Page 434«..1020..433434435436..440450..»

Cellect Announces Successful First Cancer Patient Stem Cell Transplant – GlobeNewswire (press release)

By daniellenierenberg

March 27, 2017 07:02 ET | Source: Cellect Biotechnology Ltd.

Cellects technology, ApoGraft, aims to become a game changerin stem cells transplantations for cancer treatments

Company gets green light from DSMB Board for enrolling additional 2 cancer patients for ApoGraft transplantation treatments

TEL AVIV, Israel, March 27, 2017 (GLOBE NEWSWIRE) -- Cellect Biotechnology Ltd. (Nasdaq:APOP) (TASE:APOP), a developer of stem cell selection technology, announced today that the first stem cell transplant procedure has been successfully performed using its ApoGraft technology in the Companys Phase I/II clinical trial in a blood cancer patient.

Up to 50 percent of stem cell transplant procedures, such as bone marrow transplants, result in life-threatening rejection disease, known as Graft-versus-Host-Disease (GvHD). Cellects ApoGraft technology is aiming to turn stem cell transplants into a simple, safe and cost effective process, reducing the associated severe side effects, such as rejection and many other risks.

Dr. Shai Yarkoni, Cellects CEO said, After 15 years of research, this is the first time we have used our technology on a cancer patient suffering from life-threatening conditions. It is a first good step on a road that we hope will lead to stem cell based regenerative medicine becoming a safe commodity treatment at every hospital in the world.

Based on the successful transplantation results, the independent Data and Safety Monitoring Board (DSMB) approved the enrollment of 2 additional patients for ApoGraft treatment to complete the first study cohort as planned.

About GvHD

Despite improved prophylactic regimens, acute GvHD disease still occurs in 25% to 50% of recipients of allogeneic stem cell transplantation. The incidence of GvHD in recipients of allogeneic stem cells transplantation is increasing due to the increased number of allogeneic transplantations survivors, older recipient age, use of alternative donor grafts and use of peripheral blood stem cells. GvHD accounts for 15% of deaths after allogeneic stem cell transplantation and is considered the leading cause of non-relapse mortality after allogeneic stem cell transplantation.

About ApoGraft01 study

The ApoGraft01 study (Clinicaltrails.gov identifier: NCT02828878), is an open label, staggered four-cohort, Phase I/II, safety and proof-of-concept study of ApoGraft process in the prevention of acute GvHD. The study, which will enroll 12 patients, aims to evaluate the safety, tolerability and efficacy of the ApoGraft process in patients suffering from hematological malignancies undergoing allogeneic stem cell transplantation from a matched related donor.

About Cellect Biotechnology Ltd.

Cellect Biotechnology is traded on both the NASDAQ and Tel Aviv Stock Exchange (NASDAQ:APOP)(NASDAQ:APOPW)(TASE:APOP). The Company has developed a breakthrough technology for the isolation of stem cells from any given tissue that aims to improve a variety of stem cell applications.

The Companys technology is expected to provide pharma companies, medical research centers and hospitals with the tools to rapidly isolate stem cells in quantity and quality that will allow stem cell related treatments and procedures. Cellects technology is applicable to a wide variety of stem cell related treatments in regenerative medicine and that current clinical trials are aimed at the cancer treatment of bone marrow transplantations.

Forward Looking Statements This press release contains forward-looking statements about the Companys expectations, beliefs and intentions. Forward-looking statements can be identified by the use of forward-looking words such as believe, expect, intend, plan, may, should, could, might, seek, target, will, project, forecast, continue or anticipate or their negatives or variations of these words or other comparable words or by the fact that these statements do not relate strictly to historical matters. For example, forward-looking statements are used in this press release when we discuss Cellects aim to make its ApoGraft technology a game changer in stem cell transplantations for cancer treatments and procedures, Cellects Apograft technology aiming to turn stem cell transplants into a simple, safe and cost effective process, reducing the associated severe side effects, such as rejection and many other risks, Cellects hope that stem cell based regenerative medicine will become a safe commodity treatment at every hospital in the world and that Cellects technology is expected to provide pharma companies, medical research centers and hospitals with the tools to rapidly isolate stem cells in quantity and quality that will allow stem cell related treatments and procedures. These forward-looking statements and their implications are based on the current expectations of the management of the Company only, and are subject to a number of factors and uncertainties that could cause actual results to differ materially from those described in the forward-looking statements. In addition, historical results or conclusions from procedures, scientific research and clinical studies do not guarantee that future results would suggest similar conclusions or that historical results referred to herein would be interpreted similarly in light of additional research or otherwise. The following factors, among others, could cause actual results to differ materially from those described in the forward-looking statements: changes in technology and market requirements; we may encounter delays or obstacles in launching and/or successfully completing our clinical trials; our products may not be approved by regulatory agencies, our technology may not be validated as we progress further and our methods may not be accepted by the scientific community; we may be unable to retain or attract key employees whose knowledge is essential to the development of our products; unforeseen scientific difficulties may develop with our process; our products may wind up being more expensive than we anticipate; results in the laboratory may not translate to equally good results in real clinical settings; results of preclinical studies may not correlate with the results of human clinical trials; our patents may not be sufficient; our products may harm recipients; changes in legislation; inability to timely develop and introduce new technologies, products and applications, which could cause the actual results or performance of the Company to differ materially from those contemplated in such forward-looking statements. Any forward-looking statement in this press release speaks only as of the date of this press release. The Company undertakes no obligation to publicly update or review any forward-looking statement, whether as a result of new information, future developments or otherwise, except as may be required by any applicable securities laws. More detailed information about the risks and uncertainties affecting the Company is contained under the heading Risk Factors in Cellect Biotechnology Ltd.'s Annual Report on Form 20-F for the fiscal year ended December 31, 2016 filed with the U.S. Securities and Exchange Commission, or SEC, which is available on the SEC's website, http://www.sec.gov and in the Companys period filings with the SEC and the Tel-Aviv Stock Exchange.

Related Articles

Read more from the original source:
Cellect Announces Successful First Cancer Patient Stem Cell Transplant - GlobeNewswire (press release)

To Read More: Cellect Announces Successful First Cancer Patient Stem Cell Transplant – GlobeNewswire (press release)
categoriaBone Marrow Stem Cells commentoComments Off on Cellect Announces Successful First Cancer Patient Stem Cell Transplant – GlobeNewswire (press release) | dataMarch 30th, 2017
Read All

Lifesaving donor needed for TV debt collector Delroy – The Voice Online

By daniellenierenberg

Image Text:

APPEAL: Delroy Anglin, star of TV's 'Cant' Pay? We'll Take it Away!' (photo credit: DCBL)

DELROY ANGLIN, a star bailiff of the TV series, 'Cant Pay? Well Take it Away!' has launched an appeal to encourage more African and Caribbean people living in the UK to join the Stem Cell Register.

The #Match4Delroy appeal which is to be led by blood cancer charity, the African Caribbean Leukaemia Trust (ACLT) is hoping to find an unmatched donor for Delroy who requires a lifesaving stem cell, specifically, a bone marrow transplant if he is to beat his battle with leukaemia.

Delroy, aged 56, was diagnosed with Acute Myeloid Leukaemia (AML) last November. Since his diagnosis, Delroy has managed with drugs and receiving two rounds of chemotherapy, but tests show the leukaemia remains. Doctors have confirmed Delroy will need an urgent stem cell transplant to beat the illness.

With siblings having a one in four chance of being a match, it was no surprise out of Delroys five siblings, none were found to be a match to help their brother.

The pain and anguish of dealing with a loved one being diagnosed with blood cancer is something Delroy and his family are all too familiar with, as it was 40 years ago, Delroys brother lost his battle against leukaemia which makes Delroys illness that much more painful for his loved ones to deal with.

Delroys sister Janet Hills, who is Chair at the Met Black Police Association (MBPS) and President at National Black Police Association, or NBPA, said:

When I tell people that Delroy from Cant Pay? Well Take it Away! is my brother, there is an immediate outpouring of warmth and love. I'm praying this appeal turns that love into action. FAMILY: Janet Hills of the Met Black Police Association and Delroy Anglin's sister (photo credit: David Sillitoe/The Guardian) ACLT is the preferred charity for the MBPS and the NBPA. Our members continually engage with the charity and organise community events to raise awareness and funds. If you love Del on the show as much as I love him as my brother, then please, please, please make that commitment today to join the stem cells (bone marrow) register.

Delroy is being supported by his loving family which includes his children and mother. His daughter Domenique Anglin said:

Dad is an active, charismatic person, he loves socialising with his family and friends. He is a fantastic father to my siblings and a wonderful grandfather too. I am appealing on his behalf to all Caribbean and African people in the UK and abroad to join the register, in the hope they might be the match that saves his life.

Anglin said:

Its going to be difficult to find me a perfect matched donor unless we have a lot more Caribbean and African people on the register. It takes 15 minutes to register and is almost painless to donate. I want to beat this illness, but I will only be able to do so, with the help of the Caribbean and African community.

I am requesting for more people of Caribbean and African heritage to join the register to help me and others like me.

Beverley De-Gale, ACLT co-founder said:

Delroys life has done a complete 360 in the last four months. From being on a popular documentary series to being diagnosed with a life-threatening illness. We hope fans of the show come together and help save the life of the individual they have come to love on-screen, in addition to Joe-public who dont watch the show.

If youre 16 55 and in good health, you could potentially be the person to save Delroys life.

You could be a #Match4Delroy. Join the Stem Cell Register now, by clicking here.

Read every story in our hardcopy newspaper for free by downloading the app.

Read the original:
Lifesaving donor needed for TV debt collector Delroy - The Voice Online

To Read More: Lifesaving donor needed for TV debt collector Delroy – The Voice Online
categoriaBone Marrow Stem Cells commentoComments Off on Lifesaving donor needed for TV debt collector Delroy – The Voice Online | dataMarch 30th, 2017
Read All

Japanese Man Is First to Receive "Reprogrammed" Stem Cells from Another Person – Scientific American

By raymumme

On March 28, a Japanese man in his 60s became the first person to receive cells derived from induced pluripotent stem (iPS) cells that had been donated by another person.

The surgery is expected to set the path for more applications of iPS cell technology, which offers the versatility of embryonic stem cells without the latters ethical taint. Banks of iPS cells from diverse donors could make stem cell transplants more convenient to perform, while slashing costs.

iPS cells are created by removing mature cells from an individual (from their skin, for example), reprogramming these cells backto an embryonic state, and then coaxing them to become a cell type useful for treating a disease.

In the recent procedure, performed on a man from Hyogo prefecture, skin cells from an anonymous donor were reprogrammed and then turned into a type of retinal cell that was transplanted onto the retina of thepatient who suffers from age-related macular degeneration. Doctors hope the cells will stop progression of the disease, which can lead to blindness.

In a procedure performed in September 2014at the Kobe City Medical Center General Hospital, a Japanese woman received retinal cells derived from iPS cells. They were taken from her own skin, though, and then reprogrammed. Such cells prepared for a second patient were found to contain genetic abnormalities and never implanted.

The team decided to redesign the study based on new regulations, and no other participants were recruited to the clinical study. In February 2017, the team reported that the one patient had fared well. The introduced cells remained intactand vision had not declined as would usually be expected with macular degeneration.

In todays procedure performed at the same hospital and by the same surgeon Yasuo Kurimoto doctors used iPS cells that had been taken from a donors skin cells, reprogrammed and banked. Japans health ministry approved the study, which plansto enroll 5 patients, on 1 February.

Using a donor's iPS cells does not offer an exact genetic match, raising the prospect of immune rejection. But Shinya Yamanaka, the Nobel Prize-winning stem-cell scientist who pioneered iPS cells, has contended that banked cells should be a close enough match for most applications.

Yamanaka is establishing an iPS cell bank, which depends on matching donors to recipients via three genes that code for human leukocyte antigens (HLAs) proteins on the cell surface that are involved in triggering immune reactions. HisiPS Cell Stock for Regenerative Medicine currently has cell lines from just one donor. But by March 2018, they hope to create 5-10 HLA-characterized iPS cell lines, which should match 30%-50% of Japans population.

Use of these ready-made cells has advantages for offering stem cell transplants across an entire population, says Masayo Takahashi, an ophthalmologist at the RIKEN Center for Developmental Biology who devised the iPS cell protocol deployed in todays transplant. The cells are available immediately versus several months wait for a patients own cells and are much cheaper. Cells from patients, who tend to be elderly, might have also accumulated genetic defects that could increase the risk of the procedure.

At a press conference after the procedure, Takahashi said the surgery had gone well but that success could not be declaredwithout monitoring the fate of the introduced cells. She plans to make no further announcements about patient progress until all five procedures are finished. We are at the beginning, she says.

This article is reproduced with permission and wasfirst publishedon March 28, 2017.

Here is the original post:
Japanese Man Is First to Receive "Reprogrammed" Stem Cells from Another Person - Scientific American

To Read More: Japanese Man Is First to Receive "Reprogrammed" Stem Cells from Another Person – Scientific American
categoriaSkin Stem Cells commentoComments Off on Japanese Man Is First to Receive "Reprogrammed" Stem Cells from Another Person – Scientific American | dataMarch 30th, 2017
Read All

Stem cell centre coming to Kamloops? – CFJC Today Kamloops

By daniellenierenberg

KAMLOOPS My curiosity was sparked when I read that a stem cell centre was opening in Kamloops (Kamloops This Week, March 21, 2017).

So I went to the location of the centre at 470 Columbia St only to find a parking lot. Thinking that the address might be wrong, I searched the directory of the medical building next door and found that no stem cell centre was listed.

The Stem Cell Centers website lists Kamloops as the only one in Canada. Dr. Richard Brownlee is named as the surgeon with more information coming soon.

Stem cell therapy, says the website, can help with orthopedic or pain management, ophthalmological conditions, cardiac or pulmonary conditions, neurological conditions, and auto-immune diseases, among many other conditions and disease that results in damaged tissue.

One of the ophthalmological conditions they treat is macular degeneration. If your vision is fading due to macular degeneration, you know its time to seek help. Our non-invasive Stem Cell Therapy treatment might be the solution for you.

I wanted get Dr. Brownlees reaction to news that an unproven stem cell treatment had resulted in blindness according to the New England Journal of Medicine as reported in the Globe and Mail, March 20, 2017.

This week, the New England Journal of Medicine (NEJM) reported on three individuals who went blind after receiving an unproven stem cell treatment at a Florida clinic. The patients paid thousands of dollars for what they thought was a clinical trial on the use of stem cells to treat macular degeneration.

The writer of the Globe and Mail article, Timothy Caulfield, Research Chair of the in Health Law and Policy at the University of Alberta, doesnt name the Florida clinic.

The Stem Cell Centers website refers optimistically to treatment for macular degeneration at a Florida clinic, although apparently not theirs since no Florida clinic appears on their list. It tells of how Doug Oliver suffered from macular degeneration before stem cells were extracted from his hip bone and injected them into his eyes. Almost immediately, Olivers eyesight started to improve. I began weeping, he said.

Caulfield encourages caution. Health science gets a lot of attention in the popular press. People love hearing about breakthroughs, paradigm shifts and emerging cures. The problem is, these stories are almost always misleading. It can also help to legitimize the marketing of unproven therapies.

Reports from the Stem Cell Centers own website are cautionary as well. It quotes an abstract from a study done by the Southern California College of Optometry on how stem cells might ultimately be used to restore the entire visual pathway.

The promise of stem cell research is phenomenal. Scientific American (Jan., 2017) reports that brains can be grown in a lab dish from stem cells taken from skin. These samples can be used to research brain disorders ranging from schizophrenia to Alzheimer's disease, and to explore why only some babies develop brain-shrinking microcephaly after exposure to the Zika virus.

However, Dr. George Daley, dean of Harvard Medical School, concludes that there are only a handful of clinical applications available and they are for skin and blood-related ailments.

Practice, it seems, has not yet matched the promise of stem cell research.

See original here:
Stem cell centre coming to Kamloops? - CFJC Today Kamloops

To Read More: Stem cell centre coming to Kamloops? – CFJC Today Kamloops
categoriaSkin Stem Cells commentoComments Off on Stem cell centre coming to Kamloops? – CFJC Today Kamloops | dataMarch 30th, 2017
Read All

Stem cell Wikipedia, the free encyclopedia IPS Cell …

By daniellenierenberg

Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis) to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cellsectoderm, endoderm and mesoderm (see induced pluripotent stem cells)but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues.

There are three known accessible sources of autologous adult stem cells in humans:

Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from ones own body, just as one may bank his or her own blood for elective surgical procedures.

Adult stem cells are frequently used in medical therapies, for example in bone marrow transplantation. Stem cells can now be artificially grown and transformed (differentiated) into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves. Embryonic cell lines and autologous embryonic stem cells generated through Somatic-cell nuclear transfer or dedifferentiation have also been proposed as promising candidates for future therapies.[1] Research into stem cells grew out of findings by Ernest A. McCulloch and James E. Till at the University of Toronto in the 1960s.[2][3]

The classical definition of a stem cell requires that it possess two properties:

Two mechanisms exist to ensure that a stem cell population is maintained:

Potency specifies the differentiation potential (the potential to differentiate into different cell types) of the stem cell.[4]

In practice, stem cells are identified by whether they can regenerate tissue. For example, the defining test for bone marrow or hematopoietic stem cells (HSCs) is the ability to transplant the cells and save an individual without HSCs. This demonstrates that the cells can produce new blood cells over a long term. It should also be possible to isolate stem cells from the transplanted individual, which can themselves be transplanted into another individual without HSCs, demonstrating that the stem cell was able to self-renew.

Properties of stem cells can be illustrated in vitro, using methods such as clonogenic assays, in which single cells are assessed for their ability to differentiate and self-renew.[7][8] Stem cells can also be isolated by their possession of a distinctive set of cell surface markers. However, in vitro culture conditions can alter the behavior of cells, making it unclear whether the cells will behave in a similar manner in vivo. There is considerable debate as to whether some proposed adult cell populations are truly stem cells.

Embryonic stem (ES) cells are stem cells derived from the inner cell mass of a blastocyst, an early-stage embryo.[9] Human embryos reach the blastocyst stage 45 days post fertilization, at which time they consist of 50150 cells. ES cells are pluripotent and give rise during development to all derivatives of the three primary germ layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adult body when given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extra-embryonic membranes or the placenta.

Nearly all research to date has made use of mouse embryonic stem cells (mES) or human embryonic stem cells (hES). Both have the essential stem cell characteristics, yet they require very different environments in order to maintain an undifferentiated state. Mouse ES cells are grown on a layer of gelatin as an extracellular matrix (for support) and require the presence of leukemia inhibitory factor (LIF). Human ES cells are grown on a feeder layer of mouse embryonic fibroblasts (MEFs) and require the presence of basic fibroblast growth factor (bFGF or FGF-2).[10] Without optimal culture conditions or genetic manipulation,[11] embryonic stem cells will rapidly differentiate.

A human embryonic stem cell is also defined by the expression of several transcription factors and cell surface proteins. The transcription factors Oct-4, Nanog, and Sox2 form the core regulatory network that ensures the suppression of genes that lead to differentiation and the maintenance of pluripotency.[12] The cell surface antigens most commonly used to identify hES cells are the glycolipids stage specific embryonic antigen 3 and 4 and the keratan sulfate antigens Tra-1-60 and Tra-1-81. The molecular definition of a stem cell includes many more proteins and continues to be a topic of research.[13]

There are currently no approved treatments using embryonic stem cells. The first human trial was approved by the US Food and Drug Administration in January 2009.[14] However, the human trial was not initiated until October 13, 2010 in Atlanta for spinal injury victims. On November 14, 2011 the company conducting the trial announced that it will discontinue further development of its stem cell programs.[15] ES cells, being pluripotent cells, require specific signals for correct differentiationif injected directly into another body, ES cells will differentiate into many different types of cells, causing a teratoma. Differentiating ES cells into usable cells while avoiding transplant rejection are just a few of the hurdles that embryonic stem cell researchers still face.[16] Many nations currently have moratoria on either ES cell research or the production of new ES cell lines. Because of their combined abilities of unlimited expansion and pluripotency, embryonic stem cells remain a theoretically potential source for regenerative medicine and tissue replacement after injury or disease.

Human embryonic stem cell colony on mouse embryonic fibroblast feeder layer

The primitive stem cells located in the organs of fetuses are referred to as fetal stem cells.[17] There are two types of fetal stem cells:

Adult stem cells, also called somatic (from Greek , of the body) stem cells, are stem cells which maintain and repair the tissue in which they are found.[19] They can be found in children, as well as adults.[20]

Pluripotent adult stem cells are rare and generally small in number, but they can be found in umbilical cord blood and other tissues.[21] Bone marrow is a rich source of adult stem cells,[22] which have been used in treating several conditions including spinal cord injury,[23] liver cirrhosis,[24] chronic limb ischemia [25] and endstage heart failure.[26] The quantity of bone marrow stem cells declines with age and is greater in males than females during reproductive years.[27] Much adult stem cell research to date has aimed to characterize their potency and self-renewal capabilities.[28] DNA damage accumulates with age in both stem cells and the cells that comprise the stem cell environment. This accumulation is considered to be responsible, at least in part, for increasing stem cell dysfunction with aging (see DNA damage theory of aging).[29]

Most adult stem cells are lineage-restricted (multipotent) and are generally referred to by their tissue origin (mesenchymal stem cell, adipose-derived stem cell, endothelial stem cell, dental pulp stem cell, etc.).[30][31]

Adult stem cell treatments have been successfully used for many years to treat leukemia and related bone/blood cancers through bone marrow transplants.[32] Adult stem cells are also used in veterinary medicine to treat tendon and ligament injuries in horses.[33]

The use of adult stem cells in research and therapy is not as controversial as the use of embryonic stem cells, because the production of adult stem cells does not require the destruction of an embryo. Additionally, in instances where adult stem cells are obtained from the intended recipient (an autograft), the risk of rejection is essentially non-existent. Consequently, more US government funding is being provided for adult stem cell research.[34]

Multipotent stem cells are also found in amniotic fluid. These stem cells are very active, expand extensively without feeders and are not tumorigenic. Amniotic stem cells are multipotent and can differentiate in cells of adipogenic, osteogenic, myogenic, endothelial, hepatic and also neuronal lines.[35] Amniotic stem cells are a topic of active research.

Use of stem cells from amniotic fluid overcomes the ethical objections to using human embryos as a source of cells. Roman Catholic teaching forbids the use of embryonic stem cells in experimentation; accordingly, the Vatican newspaper Osservatore Romano called amniotic stem cells the future of medicine.[36]

It is possible to collect amniotic stem cells for donors or for autologuous use: the first US amniotic stem cells bank [37][38] was opened in 2009 in Medford, MA, by Biocell Center Corporation[39][40][41] and collaborates with various hospitals and universities all over the world.[42]

These are not adult stem cells, but rather adult cells (e.g. epithelial cells) reprogrammed to give rise to pluripotent capabilities. Using genetic reprogramming with protein transcription factors, pluripotent stem cells equivalent to embryonic stem cells have been derived from human adult skin tissue.[43][44][45]Shinya Yamanaka and his colleagues at Kyoto University used the transcription factors Oct3/4, Sox2, c-Myc, and Klf4[43] in their experiments on cells from human faces. Junying Yu, James Thomson, and their colleagues at the University of WisconsinMadison used a different set of factors, Oct4, Sox2, Nanog and Lin28,[43] and carried out their experiments using cells from human foreskin.

As a result of the success of these experiments, Ian Wilmut, who helped create the first cloned animal Dolly the Sheep, has announced that he will abandon somatic cell nuclear transfer as an avenue of research.[46]

Frozen blood samples can be used as a source of induced pluripotent stem cells, opening a new avenue for obtaining the valued cells.[47]

To ensure self-renewal, stem cells undergo two types of cell division (see Stem cell division and differentiation diagram). Symmetric division gives rise to two identical daughter cells both endowed with stem cell properties. Asymmetric division, on the other hand, produces only one stem cell and a progenitor cell with limited self-renewal potential. Progenitors can go through several rounds of cell division before terminally differentiating into a mature cell. It is possible that the molecular distinction between symmetric and asymmetric divisions lies in differential segregation of cell membrane proteins (such as receptors) between the daughter cells.[48]

An alternative theory is that stem cells remain undifferentiated due to environmental cues in their particular niche. Stem cells differentiate when they leave that niche or no longer receive those signals. Studies in Drosophila germarium have identified the signals decapentaplegic and adherens junctions that prevent germarium stem cells from differentiating.[49][50]

Diseases and conditions where stem cell treatment is being investigated include:

Stem cell therapy is the use of stem cells to treat or prevent a disease or condition. Bone marrow transplant is a crude form of stem cell therapy that has been used clinically for many years without controversy. No stem cell therapies other than bone marrow transplant are widely used.[64][65]

Research is underway to develop various sources for stem cells, and to apply stem cell treatments for neurodegenerative diseases and conditions, diabetes, heart disease, and other conditions.[66]

In more recent years, with the ability of scientists to isolate and culture embryonic stem cells, and with scientists growing ability to create stem cells using somatic cell nuclear transfer and techniques to created induced pluripotent stem cells, controversy has crept in, both related to abortion politics and to human cloning.

Stem cell treatments may require immunosuppression because of a requirement for radiation before the transplant to remove the patients previous cells, or because the patients immune system may target the stem cells. One approach to avoid the second possibility is to use stem cells from the same patient who is being treated.

Pluripotency in certain stem cells could also make it difficult to obtain a specific cell type. It is also difficult to obtain the exact cell type needed, because not all cells in a population differentiate uniformly. Undifferentiated cells can create tissues other than desired types.[67]

Some stem cells form tumors after transplantation; pluripotency is linked to tumor formation especially in embryonic stem cells, fetal proper stem cells, induced pluripotent stem cells. Fetal proper stem cells form tumors despite multipotency.[citation needed]

Hepatotoxicity and drug-induced liver injury account for a substantial number of failures of new drugs in development and market withdrawal, highlighting the need for screening assays such as stem cell-derived hepatocyte-like cells, that are capable of detecting toxicity early in the drug development process.[68]

Some of the fundamental patents covering human embryonic stem cells are owned by the Wisconsin Alumni Research Foundation (WARF) they are patents 5,843,780, 6,200,806, and 7,029,913 invented by James A. Thomson. WARF does not enforce these patents against academic scientists, but does enforce them against companies.[69]

In 2006, a request for the US Patent and Trademark Office (USPTO) to re-examine the three patents was filed by the Public Patent Foundation on behalf of its client, the non-profit patent-watchdog group Consumer Watchdog (formerly the Foundation for Taxpayer and Consumer Rights).[69] In the re-examination process, which involves several rounds of discussion between the USTPO and the parties, the USPTO initially agreed with Consumer Watchdog and rejected all the claims in all three patents,[70] however in response, WARF amended the claims of all three patents to make them more narrow, and in 2008 the USPTO found the amended claims in all three patents to be patentable. The decision on one of the patents (7,029,913) was appealable, while the decisions on the other two were not.[71][72] Consumer Watchdog appealed the granting of the 913 patent to the USTPOs Board of Patent Appeals and Interferences (BPAI) which granted the appeal, and in 2010 the BPAI decided that the amended claims of the 913 patent were not patentable.[73] However, WARF was able to re-open prosecution of the case and did so, amending the claims of the 913 patent again to make them more narrow, and in January 2013 the amended claims were allowed.[74]

In July 2013, Consumer Watchdog announced that it would appeal the decision to allow the claims of the 913 patent to the US Court of Appeals for the Federal Circuit (CAFC), the federal appeals court that hears patent cases.[75] At a hearing in December 2013, the CAFC raised the question of whether Consumer Watchdog had legal standing to appeal; the case could not proceed until that issue was resolved.[76]

Read more: Stem cell Wikipedia, the free encyclopedia

.

Read the original post:
Stem cell Wikipedia, the free encyclopedia IPS Cell ...

To Read More: Stem cell Wikipedia, the free encyclopedia IPS Cell …
categoriaIPS Cell Therapy commentoComments Off on Stem cell Wikipedia, the free encyclopedia IPS Cell … | dataMarch 30th, 2017
Read All

Japan performs first transplant of donor iPS cells – Nikkei Asian Review

By NEVAGiles23

OSAKA -- Researchers transplanted induced pluripotent stem cells derived from donors into a patient in Kobe Tuesday, in the first such trial using cells not from the patient -- an advance with hopeful implications for Japanese regenerative medicine.

Research institute Riken worked with the Kobe City Medical Center General Hospital, as well as Kyoto University and other partners, to make the procedure a reality.

The patient, a Hyogo Prefecture man in his 60s, suffered from age-related macular degeneration, an intractable eye disease that can cause blindness. He received in his right eye an injection of a solution containing 250,000 retinal cells grown from iPS cells. The procedure began before 2 p.m. at the Kobe hospital and lasted about an hour.

The operation went smoothly, Yasuo Kurimoto, director of ophthalmology at the hospital, told reporters. Masayo Takahashi, head of the project at Riken, said the researchers had reached about the halfway point in their pursuit of the practical adoption of iPS cells.

The institutions hope to perform the transplants for five patients in all to determine the safety of the process. The transplants are not expected to improve their eyesight much, but should eliminate the need to take medicine regularly and keep vision from deteriorating further.

Riken performed the world's first such procedure in 2014, but used iPS cells derived from the patient. The process drew notice for its cost and lengthiness, taking roughly 100 million yen ($905,600 at current rates) including inspections to make sure the cells would not become cancerous, and around 10 months.

The patient appeared to be doing well two years later, and none of the injected cells appeared to have turned cancerous or otherwise behaved abnormally. Her disease appeared to have halted, with no noteworthy side effects.

In Tuesday's procedure, using stock iPS cells carefully tested for safety, Riken and its partners expect costs of just several million yen -- less than a tenth those of the first trial. The patient also reportedly waited just about six weeks for the procedure after agreeing to it.

Researchers seek to use iPS cells to treat conditions including spinal cord injuries as well. Donor iPS cells may make this possible for such injuries and other urgent operations for which gathering cells from patients would take too long.

Riken and the other institutions intend to carefully observe the new patient to ensure the procedure's long-term safety. It is possible the patient's body could reject the transplanted cells. The results should be announced two or three years down the road, as it will take time to see the case through fully, said Takahashi.

Using donor cells requires thorough oversight. Kyoto University stopped supplying iPS cells grown from umbilical cord blood to outside institutions in January due to the possibility that an incorrect reagent was used in the cells' creation. The university then announced a research partnership with the biomedical company Takara Bio dedicated to ensuring the quality of iPS cells.

(Nikkei)

Here is the original post:
Japan performs first transplant of donor iPS cells - Nikkei Asian Review

To Read More: Japan performs first transplant of donor iPS cells – Nikkei Asian Review
categoriaSpinal Cord Stem Cells commentoComments Off on Japan performs first transplant of donor iPS cells – Nikkei Asian Review | dataMarch 29th, 2017
Read All

$50 million gift to Packard Children’s Hospital will advance care … – Stanford Medical Center Report

By daniellenierenberg

Next wave of innovation and discovery

Over the past 70 years, new surgical techniques and medical therapies, some of which were developed at the Stanford School of Medicine and Packard Childrens, have evolved and greatly improved outcomes for children with almost every type ofcongenital heart disease.

Heart defects that were once universally fatal can now be surgically improved. As patients born with heart disease survive longer, there are now more adults than children in the United States with congenital heart disease. However, further advancements are still needed to ensure a healthier future for patients, many of whom continue to face a compromised quality of life and require subsequent surgeries.

Surgical intervention can repair, but it rarely can truly cure, said pediatric heart surgeonFrank Hanley, MD, who is also the Lawrence Crowley, MD, Endowed Professor in Child Health at the School of Medicine and executive director of the Betty Irene Moore Childrens Heart Center. Children who have received complex surgical intervention to repair a cardiac abnormality require careful monitoring and specialized care throughout their life span. We imagine a day when a child born with a poorly working aortic valve, rather than undergoing multiple open-heart operations throughout his lifetime, instead receives a replacement valve engineered from his own stem cells. Dr. and Mrs. Moores gift comes at a critical juncture enabling us to advance beyond surgical repair to the discovery of transformational treatments and interventions and, ultimately, to true cures.

The center has an overall survival rate of 98 percent. Beyond survival alone, the goal is now to ensure an excellent overall outcome from normal brain function for even the most fragile patients, to the ability for children to perform well in school and to exercise and enjoy an active life into adulthood.

We are committed to providingbabies and children with heart disease and their families with the happiest, healthiest lives possible, from the early identification of problems, to expert intervention, and finally to a lifetime of care and support, saidStephen Roth, MD, MPH, chief of pediatriccardiologyand director of the Betty Irene Moore Childrens Heart Center.

Dr. and Mrs. Moores incredible gift will not only bolster our clinical capabilities for children and families receiving care now in the Betty Irene Moore Childrens Heart Center, it will also accelerate basic and translational research by Stanford Medicine faculty and scientists to develop more precise techniques to predict, prevent and cure, said Lloyd Minor, MD, dean of the School of Medicine. When it comes to achieving precision health, we must think as big as we can not just about treating disease, but about making and keeping people healthy and nowhere is this more true than in children.

In 2017, Packard Childrens will complete its major expansion, becoming the most technologically advanced, family-friendly and environmentally sustainable childrens hospital in the nation. The Moores gift will enable the Childrens Heart Center to expand its state-of-the-art clinical and research facilities, train the future leaders of cardiovascular medicine and surgery, and improve the field of pediatric cardiology and pediatric cardiovascular surgery through innovative research. In addition, the center will expand its clinical facilities, including a newly designed outpatient center.

Packard Childrens established the Childrens Heart Center in 2001 to focus more expertise and resources on congenital heart disease, the most common type of birth defect worldwide. Each year, approximately 40,000 children in the United States are born with heart defects, and an additional 25,000 children develop some kind of acquired heart disease.

The center has gained recognition as a national and international destination program for several highly specialized surgical procedures, and is also a full-service cardiology program that cares for patients with all forms of cardiovascular conditions. Under the leadership of Hanley and Roth, the center receives more than 25,000 patient visits annually and performs 80 to 90 percent of all cardiac surgical care for children in northern and central California.

Read more here:
$50 million gift to Packard Children's Hospital will advance care ... - Stanford Medical Center Report

To Read More: $50 million gift to Packard Children’s Hospital will advance care … – Stanford Medical Center Report
categoriaCardiac Stem Cells commentoComments Off on $50 million gift to Packard Children’s Hospital will advance care … – Stanford Medical Center Report | dataMarch 29th, 2017
Read All

Pioneering stem cell gene therapy cures infants with bubble baby disease – UCLA Newsroom

By daniellenierenberg

FINDINGS

UCLA researchers have developed a stem cell gene therapy cure for babies born with adenosine deaminase-deficient severe combined immunodeficiency, a rare and life-threatening condition that can be fatal within the first year of life if left untreated.

In a phase 2 clinical trial led by Dr. Donald Kohn of theEli and Edythe Broad Center of Regenerative Medicine and Stem Cell Researchat UCLA, all nine babies were cured. A 10th trial participant was a teenager at the time of treatment and showed no signs of immune system recovery. Kohns treatment method, a stem cell gene therapy that safely restores immune systems in babies with the immunodeficiency using the childs own cells, has cured 30 out of 30 babies during the course of several clinical trials.

Adenosine deaminase-deficient severe combined immunodeficiency, also known as ADA-SCID or bubble baby disease, is caused by a genetic mutation that results in the lack of the adenosine deaminase enzyme, which is an important component of the immune system. Without the enzyme, immune cells are not able to fight infections. Children with the disease must remain isolated in clean and germ-free environments to avoid exposure to viruses and bacteria; even a minor cold could prove fatal.

Currently, there are two commonly used treatment options for children with ADA-SCID. They can be injected twice a week with the adenosine deaminase enzyme a lifelong process that is very expensive and often does not return the immune system to optimal levels. Some children can receive a bone marrow transplant from a matched donor, such as a sibling, but bone marrow matches are rare and can result in the recipients body rejecting the transplanted cells.

The researchers used a strategy that corrects the ADA-SCID mutation by genetically modifying each patients own blood-forming stem cells, which can create all blood cell types. In the trial, blood stem cells removed from each childs bone marrow were corrected in the lab through insertion of the gene responsible for making the adenosine deaminase enzyme. Each child then received a transplant of their own corrected blood stem cells.

The clinical trial ran from 2009 to 2012 and treated 10 children with ADA-SCID and no available matched bone marrow donor. Three children were treated at the National Institutes of Health and seven were treated at UCLA. No children in the trial experienced complications from the treatment. Nine out of ten were babies and they all now have good immune system function and no longer need to be isolated. They are able to live normal lives, play outside, go to school, receive immunizations and, most importantly, heal from common sicknesses such as the cold or an ear infection. The teenager, who was not cured, continues to receive enzyme therapy.

The fact that the nine babies were cured and the teenager was not indicates that the gene therapy for ADA-SCID works best in the youngest patients, before their bodies lose the ability to restore the immune system.

The next step is to seek approval from the Food and Drug Administration for the gene therapy in the hopes that all children with ADA-SCID will be able to benefit from the treatment. Kohn and colleagues have also adapted the stem cell gene therapy approach to treat sickle cell disease and X-linked chronic granulomatous disease, an immunodeficiency disorder commonly referred to as X-linked CGD. Clinical trials providing stem cell gene therapy treatments for both diseases are currently ongoing.

Kohn is a professor of pediatrics and microbiology, immunology and molecular genetics at the David Geffen School of Medicine at UCLA and member of the UCLAChildrens Discovery and Innovation Institute at Mattel Childrens Hospital. The first author of the study is Kit Shaw, director of gene therapy clinical trials at UCLA.

The research was published in the Journal of Clinical Investigation.

The research was funded by grants from the U.S. Food and Drug Administrations Orphan Products Clinical Trials Grants Program (RO1 FD003005), the National Heart, Lung and Blood Institute(PO1 HL73104 and Z01 HG000122), the California Institute for Regenerative Medicine (CL1-00505-1.2 and FA1-00613-1), the UCLA Clinical and Translational Science Institute (UL1RR033176 and UL1TR000124) and the UCLA Broad Stem Cell Research Center.

See the rest here:
Pioneering stem cell gene therapy cures infants with bubble baby disease - UCLA Newsroom

To Read More: Pioneering stem cell gene therapy cures infants with bubble baby disease – UCLA Newsroom
categoriaBone Marrow Stem Cells commentoComments Off on Pioneering stem cell gene therapy cures infants with bubble baby disease – UCLA Newsroom | dataMarch 29th, 2017
Read All

Not knowing what it means is OK, follow your path – Southernminn.com

By NEVAGiles23

Id like to believe that our lives have meaning, that the day-to-day decisions we make steer our steps down a variety of roads in life. As in the poem by Robert Frost, moving in one direction can leave us wondering about what would have happened had we taken the other road.

I dont believe Frost meant that we regret our choices, simply that new realities unfold as we move forward, and they are different than if we had moved left or right instead. Our decisions affect others as well, unfolding and connecting in ways we can only accept and not really understand.

One of my favorite thoughts is that from each difficulty we encounter, no matter how painful, some good will come of it; our tempering or pruning, if you will. It is our place to trust.

This I know. Eleven years ago, Heidi, the daughter of my dear friend Sue Sands, was diagnosed with Leukemia. Her family held a sign-up for Be The Match, the National Bone Marrow Donor Registry, in hopes of finding a stem cell donor to cure her.

I couldnt attend that evening, but shortly after I had a vivid dream in which I was a bone marrow match for Heidi. I knew I had to get tested, so I found another sign-up, did a cheek swab and entered the registry. I wasnt called to be a match for Heidi. In fact, she underwent treatment and was able to recover without a bone marrow transplant.

There was more to come. In 2009 I turned out to be a perfect match for a little girl who happened to be the same age as my daughter. Its more than just matching a blood type; a person must closely match on human leukocyte antigen. I agreed to donate bone marrow and it was a completely anonymous donation.

Let me give you the simplified version of donating bone marrow and stem cells. There are two ways; blood stem cells and bone marrow. In the former, the donor is given a medicine to boost stem cell formation and then the cells are drawn from their blood. In the latter, the donor undergoes surgery where the stem cells are harvested from the back of their hip bones. The stem cells are given to the recipient in about 48 hours, and if all goes well, they are completely cured of their disease.

People tell me they are amazed I would do this for someone I dont know. How could I not? When I was about 23, my mother died of multiple myeloma bone cancer. A little over a year ago, my stepmother succumbed to pancreatic cancer. I know intimately what it is like to feel helpless when a loved one is sick. I know the sense of loss that remains.

I recovered from the bone marrow donation. Yes I was sore for several weeks, and tired, but it felt good to have done something. Yet, there was more to the story. Mayo Clinic doctors had discovered in my pre-donation blood work that I had elevated calcium levels. It was due to a parathyroid tumor, and it was taking calcium from my bones. It didnt affect my ability to donate, but they advised removal of the tumor soon after.

Had I not been a donor, I might never have known about the parathyroid issue until it had severely affected my health. It still gives me shivers to think about it.

Fast forward to this past December. I was working on page layout one afternoon when I received a call from Be the Match. I was a potential match for another patient, this time an adult woman with Leukemia. I am at the top of the preferred age group, but I was the perfect match to potentially save this persons life.

Now, back to the idea of paths intermingling. My friends daughter Heidi, who had beat her leukemia, was dealt a tough blow. A few weeks ago she was diagnosed once again with leukemia, not the same type, but different. It was like lightning striking twice.

My mind instantly went back to my initial dream. What can this mean, that I am called to donate twice, defying so many odds, at the same time she is diagnosed again, against so many odds?

Last week I completed the second bone marrow donation for an unknown recipient. The doctors and nurses on the ninth floor of the Charleton Building at Mayo Clinic were amazing. They took such good care of me and thanked me repeatedly. The procedure went well and my APG employers have been gracious to give me time off for the whole thing.

I am oh so very tired, but the soreness in my hips is better each day. The need to build up the hemoglobin in my blood has made me extra conscientious of my diet. I am thankful for my good health and also for the friends, who brought food, checked in on me and have provided support through this donation process.

What does it all mean? We need each other. What we can do for another person in desperate need, we should do.

I hope and pray for a full recovery for Heidi. They will look for a bone marrow match for her this time around. Maybe I am a match for her after all? The doctor last week said that I could theoretically donate again once I was 100 percent recovered and if my hemoglobin levels were perfect.

Maybe I am not a match, but through my story, others will join the registry and Heidis match will be found. I guess its OK to not know what it all means. Knowing that something good will come is enough.

Reach Publisher and Editor Terri Lenz at 333-3148, or follow her on Twitter.com @KenyonLeader

Reach Publisher and Editor Terri Lenz at 333-3148, or follow her on Twitter.com @KenyonLeader

View original post here:
Not knowing what it means is OK, follow your path - Southernminn.com

To Read More: Not knowing what it means is OK, follow your path – Southernminn.com
categoriaBone Marrow Stem Cells commentoComments Off on Not knowing what it means is OK, follow your path – Southernminn.com | dataMarch 29th, 2017
Read All

What are mesenchymal stem cells? – Palm Beach Post

By raymumme

In the United States alone, more than 400,000 lumbar discectomies and 500,000 spinal fusions are performed each year for symptoms related to lumbar disc degeneration. The ability to get these to heal without surgery has been a long-term goal of many patients and physicians alike. The Spine Center continues to be on the forefront of treatment options and is proud to offer stem cell therapy treatments for patients as part of our comprehensive non-operative treatment options.

Adult stem cells are divided into different categories. For example, the types of adult stem cells Dr. Theofilos uses to treat musculoskeletal issues are known as mesenchymal stem cells (MSCs). These are multi-potent cells that can differentiate into bone cells, cartilage cells, or fat cells.

The human body has multiple storage sites for stem cells to repair degenerated and injured structures. Dr. Theofilos has found that obtaining stem cells from the hip bone (iliac bone) is easily performed within minutes and, in most cases, is a fairly painless procedure for the patient. The stem cells are obtained from bone marrow; just minutes later, they are used for treatment.

This procedure is done in our office and after the procedure, the syringe of stem cells is taken to the lab and placed in a specialized machine called a centrifuge. The centrifuge spins the bone marrow solution and stem cells are separated from the non-useful cells. Now, the stem cells are ready for the treatment.

For those whom are ideal candidates, this provides great hope with reduction in pain and improved quality of life without the need for major surgery.

Voted as one of Americas Top Surgeons, Charles S. Theofilos, MD, Neurosurgeon and Founder of The Spine Center is a leading provider of the state-of-the-art, most comfortable and effective surgical, minimally invasive and non-surgical treatment options for a full range of cervical and spinal ailments, including stem cell therapy and artificial disc replacement. He was among a field of 20 top neuro and orthopedic surgeons in the U.S. chosen to participate in the groundbreaking Artificial Disc Study, which compared the clinical outcome of disc replacement versus traditional spinal fusion. A widely sought after educator and lecturer, Dr. Theofilos has offices in Palm Beach Gardens and Port St. Lucie. In an effort to maintain and honor the commitment to our patients, we will continue to accept Medicare and Medicare Advantage insurance plans for all new and follow up appointments.

11621 Kew Gardens Ave., Suite 101;Palm Beach Gardens

More here:
What are mesenchymal stem cells? - Palm Beach Post

To Read More: What are mesenchymal stem cells? – Palm Beach Post
categoriaBone Marrow Stem Cells commentoComments Off on What are mesenchymal stem cells? – Palm Beach Post | dataMarch 29th, 2017
Read All

Skin stem cells gain traction for skin repair and regeneration … – FinancialsTrend

By Dr. Matthew Watson


FinancialsTrend
Skin stem cells gain traction for skin repair and regeneration ...
FinancialsTrend
Although a tremendous progress has been made, large full-thickness skin defects are still associated with mortality due to a low availability of donor skin areas.

and more »

See more here:
Skin stem cells gain traction for skin repair and regeneration ... - FinancialsTrend

To Read More: Skin stem cells gain traction for skin repair and regeneration … – FinancialsTrend
categoriaSkin Stem Cells commentoComments Off on Skin stem cells gain traction for skin repair and regeneration … – FinancialsTrend | dataMarch 29th, 2017
Read All

Japanese man is first to receive ‘reprogrammed’ stem cells from … – Nature.com

By NEVAGiles23

Thomas Deerinck, NCMIR/SPL

In a medical first, a donor's iPS cells were transformed into retinal cells and transplanted into a patient.

On 28 March, a Japanese man in his 60s became the first person to receive cells derived from induced pluripotent stem (iPS) cells that had been donated by another person.

The surgery is expected to set the path for more applications of iPS cell technology, which offers the versatility of embryonic stem cells without the latters ethical taint. Banks of iPS cells from diverse donors could make stem cell transplants more convenient to perform, while slashing costs.

iPS cells are created by removing mature cells from an individual (from their skin, for example), reprogramming these cells backto an embryonic state, and then coaxing them to become a cell type useful for treating a disease.

In the recent procedure, performed on a man from Hyogo prefecture, skin cells from an anonymous donor were reprogrammed and then turned into a type of retinal cell that was transplanted onto the retina of thepatient who suffers from age-related macular degeneration. Doctors hope the cells will stop progression of the disease, which can lead to blindness.

In a procedure performed in September 2014at the Kobe City Medical Center General Hospital, a Japanese woman received retinal cells derived from iPS cells. They were taken from her own skin, though, and then reprogrammed. Such cells prepared for a second patient were found to contain genetic abnormalities and never implanted.

The team decided to redesign the study based on new regulations, and no other participants were recruited to the clinical study. In February 2017, the team reported that the one patient had fared well. The introduced cells remained intactand vision had not declined as would usually be expected with macular degeneration.

In todays procedure performed at the same hospital and by the same surgeon Yasuo Kurimoto doctors used iPS cells that had been taken from a donors skin cells, reprogrammed and banked. Japans health ministry approved the study, which plansto enroll 5 patients, on 1 February.

Using a donor's iPS cells does not offer an exact genetic match, raising the prospect of immune rejection. But Shinya Yamanaka, the Nobel Prize-winning stem-cell scientist who pioneered iPS cells, has contended that banked cells should be a close enough match for most applications.

Yamanaka is establishing an iPS cell bank, which depends on matching donors to recipients via three genes that code for human leukocyte antigens (HLAs) proteins on the cell surface that are involved in triggering immune reactions. HisiPS Cell Stock for Regenerative Medicine currently has cell lines from just one donor. But by March 2018, they hope to create 5-10 HLA-characterized iPS cell lines, which should match 30%-50% of Japans population.

Use of these ready-made cells has advantages for offering stem cell transplants across an entire population, says Masayo Takahashi, an ophthalmologist at the RIKEN Center for Developmental Biology who devised the iPS cell protocol deployed in todays transplant. The cells are available immediately versus several months wait for a patients own cells and are much cheaper. Cells from patients, who tend to be elderly, might have also accumulated genetic defects that could increase the risk of the procedure.

At a press conference after the procedure, Takahashi said the surgery had gone well but that success could not be declaredwithout monitoring the fate of the introduced cells. She plans to make no further announcements about patient progress until all five procedures are finished. We are at the beginning, she says.

Read more from the original source:
Japanese man is first to receive 'reprogrammed' stem cells from ... - Nature.com

To Read More: Japanese man is first to receive ‘reprogrammed’ stem cells from … – Nature.com
categoriaSkin Stem Cells commentoComments Off on Japanese man is first to receive ‘reprogrammed’ stem cells from … – Nature.com | dataMarch 29th, 2017
Read All

Interferon-beta producing stem cell-derived immune cell therapy on … – Science Daily

By LizaAVILA

All causes of the most common form of liver cancer, hepatocellular carcinoma (HCC), are not yet known, but the risk of getting it is increased by hepatitis B or C, cirrhosis, obesity, diabetes, a buildup of iron in the liver, or a family of toxins called aflatoxins produced by fungi on some types of food. Typical treatments for HCC include radiation, chemotherapy, cryo- or radiofrequency ablation, resection, and liver transplant. Unfortunately, the mortality rate is still quite high, with the American Cancer Society giving a 5-year survival rate for localized liver cancer at 31%.

Hoping to improve primary liver cancer including HCC and metastatic liver cancer therapies, researchers from Japan began studying induced pluripotent stem (iPS) cell-derived immune cells that produced the protein interferon-? (IFN-). IFN- exhibits antiviral effects related to immune response, and two different antitumor activities, the JAK-STAT signaling pathway and p53 protein expression. IFN- has been used for some forms of cancer but problems like rapid inactivation, poor tissue penetration, and toxicity have kept it from being used extensively. To get over that hurdle, Kumamoto University researchers used iPS cell-derived proliferating myelomonocytic (iPS-ML) cells, which they developed in a previous research project. These cells were found to mimic the behavior of tumor associated macrophages (TAMS), which inspired the researchers to develop them as a drug delivery system for IFN- and evaluate the therapeutic effect on liver cancer in a murine model in vivo.

The researchers selected two cancer cell lines that were sensitive to IFN- treatment, one that easily metastasized to the liver after injection into the spleen and the other that produced a viable model after being directly injected into the liver. After injection, mice that tested positive for cancer (~80%) were separated into test and control groups. iPS-ML/IFN- cells were injected two to three times a week for three weeks into the abdomen of the test groups.

Livers with tumors were found to have higher levels of IFN- than those without. This was likely due to iPS-ML/IFN- cells penetrating the fibrous connective tissue capsule surrounding the liver ?serous membrane?and migrating toward intrahepatic cancer sites. The iPS-ML/IFN- cells did not penetrate non-tumorous livers, but rather stayed on the surface of the organ. Furthermore, concentrations of IFN- from 24 to 72 hours after iPS-ML/IFN- injections were found to be high enough to inhibit proliferation or even cause the death of the tumor cells.

Due to differences between species, mouse cells are not adversely affected by human IFN-, meaning that side effects of this treatment are not visible in this model. Fortunately, the researchers are working on a new model with the mouse equivalent of human iPS-ML/IFN, and testing its therapeutic abilities.

"Our recent research into iPS-cell derived, IFN- expressing myeloid cells should be beneficial for many cancer patients," says research leader Dr. Satoru Senju. "If it is determined to be safe for human use, this technology has the potential to slow cancer progression and increase survival rates. At this point, however, we still have much work ahead."

This research may be found in the Journal of Hepato-Biliary-Pancreatic Sciences online.

Story Source:

Materials provided by Kumamoto University. Note: Content may be edited for style and length.

More:
Interferon-beta producing stem cell-derived immune cell therapy on ... - Science Daily

To Read More: Interferon-beta producing stem cell-derived immune cell therapy on … – Science Daily
categoriaIPS Cell Therapy commentoComments Off on Interferon-beta producing stem cell-derived immune cell therapy on … – Science Daily | dataMarch 29th, 2017
Read All

‘Nigeria should harness potentials of regenerative medicine’ – Daily Trust

By raymumme

Dr. David Ikudayisi is the Medical Director, Glory Wellness & Regenerative Centre, a multi-specialty health care center, in Lagos and Abuja. Ikudayisi who is based in the United States said he is excited about the prospects of coming back home to help put Nigeria on the continental and global medical map through regenerative medicine. He also spoke on the controversy surrounding embroyonic stem cell therapy among others.

What is regenerative medicine allabout?

Regenerative Medicine is a branch of medicine that aims to restore normal function by repairing or replacing damaged or malfunctioning cells and tissues in patients who have lost tissue or organ function due to age, disease, or congenital defects. It comprises different components including, Platelet Rich Plasma (PRP) Therapy and Adult Stem Cell (ASC) Therapy, etc.

I was inspired into this branch of medicine when I was looking for alternative ways to alleviate my patients pain in USA without using addictive pain medications and frequent steroid injections. I discovered the benefits of the Platelet Rich Plasma and/or Adult Stem Cell Therapy for patients who were in need of joint pain relief, youthful appearance, or a restored sexual function.

In medical school, we were taught that the central nervous system rarely regenerates, that there is little or no hope for paralyzed patients, and that damaged brain tissue may be a permanent condition, just to name a few.

Nowadays, the re-growth of brain cells and improvements of neurological function in spinal cord injured patients have been documented. When applicable, adult stem cell treatment is basically a medical time machine. The results doctors see in medical practice every day is what keeps my drive for the advancement of regenerative medicine.

How will regenerative medicine help address health care challenges in Nigeria?

Nigeria has a lot of ways to go when it comes to health, as we are recording very poor health indices in recent times. This can be traced to not enough emphasizes on preventive medicine or regenerative medicine. We tend to lose hope at different stages of degrading health rather than come up with solutions that can be attainable no matter the initial cost. If taken without levity, Regenerative Medicine, as in Platelet Rich Plasma (PRP) Therapy & Adult Stem Cell (ASC) Therapy, can help reduce our mortality rate in Nigeria, thereby recording better health indices.

This branch of medicine holds answers to many questions and problems that we doctors used to believe had no solutions. Many medical conditions that we thought were not treatable are now treatable. We have ample evidence to show the potentials of regenerative medicines for ailments that have domineered our people. The use of these techniques will propel Nigerian healthcare to boundless heights if provided the opportunity.

Regenerative medicine has a vast amount of uses especially for people who seek to stop being dependent on taking medications daily, avoid surgery, feel younger and more energized, perform their marital enjoyment at older ages, and prevent the manifestation of some complications of diseases.

Many countries around the world are taking advantage of these therapies, and Nigeria should not be left behind. I know this is not an undertaking with quick payoff nationally, but I believe that with these innovations, Nigeria can be the centre for medical tourism in Africa. This is not a cheap option, as most novel innovations never are, but it will pay dividends in the long run, and we have seen proofs of that.

Some doctors are already offering regenerative medicine (PRP therapy and ASCT) in Nigeria. So, people dont have to travel abroad to benefit from regenerative medicine. Just ask your doctor if someone in your area is offering ASCT and PRP Therapy.

What illnesses does ASCT and PRP therapy treat?

The applications of ASCT are enormous, and there is much more to be discovered. To determine if this can be of use in a particular medical problem, just ask if there is a need for repair and/regeneration of any part of the human tissue/organ: if yes, then the ASCT with/without PRP therapy may be an option that will help. The exceptions are non-hematological cancer treatments, as these treatments with stem cells are under investigations/research using tissue engineering.

More specifically, these therapies can be used for issues like multiple joint pain, back pain, meniscal tears, ligament tears, avascular necrosis of the hip joints, facet arthropathy, hair thinning, erectile dysfunction, female sexual dysfunction, female urinary incontinence, cosmetic/aesthetic applications (vampire facial, vampire facelift, vampire breast and nipple lift); diabetes, hypertension, anti-aging (generalized treatment), chronic kidney disease, multiple sclerosis, cerebral palsy, spinal cord injury, COPD (lung disease) and infertility (helps to increase fertility chances and not serve as a cure), to mention a few.

Why is there controversy around embryonic stem cell therapy?

The ethical, religious and moral arguments for and against Embryonic Stem Cell use has been stressed for many years now. Stem cells possess the ability to make new cells needed in the body. Embryonic stem cells are an example of this. In the body, they are what we use to develop the cells we later go on to have.

Many scientists prefer it because of its endless possibilities to recreate virtually any type of cell in the body. However, it involves the use of embryos from day 6 to day 14; that is, a baby-to-be in the first two weeks of pregnancy or after In vitro fertilization (IVF). As you can see, this involves tampering with potential or future babies that are yet to be born. This has both religious and ethical issues, leading to the controversy around it.

What is the difference between adult stem cell therapy and cloning?

It is important to understand that there are three main types of stem therapies. In addition to Embryonic Stem Cell (ESC) therapy, there are also induced Pluripotent Stem Cells (iPSCs) therapy and Adult Stem Cells (ASC)therapy. iPSCs are produced in the lab by reprogramming adult cells to express embryonic stem cells characteristics, and Adult Stem Cells (ASC) are retrieved from individuals bone marrow, adipose (fat) or umbilical cord. Although ASCs can be used for a vast number of therapies, they do not possess the same capabilities as ESCs, but the downside of limited growth and differentiation makes ASCs applicable in medicine today.

Cloning on the other hand is the process of producing similar populations of genetically identical organisms to sometimes replace damaged or lost tissues or organs. Every single bit of their DNA is identical to the original specimen. Clones can happen naturally, like identical twins or triplets, or they can be made in the lab, like Dolly the sheep. Reproductive cloning for humans has been banned in several countries, and mainstream scientists consider it unethical.

Link:
'Nigeria should harness potentials of regenerative medicine' - Daily Trust

To Read More: ‘Nigeria should harness potentials of regenerative medicine’ – Daily Trust
categoriaSpinal Cord Stem Cells commentoComments Off on ‘Nigeria should harness potentials of regenerative medicine’ – Daily Trust | dataMarch 27th, 2017
Read All

Researchers turn to the vascular system of plants to solve a major bioengineering problem blocking the regeneration … – Science Daily

By JoanneRUSSELL25

Researchers turn to the vascular system of plants to solve a major bioengineering problem blocking the regeneration ...
Science Daily
... to establish a vascular system that delivers blood deep into the developing tissue. Researchers have now successfully turned to plants, culturing beating human heart cells on spinach leaves that were stripped of plant cells. ... "The spinach leaf ...

and more »

Visit link:
Researchers turn to the vascular system of plants to solve a major bioengineering problem blocking the regeneration ... - Science Daily

To Read More: Researchers turn to the vascular system of plants to solve a major bioengineering problem blocking the regeneration … – Science Daily
categoriaCardiac Stem Cells commentoComments Off on Researchers turn to the vascular system of plants to solve a major bioengineering problem blocking the regeneration … – Science Daily | dataMarch 27th, 2017
Read All

Cellect Succeeds In First Stem Cell Transplant (APOP) – Investopedia

By daniellenierenberg


Investopedia
Cellect Succeeds In First Stem Cell Transplant (APOP)
Investopedia
It includes more than half the stem cell transplant procedures, including bone marrow transplant, resulting in a serious rejection disease called Graft-versus-Host-Disease (GvHD). GvHD is a medical disorder which results from receipt of transplanted ...
Cellect Announces Successful First Cancer Patient Stem Cell TransplantP&T Community
Why Cellect Biotechnology Ltd. (APOP) Stock Is Soaring TodayInvestorplace.com

all 28 news articles »

See the article here:
Cellect Succeeds In First Stem Cell Transplant (APOP) - Investopedia

To Read More: Cellect Succeeds In First Stem Cell Transplant (APOP) – Investopedia
categoriaBone Marrow Stem Cells commentoComments Off on Cellect Succeeds In First Stem Cell Transplant (APOP) – Investopedia | dataMarch 27th, 2017
Read All

Protein Found in Young Blood Could Be The Key To Fight Aging – Wall Street Pit

By NEVAGiles23

As people age, so does their blood. The question is: what exactly is in the blood of older people that makes it age? And in the same light, what is in the blood of younger people that can help rejuvenate old blood?

The idea of using young blood to rejuvenate old blood was not an automatic conclusion, of course. While it does seem logical, it remained a theory until tests that involved conjoining (i.e. stitching together) of old and young mice for the purpose of swapping blood revealed that the concept did have merit. With shared blood, the health of younger mice deteriorated while the health of older mice improved.

Another kind of experiment done was non-invasive blood swapping using tubes. The results were similar, though different explanations emerged for the change in health conditions of both old and young mice. When conjoined, the mice shared more than just blood; their organs got affected too. In non-invasive blood swapping, the old blood got diluted.

While these experiments were done on mice, theres a chance they might work in people as well. However, this involves blood donation from young people, which might mean the supply will be limited when it comes to fulfill demand.

As an alternative, a research team at Germanys University of Ulm led by Hartmut Geiger turned to stem cells, specifically, what are being referred to as mother stem cells those stem cells in the bone marrow that produce red and white blood cells, and whose number become fewer and fewer as a person ages. With fewer of these cell-generating cells, older people become more susceptible to conditions like anemia and heart disease. They become less capable of fighting infection as well.

By examining mice bone marrow, Geigers team discovered that older mice have considerably lower levels of a protein known as osteopontin. To check the effect of this protein on blood stem cells, they injected stem cells into mice that had low levels of osteopontin. What happened was, the cells aged much quicker.

However, when they mixed older stem cells with osteopontin and a protein that activates osteopontin, the old stem cells started producing white blood cells as if they were young stem cells. This suggests that osteopontin might indeed have a hand in rejuvenating old stem cells and making them behave as if they were young again.

While majority of blood rejuvenation efforts focus on the liquid part of blood (or plasma), Geiger believes blood cells might also play a vital role since cells can move better in the bodys tissues.

Following the initial results of their experiments, the team is now working on developing a drug that contains osteopontin and its corresponding protein activator. The hope is that this drug can promote youthful behavior in blood stem cells and boost the number of mother stem cells. Ultimately, this can help in the treatment of age-related blood disorders, and possibly boost the immune system of the elderly too so they dont get sick as easily.

Details of the study have been reported in The EMBO Journal.

Read more:
Protein Found in Young Blood Could Be The Key To Fight Aging - Wall Street Pit

To Read More: Protein Found in Young Blood Could Be The Key To Fight Aging – Wall Street Pit
categoriaBone Marrow Stem Cells commentoComments Off on Protein Found in Young Blood Could Be The Key To Fight Aging – Wall Street Pit | dataMarch 27th, 2017
Read All

Lungs Play Previously Unknown Role in Blood Production – Sci-News.com

By Dr. Matthew Watson

Using video microscopy in a living mouse lung, a team of researchers at the Universities of California, San Francisco (UCSF) & Los Angeles (UCLA), has revealed that the lungs play a previously unrecognized role in blood production.

Visualization of resident megakaryocytes in the lungs. Image credit: Emma Lefranais et al, doi: 10.1038/nature21706.

The team, headed by UCSF Professor Mark R. Looney, found that the lungs produced more than half of the platelets blood components required for the clotting that stanches bleeding in the mouse circulation.

In another finding, the team also identified a previously unknown pool of blood stem cells capable of restoring blood production when the stem cells of the bone marrow, previously thought to be the principal site of blood production, are depleted.

This finding definitely suggests a more sophisticated view of the lungs that theyre not just for respiration but also a key partner in formation of crucial aspects of the blood, Prof. Looney said.

What weve observed here in mice strongly suggests the lung may play a key role in blood formation in humans as well.

The study was made possible by a refinement of a technique known as two-photon intravital imaging.

The authors were using this technique to examine interactions between the immune system and circulating platelets in the lungs, using a mouse strain engineered so that platelets emit bright green fluorescence, when they noticed a surprisingly large population of platelet-producing cells called megakaryocytes in the lung vasculature.

When we discovered this massive population of megakaryocytes that appeared to be living in the lung, we realized we had to follow this up, said team member Dr. Emma Lefranais, from the UCSF Department of Medicine.

More detailed imaging sessions soon revealed megakaryocytes in the act of producing more than 10 million platelets per hour within the lung vasculature, suggesting that more than half of a mouses total platelet production occurs in the lung, not the bone marrow, as researchers had long presumed.

Video microscopy experiments also revealed a wide variety of previously overlooked megakaryocyte progenitor cells and blood stem cells sitting quietly outside the lung vasculature estimated at 1 million per mouse lung.

Proposed schema of lung involvement in platelet biogenesis. The role of the lungs in platelet biogenesis is twofold and occurs in two different compartments: (a) platelet production in the lung vasculature; after being released from the bone marrow or the spleen, proplatelets (a1) and megakaryocytes (a2) are retained in the lung vasculature, the first capillary bed encountered by any cell leaving the bone marrow, where proplatelet formation and extension and final platelet release are observed; (b) mature and immature megakaryocytes along with hematopoietic progenitors are found in the lung interstitium; in thrombocytopenic environments, hematopoietic progenitors from the lung migrate and restore bone marrow hematopoietic deficiencies. Image credit: Emma Lefranais et al, doi: 10.1038/nature21706.

The discovery of megakaryocytes and blood stem cells in the lung raised questions about how these cells move back and forth between the lung and bone marrow.

To address these questions, Prof. Looney, Dr. Lefranais and their colleagues conducted a clever set of lung transplant studies.

First, they transplanted lungs from normal donor mice into recipient mice with fluorescent megakaryocytes, and found that fluorescent megakaryocytes from the recipient mice soon began turning up in the lung vasculature.

This suggested that the platelet-producing megakaryocytes in the lung originate in the bone marrow.

In another experiment, the team transplanted lungs with fluorescent megakaryocyte progenitor cells into mutant mice with low platelet counts.

The transplants produced a large burst of fluorescent platelets that quickly restored normal levels, an effect that persisted over several months of observation much longer than the lifespan of individual megakaryocytes or platelets.

This indicated that resident megakaryocyte progenitor cells in the transplanted lungs had become activated by the recipient mouses low platelet counts and had produced healthy new megakaryocyte cells to restore proper platelet production.

Finally, the researchers transplanted healthy lungs in which all cells were fluorescently tagged into mutant mice whose bone marrow lacked normal blood stem cells.

Analysis of the bone marrow of recipient mice showed that fluorescent cells originating from the transplanted lungs soon traveled to the damaged bone marrow and contributed to the production not just of platelets, but of a wide variety of blood cells, including immune cells such as neutrophils, B cells and T cells.

These experiments suggest that the lungs play host to a wide variety of blood progenitor cells and stem cells capable of restocking damaged bone marrow and restoring production of many components of the blood.

To our knowledge this is the first description of blood progenitors resident in the lung, and it raises a lot of questions with clinical relevance for the millions of people who suffer from thrombocytopenia, Prof. Looney said.

The findings were published online March 22, 2017 in the journal Nature.

_____

Emma Lefranais et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, published online March 22, 2017; doi: 10.1038/nature21706

This article is based on text provided by the University of California, San Francisco.

Continue reading here:
Lungs Play Previously Unknown Role in Blood Production - Sci-News.com

To Read More: Lungs Play Previously Unknown Role in Blood Production – Sci-News.com
categoriaBone Marrow Stem Cells commentoComments Off on Lungs Play Previously Unknown Role in Blood Production – Sci-News.com | dataMarch 27th, 2017
Read All

Living Organ Donors: Proposed Tax Deduction Could Help Defray Donation Expenses – Hartford Courant

By JoanneRUSSELL25

The decision to become a living organ donor is a significant one and, among the many factors to weigh, donors should consider potential financial consequences of their altruism.

Medical costs associated with organ, tissue and bone marrow donations don't fall on the donor; they typically are paid by the recipient and often covered by insurance, Medicare or Medicaid.

But other related expenses including travel, lodging and loss of wages due to time out of work are the donor's responsibility.

Most of the roughly 6,000 living donations that occur annually are between relatives and close friends, people who have a vested interest in the recipient's outcome, according to the U.S. Department of Health and Human Services (HHS).

But even people who wouldn't hesitate to help a loved one should know about potential costs.

When Sally McCartin of North Branford donated a kidney to a fellow "hockey mom" in 2013, she knew she'd have to take time off from her job at the state's Department of Revenue Services.

"I was worried about the first two weeks that I would be out of work because I had used up all my sick time getting the necessary testing done to donate," she says. "Initially, I would have gone with no pay for the first two weeks."

The recipient of her kidney offered to cover McCartin's loss of wages, but the expense ultimately was covered by financial donations from McCartin's coworkers and contributions from her union, so she bore none of the cost.

For others, out-of-pocket expenses can be problematic and may deter some from donating altogether, says Sen. Martin Looney, D-New Haven. He proposed legislation in January that would help ease some of the burden.

Under his bill, people who donate organs or bone marrow after Jan. 1, 2017, could deduct up to $10,000 from their income, under the state personal income tax, to cover unreimbursed costs of travel, lodging and lost wages they incur as a result of donating. The bill also aims to allow state employees, beginning in 2018, to take up to 30 days of paid leave from work for organ donation and up to seven days of paid leave for bone marrow donation.

The legislation, co-sponsored by Sen. Catherine Osten, D-Columbia, is before the General Assembly's Public Health Committee and slated to receive a public hearing. It's intended to "limit potential barriers to people agreeing to be a live donor," Looney says.

The matter hits close to home for the senator, who suffered from kidney failure and received a kidney donation from a live donor in December. Nineteen states already have similar laws on the books, Looney says.

Some donors may have some expenses covered by their own insurance, depending on their plan, he says, but not all do.

"In some cases, the out-of-pocket expenses are minimal to the donor, and in other cases they can be substantial," he says, especially when it comes to missed work. "The donor is going to be out of work probably for a minimum of two weeks after the procedure. That would probably be the biggest hardship of all."

Many things can be donated by living donors, according to the HHS, including six vital organs: heart, kidneys, pancreas, lungs, liver and intestines. (In some cases a portion of the organ, such as the liver, is donated. Living heart donations are rare but happen. They occur when a donor has a pulmonary condition that necessitates removal of the heart and lungs for new ones lungs-only operations are considered riskier but the donor's heart is in good enough condition to be transplanted in another patient.)

Donors also may give certain tissues including skin, cornea and blood vessels as well as bone marrow, stem cells and umbilical cord blood.

April has been dubbed "National Donate Life Month," an effort by nonprofit advocacy group Donate Life America to encourage people to register as organ, eye and tissue donors.

About 20 to 25 living donations occur annually at the Hartford Hospital Transplant Program, according to registered nurse and Living Donor Transplant Coordinator Kari Rancourt. Most of them are kidney transplants.

"We do talk a little [with prospective donors] about out-of-pocket expenses," she says. Some donors get help covering costs through social fundraising platforms like GoFundMe, she says.

There also are foundations that offer grants to help would-be donors afford travel and lodging, she adds, which have "helped limit barriers to donations."

McCartin, who donated at Yale-New Haven Hospital, says that she did have to consider the potential expense but that wouldn't have stopped her from donating. She is so passionate about it, she recently began Kid-U-Not, a Connecticut chapter of the American Living Organ Donor Fund that raises funds to assist donors.

"I felt that, if I was healthy enough to donate, then it was a no-brainer," she says. "How could I not help a single mom of three children? I would hope that if I was ever in the same situation someone would step up for me."

Read the original here:
Living Organ Donors: Proposed Tax Deduction Could Help Defray Donation Expenses - Hartford Courant

To Read More: Living Organ Donors: Proposed Tax Deduction Could Help Defray Donation Expenses – Hartford Courant
categoriaBone Marrow Stem Cells commentoComments Off on Living Organ Donors: Proposed Tax Deduction Could Help Defray Donation Expenses – Hartford Courant | dataMarch 27th, 2017
Read All

How Big Data is Being Mobilized in the Fight Against Leukemia – Drug Discovery & Development

By JoanneRUSSELL25

Healthy cell function relies on well orchestrated gene activity. Via a fantastically complex network of interactions, around 30,000 genes cooperate to maintain this delicate balance in each of the37.2 trillion cellsin the human body.

Broadly speaking, cancer is a disruption of this balance by genetic changes, or mutations. Mutations can trigger over-activation of genes that normally instruct cells to divide, or inactivation of genes that suppress the development of cancer. When a mutated cell divides, it passes the mutation down to its daughter cells. This leads to the accumulation of non-functioning, abnormal cells that we recognise as cancer.

Our laboratoryis focused on understanding how one particular cancer chronic myeloid leukaemiaor CML works. Each year more than 700 patients in the UK andover 100,000worldwide are diagnosed with CML. After recent advances,almost 90%of patients under the age of 65 now survive for more than five years.

Sign Up for DDD's Webinar on Multicomponent Amorphous Solid Dispersion Systems on March 28th!:http://buff.ly/2n5iEqr

But in the vast majority of patients CML is currently incurable and lifelong treatment means that patients must live with side effects and the chance of drug resistance arising. With increasing numbers of CML patients surviving (and treatment costing between 40,000 and 70,000 per patient a year), increasing strain is being placed on health services.

A single mutation

CML is perhaps unique in cancers in that a single mutation, namedBCR-ABL, underlies the disease biology. This mutation originates in a singleleukaemic stem cell, but is then propagated throughout the blood and bone marrow as leukaemia cells take over and block the healthy process of blood production. The presence of BCR-ABL affects the activity of thousands of genes, in turn preventing these cells from fulfilling their normal function as blood cells.

Drugsthat specifically neutralise the aberrant effects of this mutation were introduced to the clinic from the early 2000s. These drugs have revolutionised CML patient care. Many are now able to live relatively normal lives with their leukaemia under good control.

But while these drugs kill the more mature daughter cells of the originally mutated leukaemia stem cell, they have not fully lived up to their initial billing as magic bullets in the fight against cancer. This is because the original seed population of leukaemic stem cellsevade therapy,lying dormant in the bone marrowto stimulate new cancer growth when treatment is withdrawn.

To truly cure CML we must expose, understand the inner workings of, and uproot the leukaemia stem cells. And to do this, we need to learn more about them. How do they survive the treatment that so readily kills their more mature counterparts? Which overactive or inactivated genes protect them?

We believe that the answers to these questions lie in the analysis of biological big data. Genome-scale technologies now allow scientists to measure the activity (or expression) of every gene in the genome simultaneously, in any given population of cells, or even at the level of a single cell. Comparison of expression data generated from leukaemia stem cells with the same data generated from healthy blood stem cells will reveal single genes or networks of genes potentially targetable in the fight against leukaemia.

Big data to the rescue

In a project funded by Bloodwise and the Scottish Cancer Foundation, we have createdLEUKomics. This online data portal brings together a wealth of CML gene expression data from specialised laboratories across the globe, including our own at the University of Glasgow.

Our intention is to eliminate the bottleneck surrounding big data analysis in CML. Each dataset is subjected to manual quality checks, and all the necessarycomputational processingto extract information on gene expression. This enables immediate access to and interpretation of data that previously would not have been easily accessible to academics or clinicians without training in specialised computational approaches.

Consolidating these data into a single resource also allows large-scale, computationally-intensive research efforts by bioinformaticians (specialists in the analysis of big data in biology). From a computational perspective, the fact that CML is caused by a single mutation makes it an attractive disease model for cancer stem cells. However, existing datasets tend to have small sample numbers, which can limit their potential.

The more samples available, the higher the power to detect subtle changes that may be crucial to the biology of the cancer stem cells. By bringing all the globally available CML datasets together, we have significantly increased the sample size, from two to six per dataset to more than 100 altogether. This offers an unprecedented opportunity to analyse gene expression data to expose underlying mechanisms of this disease.

As of March 2017, theportalis up and running in the public domain. We are planning to tour Scotland and present at international conferences, aiming to train researchers in how best to exploit this new resource. Ultimately, we hope that this tool will lead to new ideas and approaches, and attract more funding, in the fight against CML. And while we continue to expand our representation of CML data in real time from research centres all over the world, we also plan to begin incorporating data from other types of leukaemia.

In recent years, targeted therapies have becomehugely importantin cancer research. By providing these data to the CML research community withinLEUKomics, we hope to mobilise new research into cancer-causing leukaemic stem cells, and ultimately design treatments to target them without affecting healthy cells. Our database provides a critical stepping stone in this process.

Here is the original post:
How Big Data is Being Mobilized in the Fight Against Leukemia - Drug Discovery & Development

To Read More: How Big Data is Being Mobilized in the Fight Against Leukemia – Drug Discovery & Development
categoriaBone Marrow Stem Cells commentoComments Off on How Big Data is Being Mobilized in the Fight Against Leukemia – Drug Discovery & Development | dataMarch 27th, 2017
Read All

Page 434«..1020..433434435436..440450..»


Copyright :: 2025