'Open' stem cell chromosomes reveal new possibilities for diabetes
By LizaAVILA
Researchers map chromosomal changes that must take place before stem cells can be used to produce pancreatic and liver cells
IMAGE:These are pancreatic cells derived from embryonic stem cells. view more
Credit: UC San Diego School of Medicine
Stem cells hold great promise for treating a number of diseases, in part because they have the unique ability to differentiate, specializing into any one of the hundreds of cell types that comprise the human body. Harnessing this potential, though, is difficult. In some cases, it takes up to seven carefully orchestrated steps of adding certain growth factors at specific times to coax stem cells into the desired cell type. Even then, cells of the intestine, liver and pancreas are notoriously difficult to produce from stem cells. Writing in Cell Stem Cell April 2, researchers at University of California, San Diego School of Medicine have discovered why.
It turns out that the chromosomes in laboratory stem cells open slowly over time, in the same sequence that occurs during embryonic development. It isn't until certain chromosomal regions have acquired the "open" state that they are able to respond to added growth factors and become liver or pancreatic cells. This new understanding, say researchers, will help spur advancements in stem cell research and the development of new cell therapies for diseases of the liver and pancreas, such as type 1 diabetes.
"Our ability to generate liver and pancreatic cells from stem cells has fallen behind the advances we've made for other cell types," said Maike Sander, MD, professor of pediatrics and cellular and molecular medicine and director of the Pediatric Diabetes Research Center at UC San Diego. "So we haven't yet been able to do things like test new drugs on stem cell-derived liver and pancreatic cells. What we have learned is that if we want to make specific cells from stem cells, we need ways to predict how those cells and their chromosomes will respond to the growth factors."
Sander led the study, together with co-senior author Bing Ren, PhD, professor of cellular and molecular medicine at UC San Diego and Ludwig Cancer Research member.
Chromosomes are the structures formed by tightly wound and packed DNA. Humans have 46 chromosomes - 23 inherited from each parent. Sander, Ren and their teams first made maps of chromosomal modifications over time, as embryonic stem cells differentiated through several different developmental intermediates on their way to becoming pancreatic and liver cells. Then, in analyzing these maps, they discovered links between the accessibility (openness) of certain regions of the chromosome and what they call developmental competence - the ability of the cell to respond to triggers like added growth factors.
"We're also finding that these chromosomal regions that need to open before a stem cell can fully differentiate are linked to regions where there are variations in certain disease states," Sander says.
In other words, if a person were to inherit a genetic variation in one of these chromosomal regions and his or her chromosome didn't open up at exactly the right time, he or she could hypothetically be more susceptible to a disease affecting that cell type. Sander's team is now working to further investigate what role, if any, these chromosomal regions and their variations play in diabetes.
Read more:
'Open' stem cell chromosomes reveal new possibilities for diabetes
Induced Pluripotent Stem Cell (iPSC) Industry Complete Report 2015 – 2016
By Dr. Matthew Watson
DALLAS, April 2, 2015 /PRNewswire/ --
Lifescienceindustryresearch.com adds "Complete 2015-16 Induced Pluripotent Stem Cell (iPSC) Industry Report" in its store. Recent months have seen the first iPSC clinical trial in humans, creation of the world's largest iPSC Biobank, major funding awards, a historic challenge to the "Yamanaka Patent", a Supreme Court ruling affecting industry patent rights, the announcement of an iPSC cellular therapy clinic scheduled to open in 2019, and much more. Furthermore, iPSC patent dominance continues to cluster in specific geographic regions, while clinical trial and scientific publication trends give clear indicators of what may happen in the industry in 2015 and beyond.
Is it worth it to get informed about rapidly-evolving market conditions and identify key industry trends that will give an advantage over the competition?
BrowsetheReportComplete 2015-16 Induced Pluripotent Stem Cell (iPSC) Industry Reportathttp://www.lifescienceindustryresearch.com/complete-2013-14-induced-pl ....
Induced pluripotent stem cells represent a promising tool for use in the reversal and repair of many previously incurable diseases. The cell type represents one of the most promising advances discovered within the field of stem cell research during the past decade, making this a valuable industry report for both companies and investors to claim in order to optimally position themselves to sell iPSC products. To profit from this lucrative and rapidly expanding market, you need to understand your key strengths relative to the competition, intelligently position your products to fill gaps in the market place, and take advantage of crucial iPSC trends.
Report Applications
This global strategic report is produced for: Management of Stem Cell Product Companies, Management of Stem Cell Therapy Companies, Stem Cell Industry Investors
It is designed to increase your efficiency and effectiveness in:
Four Primary Areas of Commercialization
There are currently four major areas of commercialization for induced pluripotent stem cells, as described below:
Read the original post:
Induced Pluripotent Stem Cell (iPSC) Industry Complete Report 2015 - 2016
3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels
By raymumme
Damage to neural tissue is typically permanent and causes lasting disability in patients, but a new approach has recently been discovered that holds incredible potential to reconstruct neural tissue at high resolution in three dimensions. Research recently published in the Journal of Neural Engineering demonstrated a method for embedding scaffolding of patterned nanofibers within three-dimensional (3D) hydrogel structures, and it was shown that neurite outgrowth from neurons in the hydrogel followed the nanofiber scaffolding by tracking directly along the nanofibers, particularly when the nanofibers were coated with a type of cell adhesion molecule called laminin. It was also shown that the coated nanofibers significantly enhanced the length of growing neurites, and that the type of hydrogel could significantly affect the extent to which the neurites tracked the nanofibers.
"Neural stem cells hold incredible potential for restoring damaged cells in the nervous system, and 3D reconstruction of neural tissue is essential for replicating the complex anatomical structure and function of the brain and spinal cord," said Dr. McMurtrey, author of the study and director of the research institute that led this work. "So it was thought that the combination of induced neuronal cells with micropatterned biomaterials might enable unique advantages in 3D cultures, and this research showed that not only can neuronal cells be cultured in 3D conformations, but the direction and pattern of neurite outgrowth can be guided and controlled using relatively simple combinations of structural cues and biochemical signaling factors."
The next step will be replicating more complex structures using a patient's own induced stem cells to reconstruct damaged or diseased sites in the nervous system. These 3D reconstructions can then be used to implant into the damaged areas of neural tissue to help reconstruct specific neuroanatomical structures and integrate with the proper neural circuitry in order to restore function. Successful restoration of function would require training of the new neural circuitry over time, but by selecting the proper neurons and forming them into native architecture, implanted neural stem cells would have a much higher chance of providing successful outcomes. The scaffolding and hydrogel materials are biocompatible and biodegradable, and the hydrogels can also help to maintain the microstructure of implanted cells and prevent them from washing away in the cerebrospinal fluid that surrounds the brain and spinal cord.
McMurtrey also noted that by making these site-specific reconstructions of neural tissue, not only can neural architecture be rebuilt, but researchers can also make models for studying disease mechanisms and developmental processes just by using skin cells that are induced into pluripotent stem cells and into neurons from patients with a variety of diseases and conditions. "The 3D constructs enable a realistic replication of the innate cellular environment and also enable study of diseased human neurons without needing to biopsy neurons from affected patients and without needing to make animal models that can fail to replicate the full array of features seen in humans," said McMurtrey.
The ability to engineer neural tissue from stem cells and biomaterials holds great potential for regenerative medicine. The combination of stem cells, functionalized hydrogel architecture, and patterned and functionalized nanofiber scaffolding enables the formation of unique 3D tissue constructs, and these engineered constructs offer important applications in brain and spinal cord tissue that has been damaged by trauma, stroke, or degeneration. In particular, this work may one day help in the restoration of functional neuroanatomical pathways and structures at sites of spinal cord injury, traumatic brain injury, tumor resection, stroke, or neurodegenerative diseases of Parkinson's, Huntington's, Alzheimer's, or amyotrophic lateral sclerosis.
###
The work was carried out at the University of Oxford and the Institute of Neural Regeneration & Tissue Engineering, a non-profit charitable research organization.
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.
See the article here:
3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels
Local innovation repairs holes in the heart
By daniellenierenberg
CardioCel has been initially well received with surgeons in Australia and overseas. Photo: Geoff Fisher
For 10 years researchers at Admedus worked day and night trying to work out how to improve soft tissue repair in the human body.
And with the vital help of CSIRO they have been to develop CardioCel, a life-saving heart patch for the repair and reconstruction of cardiovascular defects.
According to the Children's Heart Foundation, congenital heart disease occurs in one out of 100 births and in at least half of those cases surgery is required and a patch is needed. They state it is the leading cause of birth defect related deaths.
Research undertaken with CSIRO investigated new, potentially ground-breaking applications for CardioCel. The research focused on using stem cells. It found the heart patch has the potential to deliver stem cells and help tissue heal better than other existing products, when used for cardiac repair.
Advertisement
Derived from animal tissue, the CardioCel patch is engineered over 14 days.
"The first unique feature of this product is that it doesn't calcify in young patients," Professor Leon Neethling, Admedus technical director and heart researcher says.
The flexible patch works like human tissue to cover holes in the heart thereby eliminating the need for repeat surgery.
"In the cardiac repair field it has long been recognised that strong, flexible, biocompatible and calcification-resistant tissue scaffolds would be ideal tissues for repair of heart defects," Admedus' chief operating officer Dr Julian Chick, says.
The rest is here:
Local innovation repairs holes in the heart
Anticancer drug can spur immune system to fight infection
By JoanneRUSSELL25
Low doses of the anti-cancer drug imatinib can spur the bone marrow to produce more innate immune cells to fight against bacterial infections, Emory researchers have found.
The results were published March 30, 2015 in the journal PLOS Pathogens.
The findings suggest imatinib, known commercially as Gleevec , or related drugs could help doctors treat a wide variety of infections, including those that are resistant to antibiotics, or in patients who have weakened immune systems. The research was performed in mice and on human bone marrow cells in vitro, but provides information on how to dose imatinib for new clinical applications.
"We think that low doses of imatinib are mimicking 'emergency hematopoiesis,' a normal early response to infection," says senior author Daniel Kalman, PhD, professor of pathology and laboratory medicine at Emory University School of Medicine.
Imatinib, is an example of a "targeted therapy" against certain types of cancer. It,blocks tyrosine kinase enzymes, which are dysregulated in cancers such as chronic myelogenous leukemia and gastrointestinal stromal tumors.
Imatinib also inhibits normal forms of these enzymes that are found in healthy cells. Several pathogens - both bacteria and viruses - exploit these enzymes as they transit into, through, or out of human cells. Researchers have previously found that imatinib or related drugs can inhibit infection of cells by pathogens that are very different from each other, including tuberculosis bacteria and Ebola virus.
In the new PLOS Pathogens paper, Emory investigators show that imatinib can push the immune system to combat a variety of bacteria, even those that do not exploit Abl enzymes. The drug does so by stimulating the bone marrow to make more neutrophils and macrophages, immune cells that are important for resisting bacterial infection.
"This was surprising because there are reports that imatinib can be immunosuppressive in some patients," Kalman says. "Our data suggest that at sub-clinical doses, imatinib can stimulate bone marrow stem cells to produce several types of myeloid cells, such as neutrophils and macrophages, and trigger their exodus from the bone marrow. However, higher doses appear to inhibit this process."
The authors note that imatinib appears to stimulate several types of white blood cells, which may provide a limit on inflammation, rather than increasing neutrophils only, which can be harmful. The authors go on to suggest that imatinib or related drugs may be useful in treating a variety of infections in patients whose immune system is compromised, such as those receiving chemotherapy for cancer.
###
Original post:
Anticancer drug can spur immune system to fight infection
Blood ties: Ky. basketball fan gets Wisconsin assist
By Dr. Matthew Watson
Scott Logdon is a die-hard University of Kentucky basketball fan, but he can't deny he's got some Wisconsin blood in him -- literally.
When the father of four was being treated for high-risk leukemia at UK in 2013, 20-year-old University of Wisconsin student Chris Wirz anonymously donated bone marrow stem cells to him. The two men first spoke just after the Wildcats bested the Badgers during last year's NCAA Final Four, and basketball was a frequent topic of conversation as their friendship grew.
While each will be rooting for his own team during this Saturday's Final Four rematch, both say they have a soft spot for the other team.
"I've stayed true to UK," said Logdon, 44, of Salvisa, Ky. "But when I talked to Chris for the first time I told him, 'That's why I felt so bad when we beat you: I've got Badger blood in me!"'
Wirz, who lives three blocks from where the Badgers play, hopes Wisconsin wins this year, and has even predicted an upset in his basketball bracket. "Who doesn't want to root for the underdog?" he said.
But he plans to send a text of congratulations if Logdon's team wins -- since their connection is much deeper than basketball rivalry.
"We're literally working off the same immune system," said Wirz, now 22 and a University of Wisconsin senior. "This has been one of the most emotionally overwhelming experiences of my life, realizing how important he is to his family and his community and seeing the hole that would've been left by him."
A dire diagnosis
Logdon, chief deputy at Woodford County Detention Center in Versailles, Ky., and a youth minister in his church, recalled playing basketball with teenagers just a few nights before going to the doctor for what his wife, Angela, initially thought was strep.
But tests showed he had acute myeloid leukemia, a blood cancer estimated by the American Cancer Society to have stricken 18,860 Americans last year and killed about 10,460, mostly adults.
Excerpt from:
Blood ties: Ky. basketball fan gets Wisconsin assist
Can Cells From a Babys Foreskin Give You Youthful Skin?
By raymumme
That's the promise of a high-end new facial treatment.
In a tiny room inside an Upper East Side dermatologist's office, I'm attempting to regain my youth. Or, at the very least, look better. I've come to try the HydraFacial, a multistep treatment that promises to erase wrinkles, reverse sun damage, lighten dark spots, and prevent acne. All of these transformations come from one key innovation using stem cells from an infant's foreskin to trick skin into behaving young again.
Why foreskin? Dr. Gail Naughton, a leader in regenerative science she developed technology to growhuman tissues and organs outside the body explains it this way: When we're born, our skin is in its best shape. Our cells naturally secrete proteins known as growth factors "that keep the cells healthy and stimulate them to divide," Naughton says. As we age, our cells divide at a slower rate, which contribute to the telltale signs of aging, like wrinkles and loss of firmness and luminosity. Growth factors captured from the donated foreskin of a baby (just one can generate over a million treatments) are at their peak ability in promoting rapid cell turnover. Applied topically, they spur adult skin cells to regenerate. This is said to have a smoothing effect on the skin.
I'm here to see if the process actually works specifically, on my nasolabial folds, the hereditary creases that stretch from my nose to my mouth. I'm told that three HydraFacial treatments will smooth the creases into near invisibility.
There are five parts to the HydraFacial. My skin is first wiped clean with a cleanser and then treated with a salicylic-and-glycolic-acid peel using a giant machine that looks like a cousin of R2D2. This is the HydraFacial machine, a fully equipped device with tiny suction tubes as arms and bottles of facial-treatment mixtures attached at the belly.
The salicylicand glycolic acids, like micro sandblasters, sweep away dead cells lingering on the surface of skin. The chemicals are a lightweight goop that feels cool on my face. Zahra, my esthetician, keeps asking me if I feel any tingling on my skin. I don't but she tells me that most people feel a slight burning sensation at this point. Must be my thick skin.
Next up is the extraction step. The tube that deposited the peel now works in reverse and becomes a micro vacuum cleaner. Blackheads and flaky skin are swept up in what feel (and looks) like the suction tube from a dentist's chair. It's an odd but not unpleasant feeling. I can actually see tiny deposits of my skin now swirling around in the extraction cup. Gross, but also kind of cool.
After my pores are cleared, a blend of skin-nourishing antioxidants and hydrating hyaluronic acid is smeared over my face. Here's where the foreskin extracts come in they're smeared on, too. The growth factors from the foreskin stem cells don't feel different than any other serum as the esthetician applies them to my face.
The final step of the facial is a quick, light therapy session, where a blue and red LED light targets oily skin, fine lines, and hyperpigmentation. In all, the entire facial lasts 30 minutes and induces not the faintest trace of redness or irritation.
Of course when it comes to facials, the proof is in the mirror. My skin glows in a way that I thought only Jennifer Lopez could glow. Fresh from the facial, I saunter into a photo shoot wearing no makeup because my confidence is at Beyonc levels. My nasolabial folds are still visible, although a bit less pronounced now. (Presumably, two more treatments would help even more.) And a part of me feels like a Disney evil queen, draining youth from a newborn for a few weeks of a restored complexion. Is this the future of facials? And if so, is it wrong that I want more?
Go here to read the rest:
Can Cells From a Babys Foreskin Give You Youthful Skin?
Orthopedic Stem Cell Therapy for Arthritic Joint Pain – Video
By JoanneRUSSELL25
Orthopedic Stem Cell Therapy for Arthritic Joint Pain
Dr. Sergio Viroslav, board certified orthopedic surgeon and joint replacement specialist with The San Antonio Orthopaedic Group, appeared on Great Day SA on March 30th, 2015 to discuss the...
By: The San Antonio Orthopaedic Group
Go here to see the original:
Orthopedic Stem Cell Therapy for Arthritic Joint Pain - Video
Can PRP and Stem Cell Therapy Help You? | Orlando Orthopaedic Center – Video
By daniellenierenberg
Can PRP and Stem Cell Therapy Help You? | Orlando Orthopaedic Center
How can PRP and stem cell therapy help you heal? Orlando Orthopaedic Center #39;s Dr. Matthew R. Willey explains. For more visit http://www.OrlandoOrtho.com.
By: OrlandoOrtho
Read more:
Can PRP and Stem Cell Therapy Help You? | Orlando Orthopaedic Center - Video
Coalition Duchenne Launches Youtube Interview Series 'Making a Difference in Duchenne'
By NEVAGiles23
Newport Beach, California (PRWEB) March 31, 2015
Newport Beach based charity Coalition Duchenne has launched an interview series titled Making a Difference in Duchenne on its Youtube channel (https://www.youtube.com/user/CoalitionDuchenne) focused on individuals making a difference in Duchenne muscular dystrophy research, care, awareness, and education.
The first interview features Dr. Eduardo Marbn MD, PhD, director of the Cedars-Sinai Heart Institute in Los Angeles, talking about cardiac derived stem cells. Dr. Marbn was featured in a November 2011 Economist article Repairing Broken Hearts, read by Coalition Duchenne founder and executive director Catherine Jayasuriya. She lobbied for a focus on Duchenne because cardiac scarring severely compromises the life span of those with the disease. Coalition Duchenne funded successful research applying Marbns stem cell technology to Duchenne. The approach has been clinically proven to mitigate scarring cause by heart attacks. In Marbns therapy, human heart tissue is used to grow specialized heart stem cells, which are injected back into the patients heart.
We need to focus on changing the course of the disease. We lose many young men to cardiac issues. We hope that working with cardiac stem cells is one way we will eventually change that outcome, said Jayasuriya.
The second interview in the Making a Difference in Duchenne series features actor Cody Saintgnue, who plays Brett Talbot in MTVs Teen Wolf. Saintgnue has a unique relationship with Duchenne. He played a young man with muscular dystrophy in his break out role on House MD in 2009. Saintgnue talks about his experience learning to mimic the physicality of a young man with Duchenne, as well as the inspiration he draws from the way those young men overcome many obstacles to live happy, fulfilling lives.
Upcoming interviews will feature: Professor Rachelle Crosbie-Watson from the University of California, Los Angeles, who teaches the first university course focused entirely on Duchenne; Dr. Ron Victor, a Cedars-Sinai cardiologist and researcher looking at the benefits of Cialis and Viagra for Duchenne cardiomyopathy; and, Scotty Bob Morgan, a daredevil wingsuit pilot, who has raised awareness worldwide about Duchenne, flying a specially made Coalition Duchenne wingsuit.
About Duchenne muscular dystrophy: Duchenne muscular dystrophy is a progressive muscle wasting disease. It is the most common fatal disease that affects children. Duchenne occurs in 1 in 3,500 male births, across all races, cultures and countries. Duchenne is caused by a defect in the gene that codes for the protein dystrophin. This is a vital protein that helps connect the muscle fiber to the cell membranes. Without dystrophin, the muscle cells become unstable, are weakened and lose their functionality. Life expectancy ranges from the mid teenage years to the mid 20s. Their minds are unaffected.
About Coalition Duchenne: Jayasuriya founded Coalition Duchenne in 2010 (http://www.coalitionduchenne.org) to raise global awareness for Duchenne muscular dystrophy, to fund research and to find a cure for Duchenne. Coalition Duchenne is a 501c3 non-profit corporation.
Read more:
Coalition Duchenne Launches Youtube Interview Series 'Making a Difference in Duchenne'
Premature aging of stem cell telomeres, not inflammation, linked to emphysema
By JoanneRUSSELL25
Lung diseases like emphysema and pulmonary fibrosis are common among people with malfunctioning telomeres, the "caps" or ends of chromosomes. Now, researchers from Johns Hopkins say they have discovered what goes wrong and why.
Mary Armanios, M.D., an associate professor of oncology at the Johns Hopkins University School of Medicine., and her colleagues report that some stem cells vital to lung cell oxygenation undergo premature aging -- and stop dividing and proliferating -- when their telomeres are defective. The stem cells are those in the alveoli, the tiny air exchange sacs where blood takes up oxygen.
In studies of these isolated stem cells and in mice, Armanios' team discovered that dormant or senescent stem cells send out signals that recruit immune molecules to the lungs and cause the severe inflammation that is also a hallmark of emphysema and related lung diseases.
Until now, Armanios says, researchers and clinicians have thought that "inflammation alone is what drives these lung diseases and have based therapy on anti-inflammatory drugs for the last 30 years."
But the new discoveries, reported March 30 in Proceedings of the National Academy of Sciences, suggest instead that "if it's premature aging of the stem cells driving this, nothing will really get better if you don't fix that problem," Armanios says.
Acknowledging that there are no current ways to treat or replace damaged lung stem cells, Armanios says that knowing the source of the problem can redirect research efforts. "It's a new challenge that begins with the questions of whether we take on the effort to fix this defect in the cells, or try to replace the cells," she adds.
Armanios and her team say their study also found that this telomere-driven defect leaves mice extremely vulnerable to anticancer drugs like bleomycin or busulfan that are toxic to the lungs. The drugs and infectious agents like viruses kill off the cells that line the lung's air sacs. In cases of telomere dysfunction, Armanios explains, the lung stem cells can't divide and replenish these destroyed cells.
When the researchers gave these drugs to 11 mice with the lung stem cell defect, all became severely ill and died within a month.
This finding could shed light on why "sometimes people with short telomeres may have no signs of pulmonary disease whatsoever, but when they're exposed to an acute infection or to certain drugs, they develop respiratory failure," says Armanios. "We don't think anyone has ever before linked this phenomenon to stem cell failure or senescence."
In their study, the researchers genetically engineered mice to have a telomere defect that impaired the telomeres in just the lung stem cells in the alveolar epithelium, the layer of cells that lines the air sacs. "In bone marrow or other compartments, when stem cells have short telomeres, or when they age, they just die out," Armanios says. "But we found that instead, these alveolar cells just linger in the senescent stage."
Continued here:
Premature aging of stem cell telomeres, not inflammation, linked to emphysema
The Irvine Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Costa Mesa and Sherman Oaks …
By Sykes24Tracey
Costa Mesa and Sherman Oaks, California (PRWEB) March 31, 2015
The Irvine Stem Cell Treatment Center announces a series of free public seminars on the use of adult stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief.
The seminars will be held on Wednesday, April 8, 2015, at 11:00 am, 1:00 pm and 3:00 pm at Ayres Hotel & Suites Costa Mesa/Newport Beach, 325 Bristol Street, Costa Mesa, CA 92626; and Wednesday, April 22, 2015, at 11:00 am, 1:00 pm and 3:00 pm at Hampton Inn, 5638 Sepulveda Blvd., Sherman Oaks, CA 91411. Please RSVP at (949) 679-3889.
The Irvine Stem Cell Treatment Center (Irvine and Westlake), along with sister affiliates, the Miami Stem Cell Treatment Center (Miami; Boca Raton; Orlando; The Villages; Sarasota, Florida) and the Manhattan Regenerative Medicine Medical Group (Manhattan, New York), abide by approved investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.
ADSCs are the bodys natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Irvine Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat No embryonic stem cells are used; and No bone marrow stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and Degenerative Orthopedic Joint Conditions (Knee, Shoulder, Hip, Spine). For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Irvine Stem Cell Treatment Center, they may contact Dr. Gionis directly at (949) 679-3889, or see a complete list of the Centers study areas at: http://www.IrvineStemCellsUSA.com.
Also, you can listen and call into our new radio show, The Stem Cell Show, hosted by Dr. Gionis on TalkRadio 790 AM KABC, Sundays @ 4pm PST, or worldwide on KABC.com ("Listen Live" at 4pm PST) or the KABC app available on the App Store or Google Play.
About the Irvine Stem Cell Treatment Center: The Irvine Stem Cell Treatment Center, along with sister affiliates, the Miami Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the California Stem Cell Treatment Center / Cell Surgical Network (CSN); we are located in Irvine and Westlake, California. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Irvine Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP); and our studies are registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.IrvineStemCellsUSA.com, http://www.MiamiStemCellsUSA.com, or http://www.NYStemCellsUSA.com; http://www.TheStemCellShow.com.
The rest is here:
The Irvine Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Costa Mesa and Sherman Oaks ...
Using patients' own cells to accelerate research into neurological disease
By daniellenierenberg
$1 M gift from Mr. J. Sebastian van Berkom launches translational research into neurological disease
This news release is available in French.
A patient's very own skin cells may hold the key to new treatments and even cures for devastating neurological diseases. A generous $1 million donation from Mr. J. Sebastian van Berkom, and critical partnerships with Brain Canada, Laval University, Marigold Foundation and the FRQS-Rseau Parkinson Quebec are driving an innovative, iPSC (induced pluripotent stem cell) research platform that will transform research into Parkinson's and other neurological diseases.
Millions of Canadians are affected by diseases of the brain such as ALS, Parkinson's and brain tumours, for which there are limited treatments and no cures. By 2020, neurological conditions will become the leading cause of death and disability. "Everyone's lives are touched in some way by neurological disease, says Mr. van Berkom, President of Van Berkom and Associates Inc." In creating The van Berkom Parkinson's Disease Open-Access Fund, I hope to change lives and support new research that will lead to new treatments and one day cures. The iPSC platform is a new paradigm for neuroscience research and as one of the world's great neuroscience centres, The Neuro is the place to drive it forward."
"This is the ultimate bench to bedside paradigm, from patient to the bench, back to the patient," says Dr. Guy Rouleau, Director of The Neuro. "With a unique interface between fundamental and clinical research, The Neuro is uniquely positioned to be a central hub in the iPSC platform. Partnering with Mr. Van Berkom, a generous and visionary philanthropist, propels The Neuro toward the goal of significantly deepening insight into disease mechanisms with unprecedented efficiency."
Patients' skin cells will be reprogrammed into induced pluripotent stem cells (iPSCs) at Laval University, under the leadership of Dr Jack Puymirat, and then differentiated at The Neuro into disease relevant cells for research. For example, in the case of Parkinson's this could be dopamine neurons. The cells can also be genome-edited, a state-of-the-art technique that can introduce or correct disease associated mutations - creating the most accurate disease models. These iPSCs will be made widely and openly available to researchers across Quebec for neuroscience research. This open-access approach exponentially increases the likelihood of breakthroughs in neurological disease.
"The unique and exciting aspect of this platform is that we are creating the most specific cells for studying disease using the patient's own tissue, which has distinct advantages over using generic cells or animal models," says Dr. Edward Fon, neurologist and co-Director of the Quebec iPSC platform. "Disease models using human samples are increasingly shown to be far more efficacious in trials, as they much more accurately mimic the disease condition. In the iPSC platform, not only can specific mutations be introduced but, cells are from patients' whose specific clinical history and genetic profile are known, a first step on the road toward neurological personalized medicine. The Neuro has access to a large and well-characterized patient population, who can help create a rich clinically-and genetically-derived registry and biobank. The initial targets in the platform will be ALS and Parkinson's disease (PD), using dopamine neurons for PD and both motor neurons and astrocytes for ALS."
The Quebec iPSC core facility is a provincial core headed by Drs. Fon and Puymirat. Reprogrammed cells at Laval University will be created from different sources such as skin biopsies, blood or urine. The Neuro's component of the platform will consist of two core facilities. The iPSC neuronal differentiation core - which differentiate iPSCs into functional neurons, headed by Dr. Eric Shoubridge, and the iPSC genome-editing core providing unprecedented ability to study the influence of disease mutations, headed by Dr. Peter McPherson.
###
The Montreal Neurological Institute and Hospital
Go here to see the original:
Using patients' own cells to accelerate research into neurological disease
Trial Shows Stem Cells Provide Long-Term Relief from Dangerous Crohns Side Effect
By Sykes24Tracey
Durham, NC (PRWEB) March 31, 2015
Stem cells may provide Crohns disease sufferers relief from a common, potentially dangerous side effect fistulas according to the results of a phase 2 clinical trial published in the latest issue of STEM CELLS Translational Medicine (SCTM). After receiving an injection of their own adipose-derived stem cells (ASC), which are collected from fat tissue, the fistulas in 75 percent of the trial participants were completely healed within eight weeks of their last treatment and remained so two years later.
Crohn's disease is a painful, chronic autoimmune disorder in which the body's immune system attacks the gastrointestinal tract. Inflammation in Crohns patients can sometimes extend completely through the intestinal wall and create a fistula an abnormal connection between the intestine and another organ or skin. Left untreated, a fistula might become infected and form an abscess, which in some cases can be life threatening.
Chang Sik Yu, M.D., Ph.D., of Asan Medical Center in Seoul, Korea, a senior author of the SCTM paper, describes the results of a clinical trial conducted in collaboration with four other hospitals in South Korea, stated, Crohns fistula is one of the most distressing diseases as it decreases patients quality of life and frequently recurs. It has been reported to occur in up to 38 percent of Crohns patients and over the course of the disease, 10 to 18 percent of them must undergo a proctectomy, which is a surgical procedure to remove the rectum.
Overall, the treatments currently available for Crohns fistula remain unsatisfactory because they fail to achieve complete closure, lower recurrence and limit adverse effects, Dr. Yu said. Given the challenges and unmet medical needs in Crohns fistula, attention has turned to stem cell therapy as a possible treatment.
Several studies, including those undertaken by Dr. Yus team, suggest that mesenchymal stem cells (MSCs) do indeed improve Crohns disease and Crohns fistula. Their phase II trial involved 43 patients for a term of one year, over the period from January 2010 to August 2012. The results showed that 82 percent experienced complete closure of fistula eight weeks after the final ASC injection.
It strongly demonstrated MSCs derived from ASCs are a safe and useful therapeutic tool for the treatment of Crohns fistula, Dr. Yu said.
The latest study was intended to evaluate the long-term outcome by following 41 of the original 43 patients for yet another year. Dr. Yu reported, Our long-term follow-up found that one or two doses of autologous ASC therapy achieved complete closure of the fistulas in 75 percent of the patients at 24 months, and sustainable safety and efficacy of initial response in 83 percent. No adverse events related to ASC administration were observed. Furthermore, complete closure after initial treatment was well sustained.
These results strongly suggest that autologous ASCs may be a novel treatment option for Crohns fistulae, he said.
Stem cells derived from fat tissue are known to regulate the immune response, which may explain these successful long-term results treating Crohns fistulae with a high risk of recurrence, said Anthony Atala, M.D., Editor-in-Chief of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.
More here:
Trial Shows Stem Cells Provide Long-Term Relief from Dangerous Crohns Side Effect
New study: Stem cell field is infected with hype
By NEVAGiles23
When billions of dollars are at stake in scientific research, researchers quickly learn that optimism sells.
A new study published inScience Translational Medicineoffersa window into how hype arises in the interaction between the media and scientific researchers, and how resistant the hype machine is to hard, cold reality. The report'sfocus is on overly optimisticreporting on potentialstem cell therapies. Its findings are discouraging.
The study by Timothy Caulfield and Kalina Kamenova of the University of Alberta law school (Caulfieldis also on the faculty at the school of public health) found that stem cell researchers often ply journalists with "unrealistic timelines" for the development of stem cell therapies, and journalists oftenswallow these claims uncritically.
The authorsmostly blame the scientists, who need to be more aware of "the importance of conveying realistic ... timelines to the popular press." We wouldn't give journalists this much of a pass; writers on scientific topics should understand that the development of drugs and therapies can take years and involve myriad dry holes and dead ends. They should be vigilant againstgaudypromises.
That's especially true instem cell research, whichis slathered with so much money that immoderate predictions of success are common. The best illustration of that comes from California's stem cell program -- CIRM, or the California Institute for Regenerative Medicine -- a $6-billion public investment that was born in hype.
The promoters of Proposition 71, the 2004 ballot initiative that created CIRM, filled the airwaves with adsimplyingthat the only thing standing between Michael J. Fox being cured of Parkinson's or Christopher Reeve walking again was Prop. 71's money. Theycommissioned a studyassertingthat California might reap a windfall in taxes,royalties and healthcare savings up to seven times the size ofits $6-billion investment. One wouldn't build a storage shed on foundations this soft, much less a $6-billion mansion.
As we've observed before, "big science" programs create incentivesto exaggerateresults to meet the public's inflated expectations. The phenomenon was recognized as long ago as the 1960s, when the distinguished physicist Alvin Weinberg warnedthat big science "thrives on publicity," resulting in "the injection of a journalistic flavor into Big Science which is fundamentally in conflict with the scientific method.... The spectacular rather than the perceptive becomes the scientific standard."
Interestingly, the event used by the Alberta researchers as the fulcrum of their study has a strong connection to CIRM. It's the abrupt 2011 decision by Geron Corp.to terminate its pioneering stem cell development program. This was a big blow to the stem cell research community and to CIRM, which had endowed Geron with a $25-million loan for its stem cell-basedspinal cord therapy development. Then-CIRM Chairman Robert Klein II had called the loan a "landmark step."
There had been evidence, however, that CIRM, eager to show progress toward bringing stem cell therapies to market, had downplayed legitimate questions about the state of Geron's science and the design of the clinical trial. AndGeron had been criticized in the past for over-promising results.
In their study, Caulfield and Kamenova examined more than 300 articles appearing in 14 general-interest newspapers in the United States, Canada and Britain from 2010 to2013. They scrutinizedthe articles' reporting oftimelines for the "realization of the clinical promise of stem cell research" and their perspective on the future of the field generally. The U.S. newspapers were the New York Times, the Wall Street Journal, the Washington Post and USA Today.
Go here to read the rest:
New study: Stem cell field is infected with hype
Blood-Forming Stem Cell Transplants – National Cancer …
By NEVAGiles23
What are bone marrow and hematopoietic stem cells?
Bone marrow is the soft, sponge-like material found inside bones. It contains immature cells known as hematopoietic or blood-forming stem cells. (Hematopoietic stem cells are different from embryonic stem cells. Embryonic stem cells can develop into every type of cell in the body.) Hematopoietic stem cells divide to form more blood-forming stem cells, or they mature into one of three types of blood cells: white blood cells, which fight infection; red blood cells, which carry oxygen; and platelets, which help the blood to clot. Most hematopoietic stem cells are found in the bone marrow, but some cells, called peripheral blood stem cells (PBSCs), are found in the bloodstream. Blood in the umbilical cord also contains hematopoietic stem cells. Cells from any of these sources can be used in transplants.
What are bone marrow transplantation and peripheral blood stem cell transplantation?
Bone marrow transplantation (BMT) and peripheral blood stem cell transplantation (PBSCT) are procedures that restore stem cells that have been destroyed by high doses of chemotherapy and/or radiation therapy. There are three types of transplants:
Why are BMT and PBSCT used in cancer treatment?
One reason BMT and PBSCT are used in cancer treatment is to make it possible for patients to receive very high doses of chemotherapy and/or radiation therapy. To understand more about why BMT and PBSCT are used, it is helpful to understand how chemotherapy and radiation therapy work.
Chemotherapy and radiation therapy generally affect cells that divide rapidly. They are used to treat cancer because cancer cells divide more often than most healthy cells. However, because bone marrow cells also divide frequently, high-dose treatments can severely damage or destroy the patients bone marrow. Without healthy bone marrow, the patient is no longer able to make the blood cells needed to carry oxygen, fight infection, and prevent bleeding. BMT and PBSCT replace stem cells destroyed by treatment. The healthy, transplanted stem cells can restore the bone marrows ability to produce the blood cells the patient needs.
In some types of leukemia, the graft-versus-tumor (GVT) effect that occurs after allogeneic BMT and PBSCT is crucial to the effectiveness of the treatment. GVT occurs when white blood cells from the donor (the graft) identify the cancer cells that remain in the patients body after the chemotherapy and/or radiation therapy (the tumor) as foreign and attack them. (A potential complication of allogeneic transplants called graft-versus-host disease is discussed in Questions 5 and 14.)
What types of cancer are treated with BMT and PBSCT?
BMT and PBSCT are most commonly used in the treatment of leukemia and lymphoma. They are most effective when the leukemia or lymphoma is in remission (the signs and symptoms of cancer have disappeared). BMT and PBSCT are also used to treat other cancers such as neuroblastoma (cancer that arises in immature nerve cells and affects mostly infants and children) and multiple myeloma. Researchers are evaluating BMT and PBSCT in clinical trials (research studies) for the treatment of various types of cancer.
See original here:
Blood-Forming Stem Cell Transplants - National Cancer ...
Two Different Fat Graft Techniques Have Similar Effects on Facial Skin
By Dr. Matthew Watson
Contact Information
Available for logged-in reporters only
Newswise March 30, 2015 Two approaches to fat graftinginjection of fat cells versus fat-derived stem cellshave similar effects in reversing the cellular-level signs of aging skin, reports a study in the April issue of Plastic and Reconstructive Surgery, the official medical journal of the American Society of Plastic Surgeons (ASPS).
Since the facial rejuvenation results are the same, the simpler approach using fat cells plus the "stromal vascular fraction" has advantages over the more time-consuming stem cell fat technique. Dr. Gino Rigotti of Clinica San Francesco, Verona, Italy, directed a research team consisting of Luiz Charles-de-S and Natale Ferreira Gontijo-de-Amorim from Clinica Performa, Rio de Janeiro; and Andrea Sbarbati, Donatella Benati, and Paolo Bernardi from the Anatomy and Histology Institute, University of Verona.
Fat Grafts vs Stem Cells for Facial Rejuvenation The experimental study compared the two approaches to fat grafting for regeneration of the facial skin. In these procedures, a small amount of the patient's own fat is obtained by liposuction from another part of the body, such as the abdomen. After processing, the fat is grafted (transplanted) to the treated area, such as the face.
The study included six middle-aged patients who were candidates for facelift surgery. All underwent fat grafting to a small area in front of the ear.
One group of patients received fat-derived stem cells. Isolated and grown from the patients' fat, these specialized cells have the potential to develop into several different types of tissue. The other group underwent injection of fat cells along with the stromal vascular fraction (SVF)a rich mix of cell types, including stem cells.
Before and three months after fat grafting, samples of skin from the treated area were obtained for in-depth examination, including electron microscopy for ultrastructural-level detail.
After injection of fat cells plus SVF, the skin samples showed reduced degeneration of the skin's elastic fiber network, or "elastosis"a key characteristic of aging skin. These findings were confirmed by ultrastructural examination, which demonstrated the reabsorption of the elastosis and the development of relatively "young" elastic fibers.
In patients undergoing stem cell injection, the skin changes were essentially identical. "This result seems to suggest that the effect of a fat graft is, at least in part, due to its stem cell component," Dr Rigotti and coauthors write.
More here:
Two Different Fat Graft Techniques Have Similar Effects on Facial Skin
Research develops mini-lung structures
By Sykes24Tracey
Stem cell research has long been seen as a new frontier for disease therapeutics. By coaxing stem cells to form 3D miniature lung structures, University researchers are helping explain why.
In a collaborative study, University researchers devised a system to generate self-organizing human lung organoids, or artificially-grown organisms. These organoids are 3D models that can be used to better understand lung diseases.
Jason Spence, the assistant professor of internal medicine and cell and developmental biology, who was a senior author of the study, said one of the key implications of these lungs is the controlled environment they offer for future research.
These mini lungs will allow us to study diseases in a controlled environment and to develop and test new drugs, he said.
Specifically, Spence said, scientists will be able to take skin samples from patients with a particular form of a lung disease, reprogram the cells into stem cells and then generate lung tissue for further study. He said by analyzing the disease in a controlled environment, researchers can gain insight into the progression of various diseases and then tailor drugs for treatment.
Rackham student Briana Dye was also a lead author of the study. She said the team manipulated numerous signaling pathways involved with cell growth and organ formation to make the miniature lungs.
First, Dye said the scientists used proteins called growth factors to differentiate embryonic stem cells into endoderm, the germ layer that gives rise to the lungs. Different growth factors were then used to cause the endoderm to become lung tissue.
We add specific growth factors, proteins that turn on pathways in the cells, that will then cause them to lift off the monolayer so that we have this 3D spherical tissue, she said.
Previous research has used stem cells in a similar manner to generate brain, intestine, stomach and liver tissue. Dye said one of the advantages of stem cell research is its direct path to studying human tissue.
We have worked with many animal models in the past, Dye said. Animal models present obstacles because they dont exactly behave the way human tissue and cells do. This is why stem cells are so promising.
See more here:
Research develops mini-lung structures
Stem Cell Grants for Spina Bifida and Diabetic Wound Treatments
By daniellenierenberg
(SACRAMENTO, Calif.) - The state stem cell agency, California Institute for Regenerative Medicine (CIRM),awarded a pair of grants totaling more than $7 million to UC Davis School of Medicine researchers who are working to develop stem cell therapies for spina bifida and chronic diabetic wounds. The funding is part of what the agency considers "the most promising" research leading up to human clinical trials using stem cells to treat disease and injury. Diana Farmer, professor and chair of surgery at UC Davis Medical Center, is developing a placental stem cell therapy for spina bifida, the common and devastating birth defect that causes lifelong paralysis as well as bladder and bowel incontinence. She and her team are working on a unique treatment that can be applied in utero - before a baby is born -- in order to reverse spinal cord damage. Roslyn Rivkah Isseroff, a UC Davis professor of dermatology, and Jan Nolta, professor of internal medicine and director of the university's Stem Cell Program, are developing a wound dressing containing stem cells that could be applied to chronic wounds and be a catalyst for rapid healing. This is Isseroff's second CIRM grant, and it will help move her research closer to having a product approved by the U.S. Food and Drug Administration that specifically targets diabetic foot ulcers, a condition affecting more than 6 million people in the country. The CIRM board, which met in Berkeley today, has high hopes for these types of research that the agency funded in this latest round of stem cell grants. "This investment will let us further test the early promise shown by these projects," said Jonathan Thomas, chair of CIRM's governing board. "Preclinical work is vital in examining the feasibility, potential effectiveness and safety of a therapy before we try it on people. These projects all showed compelling evidence that they could be tremendously beneficial to patients. We want to help them build on that earlier research and move the projects to the next level." The CIRM grants are designed to enable the UC Davis research teams to transition from preclinical research to preclinical development over the next 30 months to be able to meet the FDA's rigorous safety and efficacy standards for Investigative New Drugs. As the former surgeon-in-chief at UCSF Benioff Children's Hospital, Farmer helped pioneer fetal surgery techniques for treating spina bifida before birth. The condition, also known as myelomeningocele, is one of the most common and devastating birth defects worldwide, causing lifelong paralysis as well as bowel and bladder incontinence in newborns. Farmer has been investigating different stem cell types and the best way to deliver stem cell-based treatments in the womb for the past six years. She and her research colleagues recently discovered a placental therapy using stem cells that cures spina bifida in animal models. That discovery requires additional testing and FDA approval before the therapy can be used in humans. With the CIRM funding, Farmer and her team plan to optimize their stem cell product, validate its effectiveness, determine the optimal dose and confirm its preliminary safety in preparation for human clinical trials. Isseroff, who also serves as chief of dermatology and director of wound healing services for the VA Northern California Health Care System, has long been frustrated by the challenges of treating the chronic, non-healing wounds of diabetics. In 2010, she and Nolta received a CIRM grant to begin developing a bioengineered product for treating chronic diabetic wounds. Foot ulcers, in particular, affect about 25 percent of all diabetic patients and are responsible for most lower-limb amputations. Isseroff and her research team created a treatment using stem cells derived from bone marrow (mesenchymal stem cells) along with a FDA-approved scaffold to help regenerate dermal tissue and restart the healing process. Their studies found the technique to be highly effective for healing wounds in animal models. With this latest CIRM grant, Isseroff's team will refine their therapeutic technique by determining the safest dosage for regenerating tissue and testing their product in skin-wound models that closely resemble those in diabetic humans. Nolta also plans to create a Master Cell Bank of pure and effective human mesenchymal stem cells, and establish standard operating procedures for use in diabetic wound repair. The results of their efforts will enable UC Davis to move closer to FDA approval for human clinical trials in the next two and a half years. "These amazing research efforts are giant steps forward in turning stem cells into cures," said Nolta, who also directs the UC Davis Institute for Regenerative Cures in Sacramento. "This preclinical research is the most crucial, and often the toughest, stage before we move scientific discoveries from the laboratory bench to the patient's bedside. We are now poised as never before to make a big difference in the lives of people with spina bifida and non-healing diabetic wounds." For more information, visit UC Davis School of Medicine at http://medschool.ucdavis.edu.
More:
Stem Cell Grants for Spina Bifida and Diabetic Wound Treatments
Stem cell firm Cellular Dynamics being acquired by Japanese company for $307 million
By raymumme
Madison-based stem cell company Cellular Dynamics InternationalInc. is being acquired by Tokyo-based Fujifilm Holdings Corp., the companies announced in a news release Monday.
The deal was described as "an all-cash tender offer to be followed by a second step merger," with Fujifilm buying all shares of CDI stock for $16.50 per share, valuing the deal at about $307 million.
The offer is a premium of 108 percent to to CDI's closing stock price on Friday.
When the deal is completed, CDI will continue to run its operations in Madison and Novato, California as a consolidated subsidiary of Fujifilm. CDI had 155 employees at the end of 2014.
The deal, which is expected to close during the second quarter, has been approved by the boards of both companies.
"CDI has become a leader in the development and manufacture of fully functioning human cells in industrial quantities to precise specifications,"Robert J. Palay, Chairman and CEO of CDI, said in the release. "CDI and Fujifilm share a common strategic vision for achieving leadership in the field of regenerative medicine. The combination of CDI's technology with Fujifilm's technologies, know-how, and resources brings us ever closer to realizing the promise of discovering better, safer medicines and developing new cell therapies based on iPSCs."
CDI was founded in 2004 and listed on the NASDAQ stock exchange in July 2013. The company had global revenues of $16.7 million in the year ended Dec. 31, 2014.
Fujifilm has successfully transformed its business structure for growth by expanding from traditional photographic film to other priority business fields. Positioning the healthcare business as one of its key growth areas, Fujifilm is seeking to cover "prevention, diagnosis, and treatment" comprehensively.
CDI's technology platform enables the production of high-quality fully functioning human cells, including induced pluripotent stem cells (iPSCs), on an industrial scale. Customers use CDI's products, among other purposes, for drug discovery and screening, to test the safety and efficacy of their small molecule and biological drug candidates, for stem cell banking, and in the research and development of cellular therapeutics. CDI's proprietary iCell product catalogue encompasses 12 different iPSC based cell types, including iCell Cardomyocytes, iCell Hepatocytes, and iCell Neurons. During 2014 CDI sold to 18 of 20 top biopharmaceutical companies.
Tapping into technologies and know-how accumulated as a result of leading the field of photographic films, Fujifilm has developed highly-biocompatible recombinant peptides6 that can be shaped into a variety of forms for use as a cellular scaffold7 in regenerative medicine8 in conjunction with CDI's products. Fujifilm has been strengthening its presence in the regenerative medicine field over several years, including by acquiring a majority of shares of Japan Tissue Engineering Co., Ltd. (J-TEC) in December 2014.
Original post:
Stem cell firm Cellular Dynamics being acquired by Japanese company for $307 million