Bone paste could provide treatment for ostoeporosis
By raymumme
About three million Briton currently suffer osteoporosis which is affected by a number factors such as genes, a lack of exercise and poor diet and results in about 60,000 hip, 50,000 wrist and 120,000 spinal fractures every year, according to the National Osteoporosis Society, costing about 1.7 billion in health and social care.
Dr Ifty Ahmed, a researcher at Nottingham University, said his team wanted to provide a preventative treatment, strengthening the bones of those at risk before they suffered a fracture.
Speaking at the Regener8 conference on regenerative medicine, in Leeds last week, he said: Our aim would be to use screening to spot people who are at risk, then strengthen their bones before they get fractures.
It means that rather than waiting until people have a fall and break something, we would try to stop that ever happening, along with the consequences, loss of independence, surgery and secondary illnesses.
Previous attempts have been made to find ways of strengthening thinning bones but the difficulties of protecting the fragile stem cells has meant no such treatments have yet been developed.
Dr Ahmeds team hope to overcome this problem by puncturing the tiny hollow spheres of calcium phosphate allowing the stem cells to migrate inside them where they are protected.
The experimental treatment has not yet been trialled on humans.
It would involve extracting stem cells from a patients bone marrow and mixing them with the microspheres before injecting the paste into the vulnerable bones.
Dr Ahmed said: "If it works, this kind of treatment could be done in a day.
Until now the team have been funded by the Engineering and Physical Sciences Research Council but they are now looking for a commercial partner.
Read the rest here:
Bone paste could provide treatment for ostoeporosis
First-in-man procedure utilizes a new method of stem cell delivery
By JoanneRUSSELL25
Frankfurt, Germany (PRWEB) September 19, 2014
The Translational Research Institute TRI Medical announced today that its new ND Infusion Catheter is being used in a first-in-man procedure at the University of Frankfurt.
The study commenced on September 4th, 2014 at the University of Frankfurt, Department of Cardiology. The use of the new catheter demonstrated a number of advancements in the delivery of regenerative therapeutics, commonly known as stem cells. We are at the forefront of revolutionizing stem cell delivery to the heart, TRI Medicals Nabil Dib, MD, Msc, offered. The ND Infusion Catheter provides safety and potential efficacy. The catheter also reduces the procedure time to approximately 15 minutes; enabling patients to walk and resume activities in about 2 hours, Dr. Dib continued.
The renowned German Cardiology Center at the University of Frankfurt has extensive experience with the development of cardiac cell-based regenerative therapeutics. Prof. Dr. Andreas M. Zeiher, Chairman of the Department of Cardiology at the University of Frankfurt stated The catheter provides the unique potential to precisely regulate coronary blood flow, while administering cells directly into the heart thus improving safety and potentially efficacy. The innovative design of the catheter's balloon accommodates different vessel sizes, avoiding the need to use multiple catheters, reducing potential risks associated with exchanging the balloon catheter when treating different coronary arteries in an individual patient.
Prior to the first-in-man procedure, extensive cell compatibility testing of bone marrow derived cells with the ND Infusion Catheter revealed that the catheter preserved cell viability and functionality, Stefanie Dimmeler, PhD and Director of the Institute of Cardiovascular Regeneration, Centre of Molecular Medicine stated. The testing proved that the cells are compatible with the ND Infusion Catheter. We see this as potential improvements in safety and clinical outcomes related to cell function and efficacy in patients, Dr. Dimmeler offered.
Safety was top-of-mind when we initiated the first-in-man procedure in Frankfurt. We are elated to report that the procedures outcomes were successful, Dr. Dib stated. Earlier studies revealed that the ND Infusion Catheter reduces cellular clumping, preserves cell viability, improves dispersion and reduces radial forces on the vessel walls during balloon inflation; which collectively might improve patient safety and clinical outcomes.
TRI Medicals Ron Anson, Vice President of Business Development shared The catheters unique design features provide physicians with a valuable new tool in the delivery of specified fluids such as stem cells. We expect to see significant growth in the stem cell research marketplace for the new, state-of-the-art ND Infusion Catheter.
ABOUT TRI Medical TRI Medical is a privately held, medical device development company. TRI Medical is dedicated to providing a pathway to regulatory approval that is efficient, predictable and cost effective.
#####
Media inquiries regarding TRI Medical, its capabilities and for additional information regarding the ND Infusion Catheter contact: DeAnn Dana Phone: 480.309.2884 Email: DDana(at)TRImedical.com TRI Medical website: http://www.trimedical.com
Go here to read the rest:
First-in-man procedure utilizes a new method of stem cell delivery
Bone Marrow Recipient Meets Donor Who Saved His Life
By JoanneRUSSELL25
Two men who changed each others lives forever by being on the giving and receiving ends of a bone marrow transplant met for the first time today and had their first chance to say, Thank you, face-to-face.
Thank you so much, Joe Yannantuono, 33, said to his bone marrow donor, Justin Jenkins, 35, as he embraced him in a hug in a live, emotional meeting on Good Morning America.
Yannantuono, not very long ago, was waging a two-year long battle for his life against stage 4 lymphoma.
WATCH: Robin Roberts Celebrates 1-Year Anniversary of Bone Marrow Transplant
Toddler Meets Life-Saving Bone Marrow Donor
As his wife, Christine Buono, and his 4-year-old son, JJ Yannantuono, stood by his side, the family, from Staten Island, N.Y., got the unbelievable news that a man in Texas, a stranger, was a rare 10 for 10 genetic bone marrow match.
That stranger in Texas, Jenkins, of Dallas, had registered to be a bone marrow donor by chance 15 years ago when he was 21-years-old and donated blood because they were offering free snacks.
Soon after Jenkins was found to be a match, his stem cells were transported by airplane to New York and transplanted into Yannatuonos body in December 2012 at Memorial Sloan Kettering Cancer Center.
For more than one year after the successful transplant, Yannantuono had no idea whose cells he was now carrying in his body.
As Yannantuono was rebuilding his life, Jenkins life was thrown a tragic curveball. His mother, who raised him on her own and had been a big part of his donation journey, was killed in a car crash.
Read the rest here:
Bone Marrow Recipient Meets Donor Who Saved His Life
New molecule allows for up to 10-fold increase in stem cell transplants
By LizaAVILA
Investigators from the Institute for Research in Immunology and Cancer (IRIC) at the Universit de Montral have just published, in the journal Science, the announcement of the discovery of a new molecule, the first of its kind, which allows for the multiplication of stem cells in a unit of cord blood. Umbilical cord stem cells are used for transplants aimed at curing a number of blood-related diseases, including leukemia, myeloma and lymphoma. For many patients this therapy comprises a treatment of last resort.
Directed by Dr. Guy Sauvageau, principal investigator at IRIC and hematologist at the Maisonneuve-Rosemont Hospital, the research has the potential to multiply by 10 the number of cord blood units available for a transplant in humans. In addition, it will considerably reduce the complications associated with stem cell transplantation. And it will be particularly useful for non-Caucasian patients for whom compatible donors are difficult to identify.
A clinical study using this molecule, named UM171 in honor of the Universit de Montral, and a new type of bioreactor developed for stem culture in collaboration with the University of Toronto will be initiated in December 2014 at the Maisonneuve-Rosemont Hospital.
According to Dr. Guy Sauvageau, "This new molecule, combined with the new bioreactor technology, will allow thousands of patients around the world access to a safer stem cell transplant. Considering that many patients currently cannot benefit from a stem cell transplant for lack of matching donors, this discovery looks to be highly promising for the treatment of various types of cancer."
The Centre of Excellence for Cellular Therapy at the Maisonneuve-Rosemont Hospital will serve as production unit for these stem cells, and grafts will then be distributed to patients in Montreal, Quebec City and Vancouver for this first Canadian clinical study. Tangible results should be available one year later, that is, in December 2015. The significance of this new discovery is such that over time, conclusive clinical results could revolutionize the treatment of leukemia and other blood-related illnesses.
"These extraordinary advances result from the efforts of a remarkable team that includes extremely gifted students and postdoctoral investigators working in the IRIC laboratories," adds Dr. Guy Sauvageau. "Among them, the first authors of this publication: Iman Fars, doctoral student, and Jalila Chagraoui, research officer, along with the professionals in IRIC's medical chemistry core facility under the direction of Anne Marinier, who optimized the therapeutic properties of this new molecule."
Context
Umbilical cord blood from newborn children is an excellent source of hematopoietic stem cells for stem cell transplants, since their immune system is still immature and the stem cells have a lower probability of inducing an adverse immune reaction in the recipient.
Furthermore, it is not necessary for the immunological compatibility between donor and recipient to be perfect, unlike in a bone marrow transplant. However, in most cases the number of stem cells obtained from an umbilical cord is much too low for treating an adult, and its use is confined above all to the treatment of children. With the new molecule UM171 it will be possible to multiply stem cells in culture and to produce enough of them to treat adults, especially those who are not Caucasian, and who because of the lack of donors have limited access to transplants.
Collaborators from the Maisonneuve-Rosemont Hospital, the British Columbia Cancer Agency, the Ontario Cancer Institute and the Fred Hutchison Cancer Research Center also played an important role in evaluating the biological properties of this new molecule, and those from the University of Toronto in developing the bioreactor.
Read more:
New molecule allows for up to 10-fold increase in stem cell transplants
Better way to track emerging cell therapies using MRIs
By daniellenierenberg
Cellular therapeutics -- using intact cells to treat and cure disease -- is a hugely promising new approach in medicine but it is hindered by the inability of doctors and scientists to effectively track the movements, destination and persistence of these cells in patients without resorting to invasive procedures, like tissue sampling.
In a paper published September 17 in the online journal Magnetic Resonance in Medicine, researchers at the University of California, San Diego School of Medicine, University of Pittsburgh and elsewhere describe the first human tests of using a perfluorocarbon (PFC) tracer in combination with non-invasive magnetic resonance imaging (MRI) to track therapeutic immune cells injected into patients with colorectal cancer.
"Initially, we see this technique used for clinical trials that involve tests of new cell therapies," said first author Eric T. Ahrens, PhD, professor in the Department of Radiology at UC San Diego. "Clinical development of cell therapies can be accelerated by providing feedback regarding cell motility, optimal delivery routes, individual therapeutic doses and engraftment success."
Currently, there is no accepted way to image cells in the human body that covers a broad range of cell types and diseases. Earlier techniques have used metal ion-based vascular MRI contrast agents and radioisotopes. The former have proven difficult to differentiate in vivo; the latter raise concerns about radiation toxicity and do not provide the anatomical detail available with MRIs.
"This is the first human PFC cell tracking agent, which is a new way to do MRI cell tracking," said Ahrens. "It's the first example of a clinical MRI agent designed specifically for cell tracking."
Researchers used a PFC tracer agent and an MRI technique that directly detects fluorine atoms in labeled cells. Fluorine atoms naturally occur in extremely low concentrations in the body, making it easier to observe cells labeled with fluorine using MRI. In this case, the modified and labeled dendritic cells -- potent stimulators of the immune system -- were first prepared from white blood cells extracted from the patient. The cells were then injected into patients with stage 4 metastatic colorectal cancer to stimulate an anti-cancer T-cell immune response.
The published study did not assess the efficacy of the cell therapy, but rather the ability of researchers to detect the labeled cells and monitor what happened to them. Ahrens said the technique worked as expected, with the surprising finding that only half of the delivered cell vaccine remained at the inoculation site after 24 hours.
"The imaging agent technology has been to shown to be able to tag any cell type that is of interest," Ahrens said. "It is a platform imaging technology for a wide range of diseases and applications," which might also speed development of relevant therapies.
"Non-invasive cell tracking may help lower regulatory barriers," Ahrens explained. "For example, new stem cell therapies can be slow to obtain regulatory approvals in part because it is difficult, if not impossible, with current approaches to verify survival and location of transplanted cells. And cell therapy trials generally have a high cost per patient. Tools that allow the investigator to gain a 'richer' data set from individual patients mean it may be possible to reduce patient numbers enrolled in a trial, thus reducing total trial cost."
Story Source:
See original here:
Better way to track emerging cell therapies using MRIs
Stem Cell Therapy | why no more news about embryonic stem cells – Video
By LizaAVILA
Stem Cell Therapy | why no more news about embryonic stem cells
http://www.arthritistreatmentcenter.com Is embryonic stem cell research passe? Next How come no more news about embryonic stem cells? Embryonic stem cells come from human embryos and these...
By: Nathan Wei
More:
Stem Cell Therapy | why no more news about embryonic stem cells - Video
Stem Cell Therapy Professional Football Player – Video
By NEVAGiles23
Stem Cell Therapy Professional Football Player
James Lee a Professional Football player is back in action thanks to stem cell therapy and Dr. Dennis M. Lox MD. Dr. Lox | http://www.drloxstemcells.com | (844) 440...
By: Dr. Lox
Go here to read the rest:
Stem Cell Therapy Professional Football Player - Video
9 Global Options Stem Cell Therapy for Parkinson’s Disease – Video
By NEVAGiles23
9 Global Options Stem Cell Therapy for Parkinson #39;s Disease
Parkinson #39;s disease is a neuromuscular condition that affects millions of people around the world. Uncontrollable movement of the body muscles along with str...
By: placidways
Read more here:
9 Global Options Stem Cell Therapy for Parkinson's Disease - Video
The war on leukemia: How the battle for cell production could be decisive
By NEVAGiles23
PUBLIC RELEASE DATE:
18-Sep-2014
Contact: Luke Harrison l.harrison.1@bham.ac.uk University of Birmingham @unibirmingham
A key step in understanding the nature of the fight for superiority between mutated genes and normal genes could lead to new therapies to combat leukaemia, say researchers from the University of Birmingham and Newcastle University.
The study, published in Cell Reports, investigated Acute Myeloid Leukaemia to understand why leukemic cells are not able to develop normally into mature blood cells.
Stem cells in the bone marrow generate billions of different blood cells each day. The process resembles a production line with genes acting as regulators to control each step of the blood formation.
Leukaemia arises when the DNA encoding regulators in the stem cells is changed by a mutation. When a mutation occurs in the relevant regulator genes, the finely balanced order of the production line is disrupted with drastic consequences.
A chain reaction occurs, with the function of other regulators in the process being altered. The new cells no longer develop into normal blood cells, but leukemic cells that multiply and begin to take over the body.
Professor Constanze Bonifer, of the University of Birmingham, explained, "This particular leukaemia is characterised by a mutation in a gene that produces a rogue regulator. That is, one that is not normally made and behaves in a different way. The knock-on effect of that one mutation is huge."
The team showed that this aberrant regulator switches off hundreds of other genes, many of them regulators themselves, by using state of the art technology that looks at the activity of all genes within a cell. As a consequence of the drastically altered production line, normal blood formation cannot happen, and leukemic cells are formed.
Go here to see the original:
The war on leukemia: How the battle for cell production could be decisive
World Breakthrough: A New Molecule Allows for an Increase in Stem Cell Transplants
By NEVAGiles23
Contact Information
Available for logged-in reporters only
Newswise Investigators from the Institute for Research in Immunology and Cancer (IRIC) at the Universit de Montral have just published, in the prestigious magazine Science, the announcement of the discovery of a new molecule, the first of its kind, which allows for the multiplication of stem cells in a unit of cord blood. Umbilical cord stem cells are used for transplants aimed at curing a number of blood-related diseases, including leukemia, myeloma and lymphoma. For many patients this therapy comprises a treatment of last resort.
Directed by Dr. Guy Sauvageau, principal investigator at IRIC and hematologist at the Maisonneuve-Rosemont Hospital, this world breakthrough has the potential to multiply by 10 the number of cord blood units available for a transplant in humans. In addition, it will considerably reduce the complications associated with stem cell transplantation. And it will be particularly useful for non-Caucasian patients for whom compatible donors are difficult to identify.
A clinical study using this molecule, named UM171 in honor of the Universit de Montral, and a new type of bioreactor developed for stem culture in collaboration with the University of Toronto will be initiated in December 2014 at the Maisonneuve-Rosemont Hospital.
According to Dr. Guy Sauvageau, This new molecule, combined with the new bioreactor technology, will allow thousands of patients around the world access to a safer stem cell transplant. Considering that many patients currently cannot benefit from a stem cell transplant for lack of matching donors, this discovery looks to be highly promising for the treatment of various types of cancer.
The Centre of Excellence for Cellular Therapy at the Maisonneuve-Rosemont Hospital will serve as production unit for these stem cells, and grafts will then be distributed to patients in Montreal, Quebec City and Vancouver for this first Canadian clinical study. Tangible results should be available one year later, that is, in December 2015. The significance of this new discovery is such that over time, conclusive clinical results could revolutionize the treatment of leukemia and other blood-related illnesses.
These extraordinary advances result from the efforts of a remarkable team that includes extremely gifted students and postdoctoral investigators working in the IRIC laboratories, adds Dr. Guy Sauvageau. Among them, the first authors of this publication: Iman Fars, doctoral student, and Jalila Chagraoui, research officer, along with the professionals in IRICs medical chemistry core facility under the direction of Anne Marinier, who optimized the therapeutic properties of this new molecule.
Context
Umbilical cord blood from newborn children is an excellent source of hematopoietic stem cells for stem cell transplants, since their immune system is still immature and the stem cells have a lower probability of inducing an adverse immune reaction in the recipient.
See more here:
World Breakthrough: A New Molecule Allows for an Increase in Stem Cell Transplants
NYU Langone Scientists Report Reliable and Highly Efficient Method for Making Stem Cells
By JoanneRUSSELL25
Contact Information
Available for logged-in reporters only
Newswise NEW YORK, September 18, 2014 Scientists at NYU Langone Medical Center have found a way to boost dramatically the efficiency of the process for turning adult cells into so-called pluripotent stem cells by combining three well-known compounds, including vitamin C.
Using the new technique in mice, the researchers increased the number of stem cells obtained from adult skin cells by more than 20-fold compared with the standard method. They say their technique is efficient and reliable, and thus should generally accelerate research aimed at using stem cells to generate virtually any tissue. Stem cells are immature or uncommitted cells that are theoretically capable of becoming any cell type.
This big boost in efficiency gives us an opportunity now to study stem cell programming mechanisms at high resolution, says Matthias Stadtfeld, PhD, assistant professor of cell biology and a member of the Skirball Institute of Biomolecular Medicine and the Helen L. and Martin S. Kimmel Center for Stem Cell Biology at NYU Langone Medical Center, who led the research.
This is a very exciting advance, says Ruth Lehmann, PhD, director of the Kimmel Center for Stem Cell Biology and the Skirball Institute at NYU Langone and chair of the Department of Cell Biology. The new technology developed by the Stadtfeld lab to reprogram differentiated cells efficiently and effectively brings the prospect of stem cell technology for safe use in regenerative medicine ever so much closer."
The standard method for reprogramming skin, blood, or other tissue-specific cell types into induced pluripotent stem cells (iPSCs) was reported in 2006 by the laboratory of Kyoto Universitys Shinya Yamanaka, who later won a Nobel Prize for the achievement. The method involves the artificial expression of four key genes dubbed OKSM (for Oct4, Klf4, Sox2 and myc) whose collective activity slowly prods cells into an immature state much like that of an early embryonic cell.
In principle, one could take a sample of cells from a person, induce the cells to become iPSCs, then multiply the iPSCs in a lab dish and stimulate them to mature towards desired adult cell types such as blood, brain or heartwhich then could be used to replace injured or diseased tissue in that same individual.
But there are many formidable technical obstacles, among which is the low efficiency of currently used protocols. Converting most cell types into stable iPSCs occurs at rates of 1 percent or less, and the process can take weeks.
Researchers throughout the world have been searching for ways to boost this efficiency, and in some cases have reported significant gains. These procedures, however, often alter vital cellular genes, which may cause problems for potential therapies. For the new study, reported online today in Stem Cell Reports, Dr. Stadtfeld and his laboratory team decided to take a less invasive approach and investigate chemical compounds that transiently modulate enzymes that are present in most cells. We especially wanted to know if these compounds could be combined to obtain stem cells at high efficiency, Dr. Stadtfeld says.
Go here to read the rest:
NYU Langone Scientists Report Reliable and Highly Efficient Method for Making Stem Cells
Team reports reliable, highly efficient method for making stem cells
By daniellenierenberg
11 hours ago A new method resulted in a colony of stem cells, glowing green, derived from one adult immune cell. Credit: Laboratory of Matthias Stadtfeld at NYU Langone Medical center
Scientists at NYU Langone Medical Center have found a way to boost dramatically the efficiency of the process for turning adult cells into so-called pluripotent stem cells by combining three well-known compounds, including vitamin C. Using the new technique in mice, the researchers increased the number of stem cells obtained from adult skin cells by more than 20-fold compared with the standard method. They say their technique is efficient and reliable, and thus should generally accelerate research aimed at using stem cells to generate virtually any tissue. Stem cells are immature or uncommitted cells that are theoretically capable of becoming any cell type.
"This big boost in efficiency gives us an opportunity now to study stem cell programming mechanisms at high resolution," says Matthias Stadtfeld, PhD, assistant professor of cell biology and a member of the Skirball Institute of Biomolecular Medicine and the Helen L. and Martin S. Kimmel Center for Stem Cell Biology at NYU Langone Medical Center, who led the research.
"This is a very exciting advance," says Ruth Lehmann, PhD, director of the Kimmel Center for Stem Cell Biology and the Skirball Institute at NYU Langone and chair of the Department of Cell Biology. "The new technology developed by the Stadtfeld lab to reprogram differentiated cells efficiently and effectively brings the prospect of stem cell technology for safe use in regenerative medicine ever so much closer."
The standard method for reprogramming skin, blood, or other tissue-specific cell types into "induced pluripotent stem cells" (iPSCs) was reported in 2006 by the laboratory of Kyoto University's Shinya Yamanaka, who later won a Nobel Prize for the achievement. The method involves the artificial expression of four key genes dubbed OKSM (for Oct4, Klf4, Sox2 and myc) whose collective activity slowly prods cells into an immature state much like that of an early embryonic cell.
In principle, one could take a sample of cells from a person, induce the cells to become iPSCs, then multiply the iPSCs in a lab dish and stimulate them to mature towards desired adult cell types such as blood, brain or heartwhich then could be used to replace injured or diseased tissue in that same individual.
But there are many formidable technical obstacles, among which is the low efficiency of currently used protocols. Converting most cell types into stable iPSCs occurs at rates of 1 percent or less, and the process can take weeks.
Researchers throughout the world have been searching for ways to boost this efficiency, and in some cases have reported significant gains. These procedures, however, often alter vital cellular genes, which may cause problems for potential therapies. For the new study, reported online today in Stem Cell Reports, Dr. Stadtfeld and his laboratory team decided to take a less invasive approach and investigate chemical compounds that transiently modulate enzymes that are present in most cells. "We especially wanted to know if these compounds could be combined to obtain stem cells at high efficiency," Dr. Stadtfeld says.
Two of these compounds influence well known signaling pathways, called Wnt and TGF-, which regulate multiple growth-related processes in cells. The third is vitamin C (also known as ascorbic acid). Best known as a powerful antioxidant, the vitamin was recently discovered to assist in iPSC induction by activating enzymes that remodel chromatinthe spiral scaffold for DNAto regulate gene expression.
Simon Vidal, a graduate student in the Stadtfeld lab, and Bhishma Amlani, a postdoctoral researcher, looked first at mouse skin fibroblasts, the most common cell type used for iPSC research. Adding to fibroblasts engineered to express OKSM either vitamin C, a compound to activate Wnt signaling, or a compound to inhibit TGF- signaling increased iPSC-induction efficiency weakly to about 1% after a week of cell culture. Combining any two worked a bit better. But combining all three brought the efficiency to about 80 percent in the same period of time.
More here:
Team reports reliable, highly efficient method for making stem cells
Kickstarter Promo Update Sept 15 2014 – Stem Cell Treatment for Hope, Love and Freedom – Video
By daniellenierenberg
Kickstarter Promo Update Sept 15 2014 - Stem Cell Treatment for Hope, Love and Freedom
Hello my name is Sonny, I was born with a nerve disease, a genetic mutation that causes the muscles in my arms, hands, legs and feet to atrophy and to become weak. I now have perfect legs....for...
By: Sonny Davis
Original post:
Kickstarter Promo Update Sept 15 2014 - Stem Cell Treatment for Hope, Love and Freedom - Video
Stem cell revolution gets closer
By Dr. Matthew Watson
Edgar Irastorza was just 31 when his heart stopped beating in October 2008.
A Miami property manager, Irastorza had recently gained weight as his wife's third pregnancy progressed. "I kind of got pregnant, too," he said.
During a workout one day, he felt short of breath and insisted that friends rush him to the hospital. Minutes later, his pulse flatlined. He survived the heart attack, but the scar tissue that resulted cut his heart's pumping ability by a third. He couldn't pick up his children. He fell asleep every night wondering if he would wake up in the morning.
Desperation motivated Irastorza to volunteer for a highly unusual medical research trial: getting stem cells injected directly into his heart. "I just trusted my doctors and the science behind it, and said, 'This is my only chance,' " he said recently.
Over the last five years, by studying stem cells in lab dishes, test animals and intrepid patients like Irastorza, researchers have brought the vague, grandiose promises of stem cell therapies closer to reality.
Stem cells broke into the public consciousness in the early 1990s, alluring for their potential to help the body beat back diseases of degeneration like Alzheimer's, and to grow new parts to treat conditions like spinal cord injuries.
Progress has been slow. But researchers are learning how to best use stem cells, what types to use and how to deliver them to the body findings that are not singularly transformational, but progressive and pragmatic.
As many as 4,500 clinical trials involving stem cells are under way in the United States to treat patients with heart disease, blindness, Parkinson's, HIV, blood cancers and spinal cord injuries, among other conditions.
Initial studies suggest that stem cell therapy can be delivered safely, said Dr. Ellen Feigal, senior vice president of research and development at the California Institute of Regenerative Medicine, the state stem cell agency, which has awarded more than $2 billion toward stem cell research since 2006.
But enthusiasm for stem cells sometimes outstrips the science. When Gov. Rick Perry of Texas had adult stem cells injected into his spine in 2011 for a back injury, his surgeon had never tried the procedure and had no data to support the experiment. A June review in the New England Journal of Medicine found that "platelet-rich plasma" stem cell therapies praised by a number of athletes worked no better than placebos.
View original post here:
Stem cell revolution gets closer
Stem cells use 'first aid kits' to repair damage
By JoanneRUSSELL25
PUBLIC RELEASE DATE:
18-Sep-2014
Contact: Louise Walsh louise.walsh@admin.cam.ac.uk 44-012-237-65443 University of Cambridge @Cambridge_Uni
Stem cells hold great promise as a means of repairing cells in conditions such as multiple sclerosis, stroke or injuries of the spinal cord because they have the ability to develop into almost any cell type. Now, new research shows that stem cell therapy can also work through a mechanism other than cell replacement.
In a study published today in Molecular Cell, a team of researchers led by the University of Cambridge has shown that stem cells "communicate" with cells by transferring molecules via fluid filled bags called vesicles, helping other cells to modify the damaging immune response around them.
Although scientists have speculated that stem cells might act rather like drugs in sensing signals, moving to specific areas of the body and executing complex reactions this is the first time that a molecular mechanism for this process has been demonstrated. By understanding this process better, researchers can identify ways of maximising the efficiency of stem-cell-based therapies.
Dr Stefano Pluchino from the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, who led the study, said: "These tiny vesicles in stem cells contain molecules like proteins and nucleic acids that stimulate the target cells and help them to survive they act like mini "first aid kits".
"Essentially, they mirror how the stem cells respond to an inflammatory environment like that seen during complex neural injuries and diseases, and they pass this ability on to the target cells. We think this helps injured brain cells to repair themselves."
Mice with damage to brain cells such as the damage seen in multiple sclerosis show a remarkable level of recovery when neural stem/precursor cells (NPCs) are injected into their circulatory system. It has been suggested that this happens because the NPCs discharge molecules that regulate the immune system and that ultimately reduce tissue damage or enhance tissue repair.
The team of researchers from the UK, Australia, Italy, China and Spain has now shown that NPCs make vesicles when they are in the vicinity of an immune response, and especially in response to a small protein, or cytokine, called Interferon-gamma which is released by immune cells. This protein has the ability to regulate both the immune responses and intrinsic brain repair programmes and can alter the function of cells by regulating the activity of scores of genes.
Gel-like padding being developed at Stanford could help cells survive injection, heal spinal cord injuries
By NEVAGiles23
By Amy Adams
Sarah Heilshorn
It is a turbulent and sometimes deadly life for cells injected to heal injuries. The act of being squirted through a thin needle into the site of an injury jostles the delicate cells against each other and against the needle walls. Then, once in the site of injury, they face a biological war zone of chemicals. It's no wonder, then, that treating spinal cord injuries and other damage with injected cells has been a challenge.
Solving this problem takes more than biological know-how; it takes padding chemical padding in the form of complex molecules called polymers that bathe and protect the cells but also flow smoothly through thin needles.
Sarah Heilshorn, an associate professor of materials science and engineering at Stanford, equates these gel-like polymers to ketchup. It's pretty thick, but when you bang on the bottle the sauce flows smoothly through the neck, then firms back up on the plate a process she calls self-healing. "We want our polymers to self-heal better than ketchup," she said. "It flows a bit across the plate."
Her goal is to develop a polymer that supports the cells when they are loaded in a syringe, but then flows freely through the needle, padding and protecting the cells, then firming up quickly when it reaches the site of injury. "We don't want the cells to flow away," she says.
Heilshorn sees this technology as a platform that could be applied to a variety of cell types and injuries. Some polymers need to be firmer to support cells that like a harder environment. Others need to be softer, or contain different biochemical signals.
Neural stem cells, for example, are more likely to mature into nerves if they are in a soft environment. In a stiff environment, they tend to form supportive cells called astrocytes. Picking the right gel is critical to delivering the right kind of cells.
The biochemicals contained within the gel also matter. "We're putting in different biochemical signals that we hope the cells will respond to," Heilshorn said. "We're trying to make a biochemical home for the cells inside that lesion site."
Heilshorn is part of a team made up of Giles Plant, an associate professor of neurosurgery who is a pioneer in cell-based therapies for spinal cord injury, and Andrew Spakowitz, an associate professor of chemical engineering who is an expert in predicting polymer structures. Together, they are among the 22 teams that recently received seed grants from Stanford Bio-X to bring diverse minds to bear on complex biomedical problems.
Desperate search for bone marrow donor goes private for Mississauga woman
By LizaAVILA
MISSISSAUGA Dorothy Vernon-Brown is on the search of her life.
When she was diagnosed with acute myaloid leukemia in August, 2013, the Mississauga mother said it was like a huge kick in the gut.
She underwent chemotherapy shortly after the diagnosis, which helped her into remission, but to survive, she has been told her only chance is a bone marrow transplant.
Bone marrow cells rescue patients from the lethal effect of chemotherapy, says Vernon-Browns oncologist, Dr. Mark Minden.
Since starting a relationship with Canadas stem cell and marrow network, One Match, Vernon-Browns search has come up empty.
Vernon-Brown says she is desperate: Recent tests show lower white blood cell counts in her blood an indication the cancer may be coming back.
But shes also worried about how few donors are from the black community. Vernon-Brown has been told her chance of finding a compatible donor are one in 10,000.
Genetics are key in finding potential stem cell and bone marrow donors says, One Match patient and transplant liaison, MaryLynn Pride said.
There is only a 25 per cent chance that even a sibling will be a match, says Pride. We have patients from all ethnic communities that are currently in need of a stem cell transplant.
Black Canadians makes up only 1 percent of all Canadians registered as potential donors, according to Pride.
Link:
Desperate search for bone marrow donor goes private for Mississauga woman
21 infused with new UM stem cell
By raymumme
Written by Lidia Dinkova on September 17, 2014
A partnership between University of Miami researchers and a Georgia-based biomedical company this month made a new type of stem cell commercially available for bone regeneration and healing.
The marrow-isolated adult multi-lineage inducible cell, known as the MIAMI cell, is the result of 15 years of research by the University of Miami.
Since the stem cell was made commercially available, about 21 patients have been treated with a MIAMI cell infusion.
We are controlling the release to make sure it goes very smoothly, said Tracy S. Anderson, president and CEO of Vivex Biomedical Inc.
Vivex invested in the research and development of the cell and licensed the technology from UM for orthopedic use. The company has contracted with the universitys tissue bank to develop the cell for commercial use and pays an undisclosed royalty back to UM from sales.
Before the MIAMI cell goes to full national release in January 2015, Vivex is controlling the use of the cell.
I am going very slowly and selectively with the surgeons we are working with, Mr. Anderson said. Anytime you have a new product like this, you have to make sure that it goes smoothly.
Mr. Anderson didnt want to disclose revenue generated from the sale of the MIAMI cell, only saying that it has been significant.
So far, the MIAMI cell has been used in bone regeneration and healing in Utah, Florida, Georgia, Michigan, Illinois and Ohio.
Read more from the original source:
21 infused with new UM stem cell
Stem cell harvesting methods used by Sydney doctor Ralph Bright untested by clinical trials
By LizaAVILA
ABC Ralph Bright harvests stem cells using the liposuction.
Serious questions have been raised about a stem cell doctor working in Western Sydney who charges $9,000 per procedure and uses methods that are untested by clinical trials.
An investigation by the ABC's 7.30 program has revealed that Dr Ralph Bright bought his liposuction-based technology from an American company.
The US company is now the subject of a multi-million dollar fraud action, which has revealed the cells being marketed as live were in fact dead.
Dr Bright, of Macquarie Stem Cells, is a former GP and self-taught cosmetic surgeon.
He has been working with stem cells for four years, treating more than 400 patients, including the late model Charlotte Dawson, cricketer Geoff Lawson and Olympic volleyballer Kerri Pottharst.
Dr Bright has licensed his methods to other practitioners around the country and because they use the patients' own cells he is not regulated by the Therapeutic Goods Administration (TGA).
Stem cells are often hailed as a miracle cure, but the nation's top stem cell scientists are warning that buyers should beware of these sorts of procedures, which are yet to be subjected to clinical trials.
Professor of Stem Cell Science at the University of Melbourne, Martin Pera, said almost all stem cell therapy was experimental.
"Actually, this whole science of cell therapy is relatively new and it's very, very important to understand that," he said.
See more here:
Stem cell harvesting methods used by Sydney doctor Ralph Bright untested by clinical trials
Stem cells treatment used by Sydney doctor Ralph Bright 'untested' by clinical trials
By LizaAVILA
ABC Ralph Bright harvests stem cells using the liposuction.
Serious questions have been raised about a stem cell doctor working in Western Sydney who charges $9,000 per procedure and uses methods that are untested by clinical trials.
An investigation by the ABC's 7.30 program has revealed that Dr Ralph Bright bought his liposuction-based technology from an American company.
The US company is now the subject of a multi-million dollar fraud action, which has revealed the cells being marketed as live were in fact dead.
Dr Bright, of Macquarie Stem Cells, is a former GP and self-taught cosmetic surgeon.
He has been working with stem cells for four years, treating more than 400 patients, including the late model Charlotte Dawson, cricketer Geoff Lawson and Olympic volleyballer Kerri Pottharst.
Dr Bright has licensed his methods to other practitioners around the country and because they use the patients' own cells he is not regulated by the Therapeutic Goods Administration (TGA).
Stem cells are often hailed as a miracle cure, but the nation's top stem cell scientists are warning that buyers should beware of these sorts of procedures, which are yet to be subjected to clinical trials.
Professor of Stem Cell Science at the University of Melbourne, Martin Pera, said almost all stem cell therapy was experimental.
"Actually, this whole science of cell therapy is relatively new and it's very, very important to understand that," he said.
The rest is here:
Stem cells treatment used by Sydney doctor Ralph Bright 'untested' by clinical trials