Page 450«..1020..449450451452..460470..»

What are induced pluripotent stem cells? [Stem Cell …

By NEVAGiles23

Induced pluripotent stem cells (iPSCs) are adult cells that have been genetically reprogrammed to an embryonic stem celllike state by being forced to express genes and factors important for maintaining the defining properties of embryonic stem cells. Although these cells meet the defining criteria for pluripotent stem cells, it is not known if iPSCs and embryonic stem cells differ in clinically significant ways. Mouse iPSCs were first reported in 2006, and human iPSCs were first reported in late 2007. Mouse iPSCs demonstrate important characteristics of pluripotent stem cells, including expressing stem cell markers, forming tumors containing cells from all three germ layers, and being able to contribute to many different tissues when injected into mouse embryos at a very early stage in development. Human iPSCs also express stem cell markers and are capable of generating cells characteristic of all three germ layers.

Although additional research is needed, iPSCs are already useful tools for drug development and modeling of diseases, and scientists hope to use them in transplantation medicine. Viruses are currently used to introduce the reprogramming factors into adult cells, and this process must be carefully controlled and tested before the technique can lead to useful treatment for humans. In animal studies, the virus used to introduce the stem cell factors sometimes causes cancers. Researchers are currently investigating non-viral delivery strategies. In any case, this breakthrough discovery has created a powerful new way to "de-differentiate" cells whose developmental fates had been previously assumed to be determined. In addition, tissues derived from iPSCs will be a nearly identical match to the cell donor and thus probably avoid rejection by the immune system. The iPSC strategy creates pluripotent stem cells that, together with studies of other types of pluripotent stem cells, will help researchers learn how to reprogram cells to repair damaged tissues in the human body.

Previous|VI. What are induced pluripotent stem cells?|Next

Originally posted here:
What are induced pluripotent stem cells? [Stem Cell ...

To Read More: What are induced pluripotent stem cells? [Stem Cell …
categoriaIPS Cell Therapy commentoComments Off on What are induced pluripotent stem cells? [Stem Cell … | dataSeptember 18th, 2015
Read All

Stem Cell Treatment May Help Ease Osteoarthritis Pain …

By Sykes24Tracey

Last year, Patricia Beals was told she'd need a double knee replacement to repair her severely arthritic knees or she'd probably spend the rest of her life in a wheelchair.

Hoping to avoid surgery, Beals, 72, opted instead for an experimental treatment that involved harvesting bone marrow stem cells from her hip, concentrating the cells in a centrifuge and injecting them back into her damaged joints.

"Almost from the moment I got up from the table, I was able to throw away my cane," Beals says. "Now I'm biking and hiking like a 30-year-old."

A handful of doctors around the country are administering treatments like the one Beals received to stop or even reverse the ravages of osteoarthritis. Stem cells are the only cells in the body able to morph into other types of specialized cells. When the patient's own stem cells are injected into a damaged joint, they appear to transform into chondrocytes, the cells that go on to produce fresh cartilage. They also seem to amplify the body's own natural repair efforts by accelerating healing, reducing inflammation, and preventing scarring and loss of function.

Christopher J. Centeno, M.D., the rehab medicine specialist who performed Beals' procedure, says the results he sees from stem cell therapy are remarkable. Of the more-than-200 patients his Bloomfield, Colo., clinic treated over a two-year period, he says, "two thirds of them reported greater than 50 percent relief and about 40 percent reported more than 75 percent relief one to two years afterward."

According to Centeno, knees respond better to the treatment than hips. Only eight percent of his knee patients opted for a total knee replacement two years after receiving a stem cell injection. The complete results from his clinical observations will be published in a major orthopedic journal later this year.

The Pros and Cons

The biggest advantage stem cell injections seem to offer over more invasive arthritis remedies is a quicker, easier recovery. The procedure is done on an outpatient basis and the majority of patients are up and moving within 24 hours. Most wear a brace for several weeks but still can get around. Many are even able to do some gentle stationary cycling by the end of the first week.

There are also fewer complications. A friend who had knee replacement surgery the same day Beals had her treatment developed life-threatening blood clots and couldn't walk for weeks afterwards. Six months out, she still hasn't made a full recovery.

Most surgeries don't go so awry, but still: Beals just returned from a week-long cycling trip where she covered 20 to 40 miles per day without so much as a tweak of pain.

As for risks, Centeno maintains they are virtually nonexistent.

"Because the stem cells come from your own body, there's little chance of infection or rejection," he says.

Not all medical experts are quite so enthusiastic, however. Dr. Tom Einhorn, chairman of the department of orthopedic surgery at Boston University, conducts research with stem cells but does not use them to treat arthritic patients. He thinks the idea is interesting but the science is not there yet.

"We need to have animal studies and analyze what's really happening under the microscope. Then, and only then, can you start doing this with patients," he says.

The few studies completed to date have examined how stem cells heal traumatic injuries rather than degenerative conditions such as arthritis. Results have been promising but, as Einhorn points out, the required repair mechanisms in each circumstance are very different.

Another downside is cost: The injections aren't approved by the FDA, which means they aren't covered by insurance. At $4,000 a pop -- all out of pocket -- they certainly aren't cheap, and many patients require more than one shot.

Ironically, one thing driving up the price is FDA involvement. Two years ago, the agency stepped in and stopped physicians from intensifying stem cells in the lab for several days before putting them back into the patient. This means all procedures must be done on the same day, no stem cells may be preserved and many of the more expensive aspects of the treatment must be repeated each time.

Centeno says same day treatments often aren't as effective, either.

But despite the sky-high price tag and lack of evidence, patients like Beals believe the treatment is nothing short of a miracle. She advises anyone who is a candidate for joint replacement to consider stem cells first.

"Open your mind up and step into it," she says. "Do it. It's so effective. It's the future and it works."

Follow this link:
Stem Cell Treatment May Help Ease Osteoarthritis Pain ...

To Read More: Stem Cell Treatment May Help Ease Osteoarthritis Pain …
categoriaUncategorized commentoComments Off on Stem Cell Treatment May Help Ease Osteoarthritis Pain … | dataSeptember 17th, 2015
Read All

Injecting the Heart With Stem Cells Helps Chest Pain – ABC …

By raymumme

George Reed's heart wasn't doing so well: He's 71, and after suffering a heart attack years earlier, Reed had undergone open heart surgery and was put on multiple medications. But nothing seemed to help the dizziness and chest pain he experienced daily.

"I'd get dizzy and just fall over -- sometimes twice a day. I would run my head into the concrete. I was a bloody mess," the Perry, Ohio, native says. Despite his doctor's best efforts, Reed continued to experience angina, a type of chest pain that occurs when the heart doesn't get enough oxygen-rich blood; it can be accompanied by dizziness. So when he was recommended for an experimental study that would inject his own stem cells into his damaged heart, Perry signed on. "I needed something to change," he says.

Researchers gave Reed a drug commonly used in bone marrow transplants that stimulates the marrow to make more stem cells. Then they removed some of Reed's blood, isolated the stem cells and injected them into and around the damaged areas of his heart.

"The goal was to grow new blood vessels with stem cells from the patient's own body," says Dr. Tim Henry, a co-author of the study and director of research at the Minneapolis Heart Institute Foundation.

Within a few months, Reed, along with many of the other 100 or so patients at 26 hospital centers who'd received this stem cell treatment, reported feeling better than he had in years.

"When it started kicking in, I felt like a kid. I felt good," Reed says. He wasn't passing out and falling down anymore.

For Jay Homstad, 49, who was part of the Minnesota branch of the study, he felt the changes most in his ability to walk and be active.

"My activity level increased tenfold. Before, I struggled with chest pain every day. My activity level was about as close to zero as you could get. Now I can participate ... just in life. It may sound silly, but the best part is that in the wintertime I could go out and walk with my dog along the Red River. When you're walking through snow that is waist deep, you can tell there's a difference," Homstad says.

Homstad had had about a dozen surgeries and nine stents put in before he enrolled in the study, but he still struggled with angina daily. Within a few months of the stem cell shots, he could walk farther, and his chest pain subsided and was kept at bay for nearly four years.

"These are people for whom other treatment hasn't worked. They're debilitated by their chest pain, but their other options are really limited, that's why we picked them," says Henry. If the positive results seen in this study hold up in the next phase of the study, which is set to begin enrollment in the fall, this type of cardiac stem cell injection could be added to the arsenal of weapons against angina. The upcoming phase three trial has already been approved by the Food and Drug Administration.

Shot to the Heart, Before It's too Late

While several smaller studies have suggested that injecting stem cells into damaged heart tissue might be effective, this study, in its scope and rigor, was the first of its kind. A total of 167 patients were recruited and randomly assigned to receive a lower dose of stem cells, a higher dose or a placebo. The patients didn't know who got what treatment, and neither did the doctors treating them.

When tracked for a year after the injection, patients who received the lower dose of stem cells could last longer during a treadmill exercise than those who had received the placebo, and they averaged seven fewer episodes of chest pain in a week. To put this in perspective, a popular drug to treat angina, Ranolazine, reduced chest pain by fewer than two episodes a week in clinical trials.

Although the goal of the stem cell shots was to grow new blood vessels, it's impossible to tell if these stem cells were actually growing into blood vessels or if they were just triggering some other kind of healing process in the body, Henry says. Tests in animal models, however, do suggest that new blood vessels are forming, says Dr. Marco Costa, a co-author of the study and George Reed's doctor at UH Case Medical Center in Cleveland.

For now, the only gauge of the injections is improvement in symptoms.

Despite the positive results of the study, cardiologists remain "cautiously optimistic" about stem cells as a treatment for angina.

"The number of patients is relatively small, so this trial would probably not carry much scientific weight," says Dr. Jeff Brinker, a professor of cardiology at Johns Hopkins University. The results did justify the next, larger trial, he says, which would offer more answers as to whether this treatment is actually working the way researchers suspect.

The fact that lower doses of stem cells were puzzlingly more effective than larger ones is cause for caution, says Dr. Steve Nissen, chairman of the department of cardiovascular medicine at the Cleveland Clinic.

"The jury is still out for stem cell therapies to treat heart disease," says Dr. Cam Paterson, a cardiologist at the University of North Carolina at Chapel Hill.

But the results so far provide cautious hope for heart patients like George Reed and Jay Homstad.

The rest is here:
Injecting the Heart With Stem Cells Helps Chest Pain - ABC ...

To Read More: Injecting the Heart With Stem Cells Helps Chest Pain – ABC …
categoriaCardiac Stem Cells commentoComments Off on Injecting the Heart With Stem Cells Helps Chest Pain – ABC … | dataSeptember 13th, 2015
Read All

Knoepfler Lab Stem Cell Blog | Building innovative …

By daniellenierenberg

Post navigation

Image from Wikipedia

Its a shame that National Geographic has become part of a corporate empire that is not always consistent, to put it nicely, with data-based reality. Can NatGeo maintain its credibility and impact, when it is owned by a climate change denier (quoted for example as dissing folks as extreme greenies) who also has other verynon-scientificpriorities?

Theres been an increasing amount of discussion of the technology that could produce GM humans. This dialogue includes the new Hinxton Statement (my take on that here) and George Churchs quoted that Hinxton (which BTW did not call for a moratorium of any kind) was being too cautious nonetheless. Church is quoted:

seems weak on addressing why we should single out genome editing relative to other medicines that are potentially dangerous

Should we push pause, stop, or fast-forward on human genetic modification? asks Lisa Ikemoto.Is there a rewind or edit button too?

The NEJM published a new piece on stem cell clinics run amok and the lack of an effective FDA response. Sounds awfully familiar including the use of Wild West in the title, right? My gripe with these authors is that they didnt give credit where credit is due to those of us on the front lines of this battle and in particular to social media-based efforts to promote evidence-based medicine in the stem cell arena. Still, their message was on target.

Are men more likely to commit large-scale scientific fraud? Check out RetractionWatchs leaderboard.Of course the sheer number of retractions does not take into account the impact of any one or two given retractions that had a disproportionate toxic effect like the STAP pubs. Maybe another calculation to do is the # of citations to a retracted paper.

DrugMonkey talks about perceived scientific backstabbing.

The international stem cell policy and ethics think tank, the Hinxton Group, weighed in yesterday on heritable human genetic modification with a new policy statement.

The Hinxton statement is in many ways in agreement with the Baltimore, et al. Nature paper proposing a prudent path forward for human germline genetic modification, which came out of the Napa Meeting earlier this year.

However, while several of the Napa authors have now thrown their public support behind a clinical pause or moratorium on heritable human modification (e.g. Jennifer Doudnaas well asDavid Baltimore and Paul Berg in a later piece in the WSJ), Hinxton didnt explicitlyaddress either positively or negatively the question of a moratorium.

My initial reading of the Hinxton statement is that I mostly agree with it. In my own proposed ABCD planon human germline modification from earlier this year, however, I included at least a temporary clinical moratorium.

I also would have appreciated a more detailed risk-benefit analysis in the Hinxton statement. For instance, I didnt see a discussion of specific possible risks in their statement. Via myown risk-benefit analysis, I come to the conclusion that on the whole a temporary clinical moratorium has the potential for far more benefit than harm.

What would be the specific, possible benefits of a moratorium?

If the scientific community has united behind a moratorium on clinical use not only will that discourage rogue or potentially ill-advised stabs at clinical use, but also if a few such dangerous efforts proceed anyway (which is fairly likely) and come to public light, these unfortunate events will be placed in the appropriate context of the scientific community having a moratorium in place. Therefore, a moratorium both discourages premature and dangerous clinical use as well as putting potential future human gene editing clinical mishaps into the proper context for the pubic.

Another potential benefit of a moratorium is that it could discourage lawmakers from passing reactionary, overly restrictive legislation that bans both clinical applications and important in vitro research. It would give the politicians and the public the right sense that the scientific community is handling this situation with appropriate caution. If you dont think that a law on human germline modification is likely in the US, consider that conservative lawmakers have already proposed such a law be included as part of the pending appropriations bill and Congress a few months ago held a hearing on germline human modification.

Other benefits of a moratorium include that it would a) demonstrate to the public that the research community is capable of reaching consensus aboutimportant ethical issues and b) increase accountability within the research community. Any rogue researchers or clinicians who would violate the moratorium, even if it were not illegal for them to do so, would at least be subject to the disapproval and possible sanction of their professional peers or institutions. Without a moratorium in place, it is far less likely there would be these kinds of consequences.

What about risks to a clinical moratorium?The primary possible risk of a clinical moratorium is that it could, should human heritable genetic modification someday down the road be viewed as a wise course to pursue directly, impede clinical translation. This warrants discussion, but in my view the risk here is somewhat reduced by the possibility that continuing basic research develops a compelling case that a blanket clinical moratorium might no longer be needed.

The other risk here is that amoratorium on clinical use also might in theory discourage some potentially valuable pre-clinical research as well. In other words, some researchers may adopt the mindset that if they cannot get to their ultimate goal of making clinical impact, why do the preclinical studies? I expect that many researchers would instead go ahead and do the preclinical work with the expectation that a clinical moratorium could be lifted and in fact their own preclinical work might help build a case for moving beyond a moratorium.

I agreestrongly with Hinxton on the need for continuation of basic science on CRISPR and other gene editing technologies limited to the lab. In my view, we should have a nuanced policy though, whereby we support continuation of gene editing research in human cells and even in some cases human embryos in the lab under specific conditions (see again my ABCD plan for details), but in whichwe also put an unambiguous hold onclinical applications at this time.

In the absence of a framework that includes a clinical moratorium, we probably do not have the luxury of a reasonably long time frame (e.g. measured in a few years) for open discussionto sort things out carefully. To be clear, open and diverse discussion is crucial, but we just do not have a whole lot of time to do it as things stand today. Why? In the mean time absent a moratorium, I believe that some will go ahead and do clinical experiments on human germline editing. This would not only put individual research subjects at risk, but also pose dangers in terms of public trust and support to the wider scientific community. In a relatively permissive environment lacking a clinical moratorium, one or two instances of rogue researchers clinically using gene editing in a heritable manner could end up leading to a backlash in which even in vitro gene editing research is stymied.

Stemcentrx scientists working with targeted molecules that can kill some types of lung cancer. MIT Tech Review Image.

A stem cell biotech in the news this week was one thathad mostly flown under the radar previously.

Stemcentrx hasa focus on killing cancer stem cells as a novel approach to treating cancer. Antonio Regalado had a nice articleyesterday on the company. He reports that Stemcentrx has around a half a billion in funding. It is valued in the billions. These are very unusual figures for a stem cell biotech.

Stemcentrx isdeveloping novel cancer therapeutics such as antibodies that target cancer stem cells. Their development pipeline at least in part uses a model of serial xenograft tumor transplantation in mice.Cancer stem cells are also sometimes called tumor initiating cells (TIC). As a cancer stem cell researcher myself, I find Stemcentrx intriguing.

The company published an encouraging bit of preclinical data recently in Science Translational Medicinewith a team of authors including leading company scientist, Scott Dylla. In this paper the team presented evidence that they have a product in the form of a loaded antibody (conjugated to a toxin) against a molecule called DLL3 important to TIC biological function and survival. DLL3 is part of the Notch signaling pathway. Stay tuned tomorrow for my interview with Dr. Dylla.

They showed that this anti-DLL3 antibody,SC16LD6.5, exhibited anti-tumor activities in xenograft models of pulmonary neuroendocrine tumors such as small cell lung cancer. The company also has a clinical trial ongoing but not currently recruiting using this drug, and they have another trial for ovarian cancer based on antibody targeting as well.

SC16LD6.5 also exhibited some degree of toxicity in rats and a non-human primate model so thats a possible issue moving forward, but the toxic effects were at least partially reversible and when youre dealing with a deadly disease some toxicity for treatment is kind of to be expected.

Can Stemcentrx survive and hopefully even thrive as a company selling products that kill cancer stem cells? Well have a clearer picture on this in a few years, but in general biotechs of this type in this arena have a high failure rate. We need to keep in mind the long, sobering path ahead between these kinds of preclinical result and getting an approved drug to patients.

At the same time, this team has the money and talent to potentially succeed, and again, theres that half a billion in funding, which all by itself makes this stem cell biotech noordinary company. Theres another unique thing going on here: famed tech investor Peter Thiel is one of the major funders of the company.

Those of us in the cancer stem cell field have long been engaged in the debate overwhether these special cells exist in specific solid tumors and their functions in tumorigenesis. I believe they are present and important in some, but not all of such tumors. The controversial nature of TICs in lung cancer specifically makes SC16LD6.5 a high-risk, high reward kind ofproduct.

More weapons against lung cancer will be of coursea good thing and targeting cancer stem cells is an innovative approach. The company isrecruiting for many positions including scientists so if you are interested take a look.

I hope Stemcentrx succeeds and I look forward to reading more of their work as the years go by.

The winner of the inaugural Ogawa-Yamanaka Prize is Dr. Masayo Takahashi, MD, PhD.

According to the Gladstone Institutepress release, Dr. Takahashi was awarded the prize for her trailblazing work leading the first clinical trial to use induced pluripotent stem (iPS) cells in humans.

The prize, including a $150,000 cash award, will be given at a ceremony next week at the Gladstone on September 16. If you are interested in listening in, you can register for the webcast here.

Dr. Takahashi started the first ever human clinical study using iPS cells, which is focused on treating of macular degeneration using retinal pigmented epithelial cells derived from human iPS cells.

Congratulations to Dr. Takahashi for the great and well-deserved honor of the Ogawa-Yamanaka Prize.

As readers of this blog likely recall, Dr. Takahashi received our blogsStem Cell Person of the Year Award last year in honor of her pioneering work and that included a $2,000 prize.

Otherpast winners of our Stem Cell Person of the Year Award have gone on to get additional awards too.

The 2013 Stem Cell Person of the Year, Dr. Elena Cattaneo, went on to win the ISSCR Public Service Award in 2014 along with colleagues.

And our 2012 Stem Cell Person of the Year Award winner, stellar patient advocateRoman Reed, went on in 2013 to receive the GPI Stem Cell Inspiration Award.

The more we can recognize the pioneers and outside-the-box thinkers in the stem cell field, the better.

I recently ran a poll on my blog about how the FDA is doing on handling stem cell clinics.

There is substantial debate in the stem cell arena about how the FDA handles stem cell clinics ranging from the view that the agency is far too strict to excessively lenient.

The results of the poll reflect a great deal of dissatisfaction with the job that the FDA is doing on stem cell clinics.

Only 9% of respondents felt that the FDA is currently do things just about right.

While the top 2 answers were polar extremes, by a large margin the top answer was that the FDA was much too lenient.

Although Internet polls of this kind are not scientific, they can reflect sentiments of a community.

Go here to see the original:
Knoepfler Lab Stem Cell Blog | Building innovative ...

To Read More: Knoepfler Lab Stem Cell Blog | Building innovative …
categoriaUncategorized commentoComments Off on Knoepfler Lab Stem Cell Blog | Building innovative … | dataSeptember 12th, 2015
Read All

Cell culture – Wikipedia, the free encyclopedia

By JoanneRUSSELL25

Cell culture is the process by which cells are grown under controlled conditions, generally outside of their natural environment. In practice, the term "cell culture" now refers to the culturing of cells derived from multicellular eukaryotes, especially animal cells, in contrast with other types of culture that also grow cells, such as plant tissue culture, fungal culture, and microbiological culture (of microbes). The historical development and methods of cell culture are closely interrelated to those of tissue culture and organ culture. Viral culture is also related, with cells as hosts for the viruses.

The laboratory technique of maintaining live cell lines (a population of cells descended from a single cell and containing the same genetic makeup) separated from their original tissue source became more robust in the middle 20th century.[1][2]

The 19th-century English physiologist Sydney Ringer developed salt solutions containing the chlorides of sodium, potassium, calcium and magnesium suitable for maintaining the beating of an isolated animal heart outside of the body.[3] In 1885, Wilhelm Roux removed a portion of the medullary plate of an embryonic chicken and maintained it in a warm saline solution for several days, establishing the principle of tissue culture.[4]Ross Granville Harrison, working at Johns Hopkins Medical School and then at Yale University, published results of his experiments from 1907 to 1910, establishing the methodology of tissue culture.[5]

Cell culture techniques were advanced significantly in the 1940s and 1950s to support research in virology. Growing viruses in cell cultures allowed preparation of purified viruses for the manufacture of vaccines. The injectable polio vaccine developed by Jonas Salk was one of the first products mass-produced using cell culture techniques. This vaccine was made possible by the cell culture research of John Franklin Enders, Thomas Huckle Weller, and Frederick Chapman Robbins, who were awarded a Nobel Prize for their discovery of a method of growing the virus in monkey kidney cell cultures.

Cells can be isolated from tissues for ex vivo culture in several ways. Cells can be easily purified from blood; however, only the white cells are capable of growth in culture. Mononuclear cells can be released from soft tissues by enzymatic digestion with enzymes such as collagenase, trypsin, or pronase, which break down the extracellular matrix. Alternatively, pieces of tissue can be placed in growth media, and the cells that grow out are available for culture. This method is known as explant culture.

Cells that are cultured directly from a subject are known as primary cells. With the exception of some derived from tumors, most primary cell cultures have limited lifespan.

An established or immortalized cell line has acquired the ability to proliferate indefinitely either through random mutation or deliberate modification, such as artificial expression of the telomerase gene. Numerous cell lines are well established as representative of particular cell types.

For the majority of isolated primary cells, they undergo the process of senescence and stop dividing after a certain number of population doublings while generally retaining their viability (described as the Hayflick limit).

Cells are grown and maintained at an appropriate temperature and gas mixture (typically, 37C, 5% CO2 for mammalian cells) in a cell incubator. Culture conditions vary widely for each cell type, and variation of conditions for a particular cell type can result in different phenotypes.

Aside from temperature and gas mixture, the most commonly varied factor in culture systems is the cell growth medium. Recipes for growth media can vary in pH, glucose concentration, growth factors, and the presence of other nutrients. The growth factors used to supplement media are often derived from the serum of animal blood, such as fetal bovine serum (FBS), bovine calf serum, equine serum, and porcine serum. One complication of these blood-derived ingredients is the potential for contamination of the culture with viruses or prions, particularly in medical biotechnology applications. Current practice is to minimize or eliminate the use of these ingredients wherever possible and use human platelet lysate (hPL). This eliminates the worry of cross-species contamination when using FBS with human cells. hPL has emerged as a safe and reliable alternative as a direct replacement for FBS or other animal serum. In addition, chemically defined media can be used to eliminate any serum trace (human or animal), but this cannot always be accomplished with different cell types. Alternative strategies involve sourcing the animal blood from countries with minimum BSE/TSE risk, such as The United States, Australia and New Zealand,[6] and using purified nutrient concentrates derived from serum in place of whole animal serum for cell culture.[7]

Plating density (number of cells per volume of culture medium) plays a critical role for some cell types. For example, a lower plating density makes granulosa cells exhibit estrogen production, while a higher plating density makes them appear as progesterone-producing theca lutein cells.[8]

Cells can be grown either in suspension or adherent cultures. Some cells naturally live in suspension, without being attached to a surface, such as cells that exist in the bloodstream. There are also cell lines that have been modified to be able to survive in suspension cultures so they can be grown to a higher density than adherent conditions would allow. Adherent cells require a surface, such as tissue culture plastic or microcarrier, which may be coated with extracellular matrix (such as collagen and laminin) components to increase adhesion properties and provide other signals needed for growth and differentiation. Most cells derived from solid tissues are adherent. Another type of adherent culture is organotypic culture, which involves growing cells in a three-dimensional (3-D) environment as opposed to two-dimensional culture dishes. This 3D culture system is biochemically and physiologically more similar to in vivo tissue, but is technically challenging to maintain because of many factors (e.g. diffusion).

Cell line cross-contamination can be a problem for scientists working with cultured cells.[9] Studies suggest anywhere from 1520% of the time, cells used in experiments have been misidentified or contaminated with another cell line.[10][11][12] Problems with cell line cross-contamination have even been detected in lines from the NCI-60 panel, which are used routinely for drug-screening studies.[13][14] Major cell line repositories, including the American Type Culture Collection (ATCC), the European Collection of Cell Cultures (ECACC) and the German Collection of Microorganisms and Cell Cultures (DSMZ), have received cell line submissions from researchers that were misidentified by them.[13][15] Such contamination poses a problem for the quality of research produced using cell culture lines, and the major repositories are now authenticating all cell line submissions.[16] ATCC uses short tandem repeat (STR) DNA fingerprinting to authenticate its cell lines.[17]

To address this problem of cell line cross-contamination, researchers are encouraged to authenticate their cell lines at an early passage to establish the identity of the cell line. Authentication should be repeated before freezing cell line stocks, every two months during active culturing and before any publication of research data generated using the cell lines. Many methods are used to identify cell lines, including isoenzyme analysis, human lymphocyte antigen (HLA) typing, chromosomal analysis, karyotyping, morphology and STR analysis.[17]

One significant cell-line cross contaminant is the immortal HeLa cell line.

As cells generally continue to divide in culture, they generally grow to fill the available area or volume. This can generate several issues:

Among the common manipulations carried out on culture cells are media changes, passaging cells, and transfecting cells. These are generally performed using tissue culture methods that rely on aseptic technique. Aseptic technique aims to avoid contamination with bacteria, yeast, or other cell lines. Manipulations are typically carried out in a biosafety hood or laminar flow cabinet to exclude contaminating micro-organisms. Antibiotics (e.g. penicillin and streptomycin) and antifungals (e.g.amphotericin B) can also be added to the growth media.

As cells undergo metabolic processes, acid is produced and the pH decreases. Often, a pH indicator is added to the medium to measure nutrient depletion.

In the case of adherent cultures, the media can be removed directly by aspiration, and then is replaced. Media changes in non-adherent cultures involve centrifuging the culture and resuspending the cells in fresh media.

Passaging (also known as subculture or splitting cells) involves transferring a small number of cells into a new vessel. Cells can be cultured for a longer time if they are split regularly, as it avoids the senescence associated with prolonged high cell density. Suspension cultures are easily passaged with a small amount of culture containing a few cells diluted in a larger volume of fresh media. For adherent cultures, cells first need to be detached; this is commonly done with a mixture of trypsin-EDTA; however, other enzyme mixes are now available for this purpose. A small number of detached cells can then be used to seed a new culture. Some cell cultures, such as RAW cells are mechanically scraped from the surface of their vessel with rubber scrapers.

Another common method for manipulating cells involves the introduction of foreign DNA by transfection. This is often performed to cause cells to express a protein of interest. More recently, the transfection of RNAi constructs have been realized as a convenient mechanism for suppressing the expression of a particular gene/protein. DNA can also be inserted into cells using viruses, in methods referred to as transduction, infection or transformation. Viruses, as parasitic agents, are well suited to introducing DNA into cells, as this is a part of their normal course of reproduction.

Cell lines that originate with humans have been somewhat controversial in bioethics, as they may outlive their parent organism and later be used in the discovery of lucrative medical treatments. In the pioneering decision in this area, the Supreme Court of California held in Moore v. Regents of the University of California that human patients have no property rights in cell lines derived from organs removed with their consent.[19]

It is possible to fuse normal cells with an immortalised cell line. This method is used to produce monoclonal antibodies. In brief, lymphocytes isolated from the spleen (or possibly blood) of an immunised animal are combined with an immortal myeloma cell line (B cell lineage) to produce a hybridoma which has the antibody specificity of the primary lymphocyte and the immortality of the myeloma. Selective growth medium (HA or HAT) is used to select against unfused myeloma cells; primary lymphoctyes die quickly in culture and only the fused cells survive. These are screened for production of the required antibody, generally in pools to start with and then after single cloning.

A cell strain is derived either from a primary culture or a cell line by the selection or cloning of cells having specific properties or characteristics which must be defined. Cell strains are cells that have been adapted to culture but, unlike cell lines, have a finite division potential. Non-immortalized cells stop dividing after 40 to 60 population doublings[20] and, after this, they lose their ability to proliferate (a genetically determined event known as senescence).[21]

Mass culture of animal cell lines is fundamental to the manufacture of viral vaccines and other products of biotechnology.

Biological products produced by recombinant DNA (rDNA) technology in animal cell cultures include enzymes, synthetic hormones, immunobiologicals (monoclonal antibodies, interleukins, lymphokines), and anticancer agents. Although many simpler proteins can be produced using rDNA in bacterial cultures, more complex proteins that are glycosylated (carbohydrate-modified) currently must be made in animal cells. An important example of such a complex protein is the hormone erythropoietin. The cost of growing mammalian cell cultures is high, so research is underway to produce such complex proteins in insect cells or in higher plants, use of single embryonic cell and somatic embryos as a source for direct gene transfer via particle bombardment, transit gene expression and confocal microscopy observation is one of its applications. It also offers to confirm single cell origin of somatic embryos and the asymmetry of the first cell division, which starts the process.

Research in tissue engineering, stem cells and molecular biology primarily involves cultures of cells on flat plastic dishes. This technique is known as two-dimensional (2D) cell culture, and was first developed by Wilhelm Roux who, in 1885, removed a portion of the medullary plate of an embryonic chicken and maintained it in warm saline for several days on a flat glass plate. From the advance of polymer technology arose today's standard plastic dish for 2D cell culture, commonly known as the Petri dish. Julius Richard Petri, a German bacteriologist, is generally credited with this invention while working as an assistant to Robert Koch. Various researchers today also utilize culturing laboratory flasks, conicals, and even disposable bags like those used in single-use bioreactors.

Aside from Petri dishes, scientists have long been growing cells within biologically derived matrices such as collagen or fibrin, and more recently, on synthetic hydrogels such as polyacrylamide or PEG. They do this in order to elicit phenotypes that are not expressed on conventionally rigid substrates. There is growing interest in controlling matrix stiffness,[22] a concept that has led to discoveries in fields such as:

Cell culture in three dimensions has been touted as "Biology's New Dimension".[37] Nevertheless, the practice of cell culture remains based on varying combinations of single or multiple cell structures in 2D.[38] That being said, there is an increase in use of 3D cell cultures in research areas including drug discovery, cancer biology, regenerative medicine and basic life science research.[39] There are a variety of platforms used to facilitate the growth of three-dimensional cellular structures such as nanoparticle facilitated magnetic levitation,[40] gel matrices scaffolds, and hanging drop plates.[41]

3D Cell Culturing by Magnetic Levitation method (MLM) is the application of growing 3D tissue by inducing cells treated with magnetic nanoparticle assemblies in spatially varying magnetic fields using neodymium magnetic drivers and promoting cell to cell interactions by levitating the cells up to the air/liquid interface of a standard petri dish. The magnetic nanoparticle assemblies consist of magnetic iron oxide nanoparticles, gold nanoparticles, and the polymer polylysine. 3D cell culturing is scalable, with the capability for culturing 500 cells to millions of cells or from single dish to high-throughput low volume systems.

Cell culture is a fundamental component of tissue culture and tissue engineering, as it establishes the basics of growing and maintaining cells in vitro. The major application of human cell culture is in stem cell industry, where mesenchymal stem cells can be cultured and cryopreserved for future use. Tissue engineering potentially offers dramatic improvements in low cost medical care for hundreds of thousands of patients annually.

Vaccines for polio, measles, mumps, rubella, and chickenpox are currently made in cell cultures. Due to the H5N1 pandemic threat, research into using cell culture for influenza vaccines is being funded by the United States government. Novel ideas in the field include recombinant DNA-based vaccines, such as one made using human adenovirus (a common cold virus) as a vector,[42][43] and novel adjuvants.[44]

Plant cell cultures are typically grown as cell suspension cultures in a liquid medium or as callus cultures on a solid medium. The culturing of undifferentiated plant cells and calli requires the proper balance of the plant growth hormones auxin and cytokinin.

Cells derived from Drosophila melanogaster (most prominently, Schneider 2 cells) can be used for experiments which may be hard to do on live flies or larvae, such as biochemical studies or studies using siRNA. Cell lines derived from the army worm Spodoptera frugiperda, including Sf9 and Sf21, and from the cabbage looper Trichoplusia ni, High Five cells, are commonly used for expression of recombinant proteins using baculovirus.

For bacteria and yeasts, small quantities of cells are usually grown on a solid support that contains nutrients embedded in it, usually a gel such as agar, while large-scale cultures are grown with the cells suspended in a nutrient broth.

The culture of viruses requires the culture of cells of mammalian, plant, fungal or bacterial origin as hosts for the growth and replication of the virus. Whole wild type viruses, recombinant viruses or viral products may be generated in cell types other than their natural hosts under the right conditions. Depending on the species of the virus, infection and viral replication may result in host cell lysis and formation of a viral plaque.

See original here:
Cell culture - Wikipedia, the free encyclopedia

To Read More: Cell culture – Wikipedia, the free encyclopedia
categoriaUncategorized commentoComments Off on Cell culture – Wikipedia, the free encyclopedia | dataSeptember 7th, 2015
Read All

Stem Cell Therapy for Heart Disease – Cleveland Clinic

By LizaAVILA

Stem Cell Therapy: Helping the Body Heal Itself

Stem cells are natures own transformers. When the body is injured, stem cells travel the scene of the accident. Some come from the bone marrow, a modest number of others, from the heart itself. Additionally, theyre not all the same. There, they may help heal damaged tissue. They do this by secreting local hormones to rescue damaged heart cells and occasionally turning into heart muscle cells themselves. Stem cells do a fairly good job. But they could do better for some reason, the heart stops signaling for heart cells after only a week or so after the damage has occurred, leaving the repair job mostly undone. The partially repaired tissue becomes a burden to the heart, forcing it to work harder and less efficiently, leading to heart failure.

Initial research used a patients own stem cells, derived from the bone marrow, mainly because they were readily available and had worked in animal studies. Careful study revealed only a very modest benefit, so researchers have moved on to evaluate more promising approaches, including:

No matter what you may read, stem cell therapy for damaged hearts has yet to be proven fully safe and beneficial. It is important to know that many patients are not receiving the most current and optimal therapies available for their heart failure. If you have heart failure, and wondering about treatment options, an evaluation or a second opinion at a Center of Excellence can be worthwhile.

Randomized clinical trials evaluating these different approaches typically allow enrollment of only a few patients from each hospital, and hence what may be available at the Cleveland Clinic varies from time to time. To inquire about current trials, please call 866-289-6911 and speak to our Resource Nurses.

Cleveland Clinic is a large referral center for advanced heart disease and heart failure we offer a wide range of therapies including medications, devices and surgery. Patients will be evaluated for the treatments that best address their condition. Whether patients meet the criteria for stem cell therapy or not, they will be offered the most advanced array of treatment options.

Allogenic: from one person to another (for example: organ transplant)

Autogenic: use of one's own tissue

Myoblasts: immature muscle cells, may be able to change into functioning heart muscle cells

Stem Cells: cells that have the ability to reproduce, generate new cells, and send signals to promote healing

Transgenic: Use of tissue from another species. (for example: some heart valves from porcine or bovine tissue)

The rest is here:
Stem Cell Therapy for Heart Disease - Cleveland Clinic

To Read More: Stem Cell Therapy for Heart Disease – Cleveland Clinic
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy for Heart Disease – Cleveland Clinic | dataAugust 31st, 2015
Read All

Bone marrow (stem cell) transplant and donation

By LizaAVILA

A transplant of the stem cells that form in bone marrow can help people recover from certain types of cancers and blood and bone marrow disorders, but having a bone marrow or stem cell transplant can require a donation from someone.

The bones of the body are hollow and in the centre especially in the flat bones such as the breastbone and pelvis can be found a soft tissue known as bone marrow. This sponge-like substance produces stem cells. These are immature cells that constantly divide to produce new cells, some of which grow into mature blood cells used by the body. These include:

Stem cells need to divide rapidly to make millions of blood cells every day. Without these stem cells it would be impossible to survive.

People who have a condition that damages bone marrow may not have enough stem cells to produce normal blood cells. This can occur if there is a type of bone marrow failure or a genetic blood or immune system disorder.

In other cases, treating people with certain types of cancer sometimes requires giving very high doses of chemotherapy to kill the cancer cells in the body. Whole body radiotherapy may also be used to kill off the cancer cells. However, these treatments can also kill healthy cells in the body, including the stem cells in bone marrow.

People who may need a bone marrow transplant include those with:

The collected stem cells are added to a solution that is put into the body by using a drip, similar to receiving a blood transfusion. These cells enter the bloodstream and then travel to the bones, where they can start producing blood cells again. In people who have cancer, this is performed the day after treatment with chemotherapy or radiotherapy ends.

Because having a transplant involves being given different medicines and blood transfusions as well as the transplant itself, the patient may be given a central line, or central venous catheter. An operation will be performed to insert a thin tube through the skin near the collarbone and into a large vein near the heart.

The transplant itself isn't painful, but the person will need to remain in hospital for between 5 to 6 weeks while their bone marrow recovers, allowing time for the donated stem cells to settle in and start producing new cells. Antibiotics are often given to limit the risk of infection, which is particularly high during this period and the reason why the person may be placed in isolation. Blood transfusions may also be necessary until the bone marrow is making enough new blood cells. The person will also be monitored to ensure the stem cells have been accepted.

Read the original:
Bone marrow (stem cell) transplant and donation

To Read More: Bone marrow (stem cell) transplant and donation
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow (stem cell) transplant and donation | dataAugust 30th, 2015
Read All

Whats it like to donate stem cells?

By JoanneRUSSELL25

People usually volunteer to donate stem cells for an allogeneic transplant either because they have a loved one or friend who needs a match or because they want to help people. Some people give their stem cells so they can get them back later for an autologous transplant.

People who want to donate stem cells or join a volunteer registry can speak with their doctors or contact the National Marrow Donor Program to find the nearest donor center. Potential donors are asked questions to make sure they are healthy enough to donate and dont pose a risk of infection to the recipient. For more information about donor eligibility guidelines, contact the National Marrow Donor Program or the donor center in your area (see the To learn more section for contact information).

A simple blood test is done to learn the potential donors HLA type. There may be a one-time, tax-deductible fee of about $75 to $100 for this test. People who join a volunteer donor registry will most likely have their tissue type kept on file until they reach age 60.

Pregnant women who want to donate their babys cord blood should make arrangements for it early in the pregnancy, at least before the third trimester. Donation is safe, free, and does not affect the birth process. For more, see the section called How umbilical cord blood is collected.

If a possible stem cell donor is a good match for a recipient, steps are taken to teach the donor about the transplant process and make sure he or she is making an informed decision. If a person decides to donate, a consent form must be signed after the risks of donating are fully discussed. The donor is not pressured take part. Its always a choice.

If a person decides to donate, a medical exam and blood tests will be done to make sure the donor is in good health.

This process is often called bone marrow harvest, and its done in an operating room. The donor is put under general anesthesia (given medicine to put them into a deep sleep so they dont feel pain) while bone marrow is taken. The marrow cells are taken from the back of the pelvic (hip) bone. A large needle is put through the skin and into the back of the hip bone. Its pushed through the bone to the center and the thick, liquid marrow is pulled out through the needle. This is repeated several times until enough marrow has been taken out (harvested). The amount taken depends on the donors weight. Often, about 10% of the donors marrow, or about 2 pints, are collected. This takes about 1 to 2 hours. The body will replace these cells within 4 to 6 weeks. If blood was taken from the donor before the marrow donation, its often given back to the donor at this time.

After the bone marrow is harvested, the donor is taken to the recovery room while the anesthesia wears off. The donor may then be taken to a hospital room and watched until fully alert and able to eat and drink. In most cases, the donor is free to leave the hospital within a few hours or by the next morning.

The donor may have soreness, bruising, and aching at the back of the hips and lower back for a few days. Over-the-counter acetaminophen (Tylenol) or non-steroidal anti-inflammatory drugs (such as aspirin, ibuprofen, or naproxen) are helpful. Some people may feel tired or weak, and have trouble walking for a few days. The donor might be told to take iron supplements until the number of red blood cells returns to normal. Most donors are back to their usual schedule in 2 to 3 days. But it could take 2 or 3 weeks before they feel completely back to normal.

There are few risks for donors and serious complications are rare. But bone marrow donation is a surgical procedure. Rare complications could include anesthesia reactions, infection, transfusion reactions (if a blood transfusion of someone elses blood is needed this doesnt happen if you get your own blood), or injury at the needle insertion sites. Problems such as sore throat or nausea may be caused by anesthesia.

Allogeneic stem cell donors do not have to pay for the harvesting because the recipients insurance company usually covers the cost.

Once the cells are collected, they are filtered through fine mesh screens. This prevents bone or fat particles from being given to the recipient. For an allogeneic or syngeneic transplant, the cells may be given to the recipient through a vein soon after they are harvested. Sometimes they are frozen, such as when the donor lives far away from the recipient.

For several days before starting the donation process, the donor is given a daily injection (shot) of filgrastim (Neupogen). This is a growth-factor drug that causes the bone marrow to make and release stem cells into the blood. Filgrastim can cause some side effects, the most common being bone pain and headaches. These may be helped by over-the-counter acetaminophen (Tylenol) or nonsteroidal anti-inflammatory drugs (like aspirin or ibuprofen). Nausea, sleeping problems, low-grade (mild) fevers, and tiredness are other possible effects. These go away once the injections are finished and collection is completed.

Blood is removed through a catheter (a thin, flexible plastic tube) that is put in a large vein in the arm or chest. Its then cycled through a machine that separates the stem cells from the other blood cells. The stem cells are kept while the rest of the blood is returned to the donor through the same catheter. This process is called apheresis (a-fur-REE-sis). It takes about 2 to 4 hours and is done as an outpatient procedure. Often the process needs to be repeated daily for a few days, until enough stem cells have been collected.

Possible side effects of the catheter can include trouble placing the catheter in the vein, a collapsed lung from catheter placement, blockage of the catheter, or infection of the catheter or at the area where it enters the vein. Blood clots are another possible side effect. During the apheresis procedure donors may have problems caused by low calcium levels from the anti-coagulant drug used to keep the blood from clotting in the machine. These can include feeling lightheaded or tingly, and having chills or muscle cramps. These go away after donation is complete, but may be treated by giving the donor calcium supplements.

The process of donating cells for yourself (autologous stem cell donation) is pretty much the same as when someone donates them for someone else (allogeneic donation). Its just that in autologous stem cell donation the donor is also the recipient, giving stem cells for his or her own use later on. For some people, there are a few differences. For instance, sometimes chemotherapy (chemo) is given before the filgrastim is used to tell the body to make stem cells. Also, sometimes it can be hard to get enough stem cells from a person with cancer. Even after several days of apheresis, there may not be enough for the transplant. This is more likely to be a problem if the patient has had certain kinds of chemo in the past, or if they have an illness that affects their bone marrow.

Sometimes a second drug called plerixafor (Mozobil) is used along with filgrastim in people with non-Hodgkin lymphoma or multiple myeloma. This boosts the stem cell numbers in the blood, and helps reduce the number of apheresis sessions needed to get enough stem cells. It may cause nausea, diarrhea, and sometimes, vomiting. There are medicines to help if these symptoms become a problem. Rarely the spleen can enlarge and even rupture. This can cause severe internal bleeding and requires emergency medical care. The patient should tell the doctor right away if they have any pain in their left shoulder or under their left rib cage which can be symptoms of this emergency.

Parents can donate their newborns cord blood to volunteer or public cord blood banks at no cost. This process does not pose any health risk to the infant. Cord blood transplants use blood that would otherwise be thrown away.

After the umbilical cord is clamped and cut, the placenta and umbilical cord are cleaned. The cord blood is put into a sterile container, mixed with a preservative, and frozen until needed.

Remember that if you want to donate or bank (save) your childs cord blood, you will need to arrange it before the baby is born. Some banks require you to set it up before the 28th week of pregnancy, although others accept later setups. Among other things, you will be asked to answer health questions and sign a consent form.

Many hospitals collect cord blood for donation, which makes it easier for parents to donate. For more about donating your newborns cord blood, call 1-800-MARROW2 (1-800-627-7692) or visit Be the Match.

Privately storing a babys cord blood for future use is not the same as donating cord blood. Its covered in the section called Other transplant issues.

Link:
Whats it like to donate stem cells?

To Read More: Whats it like to donate stem cells?
categoriaBone Marrow Stem Cells commentoComments Off on Whats it like to donate stem cells? | dataAugust 29th, 2015
Read All

Renal cell carcinoma – Wikipedia, the free encyclopedia

By Sykes24Tracey

Renal cell carcinoma (RCC, also known as hypernephroma, Grawitz tumor, renal adenocarcinoma) is a kidney cancer that originates in the lining of the proximal convoluted tubule, a part of the very small tubes in the kidney that transport waste molecules from the blood to the urine. RCC is the most common type of kidney cancer in adults, responsible for approximately 90-95% of cases.[1] Initial treatment is most commonly either partial or complete removal of the affected kidney(s) and remains the mainstay of curative treatment.[2] Where the cancer has not metastasised (spread to other organs) or burrowed deeper into the tissues of the kidney the 5-year survival rate is 65-90%,[3] but this is lowered considerably when the cancer has spread. It is relatively resistant to radiation therapy and chemotherapy, although some cases respond to targeted therapies such as sunitinib, temsirolimus, bevacizumab, interferon alfa and sorafenib which have improved the outlook for RCC.[4]

The body is remarkably good at hiding the symptoms and as a result people with RCC often have advanced disease by the time it is discovered.[5] The initial symptoms of RCC often include: blood in the urine (occurring in 40% of affected persons at the time they first seek medical attention), flank pain (40%), a mass in the abdomen or flank (25%), weight loss (33%), fever (20%), high blood pressure (20%), night sweats and generally feeling unwell.[1] RCC is also associated with a number of paraneoplastic syndromes (PNS) which are conditions caused by either the hormones produced by the tumour or by the body's attack on the tumour and are present in about 20% of those with RCC.[1] These syndromes most commonly affect tissues which have not been invaded by the cancer.[1] The most common PNSs seen in people with RCC are: anaemia (due to an underproduction of the hormone, erythropoietin), high blood calcium levels, polycythaemia (the opposite to anaemia, due to an overproduction of erythropoietin), thrombocytosis (too many platelets in the blood, leading to an increased tendency for blood clots and bleeds) and secondary amyloidosis.[6] When RCC metastasises it most commonly spreads to the lymph nodes, lungs, liver, adrenal glands, brain or bones.[6]

Historically, medical practitioners expected a person to present with three findings. This classic triad[7] is 1: haematuria, which is when there is blood present in the urine, 2: flank pain, which is pain on the side of the body between the hip and ribs, and 3: an abdominal mass, similar to bloating but larger. It is now known that this classic triad of symptoms only occurs in 10-15% of cases, and is usually indicative that the renal cell carcinoma (RCC) in an advanced stage.[7] Today, RCC is often asymptomatic (meaning little to no symptoms) and is generally detected incidentally when a person is being examined for other ailments.[8]

Other signs and symptom may include haematuria;[7] loin pain;[7] abdominal mass;[8]malaise, which is a general feeling of feeling unwell;[8] weight loss and/or loss of appetite;[9]anaemia resulting from depression of erythropoietin;[7]erythrocytosis (increased production of red blood cells) due to increased erythropoietin secretion;[7]varicocele, which is seen in males as an enlargement of the tissue at the testicle (more often the left testicle)[8]hypertension (high blood pressure) resulting from secretion of renin by the tumour;[10]hypercalcemia, which is elevation of calcium levels in the blood;[11] sleep disturbance or night sweats;[9] recurrent fevers;[9] and chronic fatigue.[12]

The greatest risk factors for RCC are lifestyle-related; smoking, obesity and hypertension (high blood pressure) have been estimated to account for up to 50% of cases.[13] Occupational exposure to some chemicals such as asbestos, cadmium, lead, chlorinated solvents, petrochemicals and PAH (polycyclic aromatic hydrocarbon) has been examined by multiple studies with inconclusive results.[14][15][16] Another suspected risk factor is the long term use of non-steroidal anti-inflammatory drugs (NSAIDS).[17]

Finally, studies have found that women who have had a hysterectomy are at more than double the risk of developing RCC than those who have not.[18] The reason for this remains unclear.

Hereditary factors have a minor impact on individual susceptibility with immediate relatives of people with RCC having a two to fourfold increased risk of developing the condition.[19] Other genetically linked conditions also increase the risk of RCC, including hereditary papillary renal carcinoma, hereditary leiomyomatosis, Birt-Hogg-Dube syndrome, hyperparathyroidism-jaw tumor syndrome, familial papillary thyroid carcinoma, von Hippel-Lindau disease[20] and sickle cell disease.[21]

The most significant disease affecting risk however is not genetically linked patients with acquired cystic disease of the kidney requiring dialysis are 30 times greater more likely than the general population to develop RCC.[22]

The tumour arises from the cells of the proximal renal tubular epithelium.[1] It is considered an adenocarcinoma.[6] There are two subtypes: sporadic (that is, non-hereditary) and hereditary.[1] Both such subtypes are associated with mutations in the short-arm of chromosome 3, with the implicated genes being either tumour suppressor genes (VHL and TSC) or oncogenes (like c-Met).[1]

The first steps taken to diagnose this condition are consideration of the signs and symptoms, and a medical history (the detailed medical review of past health state) to evaluate any risk factors. Based on the symptoms presented, a range of biochemical tests (using blood and/or urine samples) may also be considered as part of the screening process to provide sufficient quantitative analysis of any differences in electrolytes, renal and liver function, and blood clotting times.[21] Upon physical examination, palpation of the abdomen may reveal the presence of a mass or an organ enlargement.[23]

Although this disease lacks characterization in the early stages of tumor development, considerations based on diverse clinical manifestations, as well as resistance to radiation and chemotherapy are important. The main diagnostic tools for detecting renal cell carcinoma are ultrasound, computed tomography (CT) scanning and magnetic resonance imaging (MRI) of the kidneys.[24]

Renal cell carcinoma (RCC) is not a single entity, but rather a collection of different types of tumours, each derived from the various parts of the nephron (epithelium or renal tubules) and possessing distinct genetic characteristics, histological features, and, to some extent, clinical phenotypes.[21]

Clear Cell Renal Cell Carcinoma (CCRCC)

Array-based karyotyping can be used to identify characteristic chromosomal aberrations in renal tumors with challenging morphology.[28][29] Array-based karyotyping performs well on paraffin embedded tumours[30] and is amenable to routine clinical use. See also Virtual Karyotype for CLIA certified laboratories offering array-based karyotyping of solid tumours.

The 2004 World Health Organization (WHO) classification of genitourinary tumours recognizes over 40 subtypes of renal neoplasms. Since the publication of the latest iteration of the WHO classification in 2004, several novel renal tumour subtypes have been described:[31]

Laboratory tests are generally conducted when the patient presents with signs and symptoms that may be characteristic of kidney impairment. They are not primarily used to diagnose kidney cancer, due to its asymptomatic nature and are generally found incidentally during tests for other illnesses such as gallbladder disease.[33] In other words, these cancers are not detected usually because they do not cause pain or discomfort when they are discovered. Laboratory analysis can provide an assessment on the overall health of the patient and can provide information in determining the staging and degree of metastasis to other parts of the body (if a renal lesion has been identified) before treatment is given.

The presence of blood in urine is a common presumptive sign of renal cell carcinoma. The haemoglobin of the blood causes the urine to be rusty, brown or red in colour. Alternatively, urinalysis can test for sugar, protein and bacteria which can also serve as indicators for cancer. A complete blood cell count can also provide additional information regarding the severity and spreading of the cancer.[34]

The CBC provides a quantified measure of the different cells in the whole blood sample from the patient. Such cells examined for in this test include red blood cells (erythrocytes), white blood cells (leukocytes) and platelets (thrombocytes). A common sign of renal cell carcinoma is anaemia whereby the patient exhibits deficiency in red blood cells.[35] CBC tests are vital as a screening tool for examination the health of patient prior to surgery. Inconsistencies with platelet counts are also common amongst these cancer patients and further coagulation tests, including Erythrocyte Sedimentation Rate (ESR), Prothrombin Time (PT), Activated Partial Thromboplastin Time (APTT) should be considered.

Blood chemistry tests are conducted if renal cell carcinoma is suspected as cancer has the potential to elevate levels of particular chemicals in blood. For example, liver enzymes such as aspartate aminotransferase [AST] and alanine aminotransferase [ALT] are found to be at abnormally high levels.[36] The staging of the cancer can also be determined by abnormal elevated levels of calcium, which suggests that the cancer may have metastasised to the bones.[37] In this case, a doctor should be prompted for a CT scan. Blood chemistry tests also assess the overall function of the kidneys and can allow the doctor to decide upon further radiological tests.

The characteristic appearance of renal cell carcinoma (RCC) is a solid renal lesion which disturbs the renal contour. It will frequently have an irregular or lobulated margin and may be seen as a lump on the lower pelvic or abdomen region. Traditionally, 85 to 90% of solid renal masses will turn out to be RCC but cystic renal masses may also be due to RCC.[38] However, the advances of diagnostic modalities are able to incidentally diagnose a great proportion of patients with renal lesions that may appear to be small in size and of benign state. Ten percent of RCC will contain calcifications, and some contain macroscopic fat (likely due to invasion and encasement of the perirenal fat.[39] Deciding on the benign or malignant nature of the renal mass on the basis of its localized size is an issue as renal cell carcinoma may also be cystic. As there are several benign cystic renal lesions (simple renal cyst, haemorrhagic renal cyst, multilocular cystic nephroma, polycystic kidney disease), it may occasionally be difficult for the radiologist to differentiate a benign cystic lesion from a malignant one.[40] The Bosniak classification system for cystic renal lesions classifies them into groups that are benign and those that need surgical resection, based on specific imaging features.[41]

The main imaging tests performed in order to identify renal cell carcinoma are pelvic and abdominal CT scans, ultrasound tests of the kidneys (ultrasonography), MRI scans, intravenous pyelogram (IVP) or renal angiography.[42] Among these main diagnostic tests, other radiologic tests such as excretory urography, positron-emission tomography (PET) scanning, ultrasonography, arteriography, venography, and bone scanning can also be used to aid in the evaluation of staging renal masses and to differentiate non-malignant tumours from malignant tumours.

Contrast-enhanced Computed tomography (CT) scanning is a routinely used imaging procedure in determining the stage of the renal cell carcinoma in the abdominal and pelvic regions of the patient. CT scans have the potential to distinguish solid masses from cystic masses and may provide information on the localization, stage or spread of the cancer to other organs of the patient. Key parts of the human body which are examined for metastatic involvement of renal cell carcinoma may include the renal vein, lymph node and the involvement of the inferior vena cava.[43] According to a study conducted by Sauk et al., multidetector CT imaging characteristics have applications in diagnosing patients with clear renal cell carcinoma by depicting the differences of these cells at the cytogenic level.[44]

Ultrasonographic examination can be useful in evaluating questionable asymptomatic kidney tumours and cystic renal lesions if Computed Tomography imaging is inconclusive. This safe and non-invasive radiologic procedure uses high frequency sound waves to generate an interior image of the body on a computer monitor. The image generated by the ultrasound can help diagnose renal cell carcinoma based on the differences of sound reflections on the surface of organs and the abnormal tissue masses. Essentially, ultrasound tests can determine whether the composition of the kidney mass is mainly solid or filled with fluid.[42]

A Percutaneous biopsy can be performed by a radiologist using ultrasound or computed tomography to guide sampling of the tumour for the purpose of diagnosis by pathology. However this is not routinely performed because when the typical imaging features of renal cell carcinoma are present, the possibility of an incorrectly negative result together with the risk of a medical complication to the patient may make it unfavourable from a risk-benefit perspective.[11] However, biopsy tests for molecular analysis to distinguish benign from malignant renal tumours is of investigative interest.[11]

Magnetic Resonance Imaging (MRI) scans provide an image of the soft tissues in the body using radio waves and strong magnets. MRI can be used instead of CT if the patient exhibits an allergy to the contrast media administered for the test.[45][46] Sometimes prior to the MRI scan, an intravenous injection of a contrasting material called gadolinium is given to allow for a more detailed image. Patients on dialysis or those who have renal insufficiency should avoid this contrasting material as it may induce a rare, yet severe, side effect known as nephrogenic systemic fibrosis.[47] A bone scan or brain imaging is not routinely performed unless signs or symptoms suggest potential metastatic involvement of these areas. MRI scans should also be considered to evaluate tumour extension which has grown in major blood vessels, including the vena cava, in the abdomen. MRI can be used to observe the possible spread of cancer to the brain or spinal cord should the patient present symptoms that suggest this might be the case.

Intravenous pyelogram (IVP) is a useful procedure in detecting the presence of abnormal renal mass in the urinary tract. This procedure involves the injection of a contrasting dye into the arm of the patient. The dye travels from the blood stream and into the kidneys which in time, passes into the kidneys and bladder. This test is not necessary if a CT or MRI scan has been conducted.[48]

Renal angiography uses the same principle as IVP, as this type of X-ray also uses a contrasting dye. This radiologic test is important in diagnosing renal cell carcinoma as an aid for examining blood vessels in the kidneys. This diagnostic test relies on the contrasting agent which is injected in the renal artery to be absorbed by the cancerous cells.[49] The contrasting dye provides a clearer outline of abnormally-oriented blood vessels believed to be involved with the tumour. This is imperative for surgeons as it allows the patients blood vessels to be mapped prior to operation.[43]

The staging of renal cell carcinoma is the most important factor in predicting its prognosis.[50] Staging can follow the TNM staging system, where the size and extent of the tumour (T), involvement of lymph nodes (N) and metastases (M) are classified separately. Also, it can use overall stage grouping into stage I-IV, with the 1997 revision of AJCC described below:[50]

At diagnosis, 30% of renal cell carcinomas have spread to the ipsilateral renal vein, and 5-10% have continued into the inferior vena cava.[51]

The gross and microscopic appearance of renal cell carcinomas is highly variable. The renal cell carcinoma may present reddened areas where blood vessels have bled, and cysts containing watery fluids.[52] The body of the tumour shows large blood vessels that have walls composed of cancerous cells. Gross examination often shows a yellowish, multilobulated tumor in the renal cortex, which frequently contains zones of necrosis, haemorrhage and scarring. In a microscopic context, there are four major histologic subtypes of renal cell cancer: clear cell (conventional RCC, 75%), papillary (15%), chromophobic (5%), and collecting duct (2%). Sarcomatoid changes (morphology and patterns of IHC that mimic sarcoma, spindle cells) can be observed within any RCC subtype and are associated with more aggressive clinical course and worse prognosis. Under light microscopy, these tumour cells can exhibit papillae, tubules or nests, and are quite large, atypical, and polygonal.

Recent studies have brought attention to the close association of the type of cancerous cells to the aggressiveness of the condition. Some studies suggest that these cancerous cells accumulate glycogen and lipids, their cytoplasm appear "clear", the nuclei remain in the middle of the cells, and the cellular membrane is evident.[53] Some cells may be smaller, with eosinophilic cytoplasm, resembling normal tubular cells. The stroma is reduced, but well vascularised. The tumour compresses the surrounding parenchyma, producing a pseudocapsule.[54]

The most common cell type exhibited by renal cell carcinoma is the clear cell, which is named by the dissolving of the cells' high lipid content in the cytoplasm. The clear cells are thought to be the least likely to spread and usually respond more favourably to treatment. However, most of the tumours contain a mixture of cells. The most aggressive stage of renal cancer is believed to be the one in which the tumour is mixed, containing both clear and granular cells.[55]

The recommended histologic grading schema for RCC is the Fuhrman system (1982), which is an assessment based on the microscopic morphology of a neoplasm with haematoxylin and eosin (H&E staining). This system categorises renal cell carcinoma with grades 1, 2, 3, 4 based on nuclear characteristics. The details of the Fuhrman grading system for RCC are shown below:[56]

Nuclear grade is believed to be one of the most imperative prognostic factors in patients with renal cell carcinoma.[21] However, a study by Delahunt et al. (2007) has shown that the Fuhrman grading is ideal for clear cell carcinoma but may not be appropriate for chromophobe renal cell carcinomas and that the staging of cancer (accomplished by CT scan) is a more favourable predictor of the prognosis of this disease.[57] In relation to renal cancer staging, the Heidelberg classification system of renal tumours was introduced in 1976 as a means of more completely correlating the histopathological features with the identified genetic defects.[58]

The type of treatment depends on multiple factors and the individual, some of which include:[7][59]

Every form of treatment has both risks and benefits; a health care professional will provide the best options that suit the individual circumstances.

Active surveillance or "watchful waiting" is becoming more common as small renal masses or tumours are being detected and also within the older generation when surgery is not always suitable.[60] Active surveillance involves completing various diagnostic procedures, tests and imaging to monitor the progression of the RCC before embarking on a more high risk treatment option like surgery.[60] In the elderly, patients with co-morbidities, and in poor surgical candidates, this is especially useful.

Different procedures may be most appropriate, depending on circumstances.

Radical nephrectomy is the removal of the entire affected kidney including Gerota's fascia, the adrenal gland which is on the same side as the affected kidney, and the regional lymph nodes, all at the same time.[7] This method, although severe, is effective. But it is not always appropriate, as it is a major surgery that contains the risk of complication both during and after the surgery and can have a longer recovery time.[61] It is important to note that the other kidney must be fully functional, and this technique is most often used when there is a large tumour present in only one kidney.

Nephron-sparing partial nephrectomy is used when the tumor is small (less than 4cm in diameter) or when the patient has other medical concerns such as diabetes or hypertension.[7] The partial nephrectomy involves the removal of the affected tissue only, sparing the rest of the kidney, Gerota's fascia and the regional lymph nodes. This allows for more renal preservation as compared to the radical nephrectomy, and this can have positive long term health benefits.[62] Larger and more complex tumors can also be treated with partial nephrectomy by surgeons with a lot of kidney surgery experience.[63]

Laparoscopic nephrectomy uses laparoscopic surgery, with minimally invasive surgical techniques. Commonly referred to as key hole surgery, this surgery does not have the large incisions seen in a classically performed radical or partial nephrectomy, but still successfully removes either all or part of the kidney. Laparoscopic surgery is associated with shorter stays in the hospital and quicker recovery time but there are still risks associated with the surgical procedure.

Surgery for metastatic disease: If metastatic disease is present surgical treatment may still a viable option. Radical and partial nephrectomy can still occur, and in some cases if the metastasis is small this can also be surgically removed.[7] This depends on what stage of growth and how far the disease has spread.

Targeted ablative therapies are also known as percutaneous ablative therapies. Although the use of laparoscopic surgical techniques for complete nephrectomies has reduced some of the risks associated with surgery,[64] surgery of any sort in some cases will still not be feasible. For example, the elderly, people already suffering from severe renal dysfunction, or people who have several comorbidities, surgery of any sort is not warranted.[65] Instead there are targeted therapies which do not involve the removal of any organs or serious surgery. Rather, these therapies involve the ablation of the tumor or the affected area. Ablative treatments use imaging such as computed tomography (CT) or magnetic resonance imaging (MRI) to identify the location of the tumors, which ideally are smaller than 3.5cm and to guide the treatment. However there are some cases where ablation can be used on tumors that are larger.[65]

The two main types of ablation techniques that are used for renal cell carcinoma are radio frequency ablation and cryoablation.[65]

Radio frequency ablation uses an electrode probe which is inserted into the affected tissue, to send radio frequencies to the tissue to generate heat through the friction of water molecules. The heat destroys the tumor tissue.[7] Cell death will generally occur within minutes of being exposed to temperatures above 50C.

Cryoablation also involves the insertion of a probe into the affected area,[7] however, cold is used to kill the tumor instead of heat. The probe is cooled with chemical fluids which are very cold. The freezing temperatures cause the tumor cells to die by causing osmotic dehydration, which pulls the water out of the cell destroying the enzyme, organelles, cell membrane and freezing the cytoplasm.[65]

Immunotherapy is a method that activates the person's immune system and uses it to their own advantage. It was developed after observing that in some cases there was spontaneous regression.[66] That is, the renal cell carcinoma improved with no other therapies. Immunotherapy capitalises on this phenomenon and aims to build up a person's immune response to cancer cells.[66] Other medications target things such as growth factors that have been shown to promote the growth and spread of tumours.[67] They inhibit the growth factor in order to prevent tumours from forming.[68] There have been many different medications developed and most have only been approved in the last seven or so years.[69]

Some of the most recently developed treatments are listed below:[70]

Each of the treatments listed above is slightly different; some only work for a little while and others need to be used in conjunction with other therapies. There are also different side effects and risks associated with different forms of medication. As always, the advice of a health care professional should be sought if considering any of the therapies mentioned.

Chemotherapy and radiotherapy are not as successful in the case of RCC. RCC is resistant in most cases but there is about a 4-5% success rate sometimes, but this is often short lived with more tumours and growths developing later.[7]

Cancer vaccines are being developed but so far have been found to be effective for only certain forms of the RCC.[7] The vaccines are being designed to "prime" the immune system to provide tumour specific immunity.[66] They are still being developed but the present another treatment possibility.

Adjuvant therapy, which refers to therapy given after a primary surgery, has not been found to be beneficial in renal cell cancer.[72] Conversely, neoadjuvant therapy is administered before the intended primary or main treatment. In some cases neoadjuvant therapy has been shown to decrease the size and stage of the RCC to then allow it to be surgically removed.[68] This is a new form of treatment and the effectiveness of this approach is still being assessed in clinical trials.

Metastatic renal cell carcinoma (mRCC) is the spread of the primary renal cell carcinoma from the kidney to other organs. 25-30% of people have this metastatic spread by the time they are diagnosed with renal cell carcinoma.[73] This high proportion is explained by the fact that clinical signs are generally mild until the disease progresses to a more severe state.[74] The most common sites for metastasis are the lymph nodes, lung, bones, liver and brain.[8] How this spread affects the staging of the disease and hence prognosis is discussed in the Diagnosis and Prognosis section.

MRCC has a poor prognosis compared to other cancers although average survival times have increased in the last few years due to treatment advances. Average survival time in 2008 for the metastatic form of the disease was under a year[75] and by 2013 this improved to an average of 22 months.[76] Despite this improvement the 5 year survival rate for mRCC remains under 10%[77] and 20-25% of suffers remain unresponsive to all treatments and in these cases, the disease has a rapid progression.[76]

The available treatments for RCC discussed in the Treatment section are also relevant for the metastatic form of the disease. Options include interleukin-2 which is a standard therapy for advanced renal cell carcinoma.[72] In the past six years, seven new treatments have been approved specifically for mRCC (sunitinib, temsirolimus, bevacizumab, sorafenib, everolimus, pazopanib and axitinib).[4] These new treatments are based on the fact that renal cell carcinomas are very vascular tumors they contain a large number of blood vessels. The drugs aim to inhibit the growth of new blood vessels in the tumors, hence slowing growth and in some cases reducing the size of the tumors.[78] Side effects unfortunately are quite common with these treatments and include:[79]

Radiotherapy and chemotherapy are more commonly used in the metastatic form of RCC to target the secondary tumors in the bones, liver, brain and other organs. While not curative, these treatments do provide relief for suffers from symptoms associated with the spread of tumors.[76] Other potential treatments are still being developed, including tumor vaccines and small molecule inhibitors.[73]

The prognosis for renal cell carcinoma is largely influenced by a variety of factors, including tumour size, degree of invasion and metastasis, histologic type, and nuclear grade.[21] For metastatic renal cell carcinoma, factors which may present a poor prognosis include a low Karnofsky performance-status score (a standard way of measuring functional impairment in patients with cancer), a low haemoglobin level, a high level of serum lactate dehydrogenase, and a high corrected level of serum calcium.[80][81] For non-metastatic cases, the Leibovich scoring algorithm may be used to predict post-operative disease progression.[82]

Renal cell carcinoma is one of the cancers most strongly associated with paraneoplastic syndromes, most often due to ectopic hormone production by the tumour. The treatment for these complications of RCC is generally limited beyond treating the underlying cancer.

For those that have tumour recurrence after surgery, the prognosis is generally poor. Renal cell carcinoma does not generally respond to chemotherapy or radiation. Immunotherapy, which attempts to induce the body to attack the remaining cancer cells, has shown promise. Recent trials are testing newer agents, though the current complete remission rate with these approaches is still low, around 12-20% in most series. Most recently, treatment with tyrosine kinase inhibitors including nexavar, pazopanib, and rapamycin have shown promise in improving the prognosis for advanced RCC.[83]

The incidence of the disease varies according to geographic, demographic and, to a lesser extent, hereditary factors. There are some known risk factors, however the significance of other potential risk factors remains more controversial. The incidence of the cancer has been increasing in frequency worldwide at a rate of approximately 2-3% per decade[75] until the last few years where the number of new cases has stabilised.[14]

The incidence of RCC varies between sexes, ages, races and geographic location around the world. Men have a higher incidence than women (approximately 1.6:1)[72] and the vast majority are diagnosed after 65 years of age.[72] Asians reportedly have a significantly lower incidence of RCC than whites and while African countries have the lowest reported incidences, African Americans have the highest incidence of the population in the United States.[14] Developed countries have a higher incidence than developing countries, with the highest rates found in North America, Europe and Australia / New Zealand[84]

Daniel Sennert made the first reference suggesting a tumour arising in the kidney in his text Practicae Medicinae, first published in 1613.[85]

Miril published the earliest unequivocal case of renal carcinoma in 1810.[86] He described the case of Franoise Levelly, a 35 year old woman, who presented to Brest Civic Hospital on April 6, 1809, supposedly in the late stages of pregnancy.[85]

Koenig published the first classification of renal tumours based on macroscopic morphology in 1826. Koenig divided the tumors into scirrhous, steatomatous, fungoid and medullary forms.[87]

Following the classification of the tumour, researchers attempted to identify the tissue of origin for renal carcinoma.

The pathogenesis of renal epithelial tumours was debated for decades. The debate was initiated by Paul Grawitz when in 1883, he published his observations on the morphology of small, yellow renal tumours. Grawitz concluded that only alveolar tumours were of adrenal origin, whereas papillary tumours were derived from renal tissue.[85]

In 1893, Paul Sudeck challenged the theory postulated by Grawitz by publishing descriptions of renal tumours in which he identified atypical features within renal tubules and noted a gradation of these atypical features between the tubules and neighboring malignant tumour. In 1894, Otto Lubarsch, who supported the theory postulated by Grawitz coined the term hypernephroid tumor, which was amended tohypernephroma by Felix Victor Birch-Hirschfeld to describe these tumours.[88]

Vigorous criticism of Grawitz was provided by Oskar Stoerk in 1908, who considered the adrenal origin of renal tumours to be unproved. Despite the compelling arguments against the theory postulated by Grawitz, the term hypernephroma, with its associated adrenal connotation, persisted in the literature.[85]

Foot and Humphreys, and Foote et al. introduced the term Renal Celled Carcinoma to emphasize a renal tubular origin for these tumours. Their designation was slightly altered by Fetter to the now widely accepted term Renal Cell Carcinoma.[89]

Convincing evidence to settle the debate was offered by Oberling et al. in 1959 who studied the ultrastructure of clear cells from eight renal carcinomas. They found that the tumour cell cytoplasm contained numerous mitochondria and deposits of glycogen and fat. They identified cytoplasmic membranes inserted perpendicularly onto basement membrane with occasional cells containing microvilli along the free borders. They concluded that these features indicated that the tumours arose from the epithelial cells of the renal convoluted tubule, thus finally settling one of the most debated issues in tumour pathology.[85][90]

Read more from the original source:
Renal cell carcinoma - Wikipedia, the free encyclopedia

To Read More: Renal cell carcinoma – Wikipedia, the free encyclopedia
categoriaUncategorized commentoComments Off on Renal cell carcinoma – Wikipedia, the free encyclopedia | dataAugust 21st, 2015
Read All

Researchers create lab-grown brain using human skin cells …

By daniellenierenberg

Published August 19, 2015

This image of the lab-grown brain is labeled to show identifiable structures: the cerebral hemisphere, the optic stalk and the cephalic flexure, a bend in the mid-brain region, all characteristic of the human fetal brain.(The Ohio State University)

Researchers at The Ohio State University were able to create a nearly complete human brain that matches the brain maturity of a 5-week-old fetus by using adult human skin cells.

The brain organoid is about the size of a pencil eraser and has an identifiable structure containing 99 percent of the genes present in the human fetal brain, according to a news release. Scientists say its the most complete human brain model yet developed.

It not only looks like the developing brain, its diverse cell types express nearly all genes like a brain, Rene Anand, a professor of biological chemistry and pharmacology at Ohio State, said in a news release. Weve struggled for a long time trying to solve complex brain disease problems that cause tremendous pain and suffering. The power of this brain model bodes very well for human health because it gives us better and more relevant options to test and develop therapeutics other than rodents.

Anand, who began his quest four years ago, studies the association between nicotinic receptors and central nervous system disorders. Hes hopeful that the lab-grown brain will provide ethical and more rapid and accurate testing of experimental drugs before the clinical trial stage.

In central nervous system diseases, this will enable studies of either underlying genetic susceptibility or purely environmental influences, or a combination, Anand said in the news release. Genomic science infers there are up to 600 genes that give rise to autism, but we are stuck there. Mathematical correlations and statistical methods are insufficient to in themselves identify causation. You need an experimental system you need a human brain.

Anand and his team built the model system in 15 weeks, using techniques to convert adult skin cells into pluripotent cells, which are immature cells that can be programmed to become any tissue in the body. They worked to differentiate pluripotent stem cells into cells that are designed to become neural tissue, according to the news release.

While the model lacks a vascular system, it does contain a spinal cord, all major regions of the brain, multiple cell types, signaling circuitry and a retina, according to the news release.

Anand reported on his research at the 2015 Military Health System Research Symposium.

More:
Researchers create lab-grown brain using human skin cells ...

To Read More: Researchers create lab-grown brain using human skin cells …
categoriaSkin Stem Cells commentoComments Off on Researchers create lab-grown brain using human skin cells … | dataAugust 20th, 2015
Read All

ETHICAL Stem Cells Grow Human Brain | National Review Online

By NEVAGiles23

This is an achievement: Scientists have used skin cells to build a rudimentary human brain. (These were induced pluripotent stem cells.) From The Guardian story:

Though not conscious the miniature brain, which resembles that of a five-week-old foetus, could potentially be useful for scientists who want to study the progression of developmental diseases. It could also be used to test drugs for conditions such as Alzheimers and Parkinsons, since the regions they affect are in place during an early stage of brain development.

The brain, which is about the size of a pencil eraser, is engineered from adult human skin cells and is the most complete human brain model yet developed, claimed Rene Anand of Ohio State University, Columbus, who presented the work today at the Military Health System Research Symposium in Fort Lauderdale, Florida.

May it be so.

Lets analyze what this breakthrough could portend:

1. No need for unethical human cloning to derive cells for use in research and drug testing.

2. No need for fetal farming for experimentation and organ transplants.

3. No need for Planned Parenthood dismemberments of fetuses killed in a less crunchy way in abortion.

Remember when embryonic stem cells were OUR ONLY HOPE?

And that those of us who said that particular meme wasnt true were anti science? Pshaw.

#applause

Continued here:
ETHICAL Stem Cells Grow Human Brain | National Review Online

To Read More: ETHICAL Stem Cells Grow Human Brain | National Review Online
categoriaSkin Stem Cells commentoComments Off on ETHICAL Stem Cells Grow Human Brain | National Review Online | dataAugust 20th, 2015
Read All

Glossary Index | womenshealth.gov

By Dr. Matthew Watson

Find your glossary term by first letter:

a form of complementary and alternative medicine that involves inserting thin needles thorugh the skin at specific points on the body to control pain and other symptoms.

a form of complementary and alternative medicine that involves inserting thin needles thorugh the skin at specific points on the body to control pain and other symptoms.

written instructions letting others know the type of care you want if you are seriously ill or dying. These include a living will and health care power of attorney.

written instructions letting others know the type of care you want if you are seriously ill or dying. These include a living will and health care power of attorney.

disorders that involve an immune response in the body. Allergies are reactions to allergens such as plant pollen, other grasses and weeds, certain foods, rubber latex, insect bites, or certain drugs.

tiny glands in the breast that produce milk.

a brain disease that cripples the brain's nerve cells over time and destroys memory and learning. It usually starts in late middle age or old age and gets worse over time. Symptoms include loss of memory, confusion, problems in thinking, and changes in language, behavior, and personality.

clear, slightly yellowish liquid that surrounds the unborn baby (fetus) during pregnancy. It is contained in the amniotic sac.

when the amount of red blood cells or hemoglobin (the substance in the blood that carries oxygen to organs) becomes reduced, causing fatigue that can be severe.

Read the rest here:
Glossary Index | womenshealth.gov

To Read More: Glossary Index | womenshealth.gov
categoriaUncategorized commentoComments Off on Glossary Index | womenshealth.gov | dataAugust 3rd, 2015
Read All

Spinal Cord Injury Treatment, Stem Cell Therapy For Spinal …

By Sykes24Tracey

Ankylosing Spondilytis, is a kind of inflammatory, autoimmune disorder of unknown etiology primarily affecting the spine, axial skeleton and large proximal joints of the body, this may inturn lead to eventual fusion of the spine.It can rage from mild to progressively degenerating diseases.

Although autoimmune, 90% of the patients suffering from the condition have proved to express the presence of HLA-B27 geneotype, confirming the genetic association of the disorder. Estimates may vary but it is observed that young men between the age group 20-40 are affected. The characterization of AS is done various symptoms, three of them occur most generally and they are pain, stiffness,excessive fatigue etc. Although the symptoms are very generalized there are some telltale conditions such as severe back pain.

The current treatments include severe physiotherapy, medication and other rehabilitation approach. However with these treatment regimen the pathophysiology of the disease is not reversed neither the further progression is stopped. On the contrary, the cutting edge stem cell treatment can offer the solution for the condition. Stem cells are the original, naive cells capable of forming any cells of the same or different lineage.

Ankylosing Spondilytis is a kind of arthritis mainly affecting the spine, but sometimes other organs are also involved.

Mentioned below is case analysis of a patient who had been suffering from Ankylosing Spondilytis. And at a young age of 25 years, he was unable to walk. Now after stem cells treatment he has started walking and his quality of life has improved.

Case Study

Name of the patient:- Rahul (name is changed for privacy reasons)

Disease: Ankylosing Spondilytis

Rahul was suffering from Ankylosing Spondilytis since past 14 years. Painful joints, restricted movements and stiffness in the body was his way of life. Although Rahul doesn't have any family history of joint diseases.

Rahul's symptoms started with sudden onset of the back pain, which went on to be severe with the whole body aches, upto the extent that he could hardly walk or if he could, he started walking like an old man. Although the initial X ray analysis showed nothing, may be because practically it take several years to show changes associated with the spine. Consequently Rahul had to visit rheumatologists, who confirmed after almost 3 years that he is suffering from AS. His treatment regimen involved diet plan, some oral medications and restricted sports activities.

Continued here:
Spinal Cord Injury Treatment, Stem Cell Therapy For Spinal ...

To Read More: Spinal Cord Injury Treatment, Stem Cell Therapy For Spinal …
categoriaSpinal Cord Stem Cells commentoComments Off on Spinal Cord Injury Treatment, Stem Cell Therapy For Spinal … | dataAugust 1st, 2015
Read All

Stem Cells Show Promise in Heart Failure Treatment

By raymumme

A new method for delivering stem cells to damaged heart muscle has shown early promise in treating severe heart failure, researchers report.

In a preliminary study, they found the tactic was safe and feasible for the 48 heart failure patients they treated. And after a year, the patients showed a modest improvement in the heart's pumping ability, on average.

It's not clear yet whether those improvements could be meaningful, said lead researcher Dr. Amit Patel, director of cardiovascular regenerative medicine at the University of Utah.

He said larger clinical trials are underway to see whether the approach could be an option for advanced heart failure.

Other experts stressed the bigger picture: Researchers have long studied stem cells as a potential therapy for heart failure -- with limited success so far.

"There's been a lot of promise, but not much of a clinical benefit yet," said Dr. Lee Goldberg, who specializes in treating heart failure at the University of Pennsylvania.

Researchers are still sorting through complicated questions, including how to best get stem cells to damaged heart muscle, said Goldberg, who was not involved in the new study.

What's "novel" in this research, he said, is the technique Patel's team used to deliver stem cells to the heart. They took stem cells from patients' bone marrow and infused them into the heart through a large vein called the coronary sinus.

Patel agreed that the technique is the advance.

"Most other techniques have infused stem cells through the arteries," Patel explained. One obstacle, he said, is that people with heart failure generally have hardened, narrowed coronary arteries, and the infused stem cells "don't always go to where they should."

View post:
Stem Cells Show Promise in Heart Failure Treatment

To Read More: Stem Cells Show Promise in Heart Failure Treatment
categoriaCardiac Stem Cells commentoComments Off on Stem Cells Show Promise in Heart Failure Treatment | dataAugust 1st, 2015
Read All

Heart Disease – Stemaid : Embryonic Stem-cells

By daniellenierenberg

Clara's Story

Clara had a severe heart attack in 2004. Before contacting us she had received adult stem cells from a company in Thailand - a process requiring at least a one week stay.

When she contacted Stemaid, she had just had an echocardiogram showing that her overall left ventricular ejection fraction was estimated to be 30 to 35%. She opted to receive one injection of 5 million Embryonic Stem Cells by Stemaid in November 2010. She arrived at 1pm and was done by 3pm the same day.

We received the following email from her in April 2011: I had an EKO last week and rate is 44%, up from the 33/35% it was before I received Stemaid's stem cells! . Are the stem cells still available and still as good?

The heart contains a small amount of stem cells, the cardiac stem cells, that are produced when there is a need for production of more heart cells or for an active replacement of damaged ones. These cardiac cells are produced in high quantity for about one week following an infarction, actively repairing the damaged areas of the heart.

However this high production stops after a week and the repair stops as well.

Initial studies showed that by introducing embryonic stem cells, the heart starts to repair again within minutes of their injection. More recent studies showed that the injection of embryonic stem cells actually triggers the production of cardiac stem cells for one week. Another week of active repair is offered each time that one receives embryonic stem cells.

If you have suffered from an infarction, we suggest a minimum of 3 injections of esc over the course of 3 weeks to get significant repair.

Some of the patients who have received Stemaid Embryonic Stem-Cells have agreed to be mentioned on our website so that we may illustrate the benefits of them.

Original post:
Heart Disease - Stemaid : Embryonic Stem-cells

To Read More: Heart Disease – Stemaid : Embryonic Stem-cells
categoriaCardiac Stem Cells commentoComments Off on Heart Disease – Stemaid : Embryonic Stem-cells | dataAugust 1st, 2015
Read All

Effects of Tanshinone IIA on osteogenic differentiation of …

By daniellenierenberg

Date: 01 Aug 2015

Rent the article at a discount

* Final gross prices may vary according to local VAT.

Tanshinone IIA (TSA) is a lipophilic diterpene purified from the Chinese herb Danshen, which exhibits potent antioxidant and anti-inflammatory properties. Effect of TSA remains largely uninvestigated on the osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs), which are widely used in cell-based therapy of bone diseases. In the present study, both ALP activity at day 7 and calcium content at day 24 were upregulated during the osteogenesis of mouse BM-MSCs treated with TSA (1 and 5M), demonstrating that it promoted the osteogenesis at both early and late stages. We found that TSA promoted osteogenesis and inhibited osteoclastogenesis, evident by RT-PCR analysis of osteogenic marker gene expressions. However, osteogenesis was inhibited by TSA at 20M. We further revealed that TSA (1 and 5M) upregulated BMP and Wnt signaling. Co-treatment with Wnt inhibitor DKK-1 or BMP inhibitor noggin significantly decreased the TSA-promoted osteogenesis, indicating that upregulation of BMP and Wnt signaling plays a significant role and contributes to the TSA-promoted osteogenesis. Of clinical interest, our study suggests TSA as a promising therapeutic strategy during implantation of BM-MSCs for a more effective treatment of bone diseases.

Original post:
Effects of Tanshinone IIA on osteogenic differentiation of ...

To Read More: Effects of Tanshinone IIA on osteogenic differentiation of …
categoriaBone Marrow Stem Cells commentoComments Off on Effects of Tanshinone IIA on osteogenic differentiation of … | dataAugust 1st, 2015
Read All

Skin Stem Cells: Benefits, Types, Medical Applications and …

By LizaAVILA

Our skin has the amazing capability to renew itself throughout our adult life. Also, our hair follicle goes through a cycle of growth and degeneration. This happens all the time in our skin even though we are not aware of it. However, even though skin renews itself we still have to help it a little bit to get better results. Stem cells play an important role in this process of skin renewal or hair growth and the purpose of this article is to discuss and provide additional information about these tiny cells that play a big part in our life.

Skin stem cell is defined as multipotent adult skin cells which are able to self-renew or differentiate into various cell lineages of the skin. These cells are active throughout our life via skin renewal process or during skin repair after injuries. These cells reside in the epidermis and hair follicle and one of their purposes is to ensure the maintenance of adult skin and hair regeneration.

The truth is, without these little cells, our skin wouldnt be able to cope with various environmental influences. Our skin is exposed to different influences 24/7, for example, washing your face with soap, going out during summer or cold winter days etc. All these factors have a big impact on our skin and it constantly has to renew itself to stay in a good condition. This is where skin stem cells step in. They make sure your skin survives the influence of constant stress, heat, cold, even makeup, soap, etc.

Our skin is quite sensitive and due to its constant exposure to different influences throughout the day, it can get easily damage. Damage to skin cells can be caused by pretty much everything, from soap to cigarette smoke. One of the most frequent skin cell damages are the result of:

Skin stem cells are still subjected to scientific projects where researchers are trying to discover as much as possible about them. So far, they have identified several types of these cells, and they are:

Also, some scientists suggest that there is another type of stem cells mesenchymal stem cells which can be found in dermis (layer situated below the epidermis) and hypodermis (innermost and the thickest layer of the skin). However, this claim has been branded controversial and is a subject of many arguments and disputes between scientists. It is needed to conduct more experiments to find out whether this statement really is true.

Stem cells are found in many organs and tissues, besides skin. For example, scientists have discovered stem sells in brain, heart, bone marrow, peripheral blood, skeletal muscle, teeth, liver, gut etc. Stem cells reside in a specific area of each tissue or organ and that area is called stem cell niche. The same case is with the skin as well.

The ability of stem cells to regenerate and form almost any cell type in the body inspired scientists to work on various skin products that contain stem cells. Also, they decided to investigate the effect of plant stem cells on human skin. They discovered that plant stem cells are, actually, very similar to human skin stem cells and they function in a similar way as well. This discovery made scientists turn to plants as the source of stem cells and are trying to include them into the skin products due to their effectiveness in supporting skins cellular turnover. Another similarity between plant stem cells and human skin stem cells is their ability to develop according to their environment.

Fun Fact: The inspiration to use plant stem cells in skin care came from an unusual place almost extinct apple tree from Switzerland.

The benefits of plant stem cells on human skin are versatile. They offer possibility to treat some skin conditions, heal wounds, and repair the skin after some injury faster than it would usually take. Also, they bring back elasticity to the skin, reduce the appearance of wrinkles and slow down the aging process.

View original post here:
Skin Stem Cells: Benefits, Types, Medical Applications and ...

To Read More: Skin Stem Cells: Benefits, Types, Medical Applications and …
categoriaSkin Stem Cells commentoComments Off on Skin Stem Cells: Benefits, Types, Medical Applications and … | dataAugust 1st, 2015
Read All

Side effects of bone marrow and stem cell transplants …

By daniellenierenberg

You will have a low white blood cell count after your treatment. This means you are more at risk of getting an infection. You are likely to get an infection from the normally harmless bacteria we all have in our digestive systems and on our skin.

To stop this from happening your nurse may give you tablets called gut sterilisers (antibiotics) and mouthwashes. And they will encourage you to have a shower each day.

You are also at risk of infection from food. The nurses on the ward will tell you and your relatives about the food you can and can't eat. The rules vary from hospital to hospital but you may be told that

Your room will be thoroughly cleaned every day. Your visitors will be asked to wash their hands before they come into your room. They may also have to wear disposable gloves and aprons. Visitors with coughs and colds are not allowed. Some hospitals don't allow you to have plants or flowers in your room because bacteria and fungi can grow in the soil or water, and may cause infection.

Even with all these precautions, most people do get an infection at some point and need to have antibiotics. You can help yourself by trying to do your mouth care properly and getting up to shower and have your bed changed even on the days you don't feel too good.

After a transplant you will have lost immunity to diseases you were vaccinated against as a child. The team caring for you will advise you about the immunisations you need and when. You should only have inactivated immunisations and not live ones. To lower the risk of you getting any of these infections it is important that all your family have the flu vaccine and any children have all their immunisations.

See the original post here:
Side effects of bone marrow and stem cell transplants ...

To Read More: Side effects of bone marrow and stem cell transplants …
categoriaBone Marrow Stem Cells commentoComments Off on Side effects of bone marrow and stem cell transplants … | dataJuly 23rd, 2015
Read All

Emerging interactions between skin stem cells and their …

By Dr. Matthew Watson

Hair follicle lineage and niche signals regulate hair follicle stem cells. (a) HFSCs can exist in two states. Quiescent bulge stem cells (Bu-SCs) are located in the outer layer of this niche and contribute to the generation of the outer root sheath. Primed stem cells reside in the hair germ, sandwiched between the bulge and a specialized dermal cluster known as the dermal papilla. They are responsible for generating the transit amplifying cell (TAC) matrix, which then gives rise to the hair shaft and its inner root sheath (IRS) channel. Although matrix and IRS are destroyed during catagen, many of the outer root sheath (ORS) cells are spared and generate a new bulge right next to the original one at the end of catagen. The upper ORS contributes to the outer layer of the new bulge, and the middle ORS contributes to the hair germ. Some of the lower ORS cells become the differentiated inner keratin 6+ (K6+) bulge cells, which provide inhibitory signals to Bu-SCs, raising their activation threshold for the next hair cycle. (b) During telogen, K6+ bulge cells produce BMP6 and FGF-18, dermal fibroblasts (DFs) produce BMP4 and subcutaneous adipocytes express BMP2. Together, these factors maintain Bu-SCs and hair germ in quiescence. At the transition to anagen, BMP2 and BMP4 are downregulated, whereas the expression of activation factors including noggin (NOG), FGF-7, FGF-10 and TGF-2 from dermal papillae and PDGF- from adipocyte precursor cells (APCs) is elevated. This, in turn, stimulates hair germ proliferation, and a new hair cycle is launched. Bu-SCs maintain their quiescent state until TAC matrix is generated and starts producing SHH.

Go here to read the rest:
Emerging interactions between skin stem cells and their ...

To Read More: Emerging interactions between skin stem cells and their …
categoriaSkin Stem Cells commentoComments Off on Emerging interactions between skin stem cells and their … | dataJuly 23rd, 2015
Read All

Clinical GMP-grade iPS cell production – Stem Cell Assays

By LizaAVILA

Recently, Ive written about transition from iPS cell research to iPS cell large-scale manufacturing and automation. Ive described iPS cell process development in Cellular Dynamics International and New York Stem Cell Foundation Research Institute. Today, Id like to share presentations of 2 more players in the field Lonza and Roslin Cells. Both presentations were recorded at Stem Cell Meeting on the Mesa, held on October 14-16, 2013.

What was especially interesting to see a cost comparison between research and clinical-grade GMP-produced iPS cell lines:

(Screenshot from Lonza presentation at Stem Cell Meeting on the Mesa, 2013)

Interestingly, the major cost contributor in GMP-grade iPS cell production is a facility cost. I think, this is a first estimation of cost difference, presented for public.

The framework for establishing clinical-grade iPS cell manufacturing, nicely outlined in the recent article. Id also recommend you to read the following open access articles:

Tagged as: cost, iPS, manufacturing

See the original post here:
Clinical GMP-grade iPS cell production - Stem Cell Assays

To Read More: Clinical GMP-grade iPS cell production – Stem Cell Assays
categoriaIPS Cell Therapy commentoComments Off on Clinical GMP-grade iPS cell production – Stem Cell Assays | dataJuly 23rd, 2015
Read All

Page 450«..1020..449450451452..460470..»


Copyright :: 2025