U.S. Stem Cell Clinic: Stem Cell Banking – Video
By LizaAVILA
U.S. Stem Cell Clinic: Stem Cell Banking
The U.S. Stem Cell Clinic is founded on the principle belief that the quality of life for our patients can be improved through stem cell therapy. We are dedicated to providing safe and effective...
By: U.S. Stem Cell Clinic
Visit link:
U.S. Stem Cell Clinic: Stem Cell Banking - Video
U.S. Stem Cell Clinic: How is Stem Cell Therapy Performed? – Video
By daniellenierenberg
U.S. Stem Cell Clinic: How is Stem Cell Therapy Performed?
Our U.S. Stem Cell Clinic will perform outpatient procedures using a process in which we isolate a patient #39;s own stem cells from either their own adipose fat tissue or bone marrow. Approximately...
By: U.S. Stem Cell Clinic
Read more:
U.S. Stem Cell Clinic: How is Stem Cell Therapy Performed? - Video
Stem Cell Research in Cardiology – Video
By LizaAVILA
Stem Cell Research in Cardiology
Bharat Book Bureau provides the report, on Stem Cell Research in Cardiology. The study is segmented by Source (Allogenic and Autogenic) and by Type (Bone Marrow Stem Cells, Embryonic...
By: Bharat Book
See the article here:
Stem Cell Research in Cardiology - Video
Global Stem Cells Group Subsidiary Adimarket Named Latin American Distributor for Ranfac Bone Marrow Technology
By Sykes24Tracey
Miami, FL (PRWEB) April 09, 2015
Global Stem Cells Group subsidiary Adimarket has been named the Latin America distributor for bone marrow technology leader Ranfac Corporation. The announcement coincides with Global Stem Cells Groups most recent expansion plans in Latin America, an ongoing effort to meet the regions growing demands for access to regenerative medicine and stem cell therapies.
Ranfac manufactures state-of-the-art surgical, radiology, hematology and orthopedic products including a range of bone marrow aspiration needles, each designed to provide a simple means of harvesting marrow from the patients sternum (breastbone) or the iliac crest (part of the pelvic bone) for a variety of medical procedures. Ranfacs newest technology is designed to harvest high quality bone marrow derived cells without the need for centrifugation.
Ranfac bone marrow technology is used by physicians and medical specialists worldwide. Global Stem Cells Group Advisory Board member Joseph Purita, M.D., a pioneer in the use of laser and stem cell therapies in orthopedic medicine, endorses Ranfacs bone marrow aspiration technology. Purita recently joined other specialists including fellow GSCG Advisory Board member David B Harrell, PhD, Brt, OF, FAARM, FRIPH, DABRM, in a trial study and white paper collaboration on Ranfacs new, non-centrifugal bone marrow technology.
Both Purita and Harrell endorse the Ranfac systems enhanced safety and ability to increase the concentrations of stem and progenitor cells during the bone marrow aspiration process.
Our ground-breaking hematology and orthopedic products for bone marrow access, aspiration, stem cell harvesting and biopsy procedures are designed to provide a more efficient result during critical procedures, says Ranfac CEO Barry Zimble. We believe that this is the perfect time to team with Global Stem Cells Group as our distribution partner in Latin Americas fast-growing medical community.
The collaboration between Global Stem Cells Group and Ranfac is another step toward GSCGs commitment to expanding its presence in communities that need and deserve access to cutting-edge regenerative medicine, not only in Latin America but also worldwide.
The timing couldnt be better to represent Ranfacs cutting edge bone marrow technology in the emerging markets of Latin America. Global is always looking to provide patients and practitioners with the best resources that regenerative medicine has to offer says Ricardo DeCubas, Global Stem Cells Group co-founder and Regenestem CEO.
For more information visit the Global Stem Cells Group website, email bnovas@stemcellsgroup.com, or call 305-224-1858.
About Global Stem Cells Group:
Read the original post:
Global Stem Cells Group Subsidiary Adimarket Named Latin American Distributor for Ranfac Bone Marrow Technology
Telomeres and cancer mortality: The long and the short of it
By NEVAGiles23
Telomeres are short stretches of repeated nucleotides that protect the ends of chromosomes. In somatic cells, these protective sequences become shorter with each cellular replication until a critical length is reached, which can trigger cell death.
In actively replicating cells such as germ cells, embryonic stem cells, and blood stem cells of the bone marrow, the enzyme telomerase replenishes these protective caps to ensure adequate replication. Cancer cells also seem to have the ability to activate telomerase, which allows them to keep dividing indefinitely, with dire consequences for the patient. However, according to a study published April 10 in the JNCI: Journal of the National Cancer Institute, the extent to which cancer cells can utilize telomerase may depend on which variants of the genes related to telomerase activity are expressed in an individual's cells.
Telomere shortening is an inevitable, age-related process, but it can also be exacerbated by lifestyle factors such as obesity and smoking. Thus, some previous studies have found an association between short telomeres and high mortality, including cancer mortality, while others have not. A possible explanation for the conflicting evidence may be that the association found between short telomeres and increased cancer mortality was correlational but other factors (age and lifestyle), not adjusted for in previous studies, were the real causes. Genetic variation in several genes associated with telomere length (TERC, TERT, OBFC1) is independent of age and lifestyle. Thus, a genetic analysis called a Mendelian randomization could eliminate some of the confounding and allow the presumably causal association of telomere length and cancer mortality to be studied.
To perform this analysis, Line Rode, M.D., Ph.D., of the Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark, and colleagues, used data from two prospective cohort studies, the Copenhagen City Heart Study and the Copenhagen General Population Study, including 64,637 individuals followed from 1991-2011. Participants completed a questionnaire and had a physical examination and blood drawn for biochemistry, genotyping, and telomere length assays.
For each subject, the authors had information on physical characteristics such as body mass index, blood pressure, and cholesterol measurements, as well as smoking status, alcohol consumption, physical activity, and socioeconomic variables. In addition to the measure of telomere length for each subject, three single nucleotide polymorphisms of TERC, TERT, and OBFC1 were used to construct a score for the presence of telomere shortening alleles.
A total of 7607 individuals died during the study, 2420 of cancer. Overall, as expected, decreasing telomere length as measured in leukocytes was associated with age and other variables such as BMI and smoking and with death from all causes, including cancer. Surprisingly, and in contrast, a higher genetic score for telomere shortening was associated specifically with decreased cancer mortality, but not with any other causes of death, suggesting that the slightly shorter telomeres in the cancer patients with the higher genetic score for telomere shortening might be beneficial because the uncontrolled cancer cell replication that leads to tumor progression and death is reduced.
The authors conclude, "We speculate that long telomeres may represent a survival advantage for cancer cells, allowing multiple cell divisions leading to high cancer mortality."
###
Contact info:
Stig E. Bojesen, M.D., D.M.Sc., stig.egil.bojesen@regionh.dk
More:
Telomeres and cancer mortality: The long and the short of it
Amniotic stem cells demonstrate healing potential
By raymumme
Rice University and Texas Children's Hospital scientists are using stem cells from amniotic fluid to promote the growth of robust, functional blood vessels in healing hydrogels.
In new experiments, the lab of bioengineer Jeffrey Jacot combined versatile amniotic stem cells with injectable hydrogels used as scaffolds in regenerative medicine and proved they enhance the development of vessels needed to bring blood to new tissue and carry waste products away.
The results appear in the Journal of Biomedical Materials Research Part A.
Jacot and his colleagues study the use of amniotic fluid cells from pregnant women to help heal infants born with congenital heart defects. Such fluids, drawn during standard tests, are generally discarded but show promise for implants made from a baby's own genetically matched material.
He contends amniotic stem cells are valuable for their ability to differentiate into many other types of cells, including endothelial cells that form blood vessels.
"The main thing we've figured out is how to get a vascularized device: laboratory-grown tissue that is made entirely from amniotic fluid cells," Jacot said. "We showed it's possible to use only cells derived from amniotic fluid."
In the lab, researchers from Rice, Texas Children's Hospital and Baylor College of Medicine combined amniotic fluid stem cells with a hydrogel made from polyethylene glycol and fibrin. Fibrin is a biopolymer critical to blood clotting, cellular-matrix interactions, wound healing and angiogenesis, the process by which new vessels branch off from existing ones. Fibrin is widely used as a bioscaffold but suffers from low mechanical stiffness and rapid degradation. Combining fibrin and polyethylene glycol made the hydrogel much more robust, Jacot said.
The lab used vascular endothelial growth factor to prompt stem cells to turn into endothelial cells, while the presence of fibrin encouraged the infiltration of native vasculature from neighboring tissue.
Mice injected with fibrin-only hydrogels showed the development of thin fibril structures, while those infused with the amniotic cell/fibrin hydrogel showed far more robust vasculature, according to the researchers.
Similar experiments using hydrogel seeded with bone marrow-derived mesenchymal cells also showed vascular growth, but without the guarantee of a tissue match, Jacot said. Seeding with endothelial cells didn't work as well as the researchers expected, he said.
Read more from the original source:
Amniotic stem cells demonstrate healing potential
Stem cell disease model clarifies bone cancer trigger
By JoanneRUSSELL25
Using induced pluripotent stem cells (iPSCs), a team led by Mount Sinai researchers has gained new insight into genetic changes that may turn a well known anti-cancer signaling gene into a driver of risk for bone cancers, where the survival rate has not improved in 40 years despite treatment advances.
The study results, published today in the journal Cell, revolve around iPSCs, which since their 2006 discovery have enabled researchers to coax mature (fully differentiated) bodily cells (e.g. skin cells) to become like embryonic stem cells. Such cells are pluripotent, able to become many cell types as they multiply and differentiate to form tissues. The iPSCs can then be converted again as needed into differentiated cells such as heart muscle, nerve cells, bone, etc.
While some seek to use iPSCs as replacements for cells compromised by disease, the new Mount Sinai study sought to determine if they could serve as an accurate model of genetic disease "in a dish." In this context, the dish stands for a self-renewing, unlimited supply of iPSCs or a cell line - which enables in-depth study of disease versions driven by each person's genetic differences. When matched with patient records, iPSCs and iPSC-derived target cells may be able to predict a patient's prognosis and whether or not a given drug will be effective for him or her.
In the current study, skin cells from patient with and without disease were turned into patient-specific iPSC lines, and then differentiated into bone-making cells where both rare and common bone cancers start. This new bone cancer model does a better job than previously used mouse or cellular models of "recapitulating" the features of bone cancer cells driven by key genetic changes.
"Our study is among the first to use induced pluripotent stem cells as the foundation of a model for cancer," said lead author Dung-Fang Lee, PhD, a postdoctoral fellow in the Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai. "This model, when combined with a rare genetic disease, revealed for the first time how a protein known to prevent tumor growth in most cases, p53, may instead drive bone cancer when genetic changes cause too much of it to be made in the wrong place."
Rare Disease Sheds Light on Common Disease
The Mount Sinai disease model research is based on the fact that human genes, the DNA chains that encode instructions for building the body's structures and signals, randomly change all the time. As part of evolution, some code changes, or mutations, make no difference, some confer advantages, and others cause disease. Beyond inherited mutations that contribute to cancer risk, the wrong mix of random, accumulated DNA changes in bodily (somatic) cells as we age also contributes to cancer risk.
The current study focused on the genetic pathways that cause a rare genetic disease called Li-Fraumeni Syndrome or LFS, which comes with high risk for many cancers in affected families. A common LFS cancer type is osteosarcoma (bone cancer), with many diagnosed before the age of 30. Beyond LFS, osteosarcoma is the most common type of bone cancer in all children, and after leukemia, the second leading cause of cancer death for them.
Importantly, about 70 percent of LFS families have a mutation in their version of the gene TP53, which is the blueprint for protein p53, well known by the nickname "the tumor suppressor." Common forms of osteosarcoma, driven by somatic versus inherited mutations, have also been closely linked by past studies to p53 when mutations interfere with its function.
Rare genetic diseases like LFS are good study models because they tend to proceed from a change in a single gene, as opposed to many, overlapping changes seen in more related common diseases, in this case more common, non-inherited bone cancers. The LFS-iPSC based modeling highlights the contribution of p53 alone to osteosarcoma.
Read the rest here:
Stem cell disease model clarifies bone cancer trigger
Fecal transplant, stem cells may help Crohn's disease
By Sykes24Tracey
Two experimental therapies might help manage the inflammatory bowel disorder Crohn's disease, if this early research pans out.
In one study, researchers found that a fecal transplant -- stool samples taken from a healthy donor -- seemed to send Crohn's symptoms into remission in seven of nine children treated.
In another, a separate research team showed that stem cells can have lasting benefits for a serious Crohn's complication called fistula.
According to the Crohn's & Colitis Foundation, up to 700,000 Americans have Crohn's -- a chronic inflammatory disease that causes abdominal cramps, diarrhea, constipation and rectal bleeding. It arises when the immune system mistakenly attacks the lining of the digestive tract.
Play Video
Hundreds of thousands of people suffer from the potentially life threatening C. difficile bacterial infection in their intestines. CBS News' Marl...
A number of drugs are available to treat Crohn's, including drugs called biologics, which block certain immune-system proteins.
But fecal transplants take a different approach, explained Dr. David Suskind, a gastroenterologist at Seattle Children's Hospital who led the new study.
Instead of suppressing the immune system, he said, the transplants alter the environment that the immune system is reacting against: the "microbiome," which refers to the trillions of bacteria that dwell in the gut.
Like the name implies, a fecal transplant involves transferring stool from a donor into a Crohn's patient's digestive tract. The idea is to change the bacterial composition of the gut, and hopefully quiet the inflammation that causes symptoms.
Here is the original post:
Fecal transplant, stem cells may help Crohn's disease
MaryannAstle published Tried & Tested: Best beauty products new to the market
By Dr. Matthew Watson
Comments(0)
From cleansers and toners to salt scrubs and perfumes there's plenty of beauty treats that have just been released. Mary-ann Astle puts forward some of the best new releases on the beauty market....
NURISS Swiss Apple Stem Cell Rejuvenator Serum
Skincare and wellness brand Nuriss has a new star product in the making. The Swiss Apple Stem Cell Rejuvenator Serum (30ml, 120) uses the longevity found in stem cells of the rare species of Swiss apple (the Uttwiler Sptlauber) to repair and rejuvenate your skin. When applied to the skin it can help with wrinkle reduction and increase collagen production.
Without wanting to blind you with science the serum is created by cultivating the apple's stem cells which are rich in phytonutrients and proteins which are beneficial to human skin. You don't need to use a lot to see the benefits after cleansing and toning, smooth one or two drops over your face and neck. Use morning and night to get the best results.
Click here to go to Nuriss
LouLouBelle Skincare of London
LouLouBelle has a new range of skincare products that will not only pamper you but which also smell absolutely gorgeous.
With tantalising blends like Geranium and Tea Tree, Lavender and Cypress and Palmarosa and Patchouli, LouLouBelle London is a boutique aromatherapy brand that uses natural ingredients to help make your skin feel great and smell delightful. It's also reasonably priced with cleansers (200ml, 19.95), toners (150ml, 17.95) and moisturisers (50ml, 24.95).
Every product is formulated from its own unique recipe that is created by selecting essential oils, plant essences and floral waters to match the specific requirements of a given skin type. The result is a refreshing range of cleansers, toners and moisturisers that are available in a different blend for each of the three main categories of skin dry skin, combination skin and problem/oily skin.
More here:
MaryannAstle published Tried & Tested: Best beauty products new to the market
U.S. Stem Cell Clinic: How long will my recovery take? – Video
By Sykes24Tracey
U.S. Stem Cell Clinic: How long will my recovery take?
Our U.S. Stem Cell Clinic procedure is minimally invasive and patients walk out within 3 hours in most cases. As a result recovery time is very quick. Many patients will experience soreness...
By: U.S. Stem Cell Clinic
See the original post here:
U.S. Stem Cell Clinic: How long will my recovery take? - Video
U.S. Stem Cell Clinic: When should I expect to see results? – Video
By daniellenierenberg
U.S. Stem Cell Clinic: When should I expect to see results?
It is important to note that we are treating patients with their own adult stem cells, therefore each treatment and response is unique to that patient. No guarantee can be made of what results...
By: U.S. Stem Cell Clinic
Read more:
U.S. Stem Cell Clinic: When should I expect to see results? - Video
What is Stem Cell Therapy- Trinity Spine and Wellness Center New Port Richey – Video
By JoanneRUSSELL25
What is Stem Cell Therapy- Trinity Spine and Wellness Center New Port Richey
http://www.Trinity-Spine.com -727-372-9922 what is Stem Cell Therapy for back pain? Watch this video to see how Stem Cell Therapy can immediately help your chronic neck and back pain. Visit our website ...
By: Anderson Flanders
See more here:
What is Stem Cell Therapy- Trinity Spine and Wellness Center New Port Richey - Video
Stem Cell Therapy for Pain – Now Available at Columbia Pain Management – Video
By daniellenierenberg
Stem Cell Therapy for Pain - Now Available at Columbia Pain Management
http://regenerativepaintherapy.com Call: 541-716-6469 Columbia Pain Management Can Help You Get Your Life Back. Stem Cell Therapy for Pain - Now Available at Columbia Pain Management.
By: Trey Rigert
Read the original post:
Stem Cell Therapy for Pain - Now Available at Columbia Pain Management - Video
U.S. Stem Cell Clinic: What is Stem Cell Therapy? – Video
By LizaAVILA
U.S. Stem Cell Clinic: What is Stem Cell Therapy?
What is Stem Cell Therapy? Stem cell therapy attempts to harness the body #39;s own healing potential by isolating stem cells from one location of the body (fat tissue or bone marrow) and relocating...
By: U.S. Stem Cell Clinic
See the article here:
U.S. Stem Cell Clinic: What is Stem Cell Therapy? - Video
Spinal cord injury – Wikipedia, the free encyclopedia
By NEVAGiles23
A spinal cord injury (SCI) is an injury to the spinal cord resulting in a change, either temporary or permanent, in the cord's normal motor, sensory, or autonomic function.[1] Common causes of damage are trauma (car accident, gunshot, falls, sports injuries, etc.) or disease (transverse myelitis, polio, spina bifida, Friedreich's ataxia, etc.). The spinal cord does not have to be severed in order for a loss of function to occur. Depending on where the spinal cord and nerve roots are damaged, the symptoms can vary widely, from pain to paralysis to incontinence.[2][3] Spinal cord injuries are described at various levels of "incomplete", which can vary from having no effect on the patient to a "complete" injury which means a total loss of function.
Treatment of spinal cord injuries starts with restraining the spine and controlling inflammation to prevent further damage. The actual treatment can vary widely depending on the location and extent of the injury. In many cases, spinal cord injuries require substantial physical therapy and rehabilitation, especially if the patient's injury interferes with activities of daily life.
Research into treatments for spinal cord injuries includes controlled hypothermia and stem cells, though many treatments have not been studied thoroughly and very little new research has been implemented in standard care.
The American Spinal Injury Association (ASIA) first published an international classification of spinal cord injury in 1982, called the International Standards for Neurological and Functional Classification of Spinal Cord Injury. Now in its sixth edition, the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is still widely used to document sensory and motor impairments following SCI.[4] It is based on neurological responses, touch and pinprick sensations tested in each dermatome, and strength of the muscles that control ten key motions on both sides of the body, including hip flexion (L2), shoulder shrug (C4), elbow flexion (C5), wrist extension (C6), and elbow extension (C7).[5] Traumatic spinal cord injury is classified into five categories on the ASIA Impairment Scale:
Dimitrijevic[6] proposed a further class, the so-called discomplete lesion, which is clinically complete but is accompanied by neurophysiological evidence of residual brain influence on spinal cord function below the lesion.[7]
Signs recorded by a clinician and symptoms experienced by a patient will vary depending on where the spine is injured and the extent of the injury. These are all determined by the area of the body that the injured area of the spine innervates. A section of skin innervated through a specific part of the spine is called a dermatome, and spinal injury can cause pain, numbness, or a loss of sensation in the relevant areas. A group of muscles innervated through a specific part of the spine is called a myotome, and injury to the spine can cause problems with voluntary motor control. The muscles may contract uncontrollably, become weak, or be completely paralysed. The loss of muscle function can have additional effects if the muscle is not used, including atrophy of the muscle and bone degeneration.
A severe injury may also cause problems in parts of the spine below the injured area. In a "complete" spinal injury, all functions below the injured area are lost. An "incomplete" spinal cord injury involves preservation of motor or sensory function below the level of injury in the spinal cord.[8] If the patient has the ability to contract the anal sphincter voluntarily or to feel a pinprick or touch around the anus, the injury is considered to be incomplete. The nerves in this area are connected to the very lowest region of the spine, the sacral region, and retaining sensation and function in these parts of the body indicates that the spinal cord is only partially damaged. This includes a phenomenon known as sacral sparing which involves the preservation of cutaneous sensation in the sacral dermatomes, even though sensation is impaired in the thoracic and lumbar dermatomes below the level of the lesion.[9] Sacral sparing may also include the preservation of motor function (voluntary external anal sphincter contraction) in the lowest sacral segments.[8] Sacral sparing has been attributed to the fact that the sacral spinal pathways are not as likely as the other spinal pathways to become compressed after injury.[9] The sparing of the sacral spinal pathways can be attributed to the lamination of fibers within the spinal cord.[9]
A complete injury frequently means that the patient has little hope of functional recovery.[citation needed] The relative incidence of incomplete injuries compared to complete spinal cord injury has improved over the past half century, due mainly to the emphasis on better initial care and stabilization of spinal cord injury patients.[10] Most patients with incomplete injuries recover at least some function.[citation needed]
Determining the exact "level" of injury is critical in making accurate predictions about the specific parts of the body that may be affected by paralysis and loss of function. The level is assigned according to the location of the injury by the vertebra of the spinal column closest to the injury on the spinal cord.
Cervical (neck) injuries usually result in full or partial tetraplegia (Quadriplegia). However, depending on the specific location and severity of trauma, limited function may be retained.
Continued here:
Spinal cord injury - Wikipedia, the free encyclopedia
Back Pain Stem Cell Therapy Doctors Tampa – Video
By NEVAGiles23
Back Pain Stem Cell Therapy Doctors Tampa
http://Trinity-Spine.com (727) 372-9922 Stem Cell Therapy Doctor Reviews Everyone was so nice and helpful. They calmed my nerves about having to get this done, and even had really late hours...
By: Anderson Flanders
More here:
Back Pain Stem Cell Therapy Doctors Tampa - Video
Human 'heart on a chip' to aid drug tests
By Dr. Matthew Watson
for the first time, scientists - including an Indian American bioengineer - have developed a network of pulsating cardiac muscle cells housed in an inch-long silicone device that effectively models human heart tissue.
This organ-on-a-chip represents a major step forward in the development of accurate, faster methods of testing for drug toxicity.
"Ultimately, these chips could replace the use of animals to screen drugs for safety and efficacy," said professor Kevin Healy of University of California, Berkeley, who led the team.
"This system is not a simple cell culture where tissue is being bathed in a static bath of liquid," said study lead author Anurag Mathur, a postdoctoral scholar in Healy's lab.
"We designed this system so that it is dynamic. It replicates how tissue in our bodies actually gets exposed to nutrients and drugs," Mathur explained.
The study authors noted a high failure rate associated with the use of nonhuman animal models to predict human reactions to new drugs.
Much of the failure is due to fundamental differences in biology between species, the researchers explained.
"Using a well-designed model of a human organ could significantly cut the cost and time of bringing a new drug to market," Healy added.
The heart cells were derived from human-induced pluripotent stem cells, the adult stem cells that can be coaxed to become many different types of tissue.
The researchers designed their cardiac microphysiological system, or heart-on-a-chip, so that its 3D structure would be comparable to the geometry and spacing of connective tissue fibre in a human heart.
Read the original here:
Human 'heart on a chip' to aid drug tests
Bone marrow or peripheral blood stem cell transplant for …
By Sykes24Tracey
Normal doses of chemotherapy (chemo) can harm normal cells as well as cancer cells. A stem cell transplant offers doctors a way to use the very high doses of chemo needed to kill all the leukemia cells. Although the drugs destroy the patient's bone marrow, stem cells given after the chemo can restore the blood-making bone marrow stem cells. This is called a stem cell transplant (SCT).
These blood-forming stem cells can come from the bone marrow or peripheral blood from either the patient or from a donor whose tissue type closely matches that of the patient. For CML, a donor (or allogeneic) transplant is most often used. The donor may be a brother or sister or less often a person not related to the patient.
Before modern targeted therapy drugs like imatinib (Gleevec), SCT was commonly used to treat CML. Thats because before drugs like imatinib, less than half of patients lived more than 5 years after diagnosis. Now, these drugs are the standard treatment, and transplants are being used less often. Still, a SCT from a donor offers the only proven chance to cure this disease, and many doctors will recommend a transplant for younger patients, especially children. Transplant may also be recommended if the CML is not responding well to the new drugs.
For more information on stem cell transplants, see Stem Cell Transplant (Peripheral Blood, Bone Marrow, and Cord Blood Transplants).
Read the original:
Bone marrow or peripheral blood stem cell transplant for ...
A bone marrow transplant made them blood brothers
By daniellenierenberg
With no match in the family, his doctors in Ahmedabad started scrounging for random donors across India. There are only four voluntary marrow donor registries in Delhi, Chennai and Mumbai.
Two years ago, 15-year-old blood cancer patient Bhargav Gajipara's parents were a worried lot. Doctors had given up all hope for his cure as no medicines would work on the cancer. The last resort, they said, was a bone marrow transplant. Bhargav was suffering from acute myeloid leukemia (AML), a condition in which cancerous white blood cells (WBCs) get generated in the bone marrow and circulate in the blood stream. Even as Bhargav had fever and bleeding, his search for a bone marrow match within his family failed. The chances of a bone marrow transplant for him looked bleak until May in 2013.
With no match in the family, his doctors in Ahmedabad started scrounging for random donors across India. There are only four voluntary marrow donor registries in Delhi, Chennai and Mumbai.
Life suddenly changed for Bhargav in July, when his bone marrow matched with hundred percent accuracy with that of 26-year-old media professional Sachin Mampatta of Mumbai. The chance of finding a random bone marrow donor match are one in over 10,000.
On Tuesday, Bhargav and Sachin met one year after the latter donated his marrow to the patient. Sachin had incidentally pledged his marrow around the same time when the request for procuring Bhargav's match was put in by doctors. "I became aware that people can pledge their marrow when I attended a marrow donor drive at Matunga. The doctors took a swab from my inner cheek and genetically typed it. A few months later I received a call asking if I would be in a position to donate my marrow to Bhargav. I readily agreed," said Sachin.
"Sachin's blood was taken and his stem cells were extracted from the bloodstream. The 220 ml of stem cell component was transported to the Ahmedabad-based hospital where Bhargava was admitted," said Raghu Rajagopal, CEO, Datri Blood Stem Cell Donors Registry.
The doctors administered injections to destroy all the WBCs in Bhargav's blood and transfused Sachin's stem cells in Bhargav's blood. Soon, his blood was free of cancerous cells.
Ashok spent Rs 25 lakhs for Bhargav's bone marrow transplant procedure and raised money by selling his ancestral land in Rajkot.
Datri has 80,000 voluntary donors who have pledged their marrow since 2009. But the demand for marrow is very high. Up to one lakh people get blood cancer every year, a sizeable chunk of whom can be cured only through bone marrow transplant. "We have up to 2,500 patients on list, waiting to receive bone marrow, but have not been able to find a match for them. We get 15-20 patients every day who enroll for want of marrow. Many patients die on waiting list. More Indians need to come up and pledge their bone marrow," said Rajagopal.
View post:
A bone marrow transplant made them blood brothers
Tiny hair follicle holds big clues about the life and death of stem cells
By daniellenierenberg
Inside the microscopic world of the mouse hair follicle, Yale Cancer Center researchers have discovered big clues about how stem cells regenerate and die. These findings, reported in the journal Nature, could lead to a better understanding of how the stem cell pool is maintained or altered in tissues throughout the body.
Stem cells are undifferentiated cells that replenish themselves and based on their tissue location can become specialized cells such as blood or skin cells. The hair follicle is an ideal site for exploring stem cell behavior because it has distinct and predictable oscillations in the number and behavior of stem cells, said the study's lead author Kailin R. Mesa, a third-year doctoral student in the lab of Valentina Greco, associate professor of genetics, cell biology and dermatology.
Using live microscopic imaging to track stem cell behavior in the skin of living mice, researchers observed that the stem cell niche, or surrounding area, played a critical role in whether stem cells grow or die.
"Prior to this, it wasn't clear whether stem cell regulation was intrinsic or extrinsic, and now we know it is external in that the niche instructs the stem cells," Mesa said. "In terms of cancer, we can next explore how we might perturb or change the niche in hopes of affecting the growth of cancer stem cells."
Also, researchers were surprised to find that the stem cells within the pool fed on other dying stem cells. This reveals a mechanism for removing dead cells, a process previously observed in mammary glands but never in the skin.
Story Source:
The above story is based on materials provided by Yale Cancer Center. Note: Materials may be edited for content and length.
Read more:
Tiny hair follicle holds big clues about the life and death of stem cells