Page 489«..1020..488489490491..500510..»

Nail stem cells prove more versatile than press ons

By JoanneRUSSELL25

PUBLIC RELEASE DATE:

20-Nov-2014

Contact: Cristy Lytal lytal@med.usc.edu 323-442-2172 University of Southern California - Health Sciences

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the reasons why.

A team of USC Stem Cell researchers led by principal investigator Krzysztof Kobielak and co-first authors Yvonne Leung and Eve Kandyba has identified a new population of nail stem cells, which have the ability to either self-renew or undergo specialization or differentiation into multiple tissues.

To find these elusive stem cells, the team used a sophisticated system to attach fluorescent proteins and other visible "labels" to mouse nail cells. Many of these cells repeatedly divided, diluting the fluorescence and labels among their increasingly dim progeny. However, a few cells located in the soft tissue attached to the base of the nail retained strong fluorescence and labels because they either did not divide or divided slowly -- a known property of many stem cells.

The researchers then discovered that these slow-dividing stem cells have the flexibility to perform dual roles. Under normal circumstances, the stem cells contribute to the growth of both the nails and the adjacent skin. However, if the nail is injured or lost, a protein called "Bone Morphogenic Protein," or BMP, signals to the stem cells to shift their function exclusively to nail repair.

The researchers are now wondering whether or not the right signals or environmental cues could induce these nail stem cells to generate additional types of tissue -- potentially aiding in the repair of everything from nail and finger defects to severe skin injuries and amputations.

"That was very surprising discovery, since the dual characteristic of these nail stem cells to regenerate both the nail and skin under certain physiological conditions is quite unique and different from other skin stem cells, such as those of the hair follicle or sweat gland," said Kobielak.

###

See more here:
Nail stem cells prove more versatile than press ons

To Read More: Nail stem cells prove more versatile than press ons
categoriaSkin Stem Cells commentoComments Off on Nail stem cells prove more versatile than press ons | dataNovember 22nd, 2014
Read All

Buddy the beagle can walk again – Video

By Sykes24Tracey


Buddy the beagle can walk again
Buddy the beagle wasn #39;t able to walk when he first arrived at the University of Minnesota Veterinary Medical Center. With the help of U of M veterinarians and staff, using stem-cell therapy,...

By: UMN Veterinary Medical Center

See the rest here:
Buddy the beagle can walk again - Video

To Read More: Buddy the beagle can walk again – Video
categoriaUncategorized commentoComments Off on Buddy the beagle can walk again – Video | dataNovember 22nd, 2014
Read All

Elite Emage Stem Cell Therapy – Video

By Sykes24Tracey


Elite Emage Stem Cell Therapy
Elite Emage Stem Cell Therapy.

By: Elite Emage

See original here:
Elite Emage Stem Cell Therapy - Video

To Read More: Elite Emage Stem Cell Therapy – Video
categoriaUncategorized commentoComments Off on Elite Emage Stem Cell Therapy – Video | dataNovember 22nd, 2014
Read All

Local clinic treats animals with stem cell therapy

By daniellenierenberg

AVON LAKE, OH (WOIO) - When Shannon Goulding's bloodhound Butler tore a ligament in his knee his entire personality changed.

"He was sedentary, and he wasn't as active as before," said Goulding.

Dr. Petti a veterinarianat the Avon Lake Animal Clinic told Goulding, who also works at the clinic, suggested that stem cell therapy could help.

"Watching him walk he looked stiff and uncomfortable," said Petti.

The therapy was successful. Goulding said after four weeks after the surgery she could see a change the way Butler moved.

Stem cell therapy helps animals suffering from sore knees and joints by using their own fat cells.

"You take them from the patient, you process them, make them active, and then you re inject them into the parts of the animal that are giving them problems," said Petti.

Petti said Avon Lake Animal Clinic has helped about 15 animals with stem cell therapy and people from all over the country have been calling.

One injection of stem cells can last up to three years, and after that a second injection may be needed.

Stem cell therapy is also an expensive procedure. It ranges from $2,000-2,500, but for Goulding she says seeing Butler run free without pain is worth it.

Link:
Local clinic treats animals with stem cell therapy

To Read More: Local clinic treats animals with stem cell therapy
categoriaUncategorized commentoComments Off on Local clinic treats animals with stem cell therapy | dataNovember 22nd, 2014
Read All

Health Beat: Stem cells to repair broken chromosomes

By JoanneRUSSELL25

CLEVELAND -

Our bodies contain 23 pairs of them, 46 total, but if chromosomes are damaged, they can cause birth defects, disabilities, growth problems, even death.

Case Western Reserve University scientist Anthony Wynshaw-Boris is studying how to repair damaged chromosomes with the help of a recent discovery. He's taking skin cells and reprogramming them to work like embryonic stem cells, which can grow into different cell types.

"You're taking adult or a child's skin cells. You're not causing any loss of an embryo, and you're taking those skin cells to make a stem cell," said Wynshaw-Boris.

Scientists studied patients with a specific defective chromosome that was shaped like a ring. They took the patients' skin cells and reprogrammed them into embryonic-like cells in the lab. They found this process caused the damaged "ring" chromosomes to be replaced by normal chromosomes.

"It at least raises the possibility that ring chromosomes will be lost in stem cells," said Wynshaw-Boris.

While this research was only conducted in lab cultures on the rare ring-shaped chromosomes, scientists hope it will work in patients with common abnormalities like Down syndrome.

"What we're hoping happens is we might be able to use, modify, what we did, to rescue cell lines from any patient that has any severe chromosome defect," Wynshaw-Boris explained.

It's research that could one day repair faulty chromosomes and stop genetic diseases in their tracks.

The reprogramming technique that transforms skin cells to stem cells was so groundbreaking that a Japanese physician won the Nobel Prize in medicine in 2012 for developing it.

Originally posted here:
Health Beat: Stem cells to repair broken chromosomes

To Read More: Health Beat: Stem cells to repair broken chromosomes
categoriaSkin Stem Cells commentoComments Off on Health Beat: Stem cells to repair broken chromosomes | dataNovember 20th, 2014
Read All

Mount Sinai researchers awarded grant to find new stem cell therapies for vision recovery

By LizaAVILA

PUBLIC RELEASE DATE:

20-Nov-2014

Contact: Jessica Mikulski jmikulski@nyee.edu 212-979-4274 The Mount Sinai Hospital / Mount Sinai School of Medicine @mountsinainyc

The National Eye Institute (NEI), a division of the National Institutes of Health, has awarded researchers at the Icahn School of Medicine at Mount Sinai a five-year grant totaling $1 million that will support an effort to re-create a patients' ocular stem cells and restore vision in those blinded by corneal disease.

About six million people worldwide have been blinded by burns, trauma, infection, genetic diseases, and chronic inflammation that result in corneal stem cell death and corneal scarring.

There are currently no treatments for related vision loss that are effective over the long term. Corneal stem cell transplantation is an option in the short term, but availability of donor corneas is limited, and patients must take medications that suppress their immune systems for the rest of their lives to prevent rejection of the transplanted tissue.

A newer proposed treatment option is the replacement of corneal stem cells to restore vision. The grant from the NEI will fund Mount Sinai research to re-create a patient's own stem cells and restore vision in those blinded by corneal disease. Technological advances in recent years have enabled researchers to take mature cells, in this case eyelid or oral skin cells, and coax them backward along the development pathways to become stem cells again. These eye-specific stem cells would then be redirected down pathways that become needed replacements for damaged cells in the cornea, in theory restoring vision.

"Our findings will allow the creation of transplantable eye tissue that can restore the ocular surface," said Albert Y. Wu, MD, PhD, Assistant Professor, Department of Ophthalmology at the Icahn School of Medicine at Mount Sinai and principle investigator for the grant-funded effort. "In the future, we will be able to re-create a patient's own corneal stem cells to restore vision after being blind," added Dr. Wu, also Director of the Ophthalmic Plastic and Reconstructive Surgery, Stem Cell and Regenerative Medicine Laboratory in the Department of Ophthalmology and a member of the Black Family Stem Cell Institute at Icahn School of Medicine. "Since the stem cells are their own, patient's will not require immunosuppressive drugs, which would greatly improve their quality of life."

Specifically, the grant will support efforts to discover new stem cell therapies for ocular surface disease and make regenerative medicine a reality for people who have lost their vision. The research team will investigate the most viable stem cell sources, seek to create ocular stem cells from eyelid or oral skin cells, explore the molecular pathways involved in ocular and orbital development, and develop cutting-edge biomaterials to engraft a patient's own stem cells and restore vision.

###

See the article here:
Mount Sinai researchers awarded grant to find new stem cell therapies for vision recovery

To Read More: Mount Sinai researchers awarded grant to find new stem cell therapies for vision recovery
categoriaSkin Stem Cells commentoComments Off on Mount Sinai researchers awarded grant to find new stem cell therapies for vision recovery | dataNovember 20th, 2014
Read All

Fat and Bone Marrow-Derived Stem Cells Combo Shows Promise in Preventing Transplant Rejection

By raymumme

Durham, NC (PRWEB) November 20, 2014

With more soldiers returning from combat suffering devastating injuries, doctors are turning to a reconstructive surgery that uses tissue transplantation along with immuno-suppression therapy. This approach has had encouraging results; however, rejection of transplanted tissue from an unmatched donor remains a critical complication. A new study found in the latest issue of STEM CELLS Translational Medicine reports that researchers may have found a way around that.

We demonstrated in mice that a single infusion of adipose-derived stromal cells (ASC) which are stem cells taken from fat in a minimally invasive procedure from an unmatched donor combined with an extremely low dose of bone marrow cells resulted in stable long-term tolerance of the skin graft without undo consequences such as graft versus host disease, said Thomas Davis, Ph.D., a contractor from the Henry M. Jackson Foundation who is working at the Naval Medical Research Centers Regenerative Medicine Department. Dr. Davis is lead author of the study.

He added, As we move forward, we are cautiously optimistic, appreciating that the transition from these laboratory models to proof-of-principle preclinical studies is challenging and not straightforward. If successful, the technology has diverse therapeutic applications in clinical transplantation in both military and civilian settings.

The research team wanted to try using ASCs because these cells have proven to be more potent than bone marrow and cord-blood derived stem cells when it comes to inhibiting the bodys rejection of transplantations from an unmatched donor. They conducted the study by doing skin grafts in mice. One group of grafted mice received no stem cell transfusions; one group received human-derived ASCs after the graft occurred; and another group received a combination of human ASCs and stem cells harvested from the mouses own bone marrow, also after placement of the graft.

More than 200 days later, the combination of human ASC and limited numbers of blood marrow stem cells effectively prevented rejection, with no evidence of graft versus host disease, Dr. Davis reported.

Navy Capt. Eric A. Elster, M.D., professor and chair of the surgery department at Uniformed Services University of the Health Sciences, helped lead the study. ASC constitutively produced high levels of anti-inflammatory/immunoregulatory factors, he said. While further work is needed to validate this approach in other laboratory models before clinical trials can begin, the ability to use ASC, which are non-donor specific and clinically feasible, to induce tolerance opens a new horizon in transplantation.

The implications of this research are broad, said Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. If these findings are duplicated in additional models and in human trials, there is potential to apply this strategy to many areas of transplantation.

###

This article, Adipose-derived Stromal Cells Promote Allograft Tolerance Induction, and more can be accessed at http://www.stemcellsTM.com.

Read more:
Fat and Bone Marrow-Derived Stem Cells Combo Shows Promise in Preventing Transplant Rejection

To Read More: Fat and Bone Marrow-Derived Stem Cells Combo Shows Promise in Preventing Transplant Rejection
categoriaSkin Stem Cells commentoComments Off on Fat and Bone Marrow-Derived Stem Cells Combo Shows Promise in Preventing Transplant Rejection | dataNovember 20th, 2014
Read All

Researchers Convert Skin Cells To Replace HD-Damaged Brain Cells

By JoanneRUSSELL25

By Estel Grace Masangkay

A team of researchers at the Washington University School of Medicine in St. Louis reported that they have discovered a way to directly convert human skin cells into a type of brain cell that has been damaged by Huntingtons disease.

The team chose to produce a certain type of brain cell known as medium spiny neurons, which play a key part in controlling movement. Medium spiny neurons are the cells most affected by Huntingtons disease, a neurodegenerative disorder characterized by involuntary muscle movements and cognitive decline. The disease symptoms typically begin showing in mid-adulthood, and they steadily worsen over time.

For their experiment, the scientists used adult human skin cells instead of the typical mouse cells or embryonic human cells. The team placed the skin cells in an environment similar to the environment of brain cells and then exposed them to two small molecules of RNA named miR-9 and miR-124. In their past research, the scientists have discovered that these microRNAs turn skin cells into a mix of various neuron types. Dr. Yoo and his colleagues fine-tuned the chemical signals by further exposing the cells to transcription factors they knew are found in the part of the brain where medium spiny neurons thrive. Results show that the converted cells survived for at least six months after they were injected into mices brains. The cells also behaved in a similar fashion to native brain cells.

Not only did these transplanted cells survive in the mouse brain, they showed functional properties similar to those of native cells. These cells are known to extend projections into certain brain regions. And we found the human transplanted cells also connected to these distant targets in the mouse brain. That's a landmark point about this paper, said Dr. Andrew S. Yoo, assistant professor of developmental biology in Washington University School of Medicine and senior author of the study.

The new process differs from other techniques in that it does not need to undergo a stem cell phase, thereby avoiding production of multiple cell types. The scientists added that using adult human cells offers the opportunity to use the patients own cells in future procedures, which would radically minimize the risk of rejection by the patients immune system. Dr. Yoos team is now preparing to test skin cells taken from patients with Huntingtons disease using the approach. They also intend to inject healthy reprogrammed human cells into mice models of Huntingtons disease to check whether these have any effect on the diseases symptoms.

The researchers work was published in the previous months issue of the journal Neuron.

Read the original:
Researchers Convert Skin Cells To Replace HD-Damaged Brain Cells

To Read More: Researchers Convert Skin Cells To Replace HD-Damaged Brain Cells
categoriaSkin Stem Cells commentoComments Off on Researchers Convert Skin Cells To Replace HD-Damaged Brain Cells | dataNovember 20th, 2014
Read All

Mount Sinai Researchers Awarded $1 Million Grant to Find New Stem Cell Therapies for Vision Recovery

By raymumme

Contact Information

Available for logged-in reporters only

Newswise NEW YORK November 20, 2014 The National Eye Institute (NEI), a division of the National Institutes of Health, has awarded researchers at the Icahn School of Medicine at Mount Sinai a five-year grant that will support an effort to re-create a patients ocular stem cells and restore vision in those blinded by corneal disease.

About six million people worldwide have been blinded by burns, trauma, infection, genetic diseases, and chronic inflammation that result in corneal stem cell death and corneal scarring. There are currently no treatments for related vision loss that are effective over the long term. Corneal stem cell transplantation is an option in the short term, but availability of donor corneas is limited, and patients must take medications that suppress their immune systems for the rest of their lives to prevent rejection of the transplanted tissue.

A newer proposed treatment option is the replacement of corneal stem cells to restore vision. The grant from the NEI will fund Mount Sinai research to re-create a patients own stem cells and restore vision in those blinded by corneal disease. Technological advances in recent years have enabled researchers to take mature cells, in this case eyelid or oral skin cells, and coax them backward along the development pathways to become stem cells again. These eye-specific stem cells would then be redirected down pathways that become needed replacements for damaged cells in the cornea, in theory restoring vision.

Our findings will allow the creation of transplantable eye tissue that can restore the ocular surface, said Albert Y. Wu, MD, PhD, Assistant Professor, Department of Ophthalmology at the Icahn School of Medicine at Mount Sinai and principle investigator for the grant-funded effort. In the future, we will be able to re-create a patients own corneal stem cells to restore vision after being blind, added Dr. Wu, also Director of the Ophthalmic Plastic and Reconstructive Surgery, Stem Cell and Regenerative Medicine Laboratory in the Department of Ophthalmology and a member of the Black Family Stem Cell Institute at Icahn School of Medicine. Since the stem cells are their own, patients will not require immunosuppressive drugs, which would greatly improve their quality of life.

Specifically, the grant will support efforts to discover new stem cell therapies for ocular surface disease and make regenerative medicine a reality for people who have lost their vision. The research team will investigate the most viable stem cell sources, seek to create ocular stem cells from eyelid or oral skin cells, explore the molecular pathways involved in ocular and orbital development, and develop cutting-edge biomaterials to engraft a patients own stem cells and restore vision.

Other investigators from Mount Sinai include Ihor Lemischka, PhD, Director, Black Family Stem Cell Institute and J. Mario Wolosin, PhD, Professor of Ophthalmology. The research is supported by NEI grant EY023997.

###

View post:
Mount Sinai Researchers Awarded $1 Million Grant to Find New Stem Cell Therapies for Vision Recovery

To Read More: Mount Sinai Researchers Awarded $1 Million Grant to Find New Stem Cell Therapies for Vision Recovery
categoriaSkin Stem Cells commentoComments Off on Mount Sinai Researchers Awarded $1 Million Grant to Find New Stem Cell Therapies for Vision Recovery | dataNovember 20th, 2014
Read All

Signaling molecule crucial to stem cell reprogramming

By Sykes24Tracey

PUBLIC RELEASE DATE:

20-Nov-2014

Contact: Scott LaFee slafee@ucsd.edu 619-543-5232 University of California - San Diego @UCSanDiego

While investigating a rare genetic disorder, researchers at the University of California, San Diego School of Medicine have discovered that a ubiquitous signaling molecule is crucial to cellular reprogramming, a finding with significant implications for stem cell-based regenerative medicine, wound repair therapies and potential cancer treatments.

The findings are published in the Nov. 20 online issue of Cell Reports.

Karl Willert, PhD, assistant professor in the Department of Cellular and Molecular Medicine, and colleagues were attempting to use induced pluripotent stem cells (iPSC) to create a "disease-in-a-dish" model for focal dermal hypoplasia (FDH), a rare inherited disorder caused by mutations in a gene called PORCN. Study co-authors V. Reid Sutton and Ignatia Van den Veyver at Baylor College of Medicine had published the observation that PORCN mutations underlie FDH in humans in 2007.

FDH is characterized by skin abnormalities such as streaks of very thin skin or different shades, clusters of visible veins and wartlike growths. Many individuals with FDH also suffer from hand and foot abnormalities and distinct facial features. The condition is also known as Goltz syndrome after Robert Goltz, who first described it in the 1960s. Goltz spent the last portion of his career as a professor at UC San Diego School of Medicine. He retired in 2004 and passed away earlier this year.

To their surprise, Willert and colleagues discovered that attempts to reprogram FDH fibroblasts or skin cells with the requisite PORCN mutation into iPSCs failed using standard methods, but succeeded when they added WNT proteins - a family of highly conserved signaling molecules that regulate cell-to-cell interactions during embryogenesis.

"WNT signaling is ubiquitous," said Willert. "Every cell expresses one or more WNT genes and every cell is able to receive WNT signals. Individual cells in a dish can grow and divide without WNT, but in an organism, WNT is critical for cell-cell communication so that cells distinguish themselves from neighbors and thus generate distinct tissues, organs and body parts."

WNT signaling is also critical in limb regeneration (in some organisms) and tissue repair.

See the article here:
Signaling molecule crucial to stem cell reprogramming

To Read More: Signaling molecule crucial to stem cell reprogramming
categoriaUncategorized commentoComments Off on Signaling molecule crucial to stem cell reprogramming | dataNovember 20th, 2014
Read All

Pluripotent cells created by nuclear transfer can prompt immune reaction, researchers find

By daniellenierenberg

PUBLIC RELEASE DATE:

20-Nov-2014

Contact: Krista Conger kristac@stanford.edu 650-725-5371 Stanford University Medical Center @sumedicine

Mouse cells and tissues created through nuclear transfer can be rejected by the body because of a previously unknown immune response to the cell's mitochondria, according to a study in mice by researchers at the Stanford University School of Medicine and colleagues in Germany, England and at MIT.

The findings reveal a likely, but surmountable, hurdle if such therapies are ever used in humans, the researchers said.

Stem cell therapies hold vast potential for repairing organs and treating disease. The greatest hope rests on the potential of pluripotent stem cells, which can become nearly any kind of cell in the body. One method of creating pluripotent stem cells is called somatic cell nuclear transfer, and involves taking the nucleus of an adult cell and injecting it into an egg cell from which the nucleus has been removed.

The promise of the SCNT method is that the nucleus of a patient's skin cell, for example, could be used to create pluripotent cells that might be able to repair a part of that patient's body. "One attraction of SCNT has always been that the genetic identity of the new pluripotent cell would be the same as the patient's, since the transplanted nucleus carries the patient's DNA," said cardiothoracic surgeon Sonja Schrepfer, MD, PhD, a co-senior author of the study, which will be published online Nov. 20 in Cell Stem Cell.

"The hope has been that this would eliminate the problem of the patient's immune system attacking the pluripotent cells as foreign tissue, which is a problem with most organs and tissues when they are transplanted from one patient to another," added Schrepfer, who is a visiting scholar at Stanford's Cardiovascular Institute. She is also a Heisenberg Professor of the German Research Foundation at the University Heart Center in Hamburg, and at the German Center for Cardiovascular Research.

Possibility of rejection

A dozen years ago, when Irving Weissman, MD, professor of pathology and of developmental biology at Stanford, headed a National Academy of Sciences panel on stem cells, he raised the possibility that the immune system of a patient who received SCNT-derived cells might still react against the cells' mitochondria, which act as the energy factories for the cell and have their own DNA. This reaction could occur because cells created through SCNT contain mitochondria from the egg donor and not from the patient, and therefore could still look like foreign tissue to the recipient's immune system, said Weissman, the other co-senior author of the paper. Weissman is the Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research and the director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine.

Read the original:
Pluripotent cells created by nuclear transfer can prompt immune reaction, researchers find

To Read More: Pluripotent cells created by nuclear transfer can prompt immune reaction, researchers find
categoriaUncategorized commentoComments Off on Pluripotent cells created by nuclear transfer can prompt immune reaction, researchers find | dataNovember 20th, 2014
Read All

Stem Cell Treatment Congestive Heart Failure | CHF Stem …

By LizaAVILA

Congestive Heart Failure Treatment Using Stem Cells

Congestive Heart Failureor CHF is a state wherein the heart does not have the capability to properly function as a pump. As a result of the cardiac-malfunction the oxygen pumped into the body is insufficient. Congestive heart failure is generally caused bysimultaneousillnesses. Illnesses that weaken the heart muscle,or diseases that trigger the heart muscles to become stiff, or illnesses that create an increase in oxygen demands for the body which consequently increases the supply for fresh oxygen by the body when the heart is incapable of producing oxygen-rich blood at the level needed.

Congestive heart failure and ishchemic heart disease can have an impact on numerous organs in the body. For instance, the injured areas of the heart directly affected by the sickness does not have the capability to produce enough blood for the kidneys, which then affect their capability to excrete water and salt (sodium). The distressed kidney function may cause the body to retain more fluids than needed by the body. The lungs also may develop pulmonary edema (PE).

PE occurs when the fluid in the lungs diminishes a persons ability to exercise normally. Fluid might likewise accumulate inside the liver, which directly affects it function by impairing the livers capability to create important proteins and also in helping clear the body of harmful elements and/ortoxins. The intestines might also turn out to be much less effective in being able to absorb the vitamins, nutrients and medicines a human needs. The fluids in the body can also accumulate quickly which could result to edema (severe swelling) of the ankles and feet.

An Ejection fraction of 20% would be considered a dangerous level and therefore indicates a highly advanced stage of heart failure. Healthy people usually have ejection fractions in between 52% and 68%.

View post:
Stem Cell Treatment Congestive Heart Failure | CHF Stem ...

To Read More: Stem Cell Treatment Congestive Heart Failure | CHF Stem …
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Treatment Congestive Heart Failure | CHF Stem … | dataNovember 20th, 2014
Read All

NR Skin Launches Anti-Aging Product Line

By LizaAVILA

Woodland Hills, CA (PRWEB) November 19, 2014

Longtime skincare industry professional Nancy Ryan announces the launch of NR Skin, featuring a line of efficacious products that deliver various skin rejuvenation and age repair benefits for all skin types.

According to Dr. Lisa Benest, Board-certified dermatologist, Burbank, CA, the NR Skin line offers a range of daily skincare and skin rejuvenation products distinguished by high concentrations of powerhouse ingredients that are known for their anti-aging properties, such as antioxidant vitamins and minerals, plant stem cells, lipids, as well as peptides. Dr. Benest notes that NR Skin products offer pure, clean ingredients that feel great on the skin and deliver visible results.

Backed by more than 20 years of skincare industry experience and expertise, NR Skin Founder and CEO Nancy Ryan comments, the creation of NR Skin is a culmination of my lifes work and lifelong passion for excellence in skincare. Im thrilled to help people improve their quality of life by achieving healthy, beautiful skin through such pure and effective products.

Before establishing NR Skin in 2014, Ms. Ryan led Pro-Med Consulting, Inc. for 21 years, which was built upon the core mission of giving dermatologists, plastic surgeons and medical spas a viable way to build their own brand equity and expand their businesses with private label, medical-grade skin care products. Over the years, she developed numerous relationships with leading physicians, whose businesses grew significantly by offering patients her high-performance products that bore each doctors name.

Prior to this successful venture, she worked for two pioneering skin care companies, Ortho Dermatologics, (makers of Retin-A Micro/Renova) and NeoStrata, where she had the opportunity to learn about skin care chemistry and the most effective ways to treat various skin conditions with specific product ingredients.

The NR Skin product line consists of: the following clinically tested products: Age-defying Peptide Cream; Citrus Stem Cell Fusion Cream, Neuro-Peptide Serum. Retinol Complex Treatment Super Antioxidant Cream, Super C Serum Treatment, Comfort Cleanser, Lash Teez Eyelash Growth Serum and Sunscreen Lotion SPF30.

To view products and recommended regimens, visit: http://www.nrskin.com Follow us on Facebook: http://www.facebook.com/nrskin and on Twitter: @nrskincompany

Read more from the original source:
NR Skin Launches Anti-Aging Product Line

To Read More: NR Skin Launches Anti-Aging Product Line
categoriaSkin Stem Cells commentoComments Off on NR Skin Launches Anti-Aging Product Line | dataNovember 20th, 2014
Read All

Delivering stem cells into heart muscle may enhance cardiac repair and reverse injury

By Sykes24Tracey

PUBLIC RELEASE DATE:

19-Nov-2014

Contact: Lauren Woods lauren.woods@mountsinai.org 646-634-0869 The Mount Sinai Hospital / Mount Sinai School of Medicine @mountsinainyc

Delivering stem cell factor directly into damaged heart muscle after a heart attack may help repair and regenerate injured tissue, according to a study led by researchers from Icahn School of Medicine at Mount Sinai presented November 18 at the American Heart Association Scientific Sessions 2014 in Chicago, IL.

"Our discoveries offer insight into the power of stem cells to regenerate damaged muscle after a heart attack," says lead study author Kenneth Fish, PhD, Director of the Cardiology Laboratory for Translational Research, Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai.

In the study, Mount Sinai researchers administered stem cell factor (SCF) by gene transfer shortly after inducing heart attacks in pre-clinical models directly into damaged heart tissue to test its regenerative repair response. A novel SCF gene transfer delivery system induced the recruitment and expansion of adult c-Kit positive (cKit+) cardiac stem cells to injury sites that reversed heart attack damage. In addition, the gene therapy improved cardiac function, decreased heart muscle cell death, increased regeneration of heart tissue blood vessels, and reduced the formation of heart tissue scarring.

"It is clear that the expression of the stem cell factor gene results in the generation of specific signals to neighboring cells in the damaged heart resulting in improved outcomes at the molecular, cellular, and organ level," says Roger J. Hajjar, MD, senior study author and Director of the Cardiovascular Research Center at Mount Sinai. "Thus, while still in the early stages of investigation, there is evidence that recruiting this small group of stem cells to the heart could be the basis of novel therapies for halting the clinical deterioration in patients with advanced heart failure."

cKit+ cells are a critical cardiac cytokine, or protein receptor, that bond to stem cell factors. They naturally increase after myocardial infarction and through cell proliferation are involved in cardiac repair.

According to researchers there has been a need for the development of interventional strategies for cardiomyopathy and preventing its progression to heart failure. Heart disease is the number one cause of death in the United States, with cardiomyopathy or an enlarged heart from heart attack or poor blood supply due to clogged arteries being the most common causes of the condition. In addition, cardiomyopathy causes a loss of cardiomyocyte cells that control heartbeat, and changes in heart shape, which lead to the heart's decreased pumping efficiency.

"Our study shows our SCF gene transfer strategy can mobilize a promising adult stem cell type to the damaged region of the heart to improve cardiac pumping function and reduce myocardial infarction sizes resulting in improved cardiac performance and potentially increase long-term survival and improve quality of life in patients at risk of progressing to heart failure," says Dr. Fish.

More here:
Delivering stem cells into heart muscle may enhance cardiac repair and reverse injury

To Read More: Delivering stem cells into heart muscle may enhance cardiac repair and reverse injury
categoriaUncategorized commentoComments Off on Delivering stem cells into heart muscle may enhance cardiac repair and reverse injury | dataNovember 20th, 2014
Read All

Delivery of Stem Cells into Heart Muscle After Heart Attack May Enhance Cardiac Repair and Reverse Injury

By Dr. Matthew Watson

Contact Information

Available for logged-in reporters only

Newswise Delivering stem cell factor directly into damaged heart muscle after a heart attack may help repair and regenerate injured tissue, according to a study led by researchers from Icahn School of Medicine at Mount Sinai presented November 18 at the American Heart Association Scientific Sessions 2014 in Chicago, IL.

Our discoveries offer insight into the power of stem cells to regenerate damaged muscle after a heart attack, says lead study author Kenneth Fish, PhD, Director of the Cardiology Laboratory for Translational Research, Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai.

In the study, Mount Sinai researchers administered stem cell factor (SCF) by gene transfer shortly after inducing heart attacks in pre-clinical models directly into damaged heart tissue to test its regenerative repair response. A novel SCF gene transfer delivery system induced the recruitment and expansion of adult c-Kit positive (cKit+) cardiac stem cells to injury sites that reversed heart attack damage. In addition, the gene therapy improved cardiac function, decreased heart muscle cell death, increased regeneration of heart tissue blood vessels, and reduced the formation of heart tissue scarring.

It is clear that the expression of the stem cell factor gene results in the generation of specific signals to neighboring cells in the damaged heart resulting in improved outcomes at the molecular, cellular, and organ level, says Roger J. Hajjar, MD, senior study author and Director of the Cardiovascular Research Center at Mount Sinai. Thus, while still in the early stages of investigation, there is evidence that recruiting this small group of stem cells to the heart could be the basis of novel therapies for halting the clinical deterioration in patients with advanced heart failure.

cKit+ cells are a critical cardiac cytokine, or protein receptor, that bond to stem cell factors. They naturally increase after myocardial infarction and through cell proliferation are involved in cardiac repair.

According to researchers there has been a need for the development of interventional strategies for cardiomyopathy and preventing its progression to heart failure. Heart disease is the number one cause of death in the United States, with cardiomyopathy or an enlarged heart from heart attack or poor blood supply due to clogged arteries being the most common causes of the condition. In addition, cardiomyopathy causes a loss of cardiomyocyte cells that control heartbeat, and changes in heart shape, which lead to the hearts decreased pumping efficiency.

Our study shows our SCF gene transfer strategy can mobilize a promising adult stem cell type to the damaged region of the heart to improve cardiac pumping function and reduce myocardial infarction sizes resulting in improved cardiac performance and potentially increase long-term survival and improve quality of life in patients at risk of progressing to heart failure, says Dr. Fish.

This study adds to the emerging evidence that a small population of adult stem cells can be recruited to the damaged areas of the heart and improve clinical outcomes, says Dr. Hajjar.

More here:
Delivery of Stem Cells into Heart Muscle After Heart Attack May Enhance Cardiac Repair and Reverse Injury

To Read More: Delivery of Stem Cells into Heart Muscle After Heart Attack May Enhance Cardiac Repair and Reverse Injury
categoriaUncategorized commentoComments Off on Delivery of Stem Cells into Heart Muscle After Heart Attack May Enhance Cardiac Repair and Reverse Injury | dataNovember 20th, 2014
Read All

Kilian Before & After Stemlogix Stem Cell Therapy – Video

By LizaAVILA


Kilian Before After Stemlogix Stem Cell Therapy
dog with arthritis treated with autologous stem cells.

By: mark Greenberg

More:
Kilian Before & After Stemlogix Stem Cell Therapy - Video

To Read More: Kilian Before & After Stemlogix Stem Cell Therapy – Video
categoriaUncategorized commentoComments Off on Kilian Before & After Stemlogix Stem Cell Therapy – Video | dataNovember 20th, 2014
Read All

Low back, neck, hip, shoulder, and knee arthritis 7 months after stem cell therapy by Adelson – Video

By Sykes24Tracey


Low back, neck, hip, shoulder, and knee arthritis 7 months after stem cell therapy by Adelson
Spence describes his outcome from his "full-body make-over" by Harry Adelson, N.D.. Seven months ago, Spence had his own bone marrow stem cells injected into his low back, neck, hips, shoulders,...

By: Harry Adelson, N.D.

See the article here:
Low back, neck, hip, shoulder, and knee arthritis 7 months after stem cell therapy by Adelson - Video

To Read More: Low back, neck, hip, shoulder, and knee arthritis 7 months after stem cell therapy by Adelson – Video
categoriaUncategorized commentoComments Off on Low back, neck, hip, shoulder, and knee arthritis 7 months after stem cell therapy by Adelson – Video | dataNovember 20th, 2014
Read All

Cardiac stem cell therapy may heal heart damage caused by Duchenne muscular dystrophy

By daniellenierenberg

Researchers at the Cedars-Sinai Heart Institute have found that injections of cardiac stem cells might help reverse heart damage caused by Duchenne muscular dystrophy, potentially resulting in a longer life expectancy for patients with the chronic muscle-wasting disease.

The study results were presented today at a Breaking Basic Science presentation during the American Heart Association Scientific Sessions in Chicago. After laboratory mice with Duchenne muscular dystrophy were infused with cardiac stem cells, the mice showed steady, marked improvement in heart function and increased exercise capacity.

Duchenne muscular dystrophy, which affects 1 in 3,600 boys, is a neuromuscular disease caused by a shortage of a protein called dystrophin, leading to progressive muscle weakness. Most Duchenne patients lose their ability to walk by age 12. Average life expectancy is about 25. The cause of death often is heart failure because the dystrophin deficiency leads to cardiomyopathy, a weakness of the heart muscle that makes the heart less able to pump blood and maintain a regular rhythm.

"Most research into treatments for Duchenne muscular dystrophy patients has focused on the skeletal muscle aspects of the disease, but more often than not, the cause of death has been the heart failure that affects Duchenne patients," said Eduardo Marbn, MD, PhD, director of the Cedars-Sinai Heart Institute and study leader. "Currently, there is no treatment to address the loss of functional heart muscle in these patients."

During the past five years, the Cedars-Sinai Heart Institute has become a world leader in studying the use of stem cells to regenerate heart muscle in patients who have had heart attacks. In 2009, Marbn and his team completed the world's first procedure in which a patient's own heart tissue was used to grow specialized heart stem cells. The specialized cells were then injected back into the patient's heart in an effort to repair and regrow healthy muscle in a heart that had been injured by a heart attack. Results, published in The Lancet in 2012, showed that one year after receiving the experimental stem cell treatment, heart attack patients demonstrated a significant reduction in the size of the scar left on the heart muscle.

Earlier this year, Heart Institute researchers began a new study, called ALLSTAR, in which heart attack patients are being infused with allogeneic stem cells, which are derived from donor-quality hearts.

Recently, the Heart Institute opened the nation's first Regenerative Medicine Clinic, designed to match heart and vascular disease patients with appropriate stem cell clinical trials being conducted at Cedars-Sinai and other institutions.

"We are committed to thoroughly investigating whether stem cells could repair heart damage caused by Duchenne muscular dystrophy," Marbn said.

In the study, 78 lab mice were injected with cardiac stem cells. Over the next three months, the lab mice demonstrated improved pumping ability and exercise capacity in addition to a reduction in heart inflammation. The researchers also discovered that the stem cells work indirectly, by secreting tiny fat droplets called exosomes. The exosomes, when purified and administered alone, reproduce the key benefits of the cardiac stem cells.

Marbn said the procedure could be ready for testing in human clinical studies as soon as next year. The process to grow cardiac-derived stem cells was developed by Marbn when he was on the faculty of Johns Hopkins University. Johns Hopkins has filed for a patent on that intellectual property and has licensed it to Capricor, a company in which Cedars-Sinai and Marbn have a financial interest. Capricor is providing funds for the ALLSTAR clinical trial at Cedars-Sinai.

See the original post:
Cardiac stem cell therapy may heal heart damage caused by Duchenne muscular dystrophy

To Read More: Cardiac stem cell therapy may heal heart damage caused by Duchenne muscular dystrophy
categoriaCardiac Stem Cells commentoComments Off on Cardiac stem cell therapy may heal heart damage caused by Duchenne muscular dystrophy | dataNovember 18th, 2014
Read All

Donor: The German teenager who saved my life

By daniellenierenberg

Sue Walters only chance of survival from leukaemiawas a stem cell transplant No one in her family matched her tissue type Doctors searched the worldwide donor register They found Nicola Gerber, a student from Mechern, near the French border

By Chloe Lambert for the Daily Mail

Published: 20:21 EST, 17 November 2014 | Updated: 04:28 EST, 18 November 2014

784 shares

18

View comments

When Sue Walters was diagnosed with leukaemia, she hoped that the best of medical science would be used to cure it.

What she could never have anticipated was that her life would be saved by an 18-year-old boy from a remote German village.

Sues only chance of survival was a stem cell transplant previously known as a bone marrow transplant.

What Nicola has done is amazing it really is a gift of life. If I hadnt had the transplant, it was unlikely Id have lived beyond three months,' said Sue Walters of her donor Nicola Gerber

Visit link:
Donor: The German teenager who saved my life

To Read More: Donor: The German teenager who saved my life
categoriaBone Marrow Stem Cells commentoComments Off on Donor: The German teenager who saved my life | dataNovember 18th, 2014
Read All

UCLA Stem Cell Researcher Pioneers Gene Therapy Cure for Children with "Bubble Baby" Disease

By raymumme

Contact Information

Available for logged-in reporters only

Newswise UCLA stem cell researchers have pioneered a stem cell gene therapy cure for children born with adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID), often called Bubble Baby disease, a life-threatening condition that if left untreated can be fatal within the first year of life.

The groundbreaking treatment was developed by renowned stem cell researcher and UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research member Dr. Donald Kohn, whose breakthrough was developed over three decades of research to create a gene therapy that safely restores immune systems in children with ADA-deficient SCID using the patients own cells with no side effects.

To date, 18 children with SCID have been cured of the disease after receiving the stem cell gene therapy in clinical trials at UCLA and the National Institutes of Health.

All of the children with SCID that I have treated in these stem cell clinical trials would have died in a year or less without this gene therapy, instead they are all thriving with fully functioning immune systems said Kohn, a professor of pediatrics and of microbiology, immunology and molecular genetics in Life Sciences.

To protect children born with SCID they are kept in isolation, in controlled environments because without an immune system they are extremely vulnerable to illness and infection that could be lethal.

Other current options for treating ADA-deficient SCID are not always optimal or feasible for many children, said Kohn. We can now, for the first time, offer these children and their families a cure, and the chance to live a full healthy life.

Defeating ADA-Deficient SCID: A Game-Changing Approach

Children born with SCID, an inherited immunodeficiency, are generally diagnosed at about six months. They are extremely vulnerable to infectious diseases, and in a child with ADA-deficient SCID even the common cold can prove fatal. The disease causes cells to not create an enzyme called ADA, which is critical for production of the healthy white blood cells that drive a normal, fully-functioning immune system. About 15 percent of all SCID patients are ADA-deficient.

Original post:
UCLA Stem Cell Researcher Pioneers Gene Therapy Cure for Children with "Bubble Baby" Disease

To Read More: UCLA Stem Cell Researcher Pioneers Gene Therapy Cure for Children with "Bubble Baby" Disease
categoriaUncategorized commentoComments Off on UCLA Stem Cell Researcher Pioneers Gene Therapy Cure for Children with "Bubble Baby" Disease | dataNovember 18th, 2014
Read All

Page 489«..1020..488489490491..500510..»


Copyright :: 2025