GIOSTAR- STEM CELL THERAPY & DR ANAND SHRIVASTAVA – Video
By LizaAVILA
GIOSTAR- STEM CELL THERAPY DR ANAND SHRIVASTAVA
Global Institute of Stem cell Therapy and Research - GIOSTAR Introduction to Stem Cell Therapy, and Dr.Anand Shrivastava - Chairman Co-founder of GIOSTAR.
By: Devang Parmar
See the original post:
GIOSTAR- STEM CELL THERAPY & DR ANAND SHRIVASTAVA - Video
Woman Receives First Stem Cell Therapy Using Her Own Skin Cells
By Sykes24Tracey
TIME Health medicine Woman Receives First Stem Cell Therapy Using Her Own Skin Cells A Japanese woman is the first to receive retinal cells made from her own skin cells
Researchers at the RIKEN Center for Developmental Biology in Japan surgically transplanted a sheet of retinal pigment cells into the eye of a 70-year old woman on Friday.
The cells are the first induced pluripotent stem cells, or iPS cells, given to a human patient. They were made by Masayo Takahashi, who grew them from the patients own skin cells, which were treated with four genetic factors to revert back to an embryonic-like state. Takahashi then soaked the cells with the appropriate growth factors and other compounds so they developed into retinal pigment cells.
The patient was losing her sight due to macular degeneration, because her retinal pigment endothelial cells were damaged by an overgrowth of blood vessels. Replacing them with a new population of cells can restore her sight.
MORE: Stem-Cell Research: The Quest Resumes
Stem cell scientists are starting to test their treatments in eye-related diseases, because parts of the eye are protected from the bodys immune system, which could recognize the introduced cells as foreign and destroy them. Thats not a problem with the iPS cells, since they are made from the patients own skin cells, but its an added safety net to ensure that the therapy is safe and hopefully effective.
Because iPS cells are genetically treated to erase their skin cell development and revert them back to an embryonic-like state when they can become any type of cell, there are still concerns about their safety when transplanted into patients. The U.S. Food and Drug Administration has not yet approved a trial involving iPS cells so far, only stem cells made from excess IVF embryos have been approved for treating macular degeneration. A 19-member committee of the Japanese ministry of health approved the experimental procedure four days ago, according to Nature, after Takahashi made her case, with the help of Dr. Shinya Yamanaka of Kyoto University, who shared the 2012 Nobel Prize for discovering iPS cells.
MORE: Stem Cell Miracle? New Therapies May Cure Chronic Conditions like Alzheimers
Japans stem cell scientists are hoping the surgery is a success; the field has been struggling since a well-publicized paper about a new way to make iPS cells was retracted amid allegations of fraud.
Its not known whether the cells will continue to grow and form abnormal tumors, or whether they will migrate to other parts of the body. But now that the first patient has received them, those questions and more, about the effectiveness of stem cell therapy might be answered soon.
Continued here:
Woman Receives First Stem Cell Therapy Using Her Own Skin Cells
Induced Stem Cells Will Be Tested on Humans for the First Time
By NEVAGiles23
Back in 2006, when controversy over embryonic stem cell funding was still raging, a piece of research came along that would make the debate essentially obsolete: normal adult cells can actually be reprogrammed into stem cells. No embryos necessary. The technique went on to win its inventor the Nobel Prize. And now, after many years in the lab, a Japanese patient will the first person to receive the next-gen treatment, called induced pluripotent stem cells.
This first clinical trial for iPSCs has long been in the making. Part of its complexity is that cells are taken from each patient and then, through a series of lab procedures, transformed into stem cells. Each patient gets his or her own genetically matched iPSCs.
This individualization is a key advantage over embryonic stem cells, which have been tested in humans before. Special drugs are required to prevent patients' bodies from rejecting embryonic stem cells.
After some final safety checks and genetic tests, the first clinical trial is officially underway in Japan. Nature reports that the first patient will likely receive iPSCs within days. In total, the clinical trial has enrolled six patients, all of whom with an eye condition called macular degeneration that leads to blindness. The iPSCs will replace a deteriorated layer of cells in their retinas.
So far, the procedure has worked without serious adverse effects (usually tumors) in mice and monkeys. If it works in humans, iPSCs could be a promising new avenue for human stem cell therapy, which, if you remember, could hold the key to all sorts of incurable conditions from diabetes to Parkinson's to spinal cord injuries. This is a small first step in that direction. [Nature]
Top image: an eye with signs of macular degeneration. National Eye Institute
Here is the original post:
Induced Stem Cells Will Be Tested on Humans for the First Time
Simple method turns human skin cells into immune-fighting white blood cells
By LizaAVILA
4 hours ago
(Phys.org) For the first time, scientists have turned human skin cells into transplantable white blood cells, soldiers of the immune system that fight infections and invaders. The work, done at the Salk Institute, could let researchers create therapies that introduce into the body new white blood cells capable of attacking diseased or cancerous cells or augmenting immune responses against other disorders.
The work, as detailed in the journal Stem Cells, shows that only a bit of creative manipulation is needed to turn skin cells into human white blood cells.
"The process is quick and safe in mice," says senior author Juan Carlos Izpisua Belmonte, holder of Salk's Roger Guillemin Chair. "It circumvents long-standing obstacles that have plagued the reprogramming of human cells for therapeutic and regenerative purposes."
Those problems includes the long timeat least two monthsand tedious laboratory work it takes to produce, characterize and differentiate induced pluripotent stem (iPS) cells, a method commonly used to grow new types of cells. Blood cells derived from iPS cells also have other obstacles: an inability to engraft into organs or bone marrow and a likelihood of developing tumors.
The new method takes just two weeks, does not produce tumors, and engrafts well.
"We tell skin cells to forget what they are and become what we tell them to bein this case, white blood cells," says one of the first authors and Salk researcher Ignacio Sancho-Martinez. "Only two biological molecules are needed to induce such cellular memory loss and to direct a new cell fate."
Belmonte's team developed the faster technique (called indirect lineage conversion) and previously demonstrated that these approaches could be used to produce human vascular cells, the ones that line blood vessels. Rather than reversing cells all the way back to a stem cell state before prompting them to turn into something else, such as in the case of iPS cells, the researchers "rewind" skin cells just enough to instruct them to form the more than 200 cell types that constitute the human body.
The technique demonstrated in this study uses a molecule called SOX2 to become somewhat plasticthe stage of losing their "memory" of being a specific cell type. Then, researchers use a genetic factor called miRNA125b that tells the cells that they are actually white blood cells.
The researchers are now conducting toxicology studies and cell transplantation proof-of-concept studies in advance of potential preclinical and clinical studies.
Originally posted here:
Simple method turns human skin cells into immune-fighting white blood cells
Stem cell therapy | Stem cell treatment and medicine …
By JoanneRUSSELL25
Prof. Alexander Smikodub
MD Ph.D
Alexander Smikodub jr.
MD Ph.D
Our clinic offers the advanced and patented methods of fetal stem cell treatment for various conditions and diseases. This method of treatment can be found in wikipedia: Stem cell therapy. Fetal stem cells are non-specialized cells that differentiate (turn) into any other cell type of the body that form organs and tissues. Fetal stem cells that we use for treatment have huge potential for growth, differentiation and are not rejected by the patients body, which allows to achieve unique long-term clinical effects.
We have more than 15 years of experience in stem cell therapy and are the leaders of the industry. Most of the methodic used in the clinic are unique and patent protected in many countries including USA. Since 1994 prof. Alexander Smikodub Sr. was the main researcher, doctor and administrator of the clinic. Now his son, Alexander Smikodub Jr. M.D. continues his fathers venture. During these years more than 6500 patients from all over the world received fetal stem cell treatment, resulting in significant improvement of their conditions, and in case of timely contact with us in complete cure of the diseases still considered lethal by most medical institutions.
Read more...
Stem cells are the new word in the medical science, possibly the new revolution. Their importance can be compared with antibiotics discovery or the first successful heart transplantation. They are the inner restorative and regenerative reserve of your body, found in blood, fat layer and bone marrow. After injection of a big stem cells doze, impaired tissues are recovered, regeneration speed is increased and overall condition is greatly improved. We use only material from healthy patients, which passes multiple security checks. They are a perfect material for treating a wide variety of neural and physical diseases.
Continue reading here:
Stem cell therapy | Stem cell treatment and medicine ...
Dr. Jeff Christiansen is Now Offering Stem Cell Therapy for Pets at Five Brevard County Animal Hospitals and Beyond
By raymumme
Melbourne, Florida (PRWEB) September 11, 2014
Central Florida board-certified veterinary surgeon, Jeffrey S. Christiansen is proud to announce his partnerships with several Brevard County animal hospitals to bring regenerative veterinary medicine to pets. Dr. Christiansen has been working in the area since January 2006, credentialed to do stem cell therapy on small animals since 2008, and is happy to now offer his expertise through five different locations.
Over the years Dr. Christiansen has used stem cell therapy with Vet-Stem, Inc. on cruciate ligament and meniscus injuries, as well as osteoarthritis of the hips and other joints. Once Dr. Christiansen has identified a patient as a good stem cell therapy candidate, the pet undergoes a simple surgery to collect fat that is sent overnight to Vet-Stems lab in California. The day after the collection the fat is processed so stem cells can be extracted and put into concentrated, injectable doses. These doses are shipped back overnight to Dr. Christiansen and he is able to place them in the affected areas of the patient to encourage healing and regeneration.
Even if a pet is not an immediate candidate for stem cell therapy, but is undergoing an orthopedic or other type of surgery with Dr. Christiansen, he offers the ability to collect a small sample of fat for future stem cell use with Vet-Stem. Vet-Stem has the ability to cryo-bank stem cells and grow them in the future to provide doses when needed. This service is called StemInsure for dogs, and provides the insurance of a pet having a lifetime of stem cell therapy available from a single sample collection.
Stem cell therapy can be an alternative for pets that are unable to take anti-inflammatories or have digestive issues, as well as pets that are looking at long-term pain management. Because the stem cells come directly from the patient risk is low, and the procedure is natural.
As part of Superior Veterinary Surgical (and less-invasive) Solutions, Dr. Christiansen will be offering stem cell therapy at the following clinics beginning in September: Island Animal Hospital in Merritt Island, Brevard Animal Emergency Hospital in Malabar, Aloha Pet and Bird Hospital in Indian Harbour, Maybeck Animal Hospital in West Melbourne, and the Animal Emergency and Referral Center in Fort Pierce. He is bringing nearly 20 years of veterinary medicine experience with him, and takes pride in specializing in soft tissue, orthopedic, and spinal surgery.
About Dr. Christiansen and Superior Veterinary Surgical Solutions Jeffrey S. Christiansen, DVM, DACVS graduated from the University of Tennessee College of Veterinary Medicine in 1996. He completed his surgical residency in 2001, following an internship, and in 2002 he became a Diplomate of the American College of Veterinary Surgeons. Dr. Christiansen has been practicing in Brevard County since the beginning of 2006 and runs Superior Veterinary Surgical Solutions. In addition to stem cell therapy, some special areas of interest to Dr. Christiansen include artificial urethral sphincter (for incontinence), juvenile pubic symphysiodesis (for prevention of arthritis secondary to hip dysplasia), prophylactic gastropexy (for prevention of gastric dilatation-volvulus, commonly referred to as bloat), subcutaneous ureteral bypass (for obstructions between the kidney and bladder in cats), ureteral stenting (for obstruction between the kidney and bladder in dogs), and urethral stenting (for urethral obstruction), tibial tuberosity advancement (for tears of the cranial cruciate ligament; ACL in people) and tracheal stenting (for tracheal collapse).
About Vet-Stem, Inc. Since its formation in 2002, Vet-Stem, Inc. has endeavored to improve the lives of animals through regenerative medicine. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem pioneered the use of regenerative stem cells for horses, dogs, cats, and some exotics. In 2004 the first horse was treated with Vet-Stem Regenerative Cell Therapy for a tendon injury that would normally have been career ending. Ten years later Vet-Stem celebrated its 10,000th animal treated, and the success of establishing stem cell therapy as a regenerative medicine for certain inflammatory, degenerative, and arthritic diseases. As animal advocates, veterinarians, veterinary technicians, and cell biologists, the team at Vet-Stem tasks themselves with the responsibility of discovering, refining, and bringing to market innovative medical therapies that utilize the bodys own healing and regenerative cells. For more information about Vet-Stem and Regenerative Veterinary Medicine visit http://www.vet-stem.com or call 858-748-2004.
View original post here:
Dr. Jeff Christiansen is Now Offering Stem Cell Therapy for Pets at Five Brevard County Animal Hospitals and Beyond
Stem Cell Institute Public Seminar on Adult Stem Cell Therapy Clinical Trials in San Antonio, Texas September 20th, 2014
By Dr. Matthew Watson
San Antonio, TX (PRWEB) September 11, 2014
The Stem Cell Institute, located in Panama City, Panama, will present an informational seminar about umbilical cord stem cell therapy on Saturday, September 20, 2014 in San Antonio, Texas at the La Cantera Hill Country Resort from 1:00 pm to 4:00 pm.
Stem Cell Institute Speakers include:
Neil Riordan PhD Umbilical Cord Stem Cell Clinical Trials for MS and Autism: Rationale and Clinical Protocols
Dr. Riordan is the founder of the Stem Cell Institute and Medistem Panama Inc.
Jorge Paz-Rodriguez MD Umbilical Cord Stem Cell Therapy for Arthritis, Inflammation and Sports Injuries
Dr. Paz is the Medical Director at the Stem Cell Institute. He practiced internal medicine in the United States for over a decade before joining the Stem Cell Institute in Panama.
Special Guest Speaker:
Janet Vaughan, DDS, MS, Professional Dancer- Successful Stem Cell Therapy in Panama: A Patients Perspective
Dr. Vaughan is Board Certified in Orthodontics (Diplomate of the American Board of Orthodontics) and she is a Fellow in the International College of Dentistry.
Read the original here:
Stem Cell Institute Public Seminar on Adult Stem Cell Therapy Clinical Trials in San Antonio, Texas September 20th, 2014
After FDA Approval, Duchennes Muscular Dystrophy Patient Receives First Umbilical Cord Stem Cell Treatment in the …
By daniellenierenberg
Wichita, KS (PRWEB) September 10, 2014
Ryan Benton, a 28 year-old Duchennes muscular dystrophy patient from Wichita, Kansas, received his first umbilical cord tissue-derived mesenchymal stem cell treatment yesterday following US FDA approval of his doctors application for a single patient, investigational new drug (IND) for compassionate use.
Duchenne muscular dystrophy (DMD) is a rapidly progressive form of muscular dystrophy that occurs primarily in boys. It is caused by an alteration (mutation) in a gene, called the DMD gene, which causes the muscles to stop producing the protein dystrophin. Individuals who have DMD experience progressive loss of muscle function and weakness, which begins in the lower limbs and leads to progressively worsening disability. Death usually occurs by age 25, typically from lung disorders. There is no known cure for DMD.
This trial, officially entitled Allogeneic transplantation of human umbilical cord mesenchymal stem cells (UC-MSC) for a single male patient with Duchenne Muscular Dystrophy (DMD) marks the first time the FDA has approved an investigational allogeneic stem cell treatment for Duchennes in the United States.
Ryan received his first intramuscular stem cell injections from allergy and immunology specialist, Van Strickland, M.D at Asthma and Allergy Specialists in Wichita, Kansas. He will receive 3 more treatments this week on consecutive days. Dr. Strickland will administer similar courses to Ryan every 6 months for a total of 3 years.
This is not the first time Ryan has undergone umbilical cord mesenchymal stem cell therapy. Since 2009, Ryan has been traveling to the Stem Cell Institute in Panama for similar treatments. Encouraging results from these treatments prompted Dr. Strickland to seek out a way to treat Ryan in the United States.
The stem cell technology being utilized in this trial was developed by renowned stem cell scientist Neil H. Riordan, PhD. Dr. Riordan is the founder and president of the Stem Cell Institute in Panama City, Panama and Medistem Panama. Medistem Panama is providing cell harvesting and banking services for their US-based cGMP laboratory partner.
Funding for this trial is being provided by the Aidan Foundation, a non-profit organization founded by Dr. Riordan in 2004 to provide financial assistance for alternative therapies to people like Ryan.
About Van Strickland, MD
Dr. Strickland came to Wichita in 1979 from his fellowship at the National Jewish Hospital in Denver. Since then he has spent one year in Wyoming, one year in Dallas, Texas and one year in Lees Summit Missouri before returning to full-time practice in Wichita, Kansas.
Read more from the original source:
After FDA Approval, Duchennes Muscular Dystrophy Patient Receives First Umbilical Cord Stem Cell Treatment in the ...
Combining antibodies, iron nanoparticles and magnets steers stem cells to injured organs
By JoanneRUSSELL25
PUBLIC RELEASE DATE:
10-Sep-2014
Contact: Sally Stewart sally.stewart@cshs.org 310-248-6566 Cedars-Sinai Medical Center
LOS ANGELES Researchers at the Cedars-Sinai Heart Institute infused antibody-studded iron nanoparticles into the bloodstream to treat heart attack damage. The combined nanoparticle enabled precise localization of the body's own stem cells to the injured heart muscle.
The study, which focused on laboratory rats, was published today in the online peer reviewed journal Nature Communications. The study addresses a central challenge in stem cell therapeutics: how to achieve targeted interactions between stem cells and injured cells.
Although stem cells can be a potent weapon in the fight against certain diseases, simply infusing a patient with stem cells is no guarantee the stem cells will be able to travel to the injured area and work collaboratively with the cells already there.
"Infusing stem cells into arteries in order to regenerate injured heart muscle can be inefficient," said Eduardo Marbn, MD, PhD, director of the Cedars-Sinai Heart Institute, who led the research team. "Because the heart is continuously pumping, the stem cells can be pushed out of the heart chamber before they even get a chance to begin to heal the injury."
In an attempt to target healing stem cells to the site of the injury, researchers coated iron nanoparticles with two kinds of antibodies, proteins that recognize and bind specifically to stem cells and to injured cells in the body. After the nanoparticles were infused into the bloodstream, they successfully tracked to the injured area and initiated healing.
"The result is a kind of molecular matchmaking," Marbn said. "Through magnetic resonance imaging, we were able to see the iron-tagged cells traveling to the site of injury where the healing could begin. Furthermore, targeting was enhanced even further by placing a magnet above the injured heart."
The Cedars-Sinai Heart Institute has been at the forefront of developing investigational stem cell treatments for heart attack patients. In 2009, Marbn and his team completed the world's first procedure in which a patient's own heart tissue was used to grow specialized heart stem cells. The specialized cells were then injected back into the patient's heart in an effort to repair and regrow healthy muscle in a heart that had been injured by a heart attack. Results, published in The Lancet in 2012, showed that one year after receiving the stem cell treatment, heart attack patients demonstrated a significant reduction in the size of the scar left on the heart muscle.
Originally posted here:
Combining antibodies, iron nanoparticles and magnets steers stem cells to injured organs
Clinical Trial to Test Safety of Stem Cell-Derived Therapy for Type 1 Diabetes
By JoanneRUSSELL25
Contact Information
Available for logged-in reporters only
Newswise Researchers at the University of California, San Diego School of Medicine, in partnership with ViaCyte, Inc., a San Diego-based biotechnology firm specializing in regenerative medicine, have launched the first-ever human Phase I/II clinical trial of a stem cell-derived therapy for patients with Type 1 diabetes.
The trial will assess the safety and efficacy of a new investigational drug called VC-01, which was recently approved for testing by the U.S. Food and Drug Administration. The 2-year trial will involve four to six testing sites, the first being at UC San Diego, and will recruit approximately 40 study participants.
The goal, first and foremost, of this unprecedented human trial is to evaluate the safety, tolerability and efficacy of various doses of VC-01 among patients with type 1 diabetes mellitus, said principal investigator Robert R. Henry, MD, professor of medicine in the Division of Endocrinology and Metabolism at UC San Diego and chief of the Section of Endocrinology, Metabolism & Diabetes at the Veterans Affairs San Diego Healthcare System. We will be implanting specially encapsulated stem cell-derived cells under the skin of patients where its believed they will mature into pancreatic beta cells able to produce a continuous supply of needed insulin. Previous tests in animals showed promising results. We now need to determine that this approach is safe in people.
Development and testing of VC-01 is funded, in part, by the California Institute for Regenerative Medicine, the states stem cell agency, the UC San Diego Sanford Stem Cell Clinical Center and JDRF, the leading research and advocacy organization funding type 1 diabetes research.
Type 1 diabetes mellitus is a life-threatening chronic condition in which the pancreas produces little or no insulin, a hormone needed to allow glucose to enter cells to produce energy. It is typically diagnosed during childhood or adolescence, though it can also begin in adults. Though far less common than Type 2 diabetes, which occurs when the body becomes resistant to insulin, Type 1 may affect up to 3 million Americans, according to the JDRF. Among Americans age 20 and younger, prevalence rose 23 percent between 2000 and 2009 and continues to rise. Currently, there is no cure. Standard treatment involves daily injections of insulin and rigorous management of diet and lifestyle.
Phase I/II clinical trials are designed to assess basic safety and efficacy of therapies never before tested in humans, uncovering unforeseen risks or complications. Unpredictable outcomes are possible. Such testing is essential to ensure that the new therapy is developed responsibly with appropriate management of risks that all medical treatments may present.
This is not yet a cure for diabetes, said Henry. The hope, nonetheless, is that this approach will ultimately transform the way individuals with Type 1 diabetes manage their disease by providing an alternative source of insulin-producing cells, potentially freeing them from daily insulin injections or external pumps.
This clinical trial at UC San Diego Health System was launched and supported by the UC San Diego Sanford Stem Cell Clinical Center. The Center was recently created to advance leading-edge stem cell medicine and science, protect and counsel patients, and accelerate innovative stem cell research into patient diagnostics and therapy.
See the article here:
Clinical Trial to Test Safety of Stem Cell-Derived Therapy for Type 1 Diabetes
Optogenetics shed light on cardiac, lung, immune disease
By JoanneRUSSELL25
Kotlikoff lab
Optogenetic proteins enable visualization of a developing heart.
New technologies involving optogenetic proteins, which use light to control and observe cells with unprecedented precision, have begun to illuminate processes underlying cellular behavior and the effects of cell- and gene-based therapies. Cornell researchers are developing advanced forms of these proteins to create a toolkit to make them more widely available to scientists.
With a five-year, $3.1 million grant from the National Institutes of Healths Heart, Lung and Blood Institute, the team will develop the Cornell Heart, Lung and Blood Resource for Optogenetic Mice (CHROMus), which will incorporate optogenetic proteins in mice and human stem cells. Scientists use such tools to control and observe how different types of cells function and interact.
We will target these tools so that they can be combined to study diseases of the heart, lungs, vasculature and blood, said Dr. Michael Kotlikoff, the Austin O. Hooey Dean of Veterinary Medicine at Cornells College of Veterinary Medicine and the projects lead investigator. Researchers will be able to use them to address a broad set of health issues, including heart attack, stroke, asthma and immune diseases.
Marrying optics and genetics, optogenetics enables scientists to use light to trigger and monitor the behavior of cells engineered to contain one or both of two types of designer proteins: effectors, which respond to light by activating the cell they are on, or sensors, which fluoresce when a cell has been activated.
Effectors and sensors can be engineered into specific kinds of cells and color-coded, letting scientists noninvasively trigger one type to see how another type responds. One can see different cell types light up in living animals, giving direct insight into specific cells roles in complex biological systems.
The lines of CHROMus mice developed in this project are designed to be easily crossbred, creating a combinatorial platform that will allow scientists to customize sets of effectors and sensors including new sensors from the Kotlikoff lab into the specific cell types they want to study.
For example, our lab is particularly interested in using these tools to study the control of blood flow to tissues what happens before, during and after major events like stroke and cardiac infarction, and how abnormal rhythms develop after heart injury, said Kotlikoff. Arrhythmias following a heart attack are the single most common cause of acute death in the western world, and how they can be prevented requires a better understanding of how, why and where they arise. Optogenetic tools let us look directly at relevant cells throughout the heart to determine their role in these dangerous and often fatal events.
The tools will be designed to allow scientists to ask and answer similar questions related to vascular and lung diseases, such as the role of the immune system in asthma and stroke, and how therapeutic stem cells integrate within the tissue that they are designed to repair.
See original here:
Optogenetics shed light on cardiac, lung, immune disease
Study sheds light on how stem cells can be used to treat lung disease
By NEVAGiles23
PUBLIC RELEASE DATE:
9-Sep-2014
Contact: Lauren Anderson lauren.anderson@europeanlung.org 1-142-672-876 European Lung Foundation http://www.twitter.com/EuropeanLung
Munich, Germany: A new study has revealed how stem cells work to improve lung function in acute respiratory distress syndrome (ARDS).
Previous studies have shown that stem cells can reduce lung inflammation and restore some function in ARDS, but experts are not sure how this occurs. The new study, which was presented at the European Respiratory Society's International Congress today (09 September 2014), brings us a step closer to understanding the mechanisms that occur within an injured lung.
ARDS is a life-threatening condition in which the efficiency of the lungs is severely reduced. It is caused by damage to the capillary wall either from illness or a physical injury, such as major trauma. ARDS is characterised by excessive and dysregulated inflammation in the lung and patients require mechanical ventilation in order to breathe.
Although inflammation is usually a method by which the body heals and copes with an infection, when the inflammation is dysregulated it can lead to severe damage. Immune cells known as macrophages can coordinate the inflammatory response by driving or suppressing inflammation, depending on the stimulation.
The researchers investigated whether stem cells can affect the stimulation of the macrophages and promote the state in which they will suppress the inflammation.
They tested this in an animal model using human bone marrow-derived stem cells. Mice were infected with live bacteria to induce acute pneumonia and model the condition of ARDS. The results showed that treatment with stem cells led to significant reductions in lung injury, inflammation and improved bacterial clearance. Importantly, when stem cells were given to animals that had their macrophages artificially removed, the protective effect was gone. This suggests that the macrophages are an important part of the beneficial effects of stem cells seen in this model of ARDS.
These results were further supported by experiments where stem cells were applied to human macrophages in samples of fluid taken from lungs of patients with ARDS. Again, the stem cells were able to promote the anti-inflammatory state in the human macrophage cells. The authors have identified several proteins, secreted by the stem cells, that would be responsible for this effect.
Link:
Study sheds light on how stem cells can be used to treat lung disease
Could stem cells from your hip repair your heart after an attack?
By daniellenierenberg
Father-of-two James Cross, 55, suffered a heart attack in February Surgeons at the London Chest Hospital offered him a unique chance Experimental therapy involved injecting stem cells from Mr Cross's hip into his heart in the hope they would encourage the organ to repair itself It appears to have worked as Mr Cross's heart muscle function has increased from 21% after the attack to 37% and it is still improving Experts hope the new technique will increase survival rates by a quarter
By John Naish
Published: 20:38 EST, 8 September 2014 | Updated: 07:12 EST, 9 September 2014
James Cross, 55,was offered experimental treatment after suffering a heart attack in February
After James Cross had a heart attack in February, he was given a unique chance for a new life.
Surgeons at the London Chest Hospital offered the 55-year-old experimental therapy that involved injecting his own stem cells into the damaged organ.
This was done in the hope that it would encourage his heart to repair itself.
The injected stem cells should prevent the hearts muscle tissue from becoming increasingly damaged after suffering a lack of oxygen during the heart attack.
And it seems to have worked.
After the heart attack, I had 21 per cent of my heart muscle functioning, as opposed to the normal 61 per cent, says James.
See the original post here:
Could stem cells from your hip repair your heart after an attack?
One Lucky Little Girl
By JoanneRUSSELL25
CHILHOWIE, Va. You wouldnt think from seeing her smile and watching her run and play that there is anything wrong with 5-year-old Nevaeh Bruner of Chilhowie.
But shes lucky to be alive and faces a lengthy procedure that could be her only chance for survival.
Pam Troxel Buchanan, the little girls great aunt, and Donna Hamm, her great-great aunt, are taking care of Nevaeh and tear up just thinking about what this little girl has been through and what she faces in her fight to live.
She is a very strong little girl. I couldnt do it, said Buchanan.
Nevaeh has been diagnosed with aplastic anemia, a rare disease that causes a complete failure of production of all types of blood cells. As a result, the bone marrow contains large numbers of fat cells instead of the blood-producing cells that would normally be present. It is a potentially fatal blood disease in which there are not enough stem cells in the bone marrow or the stem cells have stopped working effectively.
Buchanan said that last November Nevaehs teacher at Chilhowie Elementary School noticed bruising on her body. She had shown no other symptoms of illness, Buchanan said, so her parents were advised to take her to Niswonger Childrens Hospital in Johnson City, Tennessee, where there is a St. Jude affiliate clinic.
Buchanan said they spent a month running tests and the doctors told Nevaehs parents that her blood count was so low that she would not have lived much longer had she not received treatment. The little girl, who was 4-years-old at the time, has undergone numerous procedures, including surgery, transfusions, chemotherapy and radiation. She is taking oral chemotherapy and having blood transfusions as needed, but she is being weaned off the chemo to undergo a bone marrow transplant.
The chemo is also causing her kidneys to malfunction, bringing her close to kidney failure, Buchanan said.
She will always be in stage two kidney disease, Buchanan said. She will have sensitive kidneys and have to live with that.
The only option at this point is a bone marrow transplant, Buchanan said. Two donor matches have been found and the procedure will take place at St. Jude in Memphis, Tennessee, at the end of this year or next spring, Buchanan said.
Read the original here:
One Lucky Little Girl
Aging Muscles May Be Restored by Discovery of a Key to Making Muscle
By Dr. Matthew Watson
Aging News & Information
Aging Muscles May Be Restored by Discovery of a Key to Making Muscle
Results hailed as important step toward developing new muscle to treat muscle diseases; good news for seniors with muscles wasting away from aging
Sept. 8, 2014 Promising results have been achieved in repairing damaged tissue in muscles which could lead to a new therapeutic approach to treating the millions of people suffering from muscle diseases, including those with muscular dystrophies and muscle wasting associated with cancer and aging seniors, according to the study, published September 7 in Nature Medicine.
Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) in La Jolla, California, have developed this novel technique to promote tissue repair in damaged muscles. The technique also creates a sustainable pool of muscle stem cells needed to support multiple rounds of muscle repair.
There are two important processes that need to happen to maintain skeletal-muscle health. First, when muscle is damaged by injury or degenerative disease such as muscular dystrophy, muscle stem cellsor satellite cellsneed to differentiate into mature muscle cells to repair injured muscles.
Second, the pool of satellite cells needs to be replenished so there is a supply to repair muscle in case of future injuries. In the case of muscular dystrophy, the chronic cycles of muscle regeneration and degeneration that involve satellite-cell activation exhaust the muscle stem-cell pool to the point of no return.
Related Archive Stories
Read more here:
Aging Muscles May Be Restored by Discovery of a Key to Making Muscle
Help Anthony Nolan save a life at 16
By JoanneRUSSELL25
So, when teenagers receive their National Insurance number through the post, why not also include an invitation to join the Anthony Nolan bone marrow register, and give them a chance to save a life at 16?
Email your MP to ask them to support Anthony Nolan's plan
Stem cell donations can play a crucial role in the treatment of blood cancers such as leukaemia and non-Hodgkin's lymphoma. In the UK each year 2,000 people with blood cancer need a donation of healthy cells, and every single one of them depends on the kindness of a stranger. This is where the Anthony Nolan register comes in.
When a patient needs a lifesaving transplant, their medical team works with us to find a match.
Today there are over half a million people on our donor register. That number grew by 55,000 names last year.
But only six per cent of those donors are aged between 16 and 20, and we need many more in this age group to come forward. We know that young people are more likely to be chosen by doctors as donors for people with blood cancer.
This is why Anthony Nolan recruits young people from the age of 16 and why sending registration information with National Insurance numbers could be such an important move.
Similar measures have been taken before. The Driver and Vehicle Licensing Agency includes information on organ donation when it delivers new driving licences. This is an innovative way to get individuals to think about a small but significant commitment they can make to help others.
Young people such as Victoria Rathmill and Celyn Evans are ground-breakers, and should be applauded as pioneers. What they have done takes courage. But the point of being a pioneer is to forge a path that others will follow. Our proposal, a simple awareness-raising measure, will help a great many people. It won't even cost the taxpayer a penny, as all expenses will be paid by Anthony Nolan.
We already have over 530,000 incredible people on our register, which is an amazing achievement. Sadly, its not enough. If we are to find a match for every person who needs one, we urgently need more people in their teens and twenties to sign up in the fight against blood cancer. By taking on our proposal, the Government can make it easier for young people to do just that.
Read this article:
Help Anthony Nolan save a life at 16
Researchers discover key to making new muscles
By daniellenierenberg
Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) have developed a novel technique to promote tissue repair in damaged muscles. The technique also creates a sustainable pool of muscle stem cells needed to support multiple rounds of muscle repair. The study, published September 7 in Nature Medicine, provides promise for a new therapeutic approach to treating the millions of people suffering from muscle diseases, including those with muscular dystrophies and muscle wasting associated with cancer and aging.
There are two important processes that need to happen to maintain skeletal-muscle health. First, when muscle is damaged by injury or degenerative disease such as muscular dystrophy, muscle stem cells -- or satellite cells -- need to differentiate into mature muscle cells to repair injured muscles. Second, the pool of satellite cells needs to be replenished so there is a supply to repair muscle in case of future injuries. In the case of muscular dystrophy, the chronic cycles of muscle regeneration and degeneration that involve satellite-cell activation exhaust the muscle stem-cell pool to the point of no return.
"Our study found that by introducing an inhibitor of the STAT3 protein in repeated cycles, we could alternately replenish the pool of satellite cells and promote their differentiation into muscle fibers," said Alessandra Sacco, Ph.D., assistant professor in the Development, Aging, and Regeneration Program at Sanford-Burnham. "Our results are important because the process works in mice and in human muscle cells."
"Our next step is to see how long we can extend the cycling pattern, and test some of the STAT3 inhibitors currently in clinical trials for other indications such as cancer, as this could accelerate testing in humans," added Sacco.
"These findings are very encouraging. Currently, there is no cure to stop or reverse any form of muscle-wasting disorders -- only medication and therapy that can slow the process," said Vittorio Sartorelli, M.D., chief of the Laboratory of Muscle Stem Cells and Gene Regulation and deputy scientific director at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS). "A treatment approach consisting of cyclic bursts of STAT3 inhibitors could potentially restore muscle mass and function in patients, and this would be a very significant breakthrough."
Revealing the mechanism of STAT3
STAT3 (signal transducer and activator of transcription 3) is a protein that activates the transcription of genes in response to IL-6, a signaling protein released by cells in response to injury and inflammation. Prior to the study, scientists knew that STAT3 played a complex role in skeletal muscle, promoting tissue repair in some instances and hindering it in others. But the precise mechanism of how STAT3 worked was a mystery.
The research team first used normally aged mice and mice models of a form of muscular dystrophy that resembles the human disease to see what would happen if they were given a drug to inhibit STAT3. They found that the inhibitor initially promoted satellite-cell replication, followed by differentiation of the satellite cells into muscle fibers. When they injected the STAT3 inhibitor every seven days for 28 days, they found an overall improvement in skeletal-muscle repair, and an increase in the size of muscle fibers.
"We were pleased to find that we achieved similar results when we performed the experiments in human muscle cells," said Sacco. "We have discovered that by timing the inhibition of STAT3 -- like an "on/off" light switch -- we can transiently expand the satellite-cell population followed by their differentiation into mature muscle cells."
Story Source:
See the rest here:
Researchers discover key to making new muscles
Beverly Hills Orthopedic Institute Becomes R3 Stem Cell Center of Excellence
By daniellenierenberg
Beverly Hills, California (PRWEB) September 08, 2014
Beverly Hills Orthopedic Institute has become an R3 Stem Cell Center of Excellence. Patients are immediately able to benefit from the regenerative medicine procedures at the Center, including bone marrow or amniotic derived stem cells for arthritis, sports injuries, and all types of chronic pain issues. Call R3 Stem Cell for scheduling at (844) GET-STEM.
R3 Stem Cell works with the best Board Certified providers nationwide, bringing the latest cutting edge regenerative medicine procedures to those in need. The top Beverly Hills orthopedic surgeon, Dr. Raj, is the medical director of Beverly Hills Orthopedic Institute and has performed over 50 stem cell procedures to date. Patients have include elite athletes, celebrities, executives, students, manual laborers and senior citizens. In other words, every walk of life can benefit.
The procedures offered include stem cell therapy for arthritis, back pain, cartilage defects, tendonitis, migraines, fracture healing and ligament injuries. The procedures are often able to help patients avoid the need for surgery and provide excellent pain relief with increased function.
Said R3 CEO Bob Maguire, MBA, Dr. Raj is a highly respected, skilled and compassionate provider who is committed to providing cutting edge options to his patients. It can help them heal faster while achieving pain relief. Thats what R3 Centers of Excellence strive for and have been very successful with to date.
Several different types of regenerative medicine procedures are offered at the R3 Center of Excellence. Amniotic stem cell procedures have shown amazing benefits in small studies to date. The fluid is obtained from consenting donors after a scheduled c-section, with the material being processed at an FDA regulated lab. No fetal tissue is involved or embryonic stem cells.
Bone marrow aspirate stem cell therapy is also offered, with the same day procedure injecting the processed bone marrow into the problem area. A high concentration of stem cells and growth factors sparks an impressive healing process, which can often regenerate damaged tissue.
Platelet rich plasma therapy is also offered, which involves a simple blood draw from patients. Studies are beginning to show that the regenerative medicine procedures work well for helping patients avoid the need for joint replacement surgery and also assisting athletes to get back on the field faster than otherwise.
Financing is available for the procedures at all R3 Stem Cell Centers of Excellence. Call (844) GET-STEM for more information and scheduling with stem cell treatment Los Angeles trusts.
Read more from the original source:
Beverly Hills Orthopedic Institute Becomes R3 Stem Cell Center of Excellence
Okyanos Cardiac Cell Therapy Clinic Scheduled to Open
By daniellenierenberg
Freeport, Grand Bahama (PRWEB) September 08, 2014
Adult stem cell therapy for heart disease has emerged as a new treatment alternative for those living with a poor quality of life as a result of severe coronary artery disease. Okyanos is slated to begin delivering this innovative new treatment in September, 2014, and is now screening qualified heart disease candidates. The procedure will be performed in their newly constructed state-of-the-art Phillips catheterization lab, as announced last month.
Just 50 miles from US shore, Okyanos cardiac cell therapy is available to qualified patients with advanced stages of coronary artery disease (CAD) and congestive heart failure (CHF). The screening process consists of a thorough review of your medical history by the Okyanos Chief Medical Officer and Cardiologist, Dr. Howard Walpole, as well as consultation done in conjunction with your cardiologist. You must be able to travel as the protocol is delivered in Freeport on Grand Bahama Island.
"As a leader in cardiac cell therapy, Okyanos is very excited to bring this innovative treatment and new standard of care to patients in a near-shore, regulated jurisdiction, said Matt Feshbach, CEO and co-founder of Okyanos. Our innovative treatment will restore blood flow to the heart helping it begin the process of healing itself, thereby improving the quality of life for heart disease patients who have exhausted all other options.
Over 12 million Americans suffer from some form of heart disease costing $108.9 billion dollars annually in the US alone. Several million patients have now exhausted the currently available methods of treatment but continue to suffer daily from chronic heart disease symptoms such as shortness of breath, fatigue and chest discomfort that can make simple activities challenging. Cardiac cell therapy stimulates the growth of new blood vessels which can lead to reduced angina and reduced re-hospitalizations resulting in an improvement in quality of life.
The Okyanos procedure is performed by prestigious US-licensed chief cardiologist, Dr. Howard Walpole. It is the first cardiac cell therapy procedure for heart failure and disease available outside of clinical trials in which the bodys own adult stem cells, derived from fat tissue, are injected directly into the damaged part of the heart via a catheter to restore blood flow and repair tissue damaged by a heart attack or disease.
The procedure begins with the extraction of a small amount of your body fat, a process done using advanced water-assisted liposuction technology. After separating the fat tissue using a European Union-approved cell processing device the Okyanos cardiologist immediately injects these cells into and around the low blood flow regions of the heart via a cathetera protocol which allows for better targeting of the cells to repair damaged heart tissue. Because the treatment is minimally invasive it requires that patients be under only moderate sedation. Post-procedural recovery consists of rest in a private suite for several hours that comfortably accommodates up to 3 family members.
Okyanos Heart Institute is scheduled to begin delivery in October. Patients can contact Okyanos at http://www.Okyanos.com or by calling toll free at 1-855-659-2667.
About Okyanos Heart Institute: (Oh key AH nos) Based in Freeport, Grand Bahama, Okyanos Heart Institutes mission is to bring a new standard of care and a better quality of life to patients with coronary artery disease using cardiac stem cell therapy. Okyanos adheres to U.S. surgical center standards and is led by CEO Matt Feshbach and Chief Medical Officer Howard T. Walpole Jr., M.D., M.B.A., F.A.C.C., F.A.C.A.I. Okyanos Treatment utilizes a unique blend of stem and regenerative cells derived from ones own adipose (fat) tissue. The cells, when placed into the heart via a minimally-invasive catheterization, stimulate the growth of new blood vessels, a process known as angiogenesis. Angiogenesis facilitates blood flow in the heart and supports intake and use of oxygen (as demonstrated in rigorous clinical trials such as the PRECISE trial). The literary name Okyanos, the Greek god of the river Okeanos, symbolizes restoration of blood flow.
The rest is here:
Okyanos Cardiac Cell Therapy Clinic Scheduled to Open
Stem cells could cut high rate of cornea transplant rejection
By Sykes24Tracey
Human trials on the effectiveness of using adult stem cells in the fight against cornea transplant rejection could be under way within the next five years.
Corneal eye disease is the fourth most common cause of blindness in the world and affects more than 10 million people worldwide. New research from NUI Galway has found that transplant rejection rates could be reduced to as low as 10% by administering a stem cell grown from the bone marrow of adult donors.
Although 100,000 people worldwide undergo cornea transplants each year, about 30% are unsuccessful due to rejection by the patients own immune system.
An unhealthy cornea affects vision by scattering or distorting light and causing glare and blurred vision.
Corneal transplants are the most widely used treatments where the diseased or scarred cornea is replaced with healthy tissue from an organ donor.
Researchers from NUI Galways Regenerative Medicine Institute previously found that mesenchymal stem cells (MSC) release chemicals capable of adjusting the immune system balance in the body.
The cells can be readily obtained and grown from the bone marrow of adult donors and the finding led them to study their usefulness in combating cornea transplant rejection.
The teams lead scientist, Dr Oliver Treacy, said the model system they developed led to an increase in cells called regulatory T-cells, which dampen down inflammation, and a decrease in the number of natural killer cells, key players in the rejection process.
Consultant ophthalmologist at Galway University Hospital, Gerry Fahy, who was involved in the study, said corneal transplant rejection could result in blindness and was not uncommon in high-risk patients.
This important research presents a potentially new avenue of treatment to prevent transplant rejection and save vision in this vulnerable group of patients, said Mr Fahy.
Go here to see the original:
Stem cells could cut high rate of cornea transplant rejection