Hope for stroke victims after radical stem cell treatment enables patients to move and talk again
By raymumme
5 stroke victims were treated with stem cells extracted from bone marrow Treatment triggers rapid regeneration of damaged brain cells Patients regained power of speech and use of their arms and legs More than 150,000 people have a stroke in England every year Treatment is at early stage and needs years of testing Imperial College London scientists says it shows 'great potential'
By Ben Spencer
Published: 09:25 EST, 8 August 2014 | Updated: 19:30 EST, 8 August 2014
561 shares
19
View comments
Five people who had suffered severe strokes (illustrated) regained the power of speech and mobility thanks to a radical new treatment
Stroke patients have shown remarkable signs of recovery after they were given a radical new treatment.
Five people who had suffered severe strokes regained the power of speech, use of their arms and legs and improved cognition after just six months, according to British research published today.
The three men and two women, aged between 45 and 75, were treated with stem cells extracted from their own bone marrow in the first experiment of its kind.
Link:
Hope for stroke victims after radical stem cell treatment enables patients to move and talk again
India needs more bone marrow donors: Harsh Vardhan
By LizaAVILA
Union Health Minister Harsh Vardhan Wednesday called upon citizens to voluntarily register themselves as bone marrow donors to help enhance the chances of patients with blood cancer and other blood-related diseases get genetically compatible donors.
"Unlike blood donation, in the case of unrelated donor, the chances are one in a million that a donor's Human Leukocyte Antigen (HLA) will match with the needy patient's. Therefore, there is a requirement of having millions of registered donors," Vardhan said while speaking at the launch of a "Public Initiative of Bone Marrow Donation" at All India Institute of Medical Science (AIIMS) here.
A willing donor can register himself at the Asian Indian Donor Marrow Registry (AIDMR) at AIIMS. He will have to undergo an initial test done for which 10 ml of blood is taken. The test is called HLA typing.
In case they turn out to be HLA match for the needy patient, they will be requested to donate their bone marrow or peripheral blood stem cells to patients of blood-cancer and other disorders, he said.
Vardhan said the health ministry will soon start a facility for the bone marrow donation in Safdurjung Hospital, which will intensify the initiative for bone marrow donation in the country.
"There is a need for the NGOs and several other health organisations to spread awareness in the society to curb all kinds of myths and superstitions that deter the individuals from being donors, which is a noble cause," he said.
On the occasion, Vardhan registered himself as a bone marrow donor and gave his blood sample for the HLA testing.
"One should at least understand that for the patients suffering from blood-related diseases like blood cancer, leukaemia, thalassemia, anaemia and many other diseases, a simple commitment to donate bone marrow can save a patient's life at the cost of nothing," Vardhan told IANS.
The AIDMR at AIIMS has set a target of registering 100,000 bone marrow donors in the first year and expand the register up to half a million donors in the next five years.
Vardhan also called for donation of body organs and cadavers, which can save life of the needy patients, and also serve the purposes of medical research.
Follow this link:
India needs more bone marrow donors: Harsh Vardhan
Stem cell hope for stroke victims
By Sykes24Tracey
Brain damage caused by strokes could be repaired through the use of stem cells in a discovery that may revolutionise treatment, a study has suggested.
Researchers at Imperial College London found that injecting a patient's stem cells into their brain may be able to change the lives of the tens of thousands of people who suffer strokes each year.
Their results have been called "one of the most exciting recent developments in stroke research".
Doctors said the procedure could become routine in 10 years after larger trials are conducted to examine its effectiveness.
Researcher Dr Paul Bentley, from the college's Department of Medicine, said: "Currently, the main form of treatment is an unblocking of the blood vessel, and that only helps one-third of the patients who are treated and only 10 per cent are eligible anyway. So we said, 'What about the other 90 per cent?' "
The team targeted patients who had suffered severe strokes involving a clot in a blood vessel in the middle of the brain. Typically, there is a high mortality rate in these patients and those who survive are often severely disabled, unable to walk, talk, feed or dress themselves. The experimental procedure was carried out on five such patients, aged 40 to 70, all of whom showed improvement over the following six months, and three were living independently.
Dr Madina Kara, a neuroscientist at the Stroke Association, said: "This is one of the most exciting recent developments in stroke research. However, it's still early days in stem cell research, but the findings could lead to new treatments for stroke patients in the future.
"In the UK, someone has a stroke every three and a half minutes, and around 58 per cent of stroke survivors are left with a disability."
The experimental procedure involved harvesting the patient's own bone marrow, which was then sent to a specialist laboratory so specific stem cells, called CD34+, could be selected. The patient then has a wire inserted into the area of the brain damage. Once there, the stem cells are released and the wire retracted. During the trials the whole process took half a day, but it is hoped that with refinement it could be reduced.
It is thought the cells work in two ways: by growing into small blood vessels that allow the brain to grow new nerves and brain tissue surrounding them, and by releasing anti-inflammatory chemicals that encourage tissue repair.
Originally posted here:
Stem cell hope for stroke victims
ARTAS FUE Hair Transplant and Stem Cell Therapy – Video
By NEVAGiles23
ARTAS FUE Hair Transplant and Stem Cell Therapy
Dr. William Yates speaks with another happy patient showing great results after a 2000 graft hair transplant utilizing the ARTAS FUE Robotic Hair Transplant ...
By: William Yates
Read the original:
ARTAS FUE Hair Transplant and Stem Cell Therapy - Video
Stem Cell Therapy – Am I A Candidate – Video
By JoanneRUSSELL25
Stem Cell Therapy - Am I A Candidate
Farhan Saddiqi, MD discusses the process of determining whether you are a candidate for Stem Cell Therapy at the Trinity Stem Cell Institute.
By: SMU Productions - Tampa Video Production
Read more:
Stem Cell Therapy - Am I A Candidate - Video
Lorna Tolentino reveals the secret to her youthful looks
By raymumme
Kasi kaka-quit ko lang ng smoking, Lorna Tolentino proudly announces.
The 52-year-old actress also adds, Mag-wa-one month na sa August 14.
Asked whether shes having a hard time adjusting her lifestyle, she says, Ay no, hindi naman talaga ako ganun Im not really talaga sobrang sobrang smoker.
Right now, Lorna is taking supplements such as vitamin B1, B complex, glutathione, and mangosteen and malunggay capsules.
Siyempre nung nag-50 ako, mas iniisip ko na mas tumagal pa.
Kasi siyempre, 'di ba, gone too soon si Rudy [Fernandez], kaya siyempre kailangan mas mahaba pa, lalo na because of my apo, yun ang nag-i-inspire sa akin, she confesses.
When asked whether shes ok with Lyla Victoria, Raphael's (Lorna's eldest son) daughter, entering showbiz, Lorna answers, Commercial kung meron, oo tatangapin ko.
Lorna enthusiastically talks about her two-year-old apo, whom she refers to as still being in her makulit stage, Shes ok, actually yung kanya intellectual [maturity] ano, something na pinapaano sa mga doctor, for four years old na.
She also complements Leana, Lylas mother, for teaching her grandchild, Talagang kinu-congratulate ko si Leana, because shes a teacher, talagang mas kaya niya i-guide.
STEM CELL THERAPY.Lorna Tolentino, who has undergone stem cell therapy, narrates how the procedure helped her health concerns.
Read more:
Lorna Tolentino reveals the secret to her youthful looks
Scientists grow links between spinal cord and brain for first time
By NEVAGiles23
U.S. scientists have regrown spinal cord neurons from a patients own cells They implanted the cells in injured rats aiming to reverse paralysis Found neurons caused animals' nervous system to rewire the spinal cord Connections extended into rats' limbs but they couldn't walk again Experiment offers hope to paralysed people as scientists get closer to cure But expert warns it could be months or years before human trials
By Sarah Griffiths
Published: 05:26 EST, 8 August 2014 | Updated: 07:56 EST, 8 August 2014
207 shares
15
View comments
Spinal injury victims left paralysed have been offered new hope of walking again thanks to a breakthrough in stem cell science.
U.S. scientists have regrown spinal cord neurons from a patients own cells for the first time.
Implanting the cells in rats, they found that the neurons caused the animals nervous systems to rewire the spinal cord and brain.
Scroll down for video
Read more here:
Scientists grow links between spinal cord and brain for first time
Scientists Inch Closer Toward Using Stem Cells for Spinal Injuries
By Dr. Matthew Watson
By Amy Norton HealthDay Reporter
THURSDAY, Aug. 7, 2014 (HealthDay News) -- In a step toward using stem cells to treat paralysis, scientists were able to use cells from an elderly man's skin to regrow nerve connections in rats with damaged spinal cords.
Reporting in the Aug. 7 online issue of Neuron, researchers say the human stem cells triggered the growth of numerous axons -- the fibers that extend from the body of a neuron (nerve cell) to send electrical impulses to other cells.
Some axons even reached the animals' brains, according to the team led by Dr. Mark Tuszynski, a professor of neurosciences at the University of California, San Diego.
"This degree of growth in axons has not been appreciated before," Tuszynski said. But he cautioned that there is still much to be learned about how the new nerve fibers behave in laboratory animals.
Tuszynski likened the potential for stem-cell-induced axon growth to nuclear fusion. If it's contained, you get energy; if it's not contained, you get an explosion.
"Too much axon growth into the wrong places would be a bad thing," Tuszynski said.
For years, researchers have studied the potential for stem cells to restore functioning nerve connections in people with spinal cord injuries. Stem cells are primitive cells that have the capacity to develop into various types of body tissue. Stem cells can come from embryos or be generated from cells taken from a person.
For their study, Tuszynski's team used so-called induced pluripotent stem cells. They took skin cells from a healthy 86-year-old man and genetically reprogrammed them to become similar to embryonic stem cells.
Those stem cells were then used to create primitive neurons, which the researchers embedded into a special scaffold created with the help of proteins called growth factors. From there, the human neurons were grafted into lab rats with spinal cord injuries.
Read the original post:
Scientists Inch Closer Toward Using Stem Cells for Spinal Injuries
Stem cells show promise for stroke in pilot study
By NEVAGiles23
A stroke therapy using stem cells extracted from patients' bone marrow has shown promising results in the first trial of its kind in humans.
Five patients received the treatment in a pilot study conducted by doctors at Imperial College Healthcare NHS Trust and scientists at Imperial College London.
The therapy was found to be safe, and all the patients showed improvements in clinical measures of disability.
The findings are published in the journal Stem Cells Translational Medicine. It is the first UK human trial of a stem cell treatment for acute stroke to be published.
The therapy uses a type of cell called CD34+ cells, a set of stem cells in the bone marrow that give rise to blood cells and blood vessel lining cells. Previous research has shown that treatment using these cells can significantly improve recovery from stroke in animals. Rather than developing into brain cells themselves, the cells are thought to release chemicals that trigger the growth of new brain tissue and new blood vessels in the area damaged by stroke.
The patients were treated within seven days of a severe stroke, in contrast to several other stem cell trials, most of which have treated patients after six months or later. The Imperial researchers believe early treatment may improve the chances of a better recovery.
A bone marrow sample was taken from each patient. The CD34+ cells were isolated from the sample and then infused into an artery that supplies the brain. No previous trial has selectively used CD34+ cells, so early after the stroke, until now.
Although the trial was mainly designed to assess the safety and tolerability of the treatment, the patients all showed improvements in their condition in clinical tests over a six-month follow-up period.
Four out of five patients had the most severe type of stroke: only four per cent of people who experience this kind of stroke are expected to be alive and independent six months later. In the trial, all four of these patients were alive and three were independent after six months.
Dr Soma Banerjee, a lead author and Consultant in Stroke Medicine at Imperial College Healthcare NHS Trust, said: "This study showed that the treatment appears to be safe and that it's feasible to treat patients early when they might be more likely to benefit. The improvements we saw in these patients are very encouraging, but it's too early to draw definitive conclusions about the effectiveness of the therapy. We need to do more tests to work out the best dose and timescale for treatment before starting larger trials."
Read the original:
Stem cells show promise for stroke in pilot study
Dramatic growth of grafted stem cells in rat spinal cord
By Dr. Matthew Watson
Building upon previous research, scientists at the University of California, San Diego School of Medicine and Veteran's Affairs San Diego Healthcare System report that neurons derived from human induced pluripotent stem cells (iPSC) and grafted into rats after a spinal cord injury produced cells with tens of thousands of axons extending virtually the entire length of the animals' central nervous system.
Writing in the August 7 early online edition of Neuron, lead scientist Paul Lu, PhD, of the UC San Diego Department of Neurosciences and colleagues said the human iPSC-derived axons extended through the white matter of the injury sites, frequently penetrating adjacent gray matter to form synapses with rat neurons. Similarly, rat motor axons pierced the human iPSC grafts to form their own synapses.
The iPSCs used were developed from a healthy 86-year-old human male.
"These findings indicate that intrinsic neuronal mechanisms readily overcome the barriers created by a spinal cord injury to extend many axons over very long distances, and that these capabilities persist even in neurons reprogrammed from very aged human cells," said senior author Mark Tuszynski, MD, PhD, professor of Neurosciences and director of the UC San Diego Center for Neural Repair.
For several years, Tuszynski and colleagues have been steadily chipping away at the notion that a spinal cord injury necessarily results in permanent dysfunction and paralysis. Earlier work has shown that grafted stem cells reprogrammed to become neurons can, in fact, form new, functional circuits across an injury site, with the treated animals experiencing some restored ability to move affected limbs. The new findings underscore the potential of iPSC-based therapy and suggest a host of new studies and questions to be asked, such as whether axons can be guided and how will they develop, function and mature over longer periods of time.
While neural stem cell therapies are already advancing to clinical trials, this research raises cautionary notes about moving to human therapy too quickly, said Tuszynski.
"The enormous outgrowth of axons to many regions of the spinal cord and even deeply into the brain raises questions of possible harmful side effects if axons are mistargeted. We also need to learn if the new connections formed by axons are stable over time, and if implanted human neural stem cells are maturing on a human time frame -- months to years -- or more rapidly. If maturity is reached on a human time frame, it could take months to years to observe functional benefits or problems in human clinical trials."
In the latest work, Lu, Tuszynski and colleagues converted skin cells from a healthy 86-year-old man into iPSCs, which possess the ability to become almost any kind of cell. The iPSCs were then reprogrammed to become neurons in collaboration with the laboratory of Larry Goldstein, PhD, director of the UC San Diego Sanford Stem Cell Clinical Center. The new human neurons were subsequently embedded in a matrix containing growth factors and grafted into two-week-old spinal cord injuries in rats.
Three months later, researchers examined the post-transplantation injury sites. They found biomarkers indicating the presence of mature neurons and extensive axonal growth across long distances in the rats' spinal cords, even extending into the brain. The axons traversed wound tissues to penetrate and connect with existing rat neurons. Similarly, rat neurons extended axons into the grafted material and cells. The transplants produced no detectable tumors.
While numerous connections were formed between the implanted human cells and rat cells, functional recovery was not found. However, Lu noted that tests assessed the rats' skilled use of the hand. Simpler assays of leg movement could still show benefit. Also, several iPSC grafts contained scars that may have blocked beneficial effects of new connections. Continuing research seeks to optimize transplantation methods to eliminate scar formation.
Read the original:
Dramatic growth of grafted stem cells in rat spinal cord
Stem cell behavior of human bowel discovered for first time
By Sykes24Tracey
For the first time, scientists have uncovered new information on how stem cells in the human bowel behave, revealing vital clues about the earliest stages in bowel cancer development and how we may begin to prevent it.
The study, led by Queen May University of London (QMUL) and published today in the journal Cell Reports, discovered how many stem cells exist within the human bowel and how they behave and evolve over time. It was revealed that within a healthy bowel, stem cells are in constant competition with each other for survival and only a certain number of stem cells can exist within one area at a time (referred to as the 'stem cell niche'). However, when investigating stem cells in early tumours, the researchers saw increased numbers of stem cells within each area as well as intensified competition for survival, suggesting a link between stem cell activity and bowel cancer development.
The study involved studying stem cells directly within the human body using a specially developed 'toolkit'. The toolkit worked by measuring random mutations that naturally accrue in aging stem cells. The random mutations recorded how the stem cells had behaved, similarly to how the rings on a tree trunk record how a tree grew over time. The techniques used were unique in that scientists were able to study the human stem cells within their natural environment, giving a much more accurate picture of their behaviour.
Until this research, the stem cell biology of the human bowel has remained largely a mystery. This is because most stem cell research is carried out in mice, and it was uncertain how research findings in mice could be applied to humans. However, the scientists in fact found the stem cell biology of human bowels to have significant similarities to mice bowels. This means researchers can continue investigating stem cell activity within mice with the knowledge it is representative of humans -- hopefully speeding up bowel cancer research.
Importantly, these new research methods can also now be applied to investigate stem cells in other parts of the human body such as skin, prostate, lung and breast, with the aim of accelerating cancer research in these areas too.
Dr Trevor Graham, Lecturer in Tumour Biology and Study Author at Queen Mary University of London, comments: "Unearthing how stem cells behave within the human bowel is a big step forward for stem cell research. Until now, stem cell research was mostly conducted in mice or involved taking the stem cells out of their natural environment, thus distorting their usual behaviour. We now want to use the methods developed in this study to understand how stem cells behave inside bowel cancer, so we can increase our understanding of how bowel cancer grows. This will hopefully shed more light on how we can prevent bowel cancer -- the fourth most common cancer in the UK. We are positive this research lays important foundations for future bowel cancer prevention work, as well as prevention work in other cancers."
Dr Marnix Jansen, Histopathologist and Study Author at Queen Mary University of London, comments: "This study was made possible through the involvement of patients either diagnosed with bowel cancer or born with a tendency to develop bowel cancer. Only by investigating tissues taken directly from patients could we study how bowel cancers develop. Our work underlines the importance of patient involvement in scientific research if we are to tackle bowel cancer and help the greatest number of people."
Story Source:
The above story is based on materials provided by Queen Mary, University of London. Note: Materials may be edited for content and length.
See the original post here:
Stem cell behavior of human bowel discovered for first time
Single-cell analysis holds promise for stem cell and cancer research
By JoanneRUSSELL25
UC San Francisco researchers have identified cells' unique features within the developing human brain, using the latest technologies for analyzing gene activity in individual cells, and have demonstrated that large-scale cell surveys can be done much more efficiently and cheaply than was previously thought possible.
"We have identified novel molecular features in diverse cell types using a new strategy of analyzing hundreds of cells individually," said Arnold Kriegstein, MD, PhD, director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF. "We expect to use this approach to help us better understand how the complexity of the human cortex arises from cells that are spun off through cell division from stem cells in the germinal region of the brain."
The research team used technology focused on a "microfluidic" device in which individual cells are captured and flow into nano-scale chambers, where they efficiently and accurately undergo the chemical reactions needed for DNA sequencing. The research showed that the number of reading steps needed to identify and spell out unique sequences and to successfully identify cell types is 100 times fewer than had previously been assumed. The technology, developed by Fluidigm Corporation, can be used to individually process 96 cells simultaneously.
"The routine capture of single cells and accurate sampling of their molecular features now is possible," said Alex Pollen, PhD, who along with fellow Kriegstein-lab postdoctoral fellow Tomasz Nowakowski, PhD, conducted the key experiments, in which they analyzed the activation of genes in 301 cells from across the developing human brain. Their results were published online August 3 in Nature Biotechnology.
Kriegstein said the identification of hundreds of novel biomarkers for diverse cell types will improve scientists' understanding of the emergence of specialized neuronal subtypes. Ultimately, the combination of this new method of focusing on gene activity in single cells with other single-cell techniques involving microscopic imaging is likely to reveal the origins of developmental disorders of the brain, he added.
The process could shed light on several brain disorders, including lissencephaly, in which the folds in the brain's cortex fail to develop, as well as maladies diagnosed later in development, such as autism and schizophrenia, Kriegstein said.
According to the Nature Biotechnology study co-authors, this strategy of analyzing molecules in single cells is likely to find favor not only among researchers who explore how specialized cells arise at specific times and locations within the developing organism, but also among those who monitor cell characteristics in stem cells engineered for tissue replacement, and those who probe the diversity of cells within tumors to identify those responsible for survival and spread of cancerous cells.
No matter how pure, in any unprocessed biological sample there are a variety of cells representing various tissue types. Researchers have been sequencing the combined genetic material within these samples. To study which genes are active and which are dormant, they use the brute repetition of sequencing steps to capture an adequate number of messenger RNA sequences, which are transcribed from switched-on genes. However, it is difficult to conclude from mixed tissue samples which genes are expressed by particular cell types.
Pollen and Nowakowski showed that fewer steps -- and less time and money -- are needed to distinguish different cell types through single-cell analysis than had previously been thought.
"We are studying an ecosystem of different, but related, cell types in the brain," Pollen said. "We are breaking that community down into the different populations of cells with the goal of understanding their functional parts and components so we can accurately predict how they will develop."
Read the rest here:
Single-cell analysis holds promise for stem cell and cancer research
Growing human GI cells may lead to personalized treatments
By Dr. Matthew Watson
A method of growing human cells from tissue removed from a patient's gastrointestinal (GI) tract eventually may help scientists develop tailor-made therapies for inflammatory bowel disease and other GI conditions.
Reporting online recently in the journal Gut, researchers at Washington University School of Medicine in St. Louis said they have made cell lines from individual patients in as little as two weeks. They have created more than 65 such cell lines using tissue from 47 patients who had routine endoscopic screening procedures, such as colonoscopies. A cell line is a population of cells in culture with the same genetic makeup.
The scientists said the cell lines can help them understand the underlying problems in the GI tracts of individual patients and be used to test new treatments.
"While it has been technically possible to isolate intestinal epithelial stem cells from patients, it has been challenging to use the material in ways that would benefit them on an individual basis," said co-senior investigator Thaddeus S. Stappenbeck, MD, PhD, a professor of pathology and immunology. "This study advances the field in that we have developed new methods that allow for the rapid expansion of intestinal epithelial stem cells in culture. That breaks a bottleneck and allows us to develop new ways to test drug and environmental interactions in specific patients."
To grow the human cells, the researchers adapted a system used to grow intestinal epithelial stem cells in mice. In the GI tract, epithelial cells line the inner surface of the esophagus, stomach and intestines.
"An additional important feature of this system is that we can isolate stem cell lines from intestinal biopsies," said first author Kelli L. VanDussen, PhD, a postdoctoral fellow in Stappenbeck's laboratory. "These biopsies are very small tissue fragments that are routinely collected by a gastroenterologist during endoscopy procedures. We have refined this technique, so we have nearly 100 percent success in creating cell lines from individual patient biopsies."
The researchers developed an experimental system that created high levels of critical factors to isolate and expand intestinal epithelial stem cells, including a signaling protein called Wnt and a related protein called R-spondin, which enhances the Wnt signal. They also exposed the cells to a protein called Noggin, which prevented the cells from differentiating into other cell types that live in the GI tract.
After growing the intestinal cell lines, the investigators collaborated with Phillip I. Tarr, MD, the Melvin E. Carnahan Professor of Pediatrics and director of the Division of Pediatric Gastroenterology and Nutrition, to conduct experiments and see how the cells interacted with bacterial pathogens like E. coli.
This showed that pathogenic strains of E. coli attached to intestinal epithelial cells. That attachment is thought to be the critical step in stimulating disease. The investigators said the experimental system they created should lead to new methods to uncover therapies for treating bacterial infections of the intestine.
"In the past, the only really robust method for studying GI epithelial cells was to use cancer cell lines," said co-senior investigator Matthew A. Ciorba, MD, a gastroenterologist and assistant professor of medicine. "However, cancer cells behave differently than the noncancerous GI epithelium, which is affected in patients with conditions such as inflammatory bowel disease. This technique now allows us to study cells identical to the ones that live in a patient's GI tract. Plus, we can grow the cell lines quickly enough that it should be possible to develop a personalized approach to understanding a patient's disease and to tailor treatment based on a patient's underlying problem."
Read this article:
Growing human GI cells may lead to personalized treatments
Dramatic growth of grafted stem cells in rat spinal cord injuries
By NEVAGiles23
PUBLIC RELEASE DATE:
7-Aug-2014
Contact: Jackie Carr jcarr@ucsd.edu 619-543-6163 University of California - San Diego
Building upon previous research, scientists at the University of California, San Diego School of Medicine and Veteran's Affairs San Diego Healthcare System report that neurons derived from human induced pluripotent stem cells (iPSC) and grafted into rats after a spinal cord injury produced cells with tens of thousands of axons extending virtually the entire length of the animals' central nervous system.
Writing in the August 7 early online edition of Neuron, lead scientist Paul Lu, PhD, of the UC San Diego Department of Neurosciences and colleagues said the human iPSC-derived axons extended through the white matter of the injury sites, frequently penetrating adjacent gray matter to form synapses with rat neurons. Similarly, rat motor axons pierced the human iPSC grafts to form their own synapses.
The iPSCs used were developed from a healthy 86-year-old human male.
"These findings indicate that intrinsic neuronal mechanisms readily overcome the barriers created by a spinal cord injury to extend many axons over very long distances, and that these capabilities persist even in neurons reprogrammed from very aged human cells," said senior author Mark Tuszynski, MD, PhD, professor of Neurosciences and director of the UC San Diego Center for Neural Repair.
For several years, Tuszynski and colleagues have been steadily chipping away at the notion that a spinal cord injury necessarily results in permanent dysfunction and paralysis. Earlier work has shown that grafted stem cells reprogrammed to become neurons can, in fact, form new, functional circuits across an injury site, with the treated animals experiencing some restored ability to move affected limbs. The new findings underscore the potential of iPSC-based therapy and suggest a host of new studies and questions to be asked, such as whether axons can be guided and how will they develop, function and mature over longer periods of time.
While neural stem cell therapies are already advancing to clinical trials, this research raises cautionary notes about moving to human therapy too quickly, said Tuszynski.
"The enormous outgrowth of axons to many regions of the spinal cord and even deeply into the brain raises questions of possible harmful side effects if axons are mistargeted. We also need to learn if the new connections formed by axons are stable over time, and if implanted human neural stem cells are maturing on a human time frame months to years or more rapidly. If maturity is reached on a human time frame, it could take months to years to observe functional benefits or problems in human clinical trials."
Go here to read the rest:
Dramatic growth of grafted stem cells in rat spinal cord injuries
Transplanting neural progenitors to build a neuronal relay across the injured spinal cord
By raymumme
PUBLIC RELEASE DATE:
5-Aug-2014
Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research
Cellular transplantation for repair of spinal cord injury is a promising therapeutic strategy that includes the use of a variety of neural and non-neural cells isolated or derived from embryonic and adult tissue as well as embryonic stem cells and induced pluripotent stem cells. In particular, transplants of neural progenitor cells (NPCs) have been shown to limit secondary injury and scar formation and create a permissive environment in the injured spinal cord through the provision of neurotrophic molecules and growth supporting matrices that promote growth of injured host axons. Importantly, transplants of NPC are unique in their potential to replace lost neural cells including neurons, astrocytes, and oligodendrocytes critical for reconstruction of the normal microenvironment of the spinal cord and restoration of connectivity and function. The model that Prof. Itzhak Fischer comes from Drexel University in USA has proposed focuses on the formation of a functional relay to reconnect the injured spinal cord and requires the formation of two synaptic connections, one between host axons and graft-derived neurons, and the other between graft axons and target sites within the host (Figure 1). The design of such a relay requires specific steps that assure: 1) graft survival and generation of neurons, 2) axon growth into and out of the graft by host axons and graft-derived neurons, respectively and 3) formation of physiologically active synaptic connections and restoration of function. The relevant study has been published in the Neural Regeneration Research (Vol. 9, No. 12, 2014).
###
Article: " Transplanting neural progenitors to build a neuronal relay across the injured spinal cord." by Christopher Haas, Itzhak Fischer (Drexel University College of Medicine, Department of Neurobiology & Anatomy, Philadelphia, PA, USA)
Haas C, Fischer I. Transplanting neural progenitors to build a neuronal relay across the injured spinal cord. Neural Regen Res. 2014;9(12): 1173-1176.
Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research http://www.nrronline.org/
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Read the original post:
Transplanting neural progenitors to build a neuronal relay across the injured spinal cord
Scientists uncover stem cell behavior of human bowel for the first time
By NEVAGiles23
PUBLIC RELEASE DATE:
7-Aug-2014
Contact: Charli Scouller c.scouller@qmul.ac.uk 020-788-27943 Queen Mary, University of London
For the first time, scientists have uncovered new information on how stem cells in the human bowel behave, revealing vital clues about the earliest stages in bowel cancer development and how we may begin to prevent it.
The study, led by Queen May University of London (QMUL) and published today in the journal Cell Reports, discovered how many stem cells exist within the human bowel and how they behave and evolve over time. It was revealed that within a healthy bowel, stem cells are in constant competition with each other for survival and only a certain number of stem cells can exist within one area at a time (referred to as the 'stem cell niche'). However, when investigating stem cells in early tumours, the researchers saw increased numbers of stem cells within each area as well as intensified competition for survival, suggesting a link between stem cell activity and bowel cancer development.
The study involved studying stem cells directly within the human body using a specially developed 'toolkit'. The toolkit worked by measuring random mutations that naturally accrue in ageing stem cells. The random mutations recorded how the stem cells had behaved, similarly to how the rings on a tree trunk record how a tree grew over time. The techniques used were unique in that scientists were able to study the human stem cells within their natural environment, giving a much more accurate picture of their behaviour.
Until this research, the stem cell biology of the human bowel has remained largely a mystery. This is because most stem cell research is carried out in mice, and it was uncertain how research findings in mice could be applied to humans. However, the scientists in fact found the stem cell biology of human bowels to have significant similarities to mice bowels. This means researchers can continue investigating stem cell activity within mice with the knowledge it is representative of humans - hopefully speeding up bowel cancer research.
Importantly, these new research methods can also now be applied to investigate stem cells in other parts of the human body such as skin, prostate, lung and breast, with the aim of accelerating cancer research in these areas too.
Dr Trevor Graham, Lecturer in Tumour Biology and Study Author at Queen Mary University of London, comments: "Unearthing how stem cells behave within the human bowel is a big step forward for stem cell research. Until now, stem cell research was mostly conducted in mice or involved taking the stem cells out of their natural environment, thus distorting their usual behaviour. We now want to use the methods developed in this study to understand how stem cells behave inside bowel cancer, so we can increase our understanding of how bowel cancer grows. This will hopefully shed more light on how we can prevent bowel cancer the fourth most common cancer in the UK. We are positive this research lays important foundations for future bowel cancer prevention work, as well as prevention work in other cancers."
Dr Marnix Jansen, Histopathologist and Study Author at Queen Mary University of London, comments: "This study was made possible through the involvement of patients either diagnosed with bowel cancer or born with a tendency to develop bowel cancer. Only by investigating tissues taken directly from patients could we study how bowel cancers develop. Our work underlines the importance of patient involvement in scientific research if we are to tackle bowel cancer and help the greatest number of people."
Go here to see the original:
Scientists uncover stem cell behavior of human bowel for the first time
Human skin cells reprogrammed as neurons regrow in rats with spinal cord injuries
By Sykes24Tracey
PUBLIC RELEASE DATE:
7-Aug-2014
Contact: Mary Beth O'Leary moleary@cell.com 617-397-2802 Cell Press
While neurons normally fail to regenerate after spinal cord injuries, neurons formed from human induced pluripotent stem cells (iPSCs) that were grafted into rats with such injuries displayed remarkable growth throughout the length of the animals' central nervous system. What's more, the iPSCs were derived from skin cells taken from an 86-year-old man. The results, described in the Cell Press journal Neuron, could open up new possibilities in stimulating neuron growth in humans with spinal cord injuries
"These findings indicate that intrinsic neuronal mechanisms readily overcome the barriers created by a spinal cord injury to extend many axons over very long distances and that these capabilities persist even in neurons reprogrammed from very aged human cells," said senior author Mark Tuszynski, MD, PhD, professor of neurosciences and director of the UC San Diego Center for Neural Repair.
After Dr. Tuszynski and his colleagues converted the skin cells into iPSCs, which can be coaxed to develop into nearly any other cell type, the team reprogrammed the cells to become neurons, embedded them in a matrix containing growth factors, and then grafted them into 2-week-old spinal cord injuries in rats.
Three months later, the team found mature neurons and extensive nerve fiber growth across long distances in the rats' spinal cords, including through the wound tissue and even extending into the brain. Despite numerous connections between the implanted neurons and existing rat neurons, functional recovery of the animals' limbs was not restored. The investigators noted that several iPSC grafts contained scars that may have blocked beneficial effects.
Dr. Tuszynski, along with lead author Paul Lu, PhD, of the UC San Diego Department of Neurosciences, and their collaborators are now working to identify the best way to translate neural stem cell therapies for patients with spinal cord injuries, using grafts derived from the patients' own cells.
###
Neuron, Lu et al.: "Long-Distance Axonal Growth from Human Induced Pluripotent Stem Cells After Spinal Cord Injury."
See more here:
Human skin cells reprogrammed as neurons regrow in rats with spinal cord injuries
Team reveals molecular competition drives adult stem cells to specialize
By NEVAGiles23
23 hours ago A bam mutant fruit fly ovary, known as the germanium, contains only adult stem cell-like cells (red) and spherical spectrosome (green). The accumulation of only adult stem cell-like cells indicates a mutation in the master differentiation factor bam completely blocks germline stem cell lineage differentiation. Credit: Ting Xie, Ph.D., Stowers Institute for Medical Research
Adult organisms ranging from fruit flies to humans harbor adult stem cells, some of which renew themselves through cell division while others differentiate into the specialized cells needed to replace worn-out or damaged organs and tissues.
Understanding the molecular mechanisms that control the balance between self-renewal and differentiation in adult stem cells is an important foundation for developing therapies to regenerate diseased, injured or aged tissue.
In the current issue of the journal Nature, scientists at the Stowers Institute for Medical Research report that competition between two proteins, Bam and COP9, balances the self-renewal and differentiation functions of ovarian germline stem cells (GSCs) in fruit flies (Drosophila melanogaster).
"Bam is the master differentiation factor in the Drosophila female GSC system," says Stowers Investigator Ting Xie, Ph.D., and senior author of the Nature paper. "In order to carry out the switch from self-renewal to differentiation, Bam must inactivate the functions of self-renewing factors as well as activate the functions of differentiation factors."
Bam, which is encoded by the gene with the unusual name of bag-of-marbles, is expressed at high levels in differentiating cells and very low levels in GSCs of fruit flies.
Among the self-renewing factors targeted by Bam is the COP9 signalosome (CSN), an evolutionarily conserved, multi-functional complex that contains eight protein sub-units (CSN1 to CSN8). Xie and his collaborators discovered that Bam and the COP9 sub-unit known as CSN4 have opposite functions in regulating the fate of GSCs in female fruit flies.
Bam can switch COP9 function from self-renewal to differentiation by sequestering and antagonizing CSN4, Xie says. "Bam directly binds to CSN4, preventing its association with the seven other COP9 components via protein competition," he adds. CSN4 is the only COP9 sub-unit that can interact with Bam.
"This study has offered a novel way for Bam to carry out the switch from self-renewal to differentiation," says Xie, whose lab uses a combination of genetic, molecular, genomic and cell biological approaches to investigate GSCs as well as somatic stem cells of fruit flies.
In the Nature paper, Xie's lab also reports that CSN4 is the only one of the eight sub-units that is not involved in the regulation of GSC differentiation of female fruit flies. "One possible explanation for the opposite effects of CSN4 and the other CSN proteins is that the sequestration of CSN4 by Bam allows the other CSN proteins to have differentiation-promoting functions," he says.
See the original post here:
Team reveals molecular competition drives adult stem cells to specialize
Diabetes project is given funding boost
By raymumme
The Dr Hadwen Trust awarded 135,078 to Dr Catherine Wright, a lecturer at the Department of Life Sciences at Glasgow Caledonian University and a member of the Institute for Applied Health Research's Diabetes and Biomedical Sciences research group.
Loading article content
The grant will fund a three-year research programme which will allow the university's skin tissue bank to continue providing human skin tissue and cells that can be used for studies related to diabetes research.
This includes issues such as wound healing, as well as the development of human stem cells - which would help to replace the need for animal experimentation.
Dr Wright said: "The funding will allow us to employ a full-time member of staff to assist the academics to run the tissue bank and develop new types of human cell models that can replace animal experiments."
The rest is here:
Diabetes project is given funding boost
Researchers seek 'safety lock' against tumor growth after stem cell transplantation
By NEVAGiles23
PUBLIC RELEASE DATE:
6-Aug-2014
Contact: Robert Miranda cogcomm@aol.com Cell Transplantation Center of Excellence for Aging and Brain Repair
Putnam Valley, NY. (Aug. 6, 2014) Recent studies have shown that transplanting induced pluripotent stem cell-derived neural stem cells (iPS-NSCs) can promote functional recovery after spinal cord injury in rodents and non-human primates. However, a serious drawback to the transplantation of iPS-NSCs is the potential for tumor growth, or tumorogenesis, post-transplantation.
In an effort to better understand this risk and find ways to prevent it, a team of Japanese researchers has completed a study in which they transplanted a human glioblastoma cell line into the intact spinal columns of laboratory mice that were either immunodeficient or immunocompetent and treated with or without immunosuppresant drugs. Bioluminescent imaging was used to track the transplanted cells as they were manipulated by immunorejection.
The researchers found that the withdrawal of immunosuppressant drugs eliminated tumor growth and, in effect, created a 'safety lock' against tumor formation as an adverse outcome of cell transplantation. They also confirmed that withdrawal of immunosuppression led to rejection of tumors formed by transplantation of induced pluripotent stem cell derived neural stem/progenitor cells (iPS-NP/SCs).
Although the central nervous system has shown difficulty in regenerating after damage, transplanting neural stem/progenitor cells (NS/PCs) has shown promise. Yet the problem of tumorogenesis, and increases in teratomas and gliomas after transplantation has been a serious problem. However, this study provides a provisional link to immune therapy that accompanies cell transplantation and the possibility that inducing immunorejection may work to reduce the likelihood of tumorogenesis occurring.
"Our findings suggest that it is possible to induce immunorejection of any type of foreign-grafted tumor cells by immunomodulation," said study co-author Dr. Masaya Nakamura of the Keio University School of Medicine. "However, the tumorogenic mechanisms of induced pluripotent neural stem/progenitor cells (iPS-NS/PCs) are still to be elucidated, and there may be differences between iPS-NS/PCs derived tumors and glioblastoma arising from genetic mutations, abnormal epigenetic modifications and altered cell metabolisms."
The researchers concluded that their model might be a reliable tool to target human spinal cord tumors in preclinical studies and also useful for studying the therapeutic effect of anticancer drugs against malignant tumors.
"This study provides evidence that the use of, and subsequent removal of, immunosuppression can be used to modulate cell survival and potentially remove tumor formation by transplanted glioma cells and provides preliminary data that the same is true for iPS-NS/PCs." said Dr. Paul Sanberg, distinguished professor at the Center of Excellence for Aging and Brain Repair, University of South Florida. "Further study is required to determine if this technique could be used under all circumstances where transplantation of cells can result in tumor formation and its reliability in other organisms and paradigms."
The rest is here:
Researchers seek 'safety lock' against tumor growth after stem cell transplantation