue Devils assistant coach.
Now she is confronting her biggest challenge. She has been diagnosed with a complex form of leukemia and will be undergoing bone marrow and stem cell transplants at the Cleveland Clinic. Due to ongoing treatments, she will be required to remain in the hospital for six weeks. Then she will need to stay at a nearby housing complex for another 100 days.
Trisha was diagnosed in early March, after passing out from severe blood loss. She spent a month in the Cleveland Clinic getting chemotherapy. But due to genetic mutations, she needs bone marrow and stem cell transplants to combat acute myeloid leukemia a type of cancer that starts in the blood-forming cells of marrow.
According to her aunt, Melody Hobbs of Salem, her lengthy stay at the housing complex the Transplant House of Cleveland will cost about $75 per day for just the lodging. A donor has been found. Transplant treatments are expected to begin May 11.
To help offset the costs, a combination rummage, bake and vendor sale for Trisha will be held this Friday and Saturday, May 5-6, from 9 a.m. to 4 p.m. each day at the Guilford Ruritans Hall off of state Route 172.
We just need people to come, Hobbs said. We are trying to raise awareness to get more people out there. All the money raised will pay for Trishas lodging and transportation.
Trishas ordeal is and will continue to be grueling. Admittedly, she gets bitter, angry and frustrated. The uncertainty is overwhelming.
The really hard part of it will be being in Cleveland away from her son and family, said Hobbs.
Indeed, Trishas said her hobby is being the best mom she can be for her son. Six-year-old Landon is a McKinley Elementary School student.
I love my mommy, he offered. Its not just my moms fight, its our fight.
Trisha and her son lives with her parents, Rick Joy and Alice Loy. Her sister, Summer Burkholder, is a co-organizer of this weekends benefit.
The transplants offer a possible cure. Without them, it would be dire.
God only gives me what I can handle, said Trisha who has spent her entire life combating challenges. But I am scared about what this is going to do to my body.
Ongoing updates on Trisha may be found on Facebook. Visit: Trishas Fight with AML. To make an online donation, a link: youcaring.com may be accessed.
LISBON A Center Township resident believes township trustees should consider banning marijuana facilities of ...
LISBON The company interested in reopening a Middleton Township youth residential treatment home intends to ...
Ohio House Speaker Clifford Rosenberger recently appointed state Rep. Tim Ginter to the Ohio Commission on ...
LEETONIA Grades kindergarten through second at Leetonia Elementary will benefit from a literacy collaborative ...
See original here:
Benefit planned May 5-6 for area leukemia victim - SalemNews.net
SMART cells to fight arthritis – Cosmos
By raymumme
An artist's impression of a reprogrammed stem cell.
Ella Marushchenko
In a curious confluence of the information technology industrys favourite word and scientists weakness for punning acronyms, researchers in St Louis, Missouri, in the US, have created what have been dubbed SMART cells.
SMART, in this case, stands for Stem cells Modified for Autonomous Regenerative Therapy, and their creation by a team based jointly at the Washington University School of Medicine and Shriners Hospital for Children promises a novel treatment for arthritis and other chronic conditions.
The team, led by Washington Universitys Farshid Guilak, reasoned that much of the pain and discomfort endured by arthritis suffers arises from inflammation caused by damaged cartilage. Reducing that inflammation, therefore, is an important therapeutic outcome.
To test this the team used mice. First, they harvested skin cells from tails, then turned them into stem cells. Next, using CRISPR gene-editing technology they excised a gene associated with inducing inflammation and replaced it with one that dampens it.
The resulting cells were then induced to grow into cartilage cells in cultures. The tissue thus produced was found to be free of inflammation.
In a clever move perhaps making the stem cells doubly smart Guilak and his colleagues further modified the stem cells so that they would light up when experiencing inflammation, making them easy to spot.
The research is published in in the journal Stem Cell Reports, and includes the news that research has now commenced using live mice.
Should the SMART cells eventually be found to be a viable avenue for human treatment, the results promise to be both more effective and better focused than existing arthritis drugs.
Pharmacological approaches to arthritis treatment mainly target the inflammation-promoting molecule called tumor necrosis factor alpha. The problem, however, is that they all do so on a system-wide basis, weakening the immune system and making patients more liable to infection.
We want to use our gene-editing technology as a way to deliver targeted therapy in response to localised inflammation in a joint, as opposed to current drug therapies that can interfere with the inflammatory response through the entire body, says Guilak.
Study co-author Jonathan Brunger says the most pleasing aspect of the teams CRISPR-based approach is that it effectively highjacks the inflammatory pathway and turns it into a protective mechanism.
The ability to build living tissues from smart stem cells that precisely respond to their environment opens up exciting possibilities for investigation in regenerative medicine, he adds.
Irish researchers ‘cut risk of heart failure with one injection’ – Irish Times
By Sykes24Tracey
Sat, Apr 29, 2017, 01:00 Updated: Sat, Apr 29, 2017, 10:12
Irish cardiologists have found a way to repair damaged cardiac muscle and reduce the risk of future heart failure by injecting a growth promoter into the hearts of heart attack sufferers. Photograph: Getty Images
A team of Irish cardiologists have shown that injecting an insulin-like growth promoter into the hearts of patients who have suffered a severe heart attack can repair damaged cardiac muscle and reduce the risk of future heart failure.
Prof Noel Caplice, Chair of Cardiovascular Sciences at University College Cork, and his cardiologist colleagues at Cork University Hospital successfully tested the growth factor in a clinical trial involving 47 patients who presented at the Cork hospital after experiencing heart attacks.
Prof Caplice said 20 per cent of people who suffer heart attacks have severe ongoing difficulties because of lasting damage to heart muscle even after the best current therapies.
After you have a heart attack, regardless whether you treat it with a stent or whatever, about 20 per cent of patients go on to have poor remodelling heart muscle cells die, you get scar tissue forming and the heart tends to expand and dilates, a bit like a balloon, and you get thinned-out heart muscle.
With that poor remodelling of the heart, the heart as a structure performs much worse, it doesnt work very well in terms of its function that leads to a substantial number of those patients going on to suffer heart failure with an increased risk of death, he said.
However, 10 years ago, Prof Caplice and his team began looking at using stem cells as a means of repairing damaged tissue and they found a protein within the stem cells, IGF 1, previously used to treat congenital dwarfism and growth problems, was leading to the repair of damaged heart muscle.
IGF 1 acts differently to insulin in that it acts on a different receptor in the body and when we inject it, it gets into the heart tissue and it basically stimulates receptors on the surface of the cardiac cells and in about 30 minutes, it sends a survival signal to the heart muscles cells, he said.
What we discovered from the stem cell study was that the concentration of the factor was extremely low so what we did was that we took the purified factor and in studies with pigs we injected them in the context of a heart attack and we found these major remodelling benefits.
Those animal tests were funded by Science Foundation Ireland but four years ago the Health Research Board came on board and the two bodies provided a 1 million grant to allow the treatment be trialled on humans.
Working with a 25-strong team incorporating cardiologists, radiologists, MRI specialists and nurses, Prof Caplice was able to incorporate the IGF 1 trials into the treatment of patients attending CUH with severe cardiac events and over the past three years have trialled it on 47 patients.
Patients received two different low-dose preparations of insulin-like growth factor or placebo in a randomised double-blinded clinical trial, with results showing those who received the higher dose had improved remodelling of their heart muscle in the two-month follow-up after their heart attack.
Prof Caplice said the CUH trials, the results of which he will present at a European Society of Cardiology conference in Paris on Saturday, were the first use of IGF 1 in human hearts and part of its attractiveness was its low dosage ensuring minimal side effects while improving cardiac structure.
Among the beneficiaries was John Nolan from New Ross who suffered a heart attack in December 2014. I feel I was blessed to be asked to be involved; I had confidence that good would come from it, in terms of how they explained it to me. Looking back on it now, I feel it was the right choice.
For Prof Caplice, the challenge now is to expand the trials to several hundred patients possibly across different countries and different healthcare systems to see if the IGF 1 treatment is globally applicable which, if proven to be the case, could lead to regulatory approval within five years.
See the rest here:
Irish researchers 'cut risk of heart failure with one injection' - Irish Times