Bone Marrow-Derived Stem Cell Prolotherapy – Video
By daniellenierenberg
Bone Marrow-Derived Stem Cell Prolotherapy
Stem Cell Prolotherapy is a procedure in which adult mesenchymal stem cells are transplanted directly into the damaged tissue or injury and promotes healing....
By: Kab S. Hong M.D.
Read the rest here:
Bone Marrow-Derived Stem Cell Prolotherapy - Video
'Mega' cells control growth of blood-producing cells
By daniellenierenberg
While megakaryocytes are best known for producing platelets that heal wounds, these "mega" cells found in bone marrow also play a critical role in regulating stem cells according to new research from the Stowers Institute for Medical Research. In fact, hematopoietic stem cells differentiate to generate megakaryocytes in bone marrow. The Stowers study is the first to show that hematopoietic stem cells (the parent cells) can be directly controlled by their own progeny (megakaryocytes).
The findings from the lab of Stowers Investigator Linheng Li, Ph.D., described in the Oct. 19 issue of the journal Nature Medicine, could cause researchers to rethink what they know about the workings of megakaryocytes and potentially lead to new treatments for patients recovering from chemotherapy or organ transplantation.
"Our results suggest that megakaryocytes might be used clinically to facilitate adult stem cell regeneration and to expand cultured cells for adult stem cell transplants," says Meng Zhao, Ph.D., a postdoctoral fellow at Stowers and lead author on the study. Stowers researchers discovered that megakaryocytes directly regulate the function of murine hematopoietic stem cells -- adult stem cells that form blood and immune cells and that constantly renew the body's blood supply. These cells can also develop into all types of blood cells, including white blood cells, red blood cells, and platelets.
Because of their remarkable ability to renew themselves and differentiate into other cells, hematopoietic stems cells are the focus of intense research and have been used to treat many diseases and conditions. The transplantation of isolated human hematopoietic stem cells is used in the treatment of anemia, immune deficiencies and other diseases, including cancer.
Basic research has centered on identifying and characterizing hematopoietic stem cells, however, it is still not clear how hematopoietic stem cells actually work, and how they are regulated because of the complexity of the bone marrow microenvironment. Zhao and his colleagues discovered that as a terminally differentiated progeny, megakaryocytes regulate hematopoietic stem cells by performing two previously unknown functions.
"Megakaryocytes can directly regulate the amount of hematopoietic stem cells by telling the cells when they need to keep in the quiescent stage, and when they need to start proliferating to meet increased demand." Maintaining that delicate balance is important, he adds. "You don't want to have too many or too few hematopoietic stem cells."
These findings are supported by similar research from the laboratory of Paul S. Frenette, Ph.D., at the Albert Einstein College of Medicine, also reported in the Oct. 19 issue of Nature Medicine.
Employing the advanced technology of the Institute's Cytometry, Imaging and Histology centers, the researchers examined the relationship between megakaryocytes and hematopoietic stem cells in mouse bone marrow. In the course of their research, they found that the protein transforming growth factor B1 (TGF-B1), contained in megakaryocytes, signaled quiescence of hematopoietic stem cells. They also found that when under stress from chemotherapy, megakaryocytes signaled fibroblast growth factor 1 (FGF1), to stimulate the proliferation of hematopoietic stem cells.
"Our findings suggest that megakaryocytes are required for the recovery of hematopoietic stem cells post chemotherapy," explains Li. The discovery could provide insight for using megakaryocyte-derived factors, such as TGF-B1 and FGF1, clinically to facilitate regeneration of hematopoietic stem cells, he adds.
Engineering a megakaryocyte niche (a special environment in which stem cells live and renew) that supports the growth of hematopoietic stem cells in culture, is the next step for the researchers. Zhao and his colleagues are also investigating whether a megakaryocyte niche can be used to help expand human hematopoietic stem cells in vitro and stem cell transplantation for patients.
Visit link:
'Mega' cells control growth of blood-producing cells
Stem cell and clinical research advances to be presented at NYSCF's Ninth Annual Conference
By raymumme
PUBLIC RELEASE DATE:
20-Oct-2014
Contact: David McKeon 212-365-7440 New York Stem Cell Foundation @nyscf
Leaders in translational stem cell research from around the world will present the latest advances in stem cell science that are leading to better treatments and cures to disease and injury at The New York Stem Cell Foundation's Ninth Annual Translational Stem Cell Research Conference.
The opening day of the conference includes a panel discussion on large scale, big data stem cell and genetic initiatives moderated by Susan L. Solomon, JD, CEO and Co-founder of The New York Stem Cell Foundation (NYSCF), with panelists George Church, PhD, Harvard Medical School; John Greally, PhD, Albert Einstein College of Medicine; Scott Noggle, PhD, The NYSCF Research Institute; and Eric Schadt, PhD, the Icahn School of Medicine at Mount Sinai.
Later that day, a discussion on neurodegeneration includes Kevin Eggan, PhD, Harvard University and the NYSCF Research Institute, who will discuss his research identifying an existing drug candidate that may be of use treating ALS and is entering clinical trials in the coming year. The following session on cell reprogramming and cancer includes Michael Milone, MD, PhD, University of Pennsylvania, who will discuss recent research results from his lab and his colleagues including the results of a clinical trial for leukemia featured in The New York Times last week. The first day closes with a conversation on personalized medicine featuring Dieter Egli, PhD, NYSCF Robertson Investigator at the NYSCF Research Institute and Columbia University; Rudolf Jaenisch, MD, The Whitehead Institute; and Sir Ian Wilmut, FRS, FRSE, University of Edinburgh.
On October 23, the day will begin with remarks by Kenneth Adams and Kyle Kimball, President of the Empire State Development Corporation and President of the New York City Economic Development Corporation, respectively. The session on translating innovation from the laboratory to the clinic features Stephen Chang, PhD, of the NYSCF Research Institute and Richard Pearse, PhD, of the Harvard Catalyst and eagle-i Network who will discuss their collaboration on the first publicly available induced pluripotent stem cell database. The day will close with a presentation on induced neuronal cells and cell transdifferentiation from the 2014 NYSCF Robertson Stem Cell Prize recipient, Marius Wernig, MD, PhD, of Stanford University School of Medicine.
Sir Ian Wilmut will give the keynote address on October 22nd and Dr. Rudolf Jaenisch will give the keynote address on the last day of the conference.
The full conference agenda can be found at http://www.nyscf.org/conference
###
Read more:
Stem cell and clinical research advances to be presented at NYSCF's Ninth Annual Conference
StemGenex New Clinical Study Aims to Provide Relief to Osteoarthritis Patients through Latest Stem Cell Therapy
By JoanneRUSSELL25
La Jolla, CA (PRWEB) October 21, 2014
StemGenex, the leading resource for adult adipose stem cell therapy in the US aimed at improving the lives of patients dealing with degenerative diseases today announced their newest clinical study in partnership with Stem Cell Research Centre for Osteoarthritis. StemGenex and Stem Cell Research Centre (SCRC) believe that a commitment to the safety and efficacy of stem cell therapy are paramount when providing care to patients with life threatening diseases.
There are currently 21 million people in the U.S. alone, who suffer from Osteoarthritis. The most common symptoms are joint pain and stiffness which most commonly affect the neck, lower back, knees, shoulders and hips. These symptoms gradually worsen over time ultimately leading to the need for a total joint replacement procedure. StemGenex believe their new clinical study may provide patients improved mobility, significantly reduced pain and ultimately a better quality of life without needing joint replacement surgery.
This clinical study makes stem cell therapy for osteoarthritis accessible to the millions of individuals currently struggling with this painful disease. The protocol used in these stem cell treatments is unique to StemGenex and SCRC, having the possibility of being more effective than other stem cell treatments currently available. These treatments will utilize a multiple administration method which also includes injections precisely targeting the joint space. StemGenex believes these treatments may be able to keep patients from needing joint replacement surgery in the future, due to regeneration of cartilage in the joint.
This clinical study will be conducted under the leadership of the principal investigator,Dr. Jeremiah McDole, Ph.D. Dr. McDole states, We are excited to begin enrolling for this new study. We have high expectations for what we will learn and what advancements can ultimately be implemented. Of course, our focus is always set toward the near future and what can be done to help improve the lives of those individuals with Osteoarthritis.
This study is registered through The National Institutes of Health which can be found at http://www.clinicaltrials.gov and is being conducted under IRB approval of Stem Cell Research Centre (SCRC). There are many patients who are exploring stem cell therapy for osteoarthritis and it is important they have access to top-tier stem cell therapy. By providing patients access to stem cell studies registered through The National Institutes of Health, patients now have the ability to choose treatment that focuses on both safety and efficacy.
Rita Alexander, founder and president of StemGenex stated With so many people suffering from Osteoarthritis its absolutely wonderful to provide a treatment that has not only shown efficacy but also to be minimally invasive. Over the last several years we have observed significant improvement in the symptoms of Osteoarthritis patients through stem cell treatment. Through these registered clinical studies, we will now be able to publish our findings over the next few years.
This clinical study follows on the heels of StemGenex latest clinical studies for both Parkinsons disease and Multiple Sclerosis. Stem cell treatment studies are currently being offered by StemGenex partnering with Stem Cell Research Centre (SCRC) to patients diagnosed with Osteoarthritis as well as degenerative neurological diseases. StemGenex takes a unique approach of compassion and empowerment while providing access to the latest stem cell therapies for degenerative conditions including Multiple Sclerosis, Alzheimers disease, stroke recovery and others.
To find out more about stem cell therapy, contact StemGenex either by phone at (800) 609-7795 or email Contact@stemgenex.com
Go here to see the original:
StemGenex New Clinical Study Aims to Provide Relief to Osteoarthritis Patients through Latest Stem Cell Therapy
Aarkstore -Stem Cell Research in Cardiology – Video
By NEVAGiles23
Aarkstore -Stem Cell Research in Cardiology
This market insight report on Stem Cell Research in Cardiology emphasizes on the market for stem cells in Cardiology. The study is segmented by Source (Allogenic and Autogenic) and by Type...
By: sangam Jain
Go here to see the original:
Aarkstore -Stem Cell Research in Cardiology - Video
Bone-marrow transplant teenager: 'I feel angry that my community let me down'
By NEVAGiles23
There are myriad complex cultural and religious reasons as to why ethnic minority donor rates are so low. We dont fully understand the reasons but this has to change if more lives are to be saved, says Dr Adnan Sharif, a consultant nephrologist at the Queen Elizabeth Hospital in Birmingham and member of the National Black, Asian and minority ethnic Transplant Association (NBTA). Aneesas case is heartbreaking, but unfortunately it is not isolated. There are simply not enough minority ethnic communities donating.
In August 2012, Aneesa the eldest of three siblings who live in Birmingham with their father Manzoor, 46, a purchasing manager for a car company, and mother Resiat, 46, a primary school teacher started suffering from headaches and feeling lethargic. The following month, her GP took a blood test that revealed Aneesas platelet count platelets help blood to clot was critically low, leaving her at risk of excessive bruising and bleeding.
Aneesa was rushed to the citys Queen Elizabeth Hospital, where, two days later, she was diagnosed with aplastic anaemia after further blood tests and a bone marrow biopsy. A potentially fatal disease of the bone marrow, it affects around two people per million and is caused by a deficiency of all three blood cell types red and white blood cells, and platelets. Symptoms include fatigue and a reduced immune system, which can lead to infection and bleeding.
Blood transfusions are the best treatment for serious cases such as Aneesas, and a bone marrow transplant in which a donors healthy stem cells are injected into the patient the only cure. I felt shocked and isolated, recalls Aneesa of her diagnosis. There was no history of the condition in my family and no reason given as to why I had developed it.
She immediately had a 14-hour blood transfusion, and remained in hospital for a month to have further platelet transfusions every three days. Meanwhile, Aneesas brother Eghshaam, 18, and sister Iyla-Rose, six, were tested to see if they could be donors. For bone marrow stem cell transplants to succeed, there needs to be a close match in tissue type between donor and patient.
When it transpired that her siblings tissue types were less than a 50 per cent match, Aneesa was forced to abandon her studies because of her failing health and she was put on the organ donor list.
My doctor warned me there was a shortage of ethnic minority donors, she says. I was surprised. I naively assumed everybody who needed a donor would find one.
By the end of 2012, Aneesa had developed liver and kidney failure a side effect of the anti-inflammatory and immunosuppressive pills she had to take to protect her immune system. I had to have two litres of fluid injected through a drip every day to stop me dehydrating, she says. I grew jealous of friends leading normal lives.
Last January, Aneesas doctors widened their search to include the international bone marrow donor registry, which contains 10 million people. But, unfortunately, the lack of BAME donors is a global problem.
Although the majority of religious leaders have issued statements of support for organ donation, many Muslims still believe that to donate would contravene their religion. There are certain aspects of the Islamic faith such as the emphasis put on the respect of the dead and not defacing the body that suggest you shouldnt donate, explains Dr Sharif. He says that even though bone marrow donation a relatively simple procedure compared with other organ transplants doesnt require the death of the donor, it is viewed with similar suspicion.
View post:
Bone-marrow transplant teenager: 'I feel angry that my community let me down'
FranchiseStemcell Fat Stem Cell Therapy Anti Aging – Video
By Sykes24Tracey
FranchiseStemcell Fat Stem Cell Therapy Anti Aging
Fat Stem Cell Therapy Anti Aging .
By: Franchise StemCell
Continued here:
FranchiseStemcell Fat Stem Cell Therapy Anti Aging - Video
New Insight That "Mega" Cells Control the Growth of Blood-Producing Cells
By Dr. Matthew Watson
Contact Information
Available for logged-in reporters only
Newswise Kansas City, Mo. - While megakaryocytes are best known for producing platelets that heal wounds, these mega cells found in bone marrow also play a critical role in regulating stem cells according to new research from the Stowers Institute for Medical Research. In fact, hematopoietic stem cells differentiate to generate megakaryocytes in bone marrow. The Stowers study is the first to show that hematopoietic stem cells (the parent cells) can be directly controlled by their own progeny (megakaryocytes).
The findings from the lab of Stowers Investigator Linheng Li, Ph.D., described in the Oct. 19 issue of the journal Nature Medicine, could cause researchers to rethink what they know about the workings of megakaryocytes and potentially lead to new treatments for patients recovering from chemotherapy or organ transplantation.
Our results suggest that megakaryocytes might be used clinically to facilitate adult stem cell regeneration and to expand cultured cells for adult stem cell transplants, says Meng Zhao, Ph.D., a postdoctoral fellow at Stowers and lead author on the study. Stowers researchers discovered that megakaryocytes directly regulate the function of murine hematopoietic stem cellsadult stem cells that form blood and immune cells and that constantly renew the bodys blood supply. These cells can also develop into all types of blood cells, including white blood cells, red blood cells, and platelets.
Because of their remarkable ability to renew themselves and differentiate into other cells, hematopoietic stems cells are the focus of intense research and have been used to treat many diseases and conditions. The transplantation of isolated human hematopoietic stem cells is used in the treatment of anemia, immune deficiencies and other diseases, including cancer.
Basic research has centered on identifying and characterizing hematopoietic stem cells, however, it is still not clear how hematopoietic stem cells actually work, and how they are regulated because of the complexity of the bone marrow microenvironment. Zhao and his colleagues discovered that as a terminally differentiated progeny, megakaryocytes regulate hematopoietic stem cells by performing two previously unknown functions.
Megakaryocytes can directly regulate the amount of hematopoietic stem cells by telling the cells when they need to keep in the quiescent stage, and when they need to start proliferating to meet increased demand. Maintaining that delicate balance is important, he adds. You dont want to have too many or too few hematopoietic stem cells.
These findings are supported by similar research from the laboratory of Paul S. Frenette, Ph.D., at the Albert Einstein College of Medicine, also reported in the Oct. 19 issue of Nature Medicine.
Employing the advanced technology of the Institutes Cytometry, Imaging and Histology centers, the researchers examined the relationship between megakaryocytes and hematopoietic stem cells in mouse bone marrow. In the course of their research, they found that the protein transforming growth factor B1 (TGF-B1), contained in megakaryocytes, signaled quiescence of hematopoietic stem cells. They also found that when under stress from chemotherapy, megakaryocytes signaled fibroblast growth factor 1 (FGF1), to stimulate the proliferation of hematopoietic stem cells.
Link:
New Insight That "Mega" Cells Control the Growth of Blood-Producing Cells
Can a bodys own stem cells help heal a heart?
By Dr. Matthew Watson
If you skin your knee, your body makes new skin. If you donate a portion of your liver, whats left will grow back to near-normal size. But if you lose a billion heart cells during a heart attack, only a small fraction of those will be replaced. In the words of Ke Cheng, an associate professor of regenerative medicine at N.C. State, The hearts self-repair potency is very limited.
Cheng has designed a nanomedicine he hopes will give the heart some help. It consists of an engineered nanoparticle that gathers the bodys own self-repair cells and brings them to the injured heart tissue.
In this case, the self-repair cells are adult stem cells. A stem cell is a very rich biological factory, Cheng said. Stem cells can become heart muscle, or they can produce growth factors that are beneficial to the regrowth of heart muscle.
After a heart attack, dying and dead heart cells release chemical signals that alert stem cells circulating in the blood to move to the injured site. But there just arent very many stem cells in the bloodstream, and sometimes they are not sufficiently attracted to the injured tissue.
Matchmakers with hooks
The nanomedicine Cheng designed consists of an iron-based nanoparticle festooned with two different kinds of hooks one kind of hook grabs adult stem cells, and the other kind of hook grabs injured heart tissue. Cheng calls the nanomedicine a matchmaker, because it brings together cells that can make repairs with cells that need repairs.
The hooks are antibodies that seek and grab certain types of cells. Because the antibodies are situated on an iron nanoparticle, they and the stem cells theyve grabbed can be physically directed to the heart using an external magnet. Cheng calls the nanomedicine MagBICE, for magnetic bifunctional cell engager.
The magnet is a first pass to get the iron-based particles and antibodies near the heart. Once there, the antibodies are able to identify and stick to the injured heart tissue, bringing the stem cells right where they need to go. Using two methods of targeting the magnet and the antibodies improves the chances of being able to bring a large number of stem cells at the site of injury.
In addition to providing a way to physically move the stem cells to the heart, the iron nanoparticles are visible on MRI machines, which allows MagBICE to be visualized after its infused into the bloodstream.
Cheng doesnt foresee much toxicity from the nanomedicine unless someone is allergic or particularly sensitive to iron. In fact, the iron-based nanoparticle that forms the platform for the antibodies is an FDA-approved IV treatment for anemia.
See the original post here:
Can a bodys own stem cells help heal a heart?
Knee arthritis 7 months after bone marrow stem cell therapy by Harry Adelson, N.D. – Video
By Dr. Matthew Watson
Knee arthritis 7 months after bone marrow stem cell therapy by Harry Adelson, N.D.
Carolyn describes her outcome seven months after bone marrow stem cell therapy for her arthritic knee pain http://www.docereclinics.com.
By: Harry Adelson, N.D.
See the original post:
Knee arthritis 7 months after bone marrow stem cell therapy by Harry Adelson, N.D. - Video
My stem cells could help save the life of man Ive never met
By Sykes24Tracey
A HEALTHCARE worker at Royal Bournemouth Hospital has donated stem cells in a bid to save the life of an unknown man.
Claire Waugh, pictured, who has always been a regular blood donor, decided to join the Anthony Nolan stem cell register after her father was diagnosed with prostate cancer three years ago.
The healthcare assistant co-ordinator was later identified as a possible match for a man needing life-saving treatment.
Following rigorous testing Claire was visited by nurses from the blood cancer charity, who gave her three injections every day for three days to stimulate her bone marrow to produce stem cells.
On the fourth day she travelled to Kings College Hospital in London to receive a final set of injections and undergo a stem cell collection in a simple five-hour outpatient procedure, which is similar to giving blood.
Claire said: I couldnt move or bend my arm due to the fairly heavy duty needle, but I was looked after really well so in the end the time went very quickly.
After donating, Claires stem cells were rushed to the recipient within the required 72 hours. A volunteer from Anthony Nolan told me that if he doesnt survive, there is nothing else on this earth that would have cured him, so this was this persons last chance, added Claire.
When my dad was poorly it made me think that if he needed this kind of help, I would be praying every night that someone would help him.
By doing this, it meant that I could give that chance to someone else and their family.
Royal Bournemouth Hospital granted special leave to Claire for the donation with the charity covering all of her and her husbands travel expenses.
See the rest here:
My stem cells could help save the life of man Ive never met
Dr Charles Krome Stem Cell Therapy – Video
By JoanneRUSSELL25
Dr Charles Krome Stem Cell Therapy
This video is about Dr Charles Krome Stem Cell Therapy.
By: John lore
Read more:
Dr Charles Krome Stem Cell Therapy - Video
The politics of destruction: Short-lived RNA helps stem …
By daniellenierenberg
Many stem cells live a life of monotony, biding their time until theyre needed to repair tissue damage or propel the growth of a developing embryo. But when the time is right, they must spring into action without hesitation. Like Clark Kent in a phone booth, they fling aside their former identity to become the needed skin, muscle, bone or other cell types.
Now researchers at Stanford, Harvard and the University of California-Los Angeles have learned that embryonic stem cells in mice and humans chemically tag RNA messages encoding key stem-cell genes. The tags tell the cell not to let the messages linger, but to degrade them quickly. Getting rid of those messages allows the cells to respond more nimbly to their new marching orders. As dermatology professor Howard Chang, MD, PhD, explained to me in an email:
Until now, weve not fully understood how RNA messages within the cell dissipate. In many cases, it was thought to be somewhat random. This research shows that embryonic stem cells actively tag RNA messages that they may later need to forget. In the absence of this mechanism, the stem cells are never able to forget they are stem cells. They are stuck and cannot become brain, heart or gut, for example.
Chang, who is a Howard Hughes Medical Institute investigator and a member of the Stanford Cancer Institute, is a co-senior author of a paper describing the research, which was published today in Cell Stem Cell. He shares senior authorship with Yi Xing, PhD, an associate professor of microbiology, immunology and molecular genetics at UCLA, and Cosmas Giallourakis, MD, an assistant professor of medicine at Harvard. Lead authorship is shared by postdoctoral scholars Pedro Batista, PhD, of Stanford, and Jinkai Wang, PhD, of UCLA; and by senior research fellow Benoit Molinie, PhD, of Harvard.
Messenger RNAs are used to convey information from the genes in a cells nucleus to protein-making factories in the cytoplasm. They carry the instructions necessary to assemble the hundreds of thousands of individual proteins that do the work of the cell. When, where and how long each protein is made is a carefully orchestrated process that controls the fate of the cell. For example, embryonic stem cells, which can become any cell in the body, maintain their stemness through the ongoing production of proteins known to confer pluripotency, a term used to describe how these cells can become any cell in the body.
The researchers, who knew that cells sometimes mark their RNA messages with chemical tags called methyl groups, were particularly interested in one type of methyl tag called m6A. Although the process of tagging the RNA is somewhat similar to how DNA is modified to control gene expression, it has not been clear exactly how these RNA tags function in development. On DNA, the chemical tags serve to help a cell remember which genes to express at particular times signaling a skin cell to preferentially make collagen and keratin, for example, rather than digestive enzymes or hormones. The study of these tags on DNA is called epigenetics.
When the researchers compared m6A patterns among thousands of RNA molecules in mouse and human embryonic stem cells, they found striking similarities between the organisms. Often key pluripotency genes were methylated at particular points along their length; these messages were degraded more quickly than unmethylated RNA molecules. Blocking the methylation mechanism in the embryonic stem cells, the researchers found, not only protected the pluripotency messages from degradation, but it also made it more difficult for the cells to respond appropriately to external cues and significantly slowed their ability to differentiate into other cell types.
The researchers concluded that its necessary for the cells to be able to quickly degrade those key RNA messages. If no differentiation is necessary, the cells simply replenish the messages by repeatedly copying them from the DNA. However, if a change in fate is needed, the cell can quickly shut down RNA production and any remaining messages will be rapidly destroyed. As Chang explained, This research is conceptually groundbreaking because it reveals an anti-epigenetic mechanism that works to keep genetic messages transient. In contrast to epigenetic mechanisms that provide cellular memory of gene expression states, m6A helps the cells to forget the past and embrace the future.
Previously: Epigenetics: the hoops genes jump through, Caught in the act! Fast, cheap, high-resolution, easy way to tell which genes a cell is using, and Red light, green light: Simultaneous stop and go signals on stem cells genes may enable fast activation, provide aging clock
Follow this link:
The politics of destruction: Short-lived RNA helps stem ...
Scientists identify "nave-like" human stem cell
By Sykes24Tracey
22 hours ago by Vicky Just Naive-like stem cells could potentially be used to treat dementia or reduce organ transplants
Scientists from our university and Berlin have identified a type of human stem cell that appears to be "nave-like" able to develop into any type of cell. The discovery of this cell type could potentially have a large impact on our understanding of how humans develop and on the field of regenerative medicine.
The human embryonic stem cells (ESCs) that scientists currently study in the lab are able to develop into several different types of cell but are already pre-determined to some extent.
Published in the top scientific journal Nature, researchers from the Max Delbrck Centre for Molecular Medicine (MDC), Berlin, Germany and our university have for the first time discovered human ESCs that appear to behave like "nave" cells able to develop into any type of cell.
These nave-like cells, only previously found in mice, are easy to grow in the lab and could have huge potential for regenerating damaged tissues in the body, potentially leading to treatments for diseases such as dementia or reducing the need for organ transplantation.
Professor Laurence Hurst from our Department of Biology & Biochemistry and a co-author of the study explained: "Most stem cells are primed to some extent to become a certain type of cell. If you use the analogy of a train network, these cells are like one of the main London stations. Trains from Paddington can go to Cardiff or Exeter, but not to Norwich. In the same way, these cells can develop into a fixed number of different cell types.
"However the nave-like cells we've identified are like a central terminus; they are present earlier in the embryo's development and so we think their fates can go in any direction and become any type of cell."
Co-investigator Dr Zsuzsanna Izsvk, (MDC, corresponding author) said: "We were very excited by this discovery it was one of those Eureka moments that rarely happens in science."
The Bath and Berlin team found the nave-like cells by looking at which genes were expressed in very early human embryos. They pinpointed a virus called human endogenous retrovirus H (HERVH) that has become integrated into human DNA and was very highly expressed at just the right time and place in human embryos, where they would expect to see nave-like cells if they existed.
They identified a protein called LBP9, which is essential for the activity of HERVH in early embryos. Using a reporter system that made cells expressing HERVH via LBP9 glow green, the Berlin and our team found that they had purified cells that showed all of the hallmarks of a mouse nave cell.
Go here to see the original:
Scientists identify "nave-like" human stem cell
Pitt/McGowan Institute team discovers stem cells in the esophagus
By Dr. Matthew Watson
PUBLIC RELEASE DATE:
16-Oct-2014
Contact: Anita Srikameswaran SrikamAV@upmc.edu 412-578-9193 University of Pittsburgh Schools of the Health Sciences @UPMCnews
PITTSBURGH, Oct. 16, 2014 Despite previous indications to the contrary, the esophagus does have its own pool of stem cells, said researchers from the University of Pittsburgh School of Medicine in an animal study published online today in Cell Reports. The findings could lead to new insights into the development and treatment of esophageal cancer and the precancerous condition known as Barrett's esophagus.
According to the American Cancer Society, more than 18,000 people will be diagnosed with esophageal cancer in the U.S. in 2014 and almost 15,500 people will die from it. In Barrett's esophagus, the lining of the esophagus changes for unknown reasons to resemble that of the intestine, though gastro-esophageal reflux disease or GERD is a risk factor for its development.
"The esophageal lining must renew regularly as cells slough off into the gastrointestinal tract," said senior investigator Eric Lagasse, Pharm.D., Ph.D., associate professor of pathology, Pitt School of Medicine, and director of the Cancer Stem Cell Center at the McGowan Institute for Regenerative Medicine. "To do that, cells in the deeper layers of the esophagus divide about twice a week to produce daughter cells that become the specialized cells of the lining. Until now, we haven't been able to determine whether all the cells in the deeper layers are the same or if there is a subpopulation of stem cells there."
The research team grew pieces or "organoids" of esophageal tissue from mouse samples, and then conducted experiments to identify and track the different cells in the basal layer of the tissue. They found a small population of cells that divide more slowly, are more primitive, can generate specialized or differentiated cells, and have the ability to self-renew, which is a defining trait of stem cells.
"It was thought that there were no stem cells in the esophagus because all the cells were dividing rather than resting or quiescent, which is more typical of stem cells," Dr. Lagasse noted. "Our findings reveal that there indeed are esophageal stem cells, and rather than being quiescent, they divide slowly compared to the rest of the deeper layer cells."
In future work, the researchers will examine human esophageal tissues for evidence of stem cell dysfunction in Barrett's esophagus disease.
"Some scientists have speculated that abnormalities of esophageal stem cells could be the origin of the tissue changes that occur in Barrett's disease," Dr. Lagasse said. "Our current and future studies could make it possible to test this long-standing hypothesis."
See the article here:
Pitt/McGowan Institute team discovers stem cells in the esophagus
Shannon Layne, DVM and VCA Dunmore Animal Hospital Now Offer Stem Cell Therapy to Pet Patients in Pain
By LizaAVILA
Dunmore, Pennsylvania (PRWEB) October 17, 2014
VCA Dunmore Animal Hospital is proud to announce the addition of Shannon Layne, DVM and her interest in stem cell therapy to their team. Credentialed in Regenerative Cell Therapy with Vet-Stem since January of 2011, Dr. Layne has proudly been treating pets with osteoarthritis and ligament injuries in north-east Pennsylvania with stem cell therapy for the last four years.
Dr. Layne graduated from North Carolina State University, College of Veterinary Medicine in 2010 and has taken a special interest in Regenerative Veterinary Medicine and stem cell therapy since. In contrast to widely used drug therapies for pain management, cell-based therapies (like stem cell therapy) can promote healing, reduce inflammation, and decrease pain. Dr Layne also offers traditional Chinese veterinary medicine including acupuncture and Chinese herbs if clients are interested in a more holistic approach.
Stem cells are regenerative cells that can differentiate into many tissue types (reducing pain and inflammation) thus helping to restore range of motion and regenerate tendon, ligament and joint tissues (Vet-Stem.com/science). In a study using Vet-Stem Regenerative Cell Therapy on dogs with osteoarthritis of the hip joint it was found that regenerative cell therapy (adipose-derived stem cells) decreases patient discomfort and increases patient functional ability.
Once Dr. Layne has identified a patient as a good candidate for stem cell therapy the procedure begins with a fatty tissue collection from the patient. The tissue sample is sent overnight to Vet-Stems lab in California for processing. Once processed the stem cells are extracted and fresh, injectable doses of the patients stem cells are sent overnight, back to Dr. Layne at VCA Dunmore Animal Hospital. Within 48hrs of collecting a fat sample from a patient Dr. Layne is able to inject stem cells into (arthritic or injured) affected areas and regeneration and healing can begin.
At VCA Dunmore Animal Hospital Dr. Layne will be practicing in an 8,800 square foot, state of the art facility that includes two extensive surgery suites. For more information on VCA Dunmore Animal Hospital please visit their website at http://www.vcahospitals.com/dunmore.
About Vet-Stem, Inc.
Since its formation in 2002, Vet-Stem, Inc. has endeavored to improve the lives of animals through regenerative medicine. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem pioneered the use of regenerative stem cells for horses, dogs, cats, and some exotics. In 2004 the first horse was treated with Vet-Stem Regenerative Cell Therapy for a tendon injury that would normally have been career ending. Ten years later Vet-Stem celebrated its 10,000th animal treated, and the success of establishing stem cell therapy as a regenerative medicine for certain inflammatory, degenerative, and arthritic diseases. As animal advocates, veterinarians, veterinary technicians, and cell biologists, the team at Vet-Stem tasks themselves with the responsibility of discovering, refining, and bringing to market innovative medical therapies that utilize the bodys own healing and regenerative cells.
For more information about Vet-Stem and Regenerative Veterinary Medicine visit http://www.vet-stem.com or call 858-748-2004.
See original here:
Shannon Layne, DVM and VCA Dunmore Animal Hospital Now Offer Stem Cell Therapy to Pet Patients in Pain
Retinal stem cell study shows promise for therapy
By LizaAVILA
SAN DIEGO (KUSI) - Macular degeneration is the leading cause of vision loss for people over the age of 50. Scientists have discovered a new therapy that may actually restore sight in those affected.
Scientists are excited not only because it worked, and helped some people see clearly again, but also because this study puts a focus on an new kind of stem cell therapy, using skin cells.
Macular degeneration causes a blurry or black area in the middle of your field of vision that grows over time, causing more sight loss.
There is no cure, but a new study published this week in the journal The Lancet, is giving patients hope.
Embryonic stem cells were turned into retinal cells and implanted into the eyes of 18 patients.
Vision improved for about half of them.
Dr. Andreas said, "This study was primarily to see if these cells would be safe, and the bonus was that some people started to see better."
Dr. Andreas Bratyy-Layal and Dr. Suzanne Peterson are stem cell scientists with the Scripps Research Institute.
They see this as a major breakthrough.
Although this sight study did do that, Dr. Peterson says labs around the country, including here in San Diego, are moving away from the practice.
Read more:
Retinal stem cell study shows promise for therapy
Stem cells from human embryos prove safe, improve vision, study says
By Sykes24Tracey
Published October 15, 2014
For the first time, researchers have created functioning human lung cells from stem cells.
The longest-running trial of stem cells derived from a human embryo found that the cells caused patients none of the problems scientists feared, such as forming tumors, and reversed partial blindness in about half the eyes receiving transplants, researchers reported on Tuesday.
The results, published in The Lancet, could help re-invigorate the controversial quest to harness stem cells, which have the ability to turn into any of the 200 kinds of human cells, to treat diseases.
In an accompanying commentary, Dr. Anthony Atala of the Wake Forest Institute for Regenerative Medicine called the work "a major accomplishment."
After intense excitement among scientists and the public about the promise of stem cells and ethical debates about destroying human embryos to obtain them, the field stumbled when a high-profile trial for spinal cord injury was halted by Geron Corp in 2011 and the interest of other companies waned.
The small study's main goal was assessing the safety of the transplanted cells. Called retinal pigment epithelial cells, they were created by taking stem cells from a days-old embryo created in a fertility clinic and inducing them to differentiate into the specialized cells.
The study "provides the first evidence, in humans with any disease, of the long-term safety and possible biologic activity" of cells derived from embryos, said co-author Dr. Robert Lanza, chief scientific officer of Advanced Cell Technology, which produced the cells and funded the study.
Nine patients with Stargardt's disease (which causes macular degeneration in childhood) and nine with dry age-related macular degeneration (a leading cause of adult blindness) received implants of the retinal cells in one eye. The other eye served as a control.
Four eyes developed cataracts and two became inflamed, probably due to the patients' age (median: 77) or the use of immune-supressing transplant drugs.
The rest is here:
Stem cells from human embryos prove safe, improve vision, study says
Vision Quest: Stem Cells Treat Blinding Disease
By LizaAVILA
Powerful stem cells injected into the eyes of 18 patients with diseases causing progressive blindness have proven safe and dramatically improved the vision of some of the patients, scientists report.
Three years of follow up show that vision improved measurably in seven of the patients, the team at Advanced Cell Technology report in the Lancet medical journal. In some cases, the improvement was dramatic.
For instance, we treated a 75-year-old horse rancher who lives in Kansas, said Dr. Robert Lanza, chief medical officer for the Massachusetts-based company. The rancher had poor vision 20/400 in one eye.
Once month after treatment his vision had improved 10 lines (20/40) and he can even ride his horses again. Other patients report similarly dramatic improvements in their lives, Lanza added. For instance, they can use their computers or read their watch. Little things like that which we all take for granted have made a huge difference in the quality of their life.
Not all the patients improved and one even got worse. But overall, Lanzas team reported, the patients vision improved by three lines on a standard vision chart.
"They can use their computers or read their watch. Little things like that which we all take for granted have made a huge difference in the quality of their life.
The researchers treated only one eye in each patient. There was no improvement in vision in the untreated eyes.
The patients had either Stargardts disease, a common type of macular degeneration, or dry macular degeneration, which is the leading cause of blindness in the developed world. There are no treatments for either condition, and patients gradually lose vision over the years until they are, often, blind.
Lanzas team used human embryonic stem cells, made using human embryos. They are powerful cells, each one capable of giving rise to all the cells and tissues in the body. The ACT team took one cell from embryos at the eight-cell stage to make batches of these cells.
They reprogrammed them to make immature retinal cells, which they injected into the eyes of the patients. The hope is that the immature cells would take up the places of the degenerated cells and restore vision.
Read the original here:
Vision Quest: Stem Cells Treat Blinding Disease
Stem cells offer hope to vision impaired
By LizaAVILA
Health officials hit back at e-cig claims
Health professionals say more research is needed to prove using e-cigarettes is a good way to quit smoking.
According to new health figures, Australian women are far less likely to survive a heart attack than men.
Research says high factor sunscreen can't be relied on to protect against the deadliest skin cancer form.
A British study using skin electrodes has found men experience greater levels of emotion than women.
High protein diets may protect against stroke, especially if they contain a lot of fish, scientists say.
Driving too much is bad for your health, according to a study of 40-thousand middle-aged Australians.
Researchers say the financial crisis may have led to thousands of suicides in Europe and North America.
Biologists have devised a new weapon against malaria by genetically engineering mosquitoes.
Stomach-shrinking bariatric surgery beats other forms of treatment in bringing about remission of diabetes.
Here is the original post:
Stem cells offer hope to vision impaired