Immune cells spur hair growth
By Dr. Matthew Watson
London, Dec 24 (IANS):In what could facilitate the development of novel treatment strategies for hair growth in humans, researchers have found that immune cells involved in wound healing can induce hair growth by surrounding and activating skin stem cells.
"We have discovered that macrophages -- cells whose main function is traditionally attributed to fight infections and wound repair -- are also involved in the activation of hair follicle stem cells in non-inflamed skin," said Mirna Perez-Moreno from the Spanish National Cancer Research Centre (CNIO).
Although this study was carried out in mice, the researchers believe their discovery may lead to new treatment for hair growth in humans.
The researchers found that mice started to regrow hair when they were given anti-inflammatory drugs.
They observed that when skin cells are dormant, a fraction of macrophages die naturally due to a normal process called apoptosis.
But the dying and surviving cells activated nearby stem cells and hair began to grow again.
Macrophages secrete a number of factors including a class of signalling molecules called Wnts.
Importantly, when the researchers treated macrophages with a Wnt inhibitor drug, the activation of hair growth was delayed, demonstrating a role for Wnts from macrophages in promoting hair growth.
The discovery that immune cells called macrophages activate skin stem cells could also influence technologies with potential applications in tissue regeneration, ageing, and cancer, the researchers noted.
The study appeared in the journal PLOS Biology.
Excerpt from:
Immune cells spur hair growth
Scientists use skin cells to make artificial primitive sperm and eggs in move that could transform fertility treatment
By raymumme
Cambridge researchers turned stem cells into precursors of egg and sperm Scientists believe the precursors could then grow into mature sex cells It means genetically-identical sex cells could be used in future IVF therapy
By Steph Cockroft for MailOnline
Published: 16:10 EST, 24 December 2014 | Updated: 16:42 EST, 24 December 2014
96 shares
115
View comments
Researchers have used skin cells to make primitive artificial sperm and eggs in a move that could transform fertility treatment.
Scientists in Cambridge made the sex cells by culturing human embryonic stem cells for five days under carefully-controlled conditions.
They then showed that the same process can convert adults' skin tissue into early-stage sperm and eggs.
Scientists have made primitive artificial sperm and eggs which could transform fertility treatment. Pictured: A single sperm being injected directly into an egg during IVF (file picture)
Read the rest here:
Scientists use skin cells to make artificial primitive sperm and eggs in move that could transform fertility treatment
Baldness breakthrough: Researchers find skin signals that spark hair growth
By JoanneRUSSELL25
Researchers have cracked the code of how hair growth is activated Key was cells usually used to fight invading pathogens in the body
By Mark Prigg for MailOnline
Published: 18:41 EST, 24 December 2014 | Updated: 19:19 EST, 24 December 2014
Researchers claim to have cracked the code of how hair growth is activated.
They say the discovery could have implications for baldness treatments in humans.
Researchers were able to pinpoint the signals from the skin cells that activate hair growth.
The discovery could have implications for baldness treatments in humans, as researchers were able to pinpoint the signals from the skin cells that activate hair growth.
Macrophages are cells from the immune system that are in charge of devouring invading pathogens, a process called phagocytosis.
The authors report that macrophages induce hair growth by surrounding and activating cells in the skin that have regenerative capacity, called stem cells.
The discovery that macrophages activate skin stem cells could influence technologies with potential applications in tissue regeneration, aging, and cancer.
Read more:
Baldness breakthrough: Researchers find skin signals that spark hair growth
Rudimentary egg and sperm cells made from stem cells
By Dr. Matthew Watson
Southern Illinois University/Science photo Library
Some hope that sperm cells could one day be derived from the skin cells of a man who is otherwise sterile and that a similar process cold produce viable egg cells from a sterile woman's body.
Israeli and UK researchers have created human sperm and egg precursor cells in a dish, starting from a person's skin cells. The achievement is a small step towards a treatment for infertility, although one that could face significant controversy and regulatory hurdles.
The experiment, reported online in Cell on 24 December1, recreates in humans parts of a procedure first developed in mice, in which cells called induced pluripotent stem (iPS) cells reprogrammed cells that can differentiate into almost any cell type are used to create sperm or eggs that are subsequently manipulated to produce live births by in vitro fertilization.
In 2012, stem-cell biologist Mitinori Saitou of Kyoto University in Japan and his collaborators created the first artificial primordial germ cells (PGCs)2. These are specialized cells that emerge during embryonic development and later give rise to sperm or eggs. Saitou made them in a dish, starting with skin cells reprogrammed to an embryonic-like state through iPS-cell technology (see 'Stem cells: Egg engineers'). They also were able to achieve the same result starting with embryonic stem cells.
Although his cells could not develop beyond this precursor stage in the dish, Saito found that if he placed them in mouse testes, they would mature into sperm, and if he placed them in ovaries, they would mature into functional eggs. Both sperm and eggs could be used for in vitro fertilization.
Efforts to engineer similarly functional gametes in humans have produced PGC-like cells, but with such a low efficiency success rate of turning stem cells into gametes that it was difficult for others to expand on the work.. Previous efforts also required the introduction of genes that would render the cells unusable in the clinic.
Ewen Callaway reports on the ethical challenges of using lab-made sperm and egg cells in fertility treatments.
You may need a more recent browser or to install the latest version of the Adobe Flash Plugin.
Now a team led by Azim Surani of the University of Cambridge, UK, and Jacob Hanna of the Weizmann Institute of Science in Rehovot, Israel, has replicated the in vitro portion the first half, says Hanna of Saitous efforts in humans.
Originally posted here:
Rudimentary egg and sperm cells made from stem cells
Lansdowne author raises awareness about sickle cell disease
By Dr. Matthew Watson
Dominique Friend doesn't look like she's sick. But the Lansdowne resident often deals with bouts of pain so severe she ends up in the hospital for weeks.
Friend, 44, was born with sickle cell disease, an inherited blood disorder that affects an estimated 90,000 to 100,000 in the U.S., according to Centers for Disease Control and Prevention information.
Her autobiography "Sickle" was released by Tate Publishing on Dec. 9 in a second edition, after she self-published the book in 2009.
In the book, she tells of her struggle with the debilitating disease. Friend said she shared her personal account to raise awareness about the disease, which predominantly affects African-Americans. It is also found in those of Hispanic and Mediterranean descent, according to CDC information.
Friend said for as long as she can recall, she has dealt with painful episodes that are characteristic of sickle cell disease.
Pain develops when sickle-shaped red blood cells, that should be round like a doughnut, block the blood flow to the chest, joints and other parts of the body, Friend explained. It can last for a few hours to a few weeks and such episodes are called "crises," she said.
"I would take the pain of childbirth over a sickle cell crisis any day," said Friend, who has three children, two stepdaughters and two granddaughters.
She has been married to Michael Friend for 18 years.
The painful disease can disrupt learning for children and make it difficult for adults to work, said Dr. Sophie Lanzkron, an assistant professor of medicine and oncology at Johns Hopkins University School of Medicine.
A bone marrow transplant or stem cell transplant is the only cure, according to the CDC website.
Go here to see the original:
Lansdowne author raises awareness about sickle cell disease
Torn Knee Meniscus – Video
By LizaAVILA
Torn Knee Meniscus
http://www.kneestemcells.com Dennis Lox, M.D. is definitely an expert in Leg Stem Cell Treatments by providing Joint Stem Cell Therapy for those who seek an alternative for that in the past #39;s...
By: Powetis Ivanov
See original here:
Torn Knee Meniscus - Video
Neural stem cell transplantation for chronic cervical …
By LizaAVILA
Public Abstract:
1.3 million Americans suffer chronically from spinal cord injuries (SCI); each year ~15,000 individuals sustain a new injury. For California, this means nearly 147,000 individuals are living with a SCI which can leave otherwise healthy individuals with severe deficits in movement, sensation, and autonomic function. Recovery after SCI is often limited, even after aggressive emergency treatment with steroids and surgery, followed by rehabilitation. The need to develop new treatments for SCI is pressing. We believe that stem cell therapies could provide significant functional recovery, improve quality of life, and reduce the cost of care for SCI patients. The goal of this Disease Team is to evaluate a novel cell therapy approach to SCI involving transplantation of human neural stem cells. In 2005, the FDA authorized the worlds first clinical testing of human neural stem cell transplantation into the CNS. Since then, our research team has successfully generated clinical grade human neural stem cells for use in three clinical trials, established a favorable safety profile that now approaches five years in some subjects and includes evidence of long-term donor-cell survival. Relevant to this Disease Team, the most recent study began testing human neural stem cells in thoracic spinal cord injury. The initial group of three patients with complete injury has been successfully transplanted. The Disease Team seeks to extend the research into cervical SCI. Neural cell transplantation holds tremendous promise for achieving spinal cord repair. In preliminary experiments, the investigators on this Disease Team showed that transplantation of both murine and human neural stem cells into animal models of SCI restore motor function. The human neural stem cells migrate extensively within the spinal cord from the injection site, promoting new myelin and synapse formation that lead to axonal repair and synaptic integrity. Given these promising proof-of-concept studies, we propose to manufacture clinical-grade human neural stem cells and execute the preclinical studies required to submit an IND application to the FDA that will support the first-in-human neural stem cell transplantation trial for cervical SCI. Our unmatched history of three successful regulatory submissions, extensive experience in manufacturing, preclinical and clinical studies of human neural stem cells for neurologic disorders, combined with an outstanding team of basic and clinical investigators with expertise in SCI, stem cell biology, and familiarity with all the steps of clinical translation, make us an extremely competitive applicant for CIRMs Disease Team awards. This award could ultimately lead to a successful FDA submission that will permit human testing of a new treatment approach for SCI; one that could potentially reverse paralysis and improve the patients quality of life.
Statement of Benefit to California:
Spinal cord injuries affect more than 147,000 Californians; the majority are injuries to the cervical level (neck region) of the spinal cord. SCI exacts a devastating toll not only on patients and families, but also results in a heavy economic impact on the state: the lifetime medical costs for an individual with a SCI can exceed $3.3 million, not including the loss of wages and productivity. In California this translates to roughly $86 billion in healthcare costs. Currently there are no approved therapies for chronic thoracic or cervical SCI. We hope to advance our innovative cell therapy approach to treat patients who suffer cervical SCI. For the past 9 years, the assembled team (encompassing academic experts in pre-clinical SCI models, complications due to SCI, rehabilitation and industry experts in manufacturing and delivery of purified neural stem cells), has developed the appropriate SCI models and assays to elucidate the therapeutic potential of human neural stem cells for SCI repair. Human neural stem cell transplantation holds the promise of creating a new treatment paradigm. These cells restored motor function in spinal cord injured animal models. Our therapeutic approach is based on the hypothesis that transplanted human neural stem cells mature into oligodendrocytes to remyelinate demyelinated axons, and/or form neurons to repair local spinal circuitry. Any therapy that can partially reverse some of the sequelae of SCI could substantially change the quality-of-life for patients by altering their dependence on assisted living, medical care and possibly restoring productive employment. Through CIRM, California has emerged as a worldwide leader in stem cell research and development. If successful, this project would further CIRMs mission and increase Californias prominence while providing SCI therapy to injured Californians. This Team already has an established track record in stem cell clinical translation. The success of this Disease Team application would also facilitate new job creation in highly specialized areas including cell manufacturing making California a unique training ground. In summary, the potential benefit to the state of California brought by a cervical spinal cord Disease Team project would be myriad. First, a novel therapy could improve the quality of life for SCI patients, restore some function, or reverse paralysis, providing an unmet medical need to SCI patients and reducing the high cost of health care. Moreover, this Disease Team would maintain Californias prominence in the stem cell field and in clinical translation of stem cell therapies, and finally, would create new jobs in stem cell technology and manufacturing areas to complement the states prominence in the biotech field.
More:
Neural stem cell transplantation for chronic cervical ...
Activating hair growth with a little help from the skin
By Dr. Matthew Watson
Restoring hair loss is a task undertaken not only by beauty practitioners. Previous studies have identified signals from the skin that help prompt new phases of hair growth. However, how different types of cells that reside in the skin communicate to activate hair growth has continued to puzzle biologists. An exciting study publishing on December 23 in the open access journal PLOS Biology reveals a new way to spur hair growth.
A group from the Spanish National Cancer Research Centre (CNIO) has discovered an unexpected connection?a link between the body?s defense system and skin regeneration. It turns out that macrophages are involved. These are cells from the immune system that are in charge of devouring invading pathogens, a process called phagocytosis. The authors report that macrophages induce hair growth by surrounding and activating cells in the skin that have regenerative capacity, called stem cells. The discovery that macrophages activate skin stem cells could influence technologies with potential applications in tissue regeneration, aging, and cancer.
The authors of the study are Mirna Perez-Moreno and Donatello Castellana, from the Epithelial Cell Biology Group of the BBVA Foundation-CNIO Cancer Cell Biology Programme, along with Ralf Paus, a hair immunobiology expert from the University of Manchester and Mnster. ?We have discovered that macrophages, cells whose main function is traditionally attributed to fight infections and wound repair, are also involved in the activation of hair follicle stem cells in non-inflamed skin,? says Perez-Moreno.
These findings emerged from an observation by Perez-Moreno while she was working on another research project. Intriguingly, the mice she was working with at that time started to regrow hair when they were given anti-inflammatory drugs. Curious as to whether close communication between stem cells and immune cells could explain this observation, the Perez-Moreno lab began to test different types of cells involved in the bodys defense system for a role in hair growth. They observed that when skin cells are dormant, a fraction of macrophages die naturally due to a normal process called apoptosis. Surprisingly, the dying and surviving cells activated nearby stem cells and hair began to grow again.
Macrophages secrete a number of factors including a class of signaling molecules called Wnts. Importantly, when the researchers treated macrophages with a Wnt inhibitor drug, the activation of hair growth was delayed?demonstrating a role for Wnt from macrophages in promoting hair growth. Although this study was carried out in mice, the researchers believe their discovery ?may facilitate the development of novel treatment strategies? for hair growth in humans.
The researchers used tiny droplets, or liposomes, to carry the drug used in the study. The future use of liposomes as a way to deliver a drug to specific cells is promising and may have additional implications for the study of several pathologies, says Donatello Castellana.
From a more fundamental perspective, this research is an effort to understand how modifying the environment that surrounds adult skin stem cells can regulate their regenerative capabilities. ?One of the current challenges in the stem cell field is to regulate the activation of endogenous stem cell pools in adult tissues?to promote regeneration without the need of transplantation,? says Perez-Moreno.
Because of this study, it is now known that macrophages play a key role in the environment surrounding stem cells. ?Our study underlines the importance of macrophages as modulators in skin regenerative processes, going beyond their primary function as phagocytic immune cells,? say the authors in PLOS Biology.
###
Please mention PLOS Biology as the source for this article and include the links below in your coverage to take readers to the online, open access articles
Link:
Activating hair growth with a little help from the skin
CNIO researchers activate hair growth by modifying immune cells
By daniellenierenberg
IMAGE:This is a skin whole mount section showing hair follicles (blue) surrounded by clusters of skin resident macrophages (red). The molecular communication between macrophages and hair follicle stem cells regulates... view more
Credit: Donatello Castellana, CNIO
How to restore hair loss is a task not undertaken exclusively by beauty practitioners. The discovery, now published by a group from the Spanish National Cancer Research Centre (CNIO), reveals a novel angle to spur hair follicle growth. This also adds new knowledge to a broader problem: how to regenerate tissues in an adult organism, especially the skin.
The group has discovered an unexpected connection--a link between the body's defense system and skin regeneration. According to the authors of the study published today in PLOS Biology, cells from the immune system called macrophages-- those in charge of devouring invading pathogens, for example--are also responsible for activating skin stem cells and induce hair growth.
The regenerative ability of stem cells allows skin replenishment during a lifetime. But different factors can reduce their regenerative properties or promote their uncontrolled growth. When things go wrong, this can lead to aging and disease, including skin carcinomas. The discovery that macrophages activate skin stem cells may also have further implications beyond the possibility to develop therapeutic approaches for hair loss, but may also be relevant for cancer research.
The authors of the study are Mirna Perez-Moreno and Donatello Castellana, from the Epithelial Cell Biology Group of the BBVA Foundation-CNIO Cancer Cell Biology Programme, along with Ralf Paus, a hair immunobiology expert from the University of Manchester and Mnster.
"We have discovered that macrophages, cells whose main function is traditionally attributed to fight infections and wound repair, are also involved in the activation of hair follicle stem cells in non inflamed skin," says Perez-Moreno.
FIRST PROOF
The researchers did not investigate the relationship between macrophages and hair for fun. This work emerged more than four years ago from an observation made by Perez-Moreno while working on another research project. The mice she had been working with at that time received anti-inflammatory drugs, a treatment that also reactivated hair growth. Convinced that the explanation could reside in the existence of close communication between stem cells and immune cells --the Perez-Moreno's lab began to experiment with the different types of cells involved in the bodys defense system.
After years of investigation, they discovered that when stem cells are dormant, a fraction of macrophages die, due to a process known as apoptosis. This stimulated the secretion of factors from dying and living macrophages, which in turn activated stem cells, and that is when hairs began to grow again.
Visit link:
CNIO researchers activate hair growth by modifying immune cells
Hylunia Head of Research and Development Gives Traveling Lectures on Plant Stem Cells
By JoanneRUSSELL25
Henderson, NV (PRWEB) December 23, 2014
After a successful educational outreach trip to Florida the weekend before Thanksgiving, Hylunia's Head of Research and Development Dr. Link will visit Arizona from Dec. 11-13 giving talks to students and industry professionals.
Dr. Link will be at the Southwest Institute of Natural Aesthetics in Tempe, Arizona this Thursday and Friday. On Saturday, skin care industry professionals are invited to sit in on his third lecture.
This series of lectures follows his successful talk to 60 students at the Florida College of Natural Health in Fort Lauderdale, FL.
The best way to give back to our partners is to host seminars and get them familiar with our ingredients," said Dr. Link. "Its a great way to tell them the reasons behind why were updating formulas and using the ingredients weve chosen so that our partners can tell their customers about why the ingredients are important to their skin care needs.
The lectures explore the benefits, ingredients, philosophy and technology behind Hylunia products. For example, the Dr. Link discusses the science behind cutting-edge ingredients like tomato and grape stem cells, which are major components of Hylunia's Ultimate Antioxidant Cream.
Plant stem cells currently feature in six Hylunia products, including the Ultimate Antioxidant Cream. Tomato and grape stem cells are the newest addition to its lineup, with others on the way.
Grape stem cells protect the skin from free radicals caused by the sun and other environmental stressors like pollution and food. They're also shown to prevent skin aging. Tomato stem cells contain compounds like Lypocene, which protect against the heavy metals found in pollution and other environmental stressors. Dr. Link's lectures aim to explain these benefits to the company's partners who then communicate them to the public.
Hylunia launched its own spa earlier this year, and Dr. Link decided it was the right time to go back on the road and continue his educational outreach to students and industry professionals across the country.
"These speeches give us a chance to spread our philosophy to those who arent familiar with Hylunia," said said Dr. Link.
Here is the original post:
Hylunia Head of Research and Development Gives Traveling Lectures on Plant Stem Cells
Bone Marrow Stem Cell Therapy / Stem Cell Prolotherapy – Video
By NEVAGiles23
Bone Marrow Stem Cell Therapy / Stem Cell Prolotherapy
Stem Cell Prolotherapy is a procedure in which adult mesenchymal stem cells are transplanted directly into the damaged tissue or injury and promotes healing. Stem cells are the repairmen...
By: Kab S. Hong M.D.
Continue reading here:
Bone Marrow Stem Cell Therapy / Stem Cell Prolotherapy - Video
Iran opens cell therapy center
By raymumme
Source: ISNA
Iran inaugurated the cell therapy and regenerative medicine center affiliated to the country's Red Crescent Society in a ceremony attended by Iranian Vice President for Science and Technology Affairs Sorena Sattari.
"Stem cells are of great importance for the future. If we want to describe the modern medicine, we should say that one of its important bases is stem cell," he said.
He also said scientific projects take 10-15 years to turn into trade products.
In 2013, Iran hosted an international congress on stem cell and biomedicine attended by representatives of major medical research groups mostly from China, India, Italy and US and Iran have taken part in the two-day event and was organized by Iran's Royan institute.
The congress aimed to bring together the researchers and practitioners from all over the world in stem cells and reproductive biomedicine to stimulate and promote research in this area.
Stem cell research is one of the most promising research areas in modern biomedicine. However, due to moral and ethical debates, it remains a controversial issue in many regions of the world.
Stem cells have been shown to have significant capability to develop into a plethora of different cell types and work as a repair system to replenish cells with specialized functions.
Due to the efforts of Iranian scientists, doctors, engineers and researchers, Iran has advanced tremendously in the fields of stem cell research, medicine, nanotechnology, biotechnology and aerospace engineering.
New Technique for Bioengineering Stem Cells Shows Promise in HIV Resistance
By Sykes24Tracey
Sacramento, Calif. (PRWEB) December 22, 2014
Using modified human stem cells, a team of UC Davis scientists has developed an improved gene therapy strategy that in animal models shows promise as a functional cure for the human immunodeficiency virus (HIV) that causes AIDS. The achievement, which involves an improved technique to purify populations of HIV-resistant stem cells, opens the door for human clinical trials that were recently approved by the U.S. Food and Drug Administration.
We have devised a gene therapy strategy to generate an HIV-resistant immune system in patients, said Joseph Anderson, principal investigator of the study and assistant professor of internal medicine. We are now poised to evaluate the effectiveness of this therapy in human clinical trials.
Anderson and his colleagues modified human stem cells with genes that resist HIV infection and then transplanted a near-purified population of these cells into immunodeficient mice. The mice subsequently resisted HIV infection, maintaining signs of a healthy immune system.
The findings are now online in a paper titled Safety and efficacy of a tCD25 pre-selective combination anti-HIV lentiviral vector in human hematopoietic stem and progenitor cells, and will be published in the journal Stem Cells.
Using a viral vector, the researchers inserted three different genes that confer HIV resistance into the genome of human hematopoietic stem cells cells destined to develop into immune cells in the body. The vector also contains a gene which tags the surface of the HIV-resistant stem cells. This allows the gene-modified stem cells to be purified so that only the ones resistant to HIV infection are transplanted. The stem cells were then delivered into the animal models, with the genetically engineered human stem cells generating an HIV-resistant immune system in the mice.
The three HIV-resistant genes act on different aspects of HIV infection one prevents HIV from exposing its genetic material when inside a human cell; another prevents HIV from attaching to target cells; and the third eliminates the function of a viral protein critical for HIV gene expression. In combination, the genes protect against different HIV strains and provide defense against HIV as it mutates.
After exposure to HIV infection, the mice given the bioengineered cells avoided two important hallmarks of HIV infection: a drop in human CD4+ cell levels and a rise in HIV virus in the blood. CD4+ is a glycoprotein found on the surface of white blood cells, which are an important part of the normal immune system. CD4+ cells in patients with HIV infection are carefully monitored by physicians so that therapies can be adjusted to keep them at normal level: If levels are too low, patients become susceptible to opportunistic infections characteristic of AIDS. In the experiments, mice that received the genetically engineered stem cells and infected with two different strains of HIV were still able to maintain normal CD4+ levels. The mice also showed no evidence of HIV virus in their blood.
Although other HIV investigators had previously bioengineered stem cells to be resistant to HIV and conducted clinical trials in human patients, efforts were stymied by technical problems in developing a pure population of the modified cells to be transplanted into patients. During the process of genetic engineering, a significant percentage of stem cells remain unmodified, leading to poor resistance when the entire population of modified cells is transplanted into humans or animal models. In the current investigation, the UC Davis team introduced a handle onto the surface of the bioengineered cells so that the cells could be recognized and selected. This development achieved a population of HIV-resistant stem cells that was greater than 94 percent pure.
Developing a technique to purify the population of HIV-resistant stem cells is the most important breakthrough of this research, said Anderson, whose laboratory is based at the UC Davis Institute for Regenerative Cures. We now have a strategy that shows great promise for offering a functional cure for the disease.
Visit link:
New Technique for Bioengineering Stem Cells Shows Promise in HIV Resistance
Adult Stem Cell Technology Center, LLCs Director Sherley's Address on Whats Holding Back Regenerative Medicine …
By Sykes24Tracey
Boston, MA (PRWEB) December 23, 2014
Earlier this year in a June 24 international conference presentation, Dr. James L. Sherley, director of the Adult Stem Cell Technology Center, LLC (ASCTC) focused attention on an often overlooked and under appreciated unique property of adult tissue stem cells. His title Asymmetric Self-Renewal by Distributed Stem Cells: Misunderstood in the Past, Important for the Future, embodied the essence of his message to congress participants. He gave the address at the 4th World Congress on Cell Science and Stem Cell Research in Valencia, Spain.
The international congress was organized by the Omics Group as a part of its mission to foster the dissemination of leading discoveries and advances in life sciences research. Their posting this month of the slides from Dr. Sherley's June 24 keynote address now provides worldwide open access to life sciences investigators - stem cell biologists in particular - of the concepts that he emphasized.
In a 2008 publication [Breast Disease 29, 37-46, 2008], Sherley coined the new term distributed stem cells (DSCs) as a biology-based name for all natural tissue stem cells that are not embryonic in origin. Adult stem cells are included under the DSC heading. DSCs do not make every cell in the body. Their nature is to produce only a limited tissue-specific or organ-specific distribution of the total possible mature cell types. So, for example, liver DSCs make mature liver cells, but not mature cells found in other organs like the lungs.
Since 2001 and the start of "the stem cell debate," Sherley has insisted that only DSCs can be effective for developing new cellular therapies. In his keynote address, he explained to attendees why the counterparts of DSCs human embryonic stem cells (hESCs) and more recently developed induced pluripotent stem cells (iPSCs) could not.
Though many stem cell scientists recognize and acknowledge the genetic defects, incomplete differentiation, and tumor formation problems of hESCs and iPSCs - which their proponents suggest can be solved - few appreciate their greater problem, which cannot be solved. Unlike DSCs, hESCs and iPSCs lack the property of asymmetric self-renewal.
Sherleys main message is that asymmetric self-renewal, which is the gnomonic for DSCs the very property that defines DSCs is essential for effective cellular therapies. Asymmetric self-renewal means that DSCs can actively multiply with simultaneous reproduction of themselves and production of mature cells. This ability allows DSCs to replenish mature cells, which are continuously lost from tissues and organs, but not lose their genetic blueprint required for tissue and organ renewal and repair.
The asymmetric self-renewal of DSCs is a crucial consideration for all aspects of their study and use. Sherley argues that overlooking it is holding back progress in regenerative medicine. Asymmetric self-renewal is the factor that limits the production of DSCs; but it is so unique to them that it can also be used to identify DSCs, which are notorious for being elusive. The ASCTCs patented technologies for producing and counting DSCs for research and clinical development are grounded in the companys special research and bioengineering expertise for DSC asymmetric self-renewal.
Asymmetric self-renewal may even play a role in the efficient production of iPSCs. At the end of his address, Sherley announced the approval of a new ASCTC patent. The patent covers the invention of a method to make iPSCs from DSCs that were produced by regulating their asymmetric self-renewal (U.S. Patent and Trademark Office No. 8,759,098).
The ASCTC anticipates that despite the new technologys origin in DSC research, it will advance human disease research based on iPSCs. Although iPSCs are not suitable for cell therapy applications, they are uniquely able to provide disease research models for hard to obtain cell types found in patients (e.g., brain cells from autism patients, cardiac cells from heart disease patients).
Excerpt from:
Adult Stem Cell Technology Center, LLCs Director Sherley's Address on Whats Holding Back Regenerative Medicine ...
Test predicts response to treatment for complication of leukemia stem cell treatment
By Sykes24Tracey
(New York City) A new test may reveal which patients will respond to treatment for graft versus host disease (GVHD), an often life-threatening complication of stem cell transplants (SCT) used to treat leukemia and other blood disorders, according to a study led by researchers at the Icahn School of Medicine at Mount Sinai and published online today in the journal Lancet Haematology and in print in the January issue.
Patients with fatal blood cancers like leukemia often require allogenic stem cell SCT to survive. Donor stem cells are transplanted to a recipient, but not without the risk of developing GVHD, a life-threatening complication and major cause of death after SCT. The disease, which can be mild to severe, occurs when the transplanted donor cells (known as the graft) attack the patient (referred to as the host). Symptom severity, however, does not accurately define how patients will respond to treatment and patients are often treated alike with high-dose steroids. Although SCT cures cancer in 50 percent of the patients, 25 percent die from relapsed cancer and there remaining go into remission but later succumb to effects of GVHD.
"High dose steroids is the only proven treatment for GVHD," said James L. M. Ferrara, MD, DSc, Ward-Coleman Chair in Cancer Medicine Professor at the Icahn School of Medicine at Mount Sinai, Director of Hematologic Malignancies Translational Research Center at Tisch Cancer Institute at Mount Sinai. "Those with low-risk GVHD are often over-treated and face significant side-effects from treatment. Patients with high risk GVHD are undertreated and the GVHD progresses, often with fatal consequences. Our goal is to provide the right treatment for each patient. We hope to identify those patients at higher risk and design an aggressive intervention while tailoring a less-aggressive approach for those with low-risk."
Dr. Ferrara, along with a multi-center team of researchers, developed and tested this new scoring system using almost 500 patient blood samples with newly diagnosed GVHD in varying grades from two different centers. They used three validated biomarkers TNFR1, ST2 and Reg3 to create an algorithm that calculated the probability of non-relapse mortality (usually caused by GVHD) that provided three distinct risk scores to predict the patient's response to GVHD treatment.
The acid test was to evaluate the algorithm in a validation set of 300 additional patients from twenty different SCT centers throughout the US. The algorithm worked perfectly, and the cumulative incidence of non-relapse mortality significantly increased as the GVHD score increased, and so the response rate to primary GVHD treatment decreased.
"This new scoring system will help identify patient who may not respond to standard treatments, and may require an experimental and more aggressive approach," said Dr. Ferrara. "And it will also help guide treatment for patients with lower-risk GVHD who may be over-treated. This will allow us to personalize treatment at the onset of the disease. Future algorithms will prove increasingly useful to develop precision medicine for all SCT patients."
In order to capitalize on this discovery, Dr. Ferrara has created the Mount Sinai Acute GVHD International Consortium (MAGIC) which consists of a group of ten SCT centers in the US and Europe who will collaborate to use this new scoring system to test new treatments for acute GVHD. Dr. Ferrara and colleagues have also written a protocol to treat high-risk GVHD that has been approved by the FDA.
###
Co-collaborators included University of Michigan, University of Regensburg, and the Blood and Marrow Clinical Trials Network.
The study was supported by grants from the National Cancer Institute; the National Heart, Lung, and Blood Institute, the National Institute of Allergy and Infectious Diseases, the Doris Duke Charitable Fund, the American Cancer Society, and the Judith Devries Fund.
Visit link:
Test predicts response to treatment for complication of leukemia stem cell treatment
Stemiotics Licenses Modified RNA for Cell Reprogramming
By daniellenierenberg
San Diego, CA (PRWEB) December 22, 2014
Stemiotics, Inc., a supplier of stem cell generation services, today announced it has licensed key intellectual property pertaining to the application of modified RNA from CELLSCRIPT, LLC of Madison, WI. CELLSCRIPT holds an exclusive license to a portfolio of issued and pending patents based on discoveries made at the University of Pennsylvania covering the use of synthetic messenger RNA (mRNA) containing modified nucleotides to evade antiviral responses in mammalian cells. This breakthrough technology has opened new vistas for the application of mRNA as a gene expression vector in human therapeutics and cell fate manipulation. The license to Stemiotics is for use of modified RNA in the production of human induced pluripotent stem cells (iPSCs) for research applications such as disease modeling and drug discovery.
Stemiotics is already using CELLSCRIPT's ultra-low immunogenicity mRNA to reprogram human skin cells into pluripotent stem cells with the potential to become any cell type in the body. In addition to the incorporation of modified nucleotides, CELLSCRIPT's advanced synthetic mRNA is subject to novel purification techniques that virtually eliminate residual innate immune responses to the mRNA on delivery into human or animal cells in vivo or in culture. Stemiotics is committed to applying clinically relevant, state-of-the-art technology in its iPSC derivation pipeline. The company uses only xeno-free reagents at all steps of the process, from the initial expansion of the donor skin cells to the cryogenic preservation of the artificially-induced pluripotent stem cells. Stemiotics employs the most potent cocktail of cellular reprogramming factors currently available, including engineered transcription factors based on IP which has been exclusively licensed to CELLSCRIPT. This sophisticated technology allows Stemiotics to convert human skin cells into pluripotent stem cells in just over a week in feeder-free conditions and without the need for drug-like small molecule accelerants.
Stemiotics believes that the mRNA-based reprogramming system it has developed is the fastest, most productive and safest approach to converting human skin cells into pluripotent stem cells yet devised. The company offers high-throughput iPSC derivation on a fee-for-service basis with fast turnaround times and at a cost of only $1000 per line, an order of magnitude below prevailing industry norms. The licensing relationship with CELLSCRIPT will further enhance Stemiotics position as an emerging leader in the field of cellular reprogramming, with all its great promise for advancing the understanding of disease, the development of new drugs and, ultimately, for cell-based therapies and regenerative medicine.
Read more from the original source:
Stemiotics Licenses Modified RNA for Cell Reprogramming
stem cell therapy Nephrology Perspectives.Prof. Hussein Sheashaa 18.12.2014 – Video
By NEVAGiles23
stem cell therapy Nephrology Perspectives.Prof. Hussein Sheashaa 18.12.2014
stem cell therapy Nephrology Perspectives.Prof. Hussein Sheashaa 18.12.2014.
By: HusseinSheashaa
Follow this link:
stem cell therapy Nephrology Perspectives.Prof. Hussein Sheashaa 18.12.2014 - Video
Stem Cell Treatment Heart Disease – ASCI – Asian Stem Cell …
By daniellenierenberg
Cardiovascular diseases remain the biggest cause of deaths worldwide, though over the last two decades, cardiovascular mortality rates have declined in many high-income countries but have increased at an astonishingly fast rate in low- and middle-income countries. The percentage of premature deaths from cardiovascular disease range from 4% in high-income countries to 42% in low-income countries. More than 17 million people died from cardiovascular diseases in 2008. Each year, heart disease kills more Americans than cancer. In recent years, cardiovascular risk in women has been increasing and has killed more women than breast cancer.
Measures to prevent cardiovascular disease may include:
A fairly recent emphasis is on the link between low-grade inflammation that hallmarks atherosclerosis and its possible interventions. C-reactive protein (CRP) is a common inflammatory marker that has been found to be present in increased levels in patients at risk for cardiovascular disease. Also osteoprotegerin which is involved with regulation of a key inflammatory transcription factor called NF-B has been found to be a risk factor of cardiovascular disease and mortality. Studies have shown that Stem Cells have shown the ability to reduce inflammation.
Streaming NIH Database:
Visit link:
Stem Cell Treatment Heart Disease - ASCI - Asian Stem Cell ...
Can scientists clone a rhinoceros?
By daniellenierenberg
Nola, the only surviving northern white rhinoceros at the San Diego Zoo Safari Park, rests at the facility on Dec. 18. / photo by Charlie Neuman * U-T San Diego
When the northern white rhinoceros Angalifu died at the San Diego Zoo Safari Park last week, he left his species a step closer to extinction. Only five of his kind remain, most of them elderly.
However, the gentle, two-ton animal also left behind a part of himself that may let scientists breathe new life into the imperiled species. They plan to use DNA samples preserved in the San Diego Frozen Zoo to create more white rhinos.
In their most ambitious vision something that has never been tried for any creature other than lab mice the researchers aim to coax skin cells from Angalifu and others of his kind to become stem cells, and then sperm and eggs, and then implant the embryos in surrogate rhinos.
This approach would go beyond cloning by producing more genetic diversity in the resulting offspring. Its unclear how long scientists will need to achieve the unprecedented feat, but they remain committed to the years-long effort.
Its really brilliant in retrospect that when animals die, you can freeze some of their cells and theyll last forever, said Jeanne Loring, a stem cell pioneer at The Scripps Research Institute in La Jolla who is a member of the project.
Angalifu came to the San Diego Zoo in 1990, joining two females, Nola and Noti, who had arrived a year earlier. The easygoing animals were favorites with zookeepers, who enjoyed training them and scratching their thick but sensitive hides.
Northern white rhinos, which once roamed central Africa in Chad, Uganda, Sudan and the Central African Republic, have been nearly wiped out by civil war and poaching. Their horns are valued as dagger handles and are mistakenly seen as an aphrodisiac or medicinal aid.
Researchers and zoo officials in several countries decided to try to preserve the species through captive breeding of the few remaining northern white rhinoceroses.
The San Diego Zoo Safari Park had succeeded in breeding southern white rhinos, a close relative of the northern variety. Nearly 100 southern white calves have been born at the facility.
The rest is here:
Can scientists clone a rhinoceros?
CDI | iPS Cells – Cellular Dynamics International
By JoanneRUSSELL25
How does CDI's technology work? A human biological sample, for example blood or skin, is obtained, and the cells within the sample are grown under appropriate cell culture conditions. In the episomal reprogramming method, vectors containing multiple reprogramming genes are introduced into the cells.
While the vectors turn genes in the cell on and off, reprogramming them to a stem cell state, they do not integrate into the genome itself. This method alleviates concerns arising over the potential risks associated with the insertion of foreign DNA to induce reprogramming, which other prior iPS methods use (bottom row in illustration above).
iPS cells are somatic cells (e.g., skin or blood) that have been genetically reprogrammed to a pluripotent stem cell state through forced expression of pluripotency genes.By definition, iPS cells replicate indefinitely and have the potential to differentiate into any cell type in the human body.
Reprogramming factors are the genes introduced into somatic cells that induce a pluripotent stem cell state. Initial reports describing the creation of human iPS cells utilized four reprogramming factors: OCT4, SOX2, KLF4 and MYC (OSKM) (Takahashi, et al. 2007) or OCT4, SOX2, NANOG and LIN28 (OSNL) (Yu, et al. 2007). Subsequent studies revealed that reprogramming using a specific combination of all 6 of these factors combined with SV40LT and a cocktail of small molecules yields iPS cells at much higher efficiency (Yu, et al. 2009; Yu, et al. 2011).
iPS cells are genetically reprogrammed through forced expression of pluripotency genes into somatic cells.The expression of these genes can be accomplished using a variety of different methods.The episomal reprogramming method introduces pluripotency genes into a target cell using circular DNA plasmid vectors (i.e. episomes) that replicate autonomously within the cell cytoplasm and do not integrate into the host cell genome.
Initial methods of iPS cell reprogramming utilized retroviral and lentiviral vectors to introduce pluripotency genes into somatic cells. While these methods generally work well, the viral DNA integrates into the genome of the target cell, and the resulting iPS cells (and cells differentiated from them) will contain foreign DNA, which may result in defects and errors. By contrast, episomal vectors replicate autonomously within the cell cytoplasm and do not integrate into the host genome. In addition, the episomal vectors are released from the target cell at a rate of ~5% per cell cycle resulting in transgene-free or footprint-free iPS cells.These features, combined with recent advancements in episomal reprogramming efficiency, have led to a strong preference for this method to alleviate concerns about genome integrity for drug discovery and cell therapy applications.
Episomal reprogramming has been reported successful from a variety of somatic cells, including fibroblasts, lymphoblastoid cells, and peripheral blood mononuclear cells. Importantly, CDI has optimized its episomal reprogramming method to achieve high efficiency iPS cell generation from small amounts of human peripheral blood. Not only does this enable more streamlined and less invasive collection of donor samples, but ensures increased sterility and lower cost production of iPS cells. In addition, efficient iPS cell production from peripheral blood enables access to large banks of normal and disease-associated clinical samples for disease research and drug screening.
CDIs suite of MyCell Products includes episomal reprogramming of customer-provided donor samples and subsequent genetic engineering and/or differentiation of the iPS cells. In addition, for researchers who would like to generate their own iPS cells, CDIs episomal reprogramming technology is available as a kit from Life Technologies, including Episomal iPSC Reprogramming Vectors, Vitronectin, and Essential 8 Medium. Customer-generated iPS cells using this kit may then be transferred to CDI for genetic engineering and/or differentiation through MyCell Products.
Integration-free iPS cells have been generated using a variety of methods including adenovirus, Sendai virus, piggyBac, minicircle vectors, and direct introduction of protein or synthesized mRNA. The efficiency and success rate of these methods varies depending on the source of somatic cells and experimental conditions, but in general these approaches are limited by impractically low reprogramming efficiency, requirement for higher biosafety containment, and/or labor- and cost-intensive protocols that require repeated transfection/infection.Compared to these methods, episomal reprogramming is virus-free, safe to use, stable, and inexpensive.
A variety of small molecules have been identified that can functionally substitute for one or more reprogramming factors and/or improve the efficiency of iPS cell reprogramming. However, no combination of small molecules has been shown to functionally substitute for all four reprogramming factors. The use of small molecules in iPS cell reprogramming offers some practical advantages including the ability to optimize the chemical structure, fine-tune dose and concentration, and simplify handling and application protocols. However, the use of small molecules presents a number of scientific challenges. Most notably, small molecules may have more than one target, which may or may not be known. In addition, unexpected toxicity and other side effects in vivo may interfere with the clinical application of small molecules.
Here is the original post:
CDI | iPS Cells - Cellular Dynamics International