Page 471«..1020..470471472473..480490..»

Stem Cell Therapy + PRP Therapy Helps Pelvic Pain Patient – Video

By NEVAGiles23


Stem Cell Therapy + PRP Therapy Helps Pelvic Pain Patient
Stem Cell ARTS Actual Patient Testimonial--Julie Mariano "I had some abdominal surgery a few years ago and woke up with extreme back pain. It was a complete mystery how it happened and it still...

By: StemCell ARTS

Read more from the original source:
Stem Cell Therapy + PRP Therapy Helps Pelvic Pain Patient - Video

To Read More: Stem Cell Therapy + PRP Therapy Helps Pelvic Pain Patient – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy + PRP Therapy Helps Pelvic Pain Patient – Video | dataJanuary 30th, 2015
Read All

Denver Regenerative Medicine – What is regenerative medicine? – Video

By raymumme


Denver Regenerative Medicine - What is regenerative medicine?
Dr. Joel Cherdack of Denver Regenerative Medicine explains what regenerative medicine is. He and the hosts discuss the benefits of both PRP (platelet rich plasma) and Stem Cell Therapy.

By: Denver Regenerative Medicine

See original here:
Denver Regenerative Medicine - What is regenerative medicine? - Video

To Read More: Denver Regenerative Medicine – What is regenerative medicine? – Video
categoriaUncategorized commentoComments Off on Denver Regenerative Medicine – What is regenerative medicine? – Video | dataJanuary 30th, 2015
Read All

Knee problems and stem cell therapy – Video

By daniellenierenberg


Knee problems and stem cell therapy
Dr. Scott Greenberg discusses stem cell procedures for the knee and his experience with athletes, torn meniscus issues, and arthritis.

By: scott greenberg

See more here:
Knee problems and stem cell therapy - Video

To Read More: Knee problems and stem cell therapy – Video
categoriaUncategorized commentoComments Off on Knee problems and stem cell therapy – Video | dataJanuary 30th, 2015
Read All

13 ABC: Advancements in stem cell therapy – 1/27/15 – Video

By JoanneRUSSELL25


13 ABC: Advancements in stem cell therapy - 1/27/15
ProMedica Physician Roger Kruse, MD, discusses use of stem cell therapy in orthopedic care.

By: ProMedica In The News

Continue reading here:
13 ABC: Advancements in stem cell therapy - 1/27/15 - Video

To Read More: 13 ABC: Advancements in stem cell therapy – 1/27/15 – Video
categoriaUncategorized commentoComments Off on 13 ABC: Advancements in stem cell therapy – 1/27/15 – Video | dataJanuary 30th, 2015
Read All

Cardiac Muscle Derived from Pluripotent Stem Cells – Video

By daniellenierenberg


Cardiac Muscle Derived from Pluripotent Stem Cells

By: CK LAB

See more here:
Cardiac Muscle Derived from Pluripotent Stem Cells - Video

To Read More: Cardiac Muscle Derived from Pluripotent Stem Cells – Video
categoriaCardiac Stem Cells commentoComments Off on Cardiac Muscle Derived from Pluripotent Stem Cells – Video | dataJanuary 29th, 2015
Read All

Stem cell-grown hair could help those with hair loss

By NEVAGiles23

For the first time, researchers have been able to use pluripotent stem cells to generate cells that can grow new hair.

Hair growing on hairless mice thanks to induced pluripotent stem cells. Sanford-Burnham Medical Research Institute

It's been theorised for years, but now human stem cells have resulted in hair growth for the very first time.

"We have developed a method using human pluripotent stem cells to create new cells capable of initiating human hair growth. The method is a marked improvement over current methods that rely on transplanting existing hair follicles from one part of the head to another," said Alexey Terskikh, Ph.D., associate professor in the Development, Aging and Regeneration Program at Sanford-Burnham.

"Our stem cell method provides an unlimited source of cells from the patient for transplantation and isn't limited by the availability of existing hair follicles."

The process started with human pluripotent embryonic stem cells -- that is, stem cells that are capable of developing into any other cell -- which were then developed into neural crest cells. These are cells that can develop into a variety of cells on the head, including brain cells, cartilage, bone and muscle cells.

From the neural crest cell point, the team coaxed the cells to grow into dermal papillae cells, the cells that nourish the skin and regulate follicle growth and formation. When transplanted -- in the case of this study, into hairless mice -- these cells flourish.

Another part of the study examined whether the same result could be achieved using dermal papillae cells taken from the scalps of adult humans. Outside the body, living in culture, these cells are not suitable for hair transplants, since they lost their ability to induce follicle formation. The number of hairs their produced was insignificant.

"In adults, dermal papilla cells cannot be readily amplified outside of the body and they quickly lose their hair-inducing properties," said Terskikh. "We developed a protocol to drive human pluripotent stem cells to differentiate into dermal papilla cells and confirmed their ability to induce hair growth when transplanted into mice."

The researchers say that their research represents the first step towards a cell-based treatment for hair loss, which affects 40 million men and 21 million women in the United States.

Read more from the original source:
Stem cell-grown hair could help those with hair loss

To Read More: Stem cell-grown hair could help those with hair loss
categoriaSkin Stem Cells commentoComments Off on Stem cell-grown hair could help those with hair loss | dataJanuary 29th, 2015
Read All

Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea

By NEVAGiles23

A way to eradicate cancer stem cells, using the side-effects of commonly used antibiotics, has been discovered by a University of Manchester researcher following a conversation with his young daughter.

Professor Michael P. Lisanti, Director of the Breakthrough Breast Cancer Unit, led the research. He was inspired to look at the effects of antibiotics on the mitochondria of cancer stem cells by a conversation with his daughter Camilla about his work at the University's Institute of Cancer Sciences.

His new paper, published in Oncotarget, opens up the possibility of a treatment for cancer, which is highly effective and repurposes drugs which have been safely used for decades.

Mitochondria are the 'engine' parts of the cells and are the source of energy for the stem cells as they mutate and divide to cause tumours. Cancer stem cells are strongly associated with the growth and recurrence of all cancers and are especially difficult to eradicate with normal treatment, which also leads to tumours developing resistance to other types of therapy.

Professor Lisanti said: "I was having a conversation with Camilla about how to cure cancer and she asked why don't we just use antibiotics like we do for other illnesses. I knew that antibiotics can affect mitochondria and I've been doing a lot of work recently on how important they are to the growth of tumours, but this conversation helped me to make a direct link."

Professor Lisanti worked with colleagues from The Albert Einstein College of Medicine, New York and the Kimmel Cancer Centre, Philadelphia. The team used five types of antibiotics -- including one used to treat acne (doxycycline) -- on cell lines of eight different types of tumour and found that four of them eradicated the cancer stem cells in every test. This included glioblastoma, the most aggressive of brain tumours, as well as lung, prostate, ovarian, breast, pancreatic and skin cancer.

Mitochondria are believed to be descended from bacteria which joined with cells early on in the evolution of life. This is why some of the antibiotics which are used to destroy bacteria also affect mitochondria, though not to an extent which is dangerous to people. When they are present in stem cells, mitochondria provide energy for growth and, crucially, for division, and it is this process going wrong which leads to cancer.

In the lab, the antibiotics had no harmful effect on normal cells, and since they are already approved for use in humans, trials of new treatments should be simpler than with new drugs -- saving time and money.

Professor Lisanti said: "This research makes a strong case for opening new trials in humans for using antibiotics to fight cancer. Many of the drugs we used were extremely effective, there was little or no damage to normal cells and these antibiotics have been in use for decades and are already approved by the FDA for use in humans. However, of course, further studies are needed to validate their efficacy, especially in combination with more conventional therapies."

Dr Matthew Lam, Senior Research Officer at Breakthrough Breast Cancer, said: "The conclusions that the researchers have drawn, whilst just hypotheses at this stage, are certainly interesting. Antibiotics are cheap and readily available and if in time the link between their use and the eradication of cancer stem cells can be proved, this work may be the first step towards a new avenue for cancer treatment.

Visit link:
Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea

To Read More: Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea
categoriaSkin Stem Cells commentoComments Off on Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea | dataJanuary 29th, 2015
Read All

Schoolgirl comment points to antibiotics as new cancer treatments

By daniellenierenberg

Professor Michael P. Lisanti, Director of the Breakthrough Breast Cancer Unit, led the research. He was inspired to look at the effects of antibiotics on the mitochondria of cancer stem cells by a conversation with his daughter Camilla about his work at the University's Institute of Cancer Sciences.

His new paper, published in Oncotarget, opens up the possibility of a treatment for cancer, which is highly effective and repurposes drugs which have been safely used for decades.

Mitochondria are the 'engine' parts of the cells and are the source of energy for the stem cells as they mutate and divide to cause tumours. Cancer stem cells are strongly associated with the growth and recurrence of all cancers and are especially difficult to eradicate with normal treatment, which also leads to tumours developing resistance to other types of therapy.

Professor Lisanti said: "I was having a conversation with Camilla about how to cure cancer and she asked why don't we just use antibiotics like we do for other illnesses. I knew that antibiotics can affect mitochondria and I've been doing a lot of work recently on how important they are to the growth of tumours, but this conversation helped me to make a direct link."

Professor Lisanti worked with colleagues from The Albert Einstein College of Medicine, New York and the Kimmel Cancer Centre, Philadelphia. The team used five types of antibiotics - including one used to treat acne (doxycycline) - on cell lines of eight different types of tumour and found that four of them eradicated the cancer stem cells in every test. This included glioblastoma, the most aggressive of brain tumours, as well as lung, prostate, ovarian, breast, pancreatic and skin cancer.

Mitochondria are believed to be descended from bacteria which joined with cells early on in the evolution of life. This is why some of the antibiotics which are used to destroy bacteria also affect mitochondria, though not to an extent which is dangerous to people. When they are present in stem cells, mitochondria provide energy for growth and, crucially, for division, and it is this process going wrong which leads to cancer.

In the lab, the antibiotics had no harmful effect on normal cells, and since they are already approved for use in humans, trials of new treatments should be simpler than with new drugs - saving time and money.

Professor Lisanti said: "This research makes a strong case for opening new trials in humans for using antibiotics to fight cancer. Many of the drugs we used were extremely effective, there was little or no damage to normal cells and these antibiotics have been in use for decades and are already approved by the FDA for use in humans. However, of course, further studies are needed to validate their efficacy, especially in combination with more conventional therapies."

Dr Matthew Lam, Senior Research Officer at Breakthrough Breast Cancer, said: "The conclusions that the researchers have drawn, whilst just hypotheses at this stage, are certainly interesting. Antibiotics are cheap and readily available and if in time the link between their use and the eradication of cancer stem cells can be proved, this work may be the first step towards a new avenue for cancer treatment.

"This is a perfect example of why it is so important to continue to invest in scientific research. Sometimes there are answers to some of the biggest questions right in front of us but without ongoing commitment to the search for these answers, we'd never find them."

Originally posted here:
Schoolgirl comment points to antibiotics as new cancer treatments

To Read More: Schoolgirl comment points to antibiotics as new cancer treatments
categoriaSkin Stem Cells commentoComments Off on Schoolgirl comment points to antibiotics as new cancer treatments | dataJanuary 29th, 2015
Read All

Asymmetrex Scheduled to Present Unique Perspectives in Stem Cell Biology and Recent Advances in Technologies for Adult …

By LizaAVILA

Boston, MA (PRWEB) January 29, 2015

Dr. James Sherley, Director of the new biotech start-up Asymmetrex, LLC (formerly known as The Adult Stem Cell Technology Center, LLC) is looking forward to four upcoming opportunities in 2015 to continue to impress both academic and industry audiences with his companys very frank take on what is needed to accelerate progress in stem cell medicine.

Asymmetrex has set the focus for its efforts on adult stem cells that are found in the organs and tissues of children and adults. Unlike human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), adult stem cells are free of induced mutations, are not tumor-forming, and have the essential ability to continuously regenerate mature human tissue cells like those in children and adults. To date, hESCs and iPSCs have only been able to regenerate immature cells, and even those not continuously.

Previously, the two main challenges hindering wider use of adult stem cells for drug development and medical therapies have been difficulty producing them and difficulty counting them. Asymmetrex has reported, and in many cases secured patents for, new technologies that reduce or eliminate both of these challenges. At the coming conferences, Dr. Sherley will describe the companys most recent technological advances in this regard and discuss the science that led to them.

In particular, he will highlight the companys newest technology developed with partner AlphaSTAR Corporation for estimating adult stem cell number in any human tissue. The two companies are developing the new technology as an assay to detect drug candidates that will fail in expensive pre-clinical animal studies and clinical trials because of intolerable toxicity against tissue stem cells. By screening-out such drugs earlier in the drug development process, Asymmetrex and AlphaSTAR estimate that together they could save the U.S. pharmaceutical industry $4-5 billion each year.

The four scheduled conferences include the 7th Annual Predictive Toxicology Summit, February 16-18, in London; the 5th World Congress on Cell and Stem Cell Research, March 23-25, in Chicago; the 2015 Annual Meeting at Experimental Biology, March 28-April 1, in Boston; and the Inaugural 3D Cellular Models Conference, June 11-12, also in Boston.

The breadth of conference topics reflects the many important roles that adult tissue stem cells play in human biology and cellular medicine. Dr. Sherley offers that, Because of the importance of adult stem cells in normal body function, it is not surprising that Asymmetrexs technologies impact so many different facets of stem cell biology, regenerative medicine, and drug development.

About Asymmetrex

Asymmetrex, LLC is a Massachusetts life sciences company with a focus on developing technologies to advance stem cell medicine. Asymmetrexs founder and director, James L. Sherley, M.D., Ph.D. is an internationally recognized expert on the unique properties of adult tissue stem cells. The companys patent portfolio contains biotechnologies that solve the two main technical problems production and quantification that have stood in the way of successful commercialization of human adult tissue stem cells for regenerative medicine and drug development. In addition, the portfolio includes novel technologies for isolating cancer stem cells and producing induced pluripotent stem cells for disease research purposes. Currently, Asymmetrexs focus is employing its technological advantages to develop facile methods for monitoring adult stem cell number and function in clinically important human tissues.

Read this article:
Asymmetrex Scheduled to Present Unique Perspectives in Stem Cell Biology and Recent Advances in Technologies for Adult ...

To Read More: Asymmetrex Scheduled to Present Unique Perspectives in Stem Cell Biology and Recent Advances in Technologies for Adult …
categoriaUncategorized commentoComments Off on Asymmetrex Scheduled to Present Unique Perspectives in Stem Cell Biology and Recent Advances in Technologies for Adult … | dataJanuary 29th, 2015
Read All

Stem Cell Therapy Treatment for Limb Girdle Muscular Dystrophy by Dr.PV Mahajan – Video

By JoanneRUSSELL25


Stem Cell Therapy Treatment for Limb Girdle Muscular Dystrophy by Dr.PV Mahajan
Patient testimonial of Limb Girdle Muscular Dystrophy treated by StemRx Bioscience Solutions Pvt. Ltd.

By: StemRx BioScience

Read the rest here:
Stem Cell Therapy Treatment for Limb Girdle Muscular Dystrophy by Dr.PV Mahajan - Video

To Read More: Stem Cell Therapy Treatment for Limb Girdle Muscular Dystrophy by Dr.PV Mahajan – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy Treatment for Limb Girdle Muscular Dystrophy by Dr.PV Mahajan – Video | dataJanuary 29th, 2015
Read All

Arthritic knees three months after bone marrow stem cell therapy by Harry Adelson, N.D. – Video

By daniellenierenberg


Arthritic knees three months after bone marrow stem cell therapy by Harry Adelson, N.D.
Holly, three-time World Cup Downhill Gold Medalist and Olympian, discusses her outcome from bone marrow stem cells for her arthritic knees performed at Docere Clinics http://www.docereclinics.com.

By: Harry Adelson, N.D.

Go here to read the rest:
Arthritic knees three months after bone marrow stem cell therapy by Harry Adelson, N.D. - Video

To Read More: Arthritic knees three months after bone marrow stem cell therapy by Harry Adelson, N.D. – Video
categoriaUncategorized commentoComments Off on Arthritic knees three months after bone marrow stem cell therapy by Harry Adelson, N.D. – Video | dataJanuary 29th, 2015
Read All

A cure for hair loss? Scientists grow hair on rats using stem cells – and they say the treatment could work on humans …

By Dr. Matthew Watson

Achievementmade after coaxing stem cells to become papilla cells Dermal papilla is a special type of cell which is vital to follicle formation It could provide an unlimited source of cells for hair transplant procedures

By Ellie Zolfagharifard For Dailymail.com

Published: 14:15 EST, 27 January 2015 | Updated: 16:16 EST, 27 January 2015

52 shares

33

View comments

Finding a cure for baldness has become the holy grail for scientists the world over.

Now researchers in Orlando have come a step closer to a natural treatment after successfully growing new hair using human stem cells.

The breakthrough was achieved after coaxing stem cells to become dermal papilla cells a special type of cell which is vital to follicle formation.

Researchers in Orlando have come a step closer to a natural treatment for baldness after successfully growing new hair using human stem cells. Pictured is the hair growth on the leg of an adult rat

Continued here:
A cure for hair loss? Scientists grow hair on rats using stem cells - and they say the treatment could work on humans ...

To Read More: A cure for hair loss? Scientists grow hair on rats using stem cells – and they say the treatment could work on humans …
categoriaSkin Stem Cells commentoComments Off on A cure for hair loss? Scientists grow hair on rats using stem cells – and they say the treatment could work on humans … | dataJanuary 27th, 2015
Read All

Researchers advance the science behind treating patients with corneal blindness

By NEVAGiles23

LOS ANGELES (Jan. 27, 2015) - Researchers in the Cedars-Sinai Board of Governors Regenerative Medicine Institute have devised a novel way to generate transplantable corneal stem cells that may eventually benefit patients suffering from life-altering forms of blindness.

Scientists used human corneal cells to generate pluripotent stem cells that have a capacity to become virtually any body cell. Then, putting these cells on natural scaffolds, researcher's facilitated differentiation of these stem cells back to corneal cells.

"Our research shows that cells derived from corneal stem cells are attractive candidates for generating corneal cells in the laboratory," said Alexander Ljubimov, PhD, director of the Eye Program at the Board of Governors Regenerative Medicine Institute and principal investigator on this research study.

This research, published in the journal Stem Cells Translational Medicine, marks an important first step toward creating a bank of corneal stem cells that may potentially benefit patients who suffer from many forms of corneal blindness. The group is now working to optimize the process with National Institutes of Health funding.

Corneal deficiencies may have genetic or inflammatory roots or be caused by injuries, like burns to the skin in occupational accidents. They result in damage or death of stem cells that renew the outermost part of the cornea. If left untreated, they often cause compromised vision or blindness.

Over 150,000 Americans and more than 3 million individuals worldwide are affected by corneal blindness.

###

Study collaborators include Clive Svendsen, PhD, director of the Board of Governors Regenerative Medicine Institute and professor of biomedical sciences and medicine; Dhruv Sareen, PhD, director of the Induced Pluripotent Stem Cell Core and assistant professor of biomedical sciences; Mehrnoosh Saghizadeh, PhD, assistant professor of biomedical sciences; Yaron Rabinowitz, MD, director of the Division of Ophthalmology Research; and Vincent A. Funari, PhD, director of the Genomics Core and assistant professor of pediatrics.

Citation: Sareen D, Saghizadeh M, Ornelas L, et al. Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med. 2014; 3(9):1002-12.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Read the rest here:
Researchers advance the science behind treating patients with corneal blindness

To Read More: Researchers advance the science behind treating patients with corneal blindness
categoriaSkin Stem Cells commentoComments Off on Researchers advance the science behind treating patients with corneal blindness | dataJanuary 27th, 2015
Read All

Keeping the Kraken asleep

By Dr. Matthew Watson

IMAGE:CDK6 is needed for leukemic stem cell activation (left). When CDK6 is absent, the LSC remains in a quiescent state and leukemia formation is prohibited (right). view more

Credit: Angelika Berger / Vetmeduni Vienna

Despite enormous progress in cancer therapy, many patients still relapse because their treatment addresses the symptoms of the disease rather than the cause, the so-called stem cells. Work in the group of Veronika Sexl at the University of Veterinary Medicine, Vienna has given a tantalizing clue to a solution. In the current issue of Blood, the scientists report that the cell-cycle kinase CDK6 is required for activation of the stem cells responsible for causing leukemia.

Hematopoietic stem cells (HSCs) are normally inactive, i.e. quiescent. When new blood cells are needed, for example to replace blood that has been lost, HSCs start to multiply and develop into mature blood cells. If the process is initiated at an inappropriate time, hematopoietic diseases such as leukemia may result and leukemic stem cells may develop. These represent a major challenge to leukemia therapy: they are quiescent and thus protected from elimination by the immune system and from treatment such as chemotherapy. Leukemic stem cells frequently cause relapse in cancer patients, often years or even decades after an apparently successful treatment.

Working with stem cells isolated from mice, Ruth Scheicher and colleagues at the University of Veterinary Medicine, Vienna have investigated possible differences between leukemic stem cells and the healthy stem cells in the body. They looked in particular at the function of the CDK6 protein, which is known to be involved in controlling the cell cycle. Surprisingly, CDK6 was also found to regulate the activation of hematopoietic and leukemic stem cells, which it does by inhibiting the transcription factor Egr1. Upon loss of CDK6, Egr1 becomes active and prevents stem cells from dividing. In a further twist to the tale, the mechanism operates only when hematopoietic stem cells are stressed, e.g. in leukemia, and not in the normal physiological situation.

Scheicher is quick to note the significance of her finding. "CDK6 is absolutely necessary for leukemic stem cells to induce disease but plays no part in normal hematopoiesis. We thus have a novel opportunity to target leukemia at its origin. Inhibiting CDK6 should attack leukemic stem cells while leaving healthy HSCs unaffected".

###

Service: The article 'CDK6 as a key regulator of hematopoietic and leukemic stem cell activation' by Scheicher R, Hoelbl-Kovacic A, Bellutti F, Tigan AS, Prchal-Murphy M, Heller G, Schneckenleithner C, Salazar-Roa M, Zchbauer-Mller S, Zuber J, Malumbres M, Kollmann K and Sexl V. was published in the journal Blood. http://www.bloodjournal.org/content/125/1/90.long?sso-checked=true

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Read the original post:
Keeping the Kraken asleep

To Read More: Keeping the Kraken asleep
categoriaUncategorized commentoComments Off on Keeping the Kraken asleep | dataJanuary 27th, 2015
Read All

Stem Cell Transplantation at BLOOD – Video

By NEVAGiles23


Stem Cell Transplantation at BLOOD
24.10.1423.01.15 BLOOD: NOT FOR THE FAINT-HEARTED Twenty five provocative works that explore the scientific, symbolic and strange nature of blood. This vide...

By: Science Gallery Dublin

See the rest here:
Stem Cell Transplantation at BLOOD - Video

To Read More: Stem Cell Transplantation at BLOOD – Video
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Transplantation at BLOOD – Video | dataJanuary 27th, 2015
Read All

Fred Hutch Bone Marrow Transplant Program at Seattle Cancer Care Alliance Recognized Nationally for Outstanding …

By daniellenierenberg

Contact Information

Available for logged-in reporters only

Newswise SEATTLE The Fred Hutchinson Cancer Research Center Bone Marrow Transplant Program at Seattle Cancer Care Alliance (SCCA) was recently recognized for outperforming its anticipated one-year survival rate for allogeneic transplant patients. The new performance results were calculated by the Center for International Blood and Marrow Transplant Research (CIBMTR) and published in the 2014 Transplant Center-Specific Survival Report. The annual report is designed to provide potential stem cell transplant recipients, their families, and the public with comparative survival rates among transplant centers. This is the second consecutive year the Fred Hutch Bone Marrow Transplant Program at SCCA has achieved higher than expected one-year survival rates, an accomplishment that only 12 other institutions have achieved.

Credited with pioneering the clinical use of bone marrow and stem cell transplantation more than 40 years ago, the Fred Hutch Bone Marrow Transplant Program at SCCA has performed over 14,000 bone marrow transplants more than any other institution in the world. Dr. E. Donnall Thomas groundbreaking work in transplantation won the Nobel Prize in 1990 and many current SCCA and Fred Hutch transplant experts have trained alongside Dr. Thomas.

To arrive at its findings, CIBMTR independently examined the survival rates of 20,875 transplants performed to treat blood cancers at U.S. centers in the NMDP network between January 1, 2010 and December 31, 2012. During this three-year period, 757 allogeneic transplants were performed at SCCA.

Although centers are required to report their data, the process of comparing transplant centers is complex and must address a number of variables, such as cancer type and stage, patients age, and preexisting medical issues. The intensive findings allow researchers to compare themselves to other centers, leading to improved outcomes. The report also provides patients and their families with valuable information necessary when evaluating where to undergo treatment.

The information provided in the report is invaluable to patients faced with making difficult treatment decisions, explains Dr. Marco Mielcarek, medical director of the Adult Blood and Marrow Transplant Program at Fred Hutch and SCCA. While we are happy our patients outcomes exceeded expectations over a three-year period, we are always working to further improve the transplantation process.

Allogenic transplants use stem cells from a donor who may or may not be related to the patient. Stem cell transplants, including bone marrow transplants, are used to treat a wide range of leukemias and lymphomas, as well as other diseases including severe aplastic anemia and sickle cell disease.

These findings reflect our teams continued efforts to improve patients outcomes by investigating every aspect of the transplant process, said Dr. Fred Appelbaum, Deputy Director at Fred Hutch. Im pleased that our transplant patients continue to have high survival rates, but there is still more work to do.

SCCAs success in helping patients survive a wide range of cancers continues to be recognized by National Cancer Data Base (NCDB) rankings. SCCA has ranked at the top of NCDB patient survival rankings since 2002.

See more here:
Fred Hutch Bone Marrow Transplant Program at Seattle Cancer Care Alliance Recognized Nationally for Outstanding ...

To Read More: Fred Hutch Bone Marrow Transplant Program at Seattle Cancer Care Alliance Recognized Nationally for Outstanding …
categoriaBone Marrow Stem Cells commentoComments Off on Fred Hutch Bone Marrow Transplant Program at Seattle Cancer Care Alliance Recognized Nationally for Outstanding … | dataJanuary 27th, 2015
Read All

Sanford-Burnham's hair-raising study

By LizaAVILA

Hair growing from human dermal papillae cells, which were cultivated from pluripotent stem cells.

Cells needed to grow hair have been produced from human stem cells, according to a study led by scientists at the Sanford-Burnham Medical Research Institute in La Jolla. The first-time feat could uncork a bottleneck in developing hair-replacement therapies, the scientists say.

Called the dermal papillae, these cells regulate hair follicle formation and growth cycles. They rapidly lose their hair-generating ability after being grown outside the body, limiting their use for hair regrowth. Another cell type derived from stem cells effectively substitutes for the dermal papillae, the scientists found.

These artificial dermal papillae cells were grown from pluripotent stem cells, which can be derived either from human embryos or a patient's own skin cells. The latter, called induced pluripotent stem cells, are of the most interest, said lead researcher Alexey V. Terskikh. Patients can donate their own IPS cells, which can be grown into the replacement dermal papillae in "unlimited" quantities," he said.

Alexey V. Terskikh, Principal Investigator, Sanford-Burnham Medical Research Institute / Sanford-Burnham Medical Research Institute

Sanford-Burnham is now looking for business partners to commercialize the discovery. More information can be found at: utsandiego.com/sbhair.

The study was published last week in the journal PLOS One. Terskikh is the study's senior author. Ksenia Gnedeva is first author.

In the lab, the human embryonic stem cells were first turned into neural crest cells, which produce brain cells, cartilage, bone, pigment and muscle cells. The cells were then converted into the artificial dermal papillae cells. These human cells induced hair formation, when transplanted along with mouse skin epidermal cells into immune-deficient and nearly hairless "nude mice".

Because nude mice were created from albino ancestors, the transplanted skin cells were chosen from dark-haired mice. This let the scientists distinguish hairs grown by the mice from cells grown by the transplanted cells.

Transplanted epidermal cells alone caused "minimal" growth, the study said.

Continue reading here:
Sanford-Burnham's hair-raising study

To Read More: Sanford-Burnham's hair-raising study
categoriaSkin Stem Cells commentoComments Off on Sanford-Burnham's hair-raising study | dataJanuary 27th, 2015
Read All

BioTime Announces Issuance of 14 New Patents in the Fields of Regenerative Medicine, Stem Cell Technology, and Cancer …

By NEVAGiles23

Pluripotent stem cells are cells capable of indefinite expansion and then differentiation into any and all of the cell types of the human body. Examples of pluripotent stem cells are human embryonic stem cells (hES) and induced pluripotent stem (iPS) cells. These stem cells potentially offer a new technology platform for the manufacture of a wide array of cell types designed to be transplanted into the body to restore healthy tissue function.

BioTime and its subsidiaries are focused on developing and commercializing a broad portfolio of innovative cellular therapeutics and diagnostic products, while also continuing to build value in other ways, such as through the addition of new patents to our industry-leading intellectual property estate, said Dr. Michael D. West, Ph.D., BioTimes Chief Executive Officer. We are making significant strides in patenting our core platform of pluripotent stem cell technology and strengthening our competitive position in regenerative medicine. For the first time in history, pluripotent stem cells offer a means of manufacturing previously rare and valuable human cell types in a cost-effective manner and on an industrial scale. We plan to utilize our strengthened patent position to drive value for our shareholders as the field of regenerative medicine begins to address the large and growing markets associated with chronic and age-related degenerative disease.

New Patents Owned by BioTime or one of its subsidiaries:

European patent 1809739 This issued patent claims cell culture media for the proliferation and scale-up of hES cells. The patent issuing in Austria, France, Germany, Ireland, Switzerland and Sweden provides a propagation medium for culturing hES cells in the laboratory such that the cells proliferate without differentiating as defined in the claims. The technology allows the user to rapidly produce high-quality embryonic stem cells for use in therapy and drug discovery, in a cost-effective and controlled manner, from defined or commercially available reagents. The patent is therefore useful for manufacturing products from hES cells. Patents in the same family have previously issued in the United States, Australia, UK, Israel, Singapore and Hong Kong, with additional applications pending.

Canada patent 2559854 and China patent ZL200580008779.0 These patents claim a differentiation method for making high purity heart muscle preparations from pluripotent stem cells such as hES cells suitable for use in regenerative medicine. The issued claims cover methods wherein the pluripotent stem cells are treated with specific growth factors and differentiation conditions to manufacture beating heart muscle cells. The patents are therefore useful in the manufacture and commercialization of heart muscle cells for research, for the testing of drugs on the heart, and potentially for regenerating heart muscle following a heart attack or heart failure. Patents in the same family have previously issued in the United States, Australia, UK, Israel, Japan and Singapore, with additional applications pending.

South Korea patent1543500B The patent titled, Hematopoietic Cells from Human Embryonic Stem Cells, claims methods for using pluripotent stem cell technology for inducing immune tolerance of cells transplanted into a patient (that is, in helping to prevent the rejection of transplanted cells). As such, the patent claims may be useful in commercializing diverse types of transplantable cells. Patents in the same family have previously issued in Australia, UK, Israel, Japan and Singapore, with additional applications pending.

Canada patent 2468335 The patent describes cartilage-forming cells derived from human pluripotent stem cells such as hES cells. The claims in the patent relate to a system of making the cartilage-forming cells using factors of the transforming growth factor beta (TGF-beta) family, of immortalizing the cells with the human telomerase gene, pharmaceutical formulations of the cells for therapeutic use in arthritis, as well as other claims. The patent is therefore useful for the manufacture of such cells for use in research and potentially in therapy for a number of applications in orthopedic medicine. Patents in the same family have previously issued in the United States, Australia, Singapore, Israel and South Korea, with additional applications pending.

Israel patent208116 The patent titled, Differentiation of Primate Pluripotent Stem Cells to Hematopoietic Lineage Cells, claims methods for the manufacture of dendritic cells from primate pluripotent stem cells. Dendritic cells are cells that trigger an immune response to a particular molecule. Often their role is to stimulate the immune system to attack microorganisms such as bacteria. BioTimes subsidiary Asterias Biotherapeutics is developing hES cell-derived dendritic cells modified to trigger an immune response to specific antigens related to cancer. A patent in the same family has previously issued in the United States, with additional applications pending.

Singapore patent 188098 The patent titled, Synthetic Surfaces for Culturing Stem Cell Derived Cardiomyocytes, claims certain polymers upon which heart muscle cells derived from pluripotent stem cells may be cultured. The patent is potentially useful for the manufacture of human heart muscle cells for drug screening and toxicity testing and for use in the manufacture of such cells for transplantation into human subjects for the treatment of heart disease. A patent in the same family has previously issued in the United States, with additional applications pending.

Singapore patent 176957 The patent titled, Differentiated Pluripotent Stem Cell Progeny Depleted of Extraneous Phenotypes, claims methods for the purification of pluripotent stem cell-derived oligodendrocytes by the removal of contaminating cells that display an antigen called epithelial cell adhesion molecule (EpCAM). This method is potentially useful in the purification of such oligodendrocytes prior to their use in research or human therapy. Patents in the same family have previously issued in the United States and China, with additional applications pending.

Original post:
BioTime Announces Issuance of 14 New Patents in the Fields of Regenerative Medicine, Stem Cell Technology, and Cancer ...

To Read More: BioTime Announces Issuance of 14 New Patents in the Fields of Regenerative Medicine, Stem Cell Technology, and Cancer …
categoriaUncategorized commentoComments Off on BioTime Announces Issuance of 14 New Patents in the Fields of Regenerative Medicine, Stem Cell Technology, and Cancer … | dataJanuary 27th, 2015
Read All

Local Teen Selected As Semi-Finalist In Intel Science Talent Search

By LizaAVILA

ELK GROVE (CBS13) Hes only 17, but hes already making big waves in the science community.

A local high school senior was selected as a semi-finalist in the 2015 Intel Science Talent Search. His research on stem cells set him apart from the rest. Out of hundreds of applicants, Ryan Fong, a senior at Sheldon High School in Elk Grove, is being recognized for his research in stem cells. Its an opportunity he says he wont soon forget.

Each of these cells is genetic material from one cell, he explains.

He doesnt come from a line of doctors or medical researchers. Fong is just a teenager interested in stem cells.

Its such a young field and it holds so much potential to redefine what we think is medically possible, he says.

Fong wasnt always intrigued by science, but a couple of years ago, at the request of a teacher, he decided to enter the Teen Biotech Challenge and happened to win an internship at the UC Davis School of Medicine.

I didnt know anything about research and I didnt know what I was getting into, but I dived in head first, said Fong.

That internship became a launching pad for Fong. He was published in a medical peer review journal called Stem Cells. And this past summer, he spent his time in Stanford among doctors and researchers working on reprogramming cells from a layer of skin so that it can match any cell type in the body.

So were taking someones cells from their skin and turning them into cells that can be found in the lungs, said Fong.

Their research on the topic won Fong a spot as a semi-finalist in the 2015 Intel Science Talent Search, and a $1,000 scholarship.

Read more from the original source:
Local Teen Selected As Semi-Finalist In Intel Science Talent Search

To Read More: Local Teen Selected As Semi-Finalist In Intel Science Talent Search
categoriaSkin Stem Cells commentoComments Off on Local Teen Selected As Semi-Finalist In Intel Science Talent Search | dataJanuary 24th, 2015
Read All

The Miami Stem Cell Treatment Center Announces the Opening of a New Office in The Villages

By NEVAGiles23

The Villages, Florida (PRWEB) January 22, 2015

The Miami Stem Cell Treatment Center announces the opening of a new office in The Villages, Florida on January 28, 2015, with Dr. Thomas A. Gionis, Surgeon-in-Chief and Dr. Nia Smyrniotis, Medical Director and Surgeon.

Their new office is located at the Villages Endoscopy & Surgical Center, 10900 SE 174th PL. Rd., Summerfield, FL 34491. If you have any questions or would like further information please call us at (561) 331-2999.

The Miami Stem Cell Treatment Center (Miami; Boca Raton; Orlando; and now The Villages), along with sister affiliates, the Irvine Stem Cell Treatment Center (Irvine; Westlake Villages, Ca.) and the Manhattan Regenerative Medicine Medical Group (Manhattan, New York), abide by approved investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.

ADSCs are the bodys natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Miami Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat no embryonic stem cells are used; and no bone marrow stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and degenerative orthopedic joint conditions (Knee, Shoulder, Hip, Spine). For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Miami Stem Cell Treatment Center, they may contact Dr. Gionis or Dr. Smyrniotis directly at (561) 331-2999, or see a complete list of the Centers study areas at: http://www.MiamiStemCellsUSA.com.

About the Miami Stem Cell Treatment Center: The Miami Stem Cell Treatment Center, along with sister affiliates, the Irvine Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the California Stem Cell Treatment Center / Cell Surgical Network (CSN); we are located in Boca Raton, Orlando, Miami and now The Villages, Florida. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Miami Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP); and our studies are registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.MiamiStemCellsUSA.com, http://www.IrvineStemCellsUSA.com, or http://www.NYStemCellsUSA.com.

See the article here:
The Miami Stem Cell Treatment Center Announces the Opening of a New Office in The Villages

To Read More: The Miami Stem Cell Treatment Center Announces the Opening of a New Office in The Villages
categoriaUncategorized commentoComments Off on The Miami Stem Cell Treatment Center Announces the Opening of a New Office in The Villages | dataJanuary 24th, 2015
Read All

Page 471«..1020..470471472473..480490..»


Copyright :: 2025