Cellular Dynamics receives contract to make eye cells
By daniellenierenberg
Cellular Dynamics International(CDI) is getting a $1.2 million contract from the National Eye Institute, part of the National Institutes of Health, as part of an effort to fight macular degeneration, a condition that leads to loss of vision.
By reprogramming skin and blood samples from patients with age-related macular degeneration, CDI will create induced pluripotent stem cells and will turn them into human retina cells. The cells will be put back into the patient's eyes to treat the disorder.
Ten patients have been chosen for a pilot study of the process by the National Eye Institute, CDI said.
The Madison company said the process, called autologous cellular therapy, will be the first in the U.S. using a patient's own reprogrammed cells.
Publicly traded CDI was founded by UW-Madison stem cell pioneer James Thomson in 2004 and manufactures large quantities of human stem cells for drug discovery, safety screening and for stem cell banks.
The rest is here:
Cellular Dynamics receives contract to make eye cells
IPS Stem Cells: New Ethical Quandaries – Santa Clara …
By LizaAVILA
IPS Stem Cells: New Ethical Quandaries By Sally Lehrman
Listen to the Audio
When scientists learned how to turn back the clock in a young skin cell, to bring it back to an early-stage cell that could become any other type in the body, both they and ethicists rejoiced. The reprogrammed cell was pluripotent, much like an embryonic stem cell. Maybe even better, it also might be prompted to jump from one cell type to another.
One day, these induced pluripotent stem cells -- iPS cells for short -- might be able to correct any number of life-threatening and disabling conditions. Much sooner, these cells will almost certainly serve as extremely useful models for studying disease.
The researchers used viruses to deliver three to four new genes into the cell nucleus. And with the new information, the skin cells reprogrammed themselves. They behaved almost exactly like embryonic stem cells, which are derived from fertilized eggs. But with these reprogrammed cells, people thought, there would be no moral and political controversy. No embryo would be destroyed.
Recently, new studies have taken the work a step further. Researchers used synthetic RNA instead of viruses to get new instructions into the cell nucleus. This sped up the process and lessened the possibility of side effects such as cancer when the cells finally become a treatment for patients. (They're called RNA-induced pluripotent cells.)
But as researchers and ethicists take a closer look at these iPS cells, they are realizing that the issues posed are as thorny as ever. In fact, the issues may be even more urgent because the new techniques are so much easier and cheaper. The concerns fall into three main areas.
First, the possibility of human cloning from one person's skin cells or human reproduction from cells made into sperm and egg. The possibility is far-off, but real. Scientists already have reported progress that could lead to either. One could become a parent at any age, using tissue from someone either living or dead.
More immediate concerns have to do with control of the original tissue donation and the purposes to which it is applied.
For instance, privacy. Because of the desire to use these cells to study or treat diseases such as Parkinson's, juvenile diabetes or Alzheimer's, it will be important to know the donor's health history. The donor's personal information and health history must always be linked to the cells. It may be impossible to maintain donor privacy.
Read more from the original source:
IPS Stem Cells: New Ethical Quandaries - Santa Clara ...
Overview Gene and Cell Therapy for Diabetes and …
By raymumme
The long-term goal of Dr. Ikeda's lab is to develop efficient and safe gene and cell therapy platforms for individualized medicine. Dr. Ikeda's main research interests include induced pluripotent stem (iPS) cell technology as a novel diabetes therapy; adeno-associated virus (AAV) vector-mediated gene therapy for diabetes and cardiovascular disease; and intrinsic immunity against HIV and retroviral infection.
Towards patient-specific iPS cells for a novel cell therapy for type I diabetes
Dr. Ikeda's research interests include:
Gene and cell therapy for diabetes. Induced pluripotent stem (iPS) cell technology enables derivation of pluripotent stem cells from nonembryonic sources. Successful differentiation of autologous iPS cells into islet-like cells could allow in vitro modeling of patient-specific disease pathogenesis and future clinical cell therapy for diabetes. However, an efficient methodology is not available for the generation of glucose-responsive insulin-producing cells from iPS cells in vitro.
Recently, the lab has examined the efficiency of iPS differentiation into glucose-responsive insulin-producing cells using a modified stepwise protocol with indolactam V and GLP-1 and demonstrated successful generation of islet-like cells, which expressed pancreas-specific markers. Importantly, the iPS-derived islet-like cells secreted C peptide in a glucose-dependent manner. The lab is currently working on reprogramming diabetic patient-derived cells into genomic modification-free iPS cells using nonintegrating vectors, as well as studying the therapeutic effects of iPS-derived insulin-producing islet-like cells in a diabetic mouse model.
Additionally, the lab has developednovel pancreatic gene delivery vectors and is currently studying the therapeutic effects of pancreatic overexpression of factors known to accelerate beta cell regeneration and neogenesis in diabetic mouse models.
Gene therapy for hypertensive heart disease. Altered myocardial structure and function secondary to hypertensive heart disease are leading causes of heart failure and death. A frequent clinical phenotype of cardiac disease is diastolic dysfunction associated with high blood pressure, which over time leads to profound cardiac remodeling, fibrosis and progression to congestive heart failure.
B-type natriuretic peptide (BNP) has blood pressure lowering, anti-fibrotic and anti-hypertrophic properties, making it an attractive therapeutic for attenuating the adverse cardiac remodeling associated with hypertension. However, use of natriuretic peptides for chronic therapy has been limited by their extremely short in vivo half-life. Recently, the lab usedmyocardium-tropic adeno-associated virus serotype 9 (AAV9)-based vectors and demonstrated long-term cardiac BNP expression in spontaneous hypertensive rats. Sustained BNP expression significantly lowered blood pressure for up to nine months and improved the cardiac functions in hypertensive heart disease.
The lab is currently examining the feasibility of this strategy in a large animal model for future clinical applications, as well as further developing a gene therapy strategy for hypertensive heart disease using other therapeutic genes.
Pathogenesis of HIV and retroviruses. Mammalian cells have evolved several strategies to limit viral production. For instance, type 1 interferons stimulate a series of cellular factors that block viral gene expression by degrading viral RNA or inhibiting protein translation.
Read more:
Overview Gene and Cell Therapy for Diabetes and ...
Team proposes benchmark to better replicate natural stem cell development in the laboratory environment
By raymumme
21 hours ago
In a study that will provide the foundation for scientists to better replicate natural stem cell development in an artificial environment, UCLA researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research led by Dr. Guoping Fan, professor of human genetics, have established a benchmarking standard to assess how culture conditions used to procure stem cells in the lab compare to those found in the human embryo.
The study was published online ahead of print in the journal Cell Stem Cell.
Pluripotent stem cells (PSCs) are cells that can transform into almost any cell in the human body. Scientists have long cultured PSCs in the laboratory (in vitro) using many different methods and under a variety of conditions. Though it has been known that culture techniques can affect what kind of cells PSCs eventually become, no "gold standard" has yet been established to help scientists determine how the artificial environment can better replicate that found in a natural state (in vivo).
Dr. Kevin Huang, postdoctoral fellow in the lab of Dr. Fan and a lead author of the study, analyzed data from multiple existing research studies conducted over the past year. These previously published studies used different culture methods newly developed in vitro in the hopes of coaxing human stem cells into a type of pluripotency that is in a primitive or ground-zero state.
Utilizing recently-published gene expression profiles of human preimplantation embryos as the benchmark to analyze the data, Dr. Huang and colleagues found that culture conditions do affect how genes are expressed in PSCs, and that the newer generation culture methods appear to better resemble those found in the natural environment of developing embryos. This work lays the foundation on the adoption of standardized protocol amongst the scientific community.
"By making an objective assessment of these different laboratory techniques, we found that some may have more of an edge over others in better replicating a natural state," said Dr. Huang. "When you have culture conditions that more consistently match a non-artificial environment, you have the potential for a much better reflection of what is going on in actual human development."
With these findings, Dr. Fan's lab hopes to encourage further investigation into other cell characteristics and molecular markers that determine the effectiveness of culture conditions on the proliferation and self-renewal of PSCs.
"We hope this work will help the research community to reach a consensus to quality-control human pluripotent stem cells," said Dr. Fan.
Explore further: Technique to make human embryonic stem cells more closely resemble true epiblast cells
See the article here:
Team proposes benchmark to better replicate natural stem cell development in the laboratory environment
San Diego Stem Cell Clinic, Telehealth, Now Offering Knee Procedures for Cartilage Restoration
By raymumme
San Diego, California (PRWEB) October 28, 2014
The top stem cell clinic in San Diego, Telehealth, is now offering regenerative medicine procedures for the knee to help restore cartilage and avoid the need for joint replacement. The procedures are outpatient and performed by Board Certified doctors at Telehealth. Call (888) 828-4575 for more information and scheduling.
Hundreds of thousands of knee replacements are performed every year in the US, with most being extremely successful. However, it is a major surgery and there is a chance of complications such as infection or blood clot. Therefore, it is advisable to consider a stem cell procedure for the arthritic knee in an effort to delay or avoid the procedure.
Telehealth provides the procedures with several options, including platelet rich plasma therapy, bone marrow or fat derived stem cells, along with amniotic derived procedures. All of the procedures are outpatient and low risk.
In most cases, the procedures are covered in whole or partly by insurance. Telehealth will perform an insurance verification prior to one's procedure. The Board Certified doctors at the stem cell clinic in San Diego treat patients from a broad area in Southern California. There are several locations including La Jolla, Orange and Upland CA.
In addition to stem cell procedures for knee arthritis, TeleHealth also provides regenerative medicine options for tendon and ligament injuries, sports injuries along with hip, shoulder and ankle arthritis.
For those interested in avoiding knee replacement with a procedure that can potentially preserve or repair arthritic cartilage, call Telehealth at (888) 828-4575 and visit http://stemcelltherapyincalifornia.com/ for more information.
Link:
San Diego Stem Cell Clinic, Telehealth, Now Offering Knee Procedures for Cartilage Restoration
Regenexx – Stem Cell Therapy for Arthritis and Injuries …
By NEVAGiles23
Welcome to Regenexx Stem Cell Therapy for Arthritis & Injuries The Regenexx Procedures are a family of non-surgical stem cell and blood platelet treatments for common injuries and degenerative joint conditions, such as osteoarthritis and avascular necrosis. These stem cell procedures utilize a patients own stem cells or blood platelets to help heal damaged tissues, tendons, ligaments, cartilage, spinal disc, or bone. Regenexx Stem Cell and Blood Platelet Procedures offer a viable alternative for individuals suffering from joint pain, or who may be considering elective surgery or joint replacement due to injury or arthritis. Patients avoid the lengthy periods of downtime, and painful rehabilitation that typically follow invasive surgeries. Commonly Treated Conditions - Regenexx Stem Cell and Platelet Procedures
The list below represents the most commonly treated conditions using Regenexx stem cell or platelet procedures. It is not a complete list, so please contact us or complete the Regenexx Candidate Form if you have questions about whether you or your condition can be treated with these non-surgical procedures. The type of procedure used (stem cell or blood platelet) to treat these conditions is largely dependent upon the severity of the injury or condition.
The Centeno-Schultz Clinic is theoriginalstem cell based musculoskeletal practice in the U.S., with more stem cell orthopedics experience than any other clinic. We are also physician leaders in stem cell treatments for arthritis and injuries in terms of research presentations, publications, and academic achievements.
In January I was faced with another full thickness tear in my rotator cuff and wondered what my options might be. Would it be another surgery or possibly something different? I was introduced to Dr Andrew Blecher who thought I might be a candidate for the new Regenexx stem cell procedure. This new procedure has changed my life, given me a new shoulder and all without invasive shoulder surgery. I cannot explain how happy I am that I chose this method for my shoulder and now I feel great, have significantly less pain and 100% range of motion. Thank you Dr Blecher and Regenexx.
-Lloyd Eisler 2-Time Olympic Medalist Member of the Canadian Sports Hall of Fame
The episode features Dr. Centeno and Dr. Hanson, along with patient Barbee James, who required stem cell treatment after a failed micro fracture and continued problems following traditional knee surgery. The episode provided a nice overview of a Regenexx-SD (same-day) stem cell procedure for Barbees knee cartilage damage.
On February 28, 2013 Seattle King TV featured Regenexx patient Paul Lyon, who underwent a Regenexx-SD knee procedure in our Broomfield clinic. The story looks at his results and includes an interview with Dr. Christopher Centeno, along with footage in our advanced lab where stem cells are processed as part of the procedure.
Regenexx Network Physician Dr. Mayo Friedlis (Washington D.C. area) is featured in this recent news story about stem cell therapy, which explores the Regenexx-SD stem cell procedure and a very active seniors outcome following his knee stem cell injection.
Read the original here:
Regenexx - Stem Cell Therapy for Arthritis and Injuries ...
Blood Vessels Made from Three Spoons of Blood in a Week's Time
By LizaAVILA
Using stem cells from blood, researchers have been able to grow blood vessels in a week.REUTERS
Researchers at Sahlgrenska University Hospital in Sweden have been successful in transplanting blood vessels made from three spoons of blood.
Two years ago two patients at the hospital received the blood vessels made from stem cellsin the blood.
Earlier, another patient too was treated using blood vessels made by her stem cells but in that case, the researchers had to drill into the bone marrow to obtain the stem cells.
In the later cases, all they needed was three spoons of the patient's blood and a waiting period of a week.
The children did not have the vein that goes from the gastrointestinal tract to the liver. This was rectified using the new blood vessels, a treatment that holds out promise for people with varicose veins and myocardial infarction.
The method also rules out rejection normally accompanying any foreign body transplant.
Professors Olausson and Sumitran-Holgersson have treated three patients so far. Two of the three patients are still doing well and have veins that are functioning well.
They now hope to be able to grow complete organs to overcome organ shortage from donors.
Use of embryonic stem cells to treat macular dystrophy and degeneration has been proven to be safewith low rejection rates.
Go here to read the rest:
Blood Vessels Made from Three Spoons of Blood in a Week's Time
Scleroderma patients seek experimental U.S. stem cell therapy
By Dr. Matthew Watson
CTVNews.ca Staff Published Saturday, October 25, 2014 10:30PM EDT Last Updated Saturday, October 25, 2014 11:46PM EDT
An estimated 16,000 Canadians live with scleroderma, an incurable autoimmune disorder which causes the body to produce too much collagen, resulting in a hardening of the skin and tissue. There is no cure for the scleroderma, but some patients in Canada are now seeking a costly and experimental stem cell therapy in the U.S.
A little over a year ago, Mike Berry of Kingston, Ont., started having trouble breathing. It was the first sign of scleroderma.
Berry, 42, suffers from the systemic version of scleroderma, which attacks his internal organs. His lungs have been scarred by the disorder, with his lung capacity dropping to 41 per cent in just nine months. His disease may ultimately be fatal.
He described to CTV News how scleroderma has impacted his day-to-day life.
"I'm unable to work any longer; it affects me and everything now," he said. "It's hard to walk fast; I can't walk and talk."
Drugs to treat his scleroderma haven't worked, so now Berry is trying to fundraise more than $150,000 for an experimental U.S. stem cell treatment called Autologous Hematopoietic Stem Cell Transplantation (HSCT), in the hopes that it will save his life.
"It would give me as second chance, I guess I just have a lot to fight for," he said.
Pioneered by Dr. Richard Burt at Northwestern Memorial Hospital in Chicago, patients receiving HSCT are administered stem cells intravenously.
During the treatment, the patient's stem cells are harvested, and then the patient's over-active immune system is destroyed with powerful chemotherapy drugs. Doctors then re-program the patient's immune system with the harvested stem cells, in the hopes that the cells will "reset" the patient's immune system and stop scleroderma.
Visit link:
Scleroderma patients seek experimental U.S. stem cell therapy
Converting skin cells directly into brain cells advances fight against Huntington's disease
By daniellenierenberg
Few diseases are as terrifying as Huntington's, an inherited genetic disorder that gradually saps away at sufferers' muscle control and cognitive capacity until they die (usually some 20 or so years after initial symptoms). But scientists at Washington University School of Medicine may have provided a new glimmer of hope by converting human skin cells (which are much more readily available than stem cells) directly into a specific type of brain cell that is affected by Huntington's.
This new method differs from another technique devised at the University of Rochester last year in that it bypasses any intermediary steps rather than first reverting the cells to pluripotent stem cells, it does the conversion in a single phase.
To reprogram the adult human skin cells, the researchers created an environment that closely mimics that of brain cells. Exposure to two types of microRNA, miR-9 and miR-124, changes the cells into a mix of different types of neurons. "We think that the microRNAs are really doing the heavy lifting," said co-first author Matheus Victor, although the team admits that the precise machinations remain a mystery.
Huntington's disease especially affects medium spiny neurons, which are involved in initiating and controlling movement and can be found in a part of the basal ganglia called the corpus striatum. This part of the brain also contains proteins called transcription factors, which control the rate at which genetic information is copied from DNA to messenger RNA.
By exposing human skin cells (top) to a combination of microRNAs and transcription factors, the researchers were able to create medium spiny neurons (bottom) (Image: Yoo Lab/Washington University at St Louis)
The researchers fine-tuned the chemical signals fed into the skin cells as they were exposed to the microRNAs, with the transcription factors guiding the cells to become medium spiny neurons. Different transcription factors would produce different types of neurons, they believe, but not without the microRNAs which appear to be the crucial component, as cells exposed to transcription factors alone failed to become neurons.
When transplanted into the brains of mice, the converted cells survived at least six months while showing functional and morphological properties similar to native neurons. They have not yet been tested in mice with a model of Huntington's disease to see if this has any effect on the symptoms.
The research will nonetheless contribute to scientific understanding of the cellular properties associated with Huntington's, regardless of whether this new method leads directly to a treatment or cure.
A paper describing the research is available in the journal Neuron.
Source: Washington University in St Louis
Read the original:
Converting skin cells directly into brain cells advances fight against Huntington's disease
UCSD Gets $8 Million For Stem Cell Research
By Sykes24Tracey
UC San Diego has been named an "alpha clinic" for the clinical study of stem cells, and the distinction comes with $8 million in research grants.
Stem cell therapies represent a new way of treating disease by regenerating damaged tissues and organs. Spokesmen for the UCSD school of medicine say the alpha clinic will focus on clinical trials in humans, not just basic research based on animals.
The decision to make UCSD an alpha clinic was announced Friday by the California Institute for Regenerative Medicine, which was created by California voters after they approved $3 billion for stem cell funding in 2004.
Everything we do has one simple goal, to accelerate the development of successful treatments for people in need, said C. Randal Mills, CIRM president and CEO.
Catriona Jamieson, professor of medicine at UC San Diego School of Medicine, is the alpha clinic grants principal investigator. She said the clinic will provide needed infrastructure for first-in-human stem cell-related clinical trials.
"It will attract patients, funding agencies and study sponsors to participate in, support and accelerate novel stem cell clinical trials and ancillary studies for a range of arduous diseases, Jamieson said.
The university has already announced human stem cell trials, aimed at treating spinal chord injuries, leukemia and type-1 diabetes.
UCSD spokesmen said researchers are conducting those trials using fetal and embryonic stems cells, as well as stem cells made from reprogramming skin cells.
See the article here:
UCSD Gets $8 Million For Stem Cell Research
UCLA Scientists Propose Benchmark to Better Replicate Natural Stem Cell Development in the Laboratory Environment
By Dr. Matthew Watson
Contact Information
Available for logged-in reporters only
Newswise In a study that will provide the foundation for scientists to better replicate natural stem cell development in an artificial environment, UCLA researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research led by Dr. Guoping Fan, professor of human genetics, have established a benchmarking standard to assess how culture conditions used to procure stem cells in the lab compare to those found in the human embryo.
The study was published online ahead of print in the journal Cell Stem Cell.
Pluripotent stem cells (PSCs) are cells that can transform into almost any cell in the human body. Scientists have long cultured PSCs in the laboratory (in vitro) using many different methods and under a variety of conditions. Though it has been known that culture techniques can affect what kind of cells PSCs eventually become, no "gold standard" has yet been established to help scientists determine how the artificial environment can better replicate that found in a natural state (in vivo).
Dr. Kevin Huang, postdoctoral fellow in the lab of Dr. Fan and a lead author of the study, analyzed data from multiple existing research studies conducted over the past year. These previously published studies used different culture methods newly developed in vitro in the hopes of coaxing human stem cells into a type of pluripotency that is in a primitive or ground-zero state.
Utilizing recently-published gene expression profiles of human preimplantation embryos as the benchmark to analyze the data, Dr. Huang and colleagues found that culture conditions do affect how genes are expressed in PSCs, and that the newer generation culture methods appear to better resemble those found in the natural environment of developing embryos. This work lays the foundation on the adoption of standardized protocol amongst the scientific community.
"By making an objective assessment of these different laboratory techniques, we found that some may have more of an edge over others in better replicating a natural state," said Dr. Huang. "When you have culture conditions that more consistently match a non-artificial environment, you have the potential for a much better reflection of what is going on in actual human development."
With these findings, Dr. Fan's lab hopes to encourage further investigation into other cell characteristics and molecular markers that determine the effectiveness of culture conditions on the proliferation and self-renewal of PSCs.
"We hope this work will help the research community to reach a consensus to quality-control human pluripotent stem cells," said Dr. Fan.
Read the original:
UCLA Scientists Propose Benchmark to Better Replicate Natural Stem Cell Development in the Laboratory Environment
Lyme Disease and Embryonic Stem Cell Therapy Testimonial – Video
By JoanneRUSSELL25
Lyme Disease and Embryonic Stem Cell Therapy Testimonial
Kim gives a testimonial after 3 months of having followed the Stemaid Lyme Disease Protocol.
By: stemaid
See the article here:
Lyme Disease and Embryonic Stem Cell Therapy Testimonial - Video
Cell transplant enables paralyzed man to walk again
By raymumme
In 2010, Darek Fidyka was paralyzed from the chest down as a result of a knife attack that left an 8 mm gap in his spinal column. Now surgeons in Poland, working in collaboration with scientists in London, have given Fidyka the ability to walk again thanks to a new procedure using transplanted cells from his olfactory bulbs.
The spinal injury that left Darek Fidyka paralyzed did not see the spinal cord entirely severed, but rather an 8 mm chunk removed from the left side. Researchers have for years worked to develop treatments to help those with spinal injuries, but for Fidyka no amount of therapy was helping him recover feeling below his chest. Now, two years after the groundbreaking treatment, Fidyka has regained some feeling in his legs, feet, bowels, bladder, and can now walk with the assistance of a frame.
The procedure saw the medical team remove one of Fidykas olfactory bulbs then grow olfactory ensheathing cells (OECs) in culture and graft the cells onto his damaged spinal column where they helped to re-link vital nerve fibers. According to the UCL, the OECs act as pathway cells that repair and renew nerve fibers when damaged. The team chose OECs as they are the only part of the nervous system with the ability to regenerate in adults.
A few weeks after the initial OEC removal and culture harvesting, the team applied 100 micro-injections of the olfactory cells above and below the injured area. Then four thin strips of nerve tissue from Fidykas ankle were applied across the damaged area. After about three months they noticed muscle mass increasing on his left thigh, and after six months Fidyka was able to stand and take his first steps with the assistance of parallel bars, leg braces and a physiotherapist. Today he still undergoes five hours of physiotherapy, five days a week.
"It is immensely gratifying to see that years of research have now led to the development of a safe technique for transplanting cells into the spinal cord." said Professor Geoff Raisman, Chair of Neural Regeneration at the UCL Institute of Neurology. "I believe we stand on the threshold of a historic advance and that the continuation of our work will be of major benefit to mankind. I believe we have now opened the door to a treatment of spinal cord injury that will get patients out of wheel chairs. Our goal now is to develop this first procedure to a point where it can be rolled out as a worldwide general approach."
The BBC Panorama program To Walk Again shows the procedure and footage of Fidyka walking with a frame. When asked what it was like to walk again, Fidyka said, "when you cant feel almost half your body, you are helpless, but when it starts coming back its as if you were born again."
The treatment marks a world first in cell transplantation and paralysis reversal. The project was jointly funded by the Nicholls Spinal Injury Foundation and the UK Stem Cell Foundation. Professor Raisman, who first discovered OECs in 1985, went on to show how the treatment could be applied on rats with spinal injuries in 1997.
Details of the research can be found in the journal Cell Transplantation.
Sources: UCL Institute of Neurology, BBC Panorama
See the original post:
Cell transplant enables paralyzed man to walk again
Japanese team develops cardiac tissue sheet from human iPS cells
By daniellenierenberg
KYOTO A team of Japanese researchers has successfully created cardiac tissue sheets generated from human induced pluripotent stem cells, according to a study in the online British journal Scientific Reports.
The team said it is the first time iPS cells have produced an integrated cardiac tissue sheet that includes vascular cells as well as cardiac muscle cells and is close to real tissue in structure.
The stem cell team, led by Kyoto University professor Jun Yamashita, hopes the achievement will contribute to the development of new treatments for heart disease, because it has already found evidence that transplanting the sheets into mice with failing hearts improves in their cardiac condition.
The team used a protein called VEGF, which is related to the growth of blood vessels, as a replacement for the Dkk1 protein previously used to create cardiac muscle sheets from iPS cells.
As a result, iPS cells were simultaneously differentiated to become cardiac muscle cells, vascular mural cells, and the endothelial cells that line the interior surface of blood vessels. The cells were cultivated into a sheet about 1 cm in diameter.
Three-layer cardiac tissue sheets were then transplanted into nine mice with dead or damaged heart muscle caused by heart attacks. In four of the mice, blood vessels formed in the area where the sheets were transplanted, leading to improved cardiac function.
The weak point of iPS cells is that there is a risk of developing cancer, but the cells did not become cancerous within two months of transplantation, the team said.
About 72 percent of the cardiac tissue sheet was made of cardiac muscle cells, while 26 percent of it consisted of endothelial cells as well as vascular mural cells. But the sheet contained a small portion of cells that had not changed, leading the team to call attention to the possibility that a cancerous change might take place over the longer term.
Yamashita said in the study that he believed the new form of cardiac sheets attached well.
Oxygen and nourishment were able to reach cardiac muscle through blood because there were blood vessels, he said.
Continue reading here:
Japanese team develops cardiac tissue sheet from human iPS cells
107.26 /$ (5 p.m.)
By NEVAGiles23
KYOTO A team of Japanese researchers has successfully created cardiac tissue sheets generated from human induced pluripotent stem cells, according to a study in the online British journal Scientific Reports.
The team said it is the first time iPS cells have produced an integrated cardiac tissue sheet that includes vascular cells as well as cardiac muscle cells and is close to real tissue in structure.
The stem cell team, led by Kyoto University professor Jun Yamashita, hopes the achievement will contribute to the development of new treatments for heart disease, because it has already found evidence that transplanting the sheets into mice with failing hearts improves in their cardiac condition.
The team used a protein called VEGF, which is related to the growth of blood vessels, as a replacement for the Dkk1 protein previously used to create cardiac muscle sheets from iPS cells.
As a result, iPS cells were simultaneously differentiated to become cardiac muscle cells, vascular mural cells, and the endothelial cells that line the interior surface of blood vessels. The cells were cultivated into a sheet about 1 cm in diameter.
Three-layer cardiac tissue sheets were then transplanted into nine mice with dead or damaged heart muscle caused by heart attacks. In four of the mice, blood vessels formed in the area where the sheets were transplanted, leading to improved cardiac function.
The weak point of iPS cells is that there is a risk of developing cancer, but the cells did not become cancerous within two months of transplantation, the team said.
About 72 percent of the cardiac tissue sheet was made of cardiac muscle cells, while 26 percent of it consisted of endothelial cells as well as vascular mural cells. But the sheet contained a small portion of cells that had not changed, leading the team to call attention to the possibility that a cancerous change might take place over the longer term.
Yamashita said in the study that he believed the new form of cardiac sheets attached well.
Oxygen and nourishment were able to reach cardiac muscle through blood because there were blood vessels, he said.
More:
107.26 /$ (5 p.m.)
Doctors Use Adult (Not Embryonic) Stem Cells To Grow And Implant Petri-Dish Retina
By daniellenierenberg
The clones are coming! The clones are coming! (Maybe.) Doctors have grown a retina in a petri dish using stem cells from a 70-year-old patients skin and successfully transplanted the retina to her eye at Japan's Riken Center for Developmental Biology.
This marks the first time a transplanted organ was grown from skin cells from the recipient and not an embryo, The Globe and Mail reports. Until now, scientists have been mired in a debate regarding the use of embryonic stem cells to create transplant tissue. Using a patients own adult stem cells avoids that controversy and also reduces the chance the patient could reject the transplant.
Stem cells hold the promise of curing many diseases, including macular degeneration and Parkinsons.
However, there are risks associated with using adult stem cells. Scientists must turn regular adult cells into dividing cells, and there is concern that cells could turn cancerous after transplant. You only need one stem cell left in the graft that could lead to cancer, Dr. Janet Rossant told the The Globe and Mail. Rossant is chief of research at Torontos Hospital for Sick Children and past president of the International Society for Stem Cell Research.
The Riken Center for Developmental Biology has also been in the news lately because its deputy director committed suicide following accusations of scientific misconduct and the retraction of two papers (unrelated to this stem-cell procedure) that were published in the journal Nature.
See the original post:
Doctors Use Adult (Not Embryonic) Stem Cells To Grow And Implant Petri-Dish Retina
Stem Cells Grown From Patient's Arm Used To Replace Retina
By LizaAVILA
BarbaraHudson writes: The Globe and Mail is reporting the success of a procedure to implant a replacement retina grown from cells from the patient's skin. Quoting: "Transplant doctors are stepping gingerly into a new world, one month after a Japanese woman received the first-ever tissue transplant using stem cells that came from her own skin, not an embryo. On Sept. 12, doctors in a Kobe hospital replaced the retina of a 70-year-old woman suffering from macular degeneration, the leading cause of blindness in the developed world. The otherwise routine surgery was radical because scientists had grown the replacement retina in a petri dish, using skin scraped from the patient's arm.
The Japanese woman is fine and her retinal implant remains in place. Researchers around the world are now hoping to test other stem-cell-derived tissues in therapy. Dr. Jeanne Loring from the Scripps Research Institute in La Jolla, Calif., expects to get approval within a few years to see whether neurons derived from stem cells can be used to treat Parkinson's disease."
Read more:
Stem Cells Grown From Patient's Arm Used To Replace Retina
Ageless Derma Introduces Their Latest Age-Defying Facial Mask Developed Using Exotic Apple Stem Cells
By NEVAGiles23
Irvine, California (PRWEB) October 23, 2014
Ageless Derma is one of the most highly esteemed providers of anti-aging and everyday skin care products. They are proud to introduce their latest innovation in the facial mask arena with their Antioxidant Apple Stem Cell Hydrating Mask. This facial product uses stem cell technology derived from a rare Swiss apple known for its long and healthy shelf life. The additional all natural ingredients in this mask make it a potent antidote to dry, dull skin that craves moisture and revitalization.
The Antioxidant Apple Stem Cell Hydrating Mask uses PhytoCellTecTM technology to cultivate cells from the exotic Swiss apple, Malus Domestica. This apple variety has the ability to stay fresh for extended periods of time without the accompanying shriveling that occurs with other fruit varieties. Its acidic flavor, however, prevented farmers from growing it widely for consumer consumption. Its scientific advantages were taken note of and the stem cells are put to powerful use in Ageless Dermas Antioxidant Apple Stem Cell Hydrating Mask. This liposomal formulation has been incorporated into the effective facial mask for smoothing wrinkles and keeping skin looking younger through its antioxidant activity.
Other ingredients strategically placed in the Antioxidant Apple Stem Cell Hydrating Mask include natural enzymes for softening the skin. Aloe Barbadenis Leaf Juice heals, protects and hydrates skin. Sunflower Seed Oil is also a protectant and deep moisturizer. The natural Kaolin Clay is what extracts toxins, grime and impurities from the skin, making the complexion clear, smooth, and feeling revitalized.
The key antioxidants also used in Antioxidant Apple Stem Cell Hydrating Mask are green tea and pomegranate. They fight the damage caused by free radicals and also protect skin against the suns UV damage, a major cause of fine lines, wrinkles and irritated skin.
The developers at Ageless Derma Skin Care know they are making something remarkable happen in the skin care world. Their line of physician-grade skin repair products incorporates an invaluable philosophy: supporting overall skin health by delivering the most cutting-edge biotechnology and pure, natural ingredients to all of the skin's layers. This approach continues to resonate even today with the companys founder, Dr. Farid Mostamand, who close to a decade ago began his journey to deliver the best skin care alternatives for those who want to have healthy and beautiful looking skin at any age. About this latest Ageless Derma mask, Dr. Mostamand says, The Antioxidant Apple Stem Cell Hydrating Mask is an extraordinary development in our Ageless Derma product line. Its potent ingredients work in synergy to bring moisture and radiance back to the complexion by using natures own antioxidants.
Ageless Derma products are formulated in FDA-approved Labs. All ingredients are inspired by nature and enhanced by science. Ageless Derma products do not contain parabens or any other harsh additives, and they are never tested on animals. The company has developed five unique lines of products to address any skin type or condition.
Continued here:
Ageless Derma Introduces Their Latest Age-Defying Facial Mask Developed Using Exotic Apple Stem Cells
Stem Cell Therapy Help Buddy the Beagle – Video
By daniellenierenberg
Stem Cell Therapy Help Buddy the Beagle
Buddy the beagle wasn #39;t able to walk when he first arrived at the University of Minnesota Veterinary Medical Center. With the help of the Veterinary Medical ...
By: UMN Health
Go here to see the original:
Stem Cell Therapy Help Buddy the Beagle - Video
UC San Diego named stem cell 'alpha clinic'
By Dr. Matthew Watson
PUBLIC RELEASE DATE:
23-Oct-2014
Contact: Scott LaFee slafee@ucsd.edu 619-543-6163 University of California - San Diego @UCSanDiego
In a push to further speed clinical development of emerging stem cell therapies, Sanford Stem Cell Clinical Center at UC San Diego Health System was named today one of three new "alpha clinics" by the California Institute for Regenerative Medicine (CIRM), the state's stem cell agency.
The announcement, made at a public meeting in Los Angeles of the CIRM Governing Board, includes an award of $8 million for each of three sites. The other alpha grant recipients are the City of Hope hospital near Los Angeles and University of California, Los Angeles.
"A UC San Diego alpha clinic will provide vital infrastructure for establishing a comprehensive regenerative medicine clinical hub that can support the unusual complexity of first-in-human stem cell-related clinical trials," said Catriona Jamieson, MD, PhD, associate professor of medicine at UC San Diego School of Medicine, deputy director of the Sanford Stem Cell Clinical Center, director of the UC San Diego Moores Cancer Center stem cell program and the alpha clinic grant's principal investigator.
"The designation is essential in much the same manner that comprehensive cancer center status is an assurance of scientific rigor and clinical quality. It will attract patients, funding agencies and study sponsors to participate in, support and accelerate novel stem cell clinical trials and ancillary studies for a range of arduous diseases."
The alpha clinics are intended to create the long-term, networked infrastructure needed to launch and conduct numerous, extensive clinical trials of stem cell-based drugs and therapies in humans, including some developed by independent California-based investigators and companies. These trials are requisite before any new drug or treatment can be approved for clinical use.
The clinics will also emphasize public education to raise awareness and understanding of stem cell science in part to combat "stem cell tourism" and the marketing of unproven, unregulated and potentially dangerous therapies and help establish sustainable business models for future, approved stem cell treatments.
"Everything we do has one simple goal, to accelerate the development of successful treatments for people in need," said C. Randal Mills, PhD, CIRM president and CEO. "Stem cell therapies are a new way of treating disease; instead of managing symptoms, cellular medicine has the power to replace or regenerate damaged tissues and organs. And so we need to explore new and innovative ways of accelerating clinical research with stem cells. That is what we hope these alpha stem cell clinics will accomplish."
Go here to read the rest:
UC San Diego named stem cell 'alpha clinic'