Implanted brain cells integrate fully with mouse brain tissue
By Dr. Matthew Watson
Brain cells that were grafted into the brains of mice have become fully functionally integrated after six months. The successful neuron transplant could pave the way for therapies to treat neurodegenerative diseases such as Parkinson's.
A team of stem cell researchers at the Luxembourg Centre for Systems Biomedicine created the grafted neurons -- induced neuronal stem cells -- in a petri dish out of the host's reprogrammed skin cells. This technique dramatically improved the compatibility of the implanted cells.
Six months after the brain cells were implanted into the hippocampus and cortex regions of the brain, the neurons were fully integrated with the original brain cells via newly formed synapses (the contact points between neurons). The induced neuronal stem cells had changed into different types of brain cells -- neurons, astrocytes and oligodendrocytes -- over time within the host brain. Functional integration with the existing network of cells is absolutely critical for long-term survival of the new brain tissue. The new brain cells exhibited normal activity in tests and the mice showed no adverse side effects.
The plan for researchers is now to explore replacing the type of neurons that tend to die off in the brain of Parkinson's patients -- those neurons found in the substantia nigra that produce dopamine. It may, in the future, be possible to implant neurons to produce the diminished dopamine, which could prove to be an effective treatment for the disease.
Of course, it's a bit leap from the current research to human trials. "Successes in human therapy are still a long way off, but I am sure successful cell replacement therapies will exist in future," says team leader and stem cell researcher Jens Schwamborn. "Our research results have taken us a step further in this direction."
The study has been published in Stem Cell Reports and is available to read for free.
See the article here:
Implanted brain cells integrate fully with mouse brain tissue
Implanted neurons become part of the brain, mouse study shows
By NEVAGiles23
Scientists at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg have grafted neurons reprogrammed from skin cells into the brains of mice for the first time with long-term stability. Six months after implantation, the neurons had become fully functionally integrated into the brain. This successful, lastingly stable, implantation of neurons raises hope for future therapies that will replace sick neurons with healthy ones in the brains of Parkinson's disease patients, for example.
The Luxembourg researchers published their results in the current issue of Stem Cell Reports.
The LCSB research group around Prof. Dr. Jens Schwamborn and Kathrin Hemmer is working continuously to bring cell replacement therapy to maturity as a treatment for neurodegenerative diseases. Sick and dead neurons in the brain can be replaced with new cells. This could one day cure disorders such as Parkinson's disease. The path towards successful therapy in humans, however, is long. "Successes in human therapy are still a long way off, but I am sure successful cell replacement therapies will exist in future. Our research results have taken us a step further in this direction," declares stem cell researcher Prof. Schwamborn, who heads a group of 15 scientists at LCSB.
In their latest tests, the research group and colleagues from the Max Planck Institute and the University Hospital Mnster and the University of Bielefeld succeeded in creating stable nerve tissue in the brain from neurons that had been reprogrammed from skin cells. The stem cell researchers' technique of producing neurons, or more specifically induced neuronal stem cells (iNSC), in a petri dish from the host's own skin cells considerably improves the compatibility of the implanted cells. The treated mice showed no adverse side effects even six months after implantation into the hippocampus and cortex regions of the brain. In fact it was quite the opposite -- the implanted neurons were fully integrated into the complex network of the brain. The neurons exhibited normal activity and were connected to the original brain cells via newly formed synapses, the contact points between nerve cells.
The tests demonstrate that the scientists are continually gaining a better understanding of how to treat such cells in order to successfully replace damaged or dead tissue. "Building upon the current insights, we will now be looking specifically at the type of neurons that die off in the brain of Parkinson's patients -- namely the dopamine-producing neurons," Schwamborn reports. In future, implanted neurons could produce the lacking dopamine directly in the patient's brain and transport it to the appropriate sites. This could result in an actual cure, as has so far been impossible. The first trials in mice are in progress at the LCSB laboratories on the university campus Belval.
Story Source:
The above story is based on materials provided by Universit du Luxembourg. Note: Materials may be edited for content and length.
Read the original post:
Implanted neurons become part of the brain, mouse study shows
Luxury Skin Care: SkinStore.com Adds Reformulated, Repackaged DermaQuest
By daniellenierenberg
Gold River, CA (PRWEB) August 05, 2014
SkinStore.com, the nations leading e-commerce specialty retailer providing scientifically sound solutions for healing and maintaining healthy skin, has reintroduced DermaQuest to its assortment of premium products.
As the leader in botanical stem cell technology since 1999, DermaQuest is at the edge of innovation in advanced skincare. The luxurious formulas are rich in vitamins, peptides, plant stem cells and essential ingredients that hydrate, protect and actually rejuvenate the skin. Through specialized collections for every skin concern, and specific layering sequences to ensure maximum effectiveness and product absorption, DermaQuests formulas are able to realize the desires of any skin type. Their strict quality control and use of only superior ingredients has become unparalleled, results-oriented skincare: If they arent doing it, it simply cant be done yet.
The notable DermaQuest Stem Cell 3D Complex is powered by advanced Biotech Marine and botanical stem cells, peptides and potent antioxidants. The rich, silky formula was formulated to be a wonder tonic, a cure-all for the myriad signs of aging, such as fine lines, wrinkles, skin texture and tone.
Christina Bertolino, Senior, Buying Manager at SkinStore.com, said, DermaQuest offers the best of both worlds: luxury and proven results. The science behind the line is unparalleled and the visible effects speak for themselves.
About SkinStore.com. Physician-founded in 1997, SkinStore carries over 300 premium brands of skin care, cosmetics, hair care, beauty tools and fragrances from around the world, including high quality products normally found in luxury spas, fine department stores and dermatologist offices. An esthetician-staffed call center is available Monday through Friday to answer customer questions and help shoppers choose products best-suited for their skin type. The company is headquartered in Gold River (Sacramento), California. For more information visit SkinStore.com, SkincareStore.com.au or SkinStoreChina.com.
Contact Information Denise McDonald, Content & Production Manager SkinStore http://www.skinstore.com 916-475-1427
###
See more here:
Luxury Skin Care: SkinStore.com Adds Reformulated, Repackaged DermaQuest
Implanted Neurons become Part of the Brain
By raymumme
04.08.2014 - (idw) Universitt Luxemburg - Universit du Luxembourg
Scientists at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg have grafted neurons reprogrammed from skin cells into the brains of mice for the first time with long-term stability. Six months after implantation, the neurons had become fully functionally integrated into the brain. This successful, because lastingly stable, implantation of neurons raises hope for future therapies that will replace sick neurons with healthy ones in the brains of Parkinsons disease patients, for example. The Luxembourg researchers published their results in the current issue of Stem Cell Reports. The LCSB research group around Prof. Dr. Jens Schwamborn and Kathrin Hemmer is working continuously to bring cell replacement therapy to maturity as a treatment for neurodegenerative diseases. Sick and dead neurons in the brain can be replaced with new cells. This could one day cure disorders such as Parkinsons disease. The path towards successful therapy in humans, however, is long. Successes in human therapy are still a long way off, but I am sure successful cell replacement therapies will exist in future. Our research results have taken us a step further in this direction, declares stem cell researcher Prof. Schwamborn, who heads a group of 15 scientists at LCSB.
In their latest tests, the research group and colleagues from the Max Planck Institute and the University Hospital Mnster and the University of Bielefeld succeeded in creating stable nerve tissue in the brain from neurons that had been reprogrammed from skin cells.
The tests demonstrate that the scientists are continually gaining a better understanding of how to treat such cells in order to successfully replace damaged or dead tissue. Building upon the current insights, we will now be looking specifically at the type of neurons that die off in the brain of Parkinsons patients namely the dopamine-producing neurons, Schwamborn reports. In future, implanted neurons could produce the lacking dopamine directly in the patients brain and transport it to the appropriate sites. This could result in an actual cure, as has so far been impossible. The first trials in mice are in progress at the LCSB laboratories on the university campus Belval. Weitere Informationen:http://www.cell.com/stem-cell-reports/abstract/S2213-6711%2814%2900203-3 - Link to the scientific paperhttp://www.uni.lu/lcsb - link to the Luxembourg Centre for Systems Biomedicine
Read this article:
Implanted Neurons become Part of the Brain
Seamless gene correction of beta-thalassemia mutations in patient-specific cells
By LizaAVILA
A major hurdle in gene therapy is the efficient integration of a corrected gene into a patient's genome without mutating off-target sites. In a paper published today in Genome Research, scientists have used CRISPR/Cas genome editing technology to seamlessly and efficiently correct disease-causing mutations in cells from patients with -thalassemia.
-thalassemia results from inherited DNA mutations in the hemoglobin beta (HBB) gene, resulting in reduced HBB expression in red blood cells and, in the most severe forms, anemia. The only established curative treatment is hematopoietic stem cell transplantation; however, this treatment requires a matched donor. Gene therapy, which delivers a corrected copy of a gene into patient cells, could bypass the need for a donor. Previous attempts using a virus to randomly insert a normal gene into the genome has been successful in one -thalassemia patient, but the long-term effect of viral insertion is not yet known.
To correct HBB mutations directly in a patient's genome, researchers first generated induced pluripotent stem cells, or iPSCs, from skin cells of patients. The real breakthrough came when they applied CRISPR/Cas9 to precisely engineer a double strand DNA break at the HBB locus in these cells, allowing a donor plasmid with the corrected sites to be efficiently integrated, thus replacing the mutated sites. The donor plasmid also contained selectable markers to identify cells with corrected copies of the gene. These selectable markers were subsequently removed with transposase and a second round of selection, generating a seamless, corrected version of HBB in the patient's genome.
Importantly, the researchers could differentiate the corrected iPSCs into mature blood cells, and these blood cells showed restored expression of hemoglobin. However, much work is needed before these cells could be transplanted back into a patient for treating -thalassemia. "Although we and others are able to differentiate iPSCs into blood cell progenitors as well as mature blood cells, the transplantation of the progenitors into mouse models to test them has so far proven very difficult," said senior author Yuet Wai Kan from the University of California, San Francisco. "I believe it will take quite a few more years before we can apply it in a clinical setting."
Story Source:
The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.
Follow this link:
Seamless gene correction of beta-thalassemia mutations in patient-specific cells
LEGALIZING STEM CELL THERAPY in the U.S.A. By: Dr. Arturo Pacheco Reyes, MD U.S. Senator – Video
By NEVAGiles23
LEGALIZING STEM CELL THERAPY in the U.S.A. By: Dr. Arturo Pacheco Reyes, MD U.S. Senator
I created this video with the YouTube Slideshow Creator (http://www.youtube.com/upload)
By: Arturo Reyes
Read the original post:
LEGALIZING STEM CELL THERAPY in the U.S.A. By: Dr. Arturo Pacheco Reyes, MD U.S. Senator - Video
Dr. A.P.REYES~U.S. SENATOR-LEGALIZING STEM CELL THERAPY – Video
By daniellenierenberg
Dr. A.P.REYES~U.S. SENATOR-LEGALIZING STEM CELL THERAPY
I created this video with the YouTube Slideshow Creator (http://www.youtube.com/upload)
By: Arturo Reyes
Excerpt from:
Dr. A.P.REYES~U.S. SENATOR-LEGALIZING STEM CELL THERAPY - Video
Stem cell beauty treatments? Be wary, experts say
By Sykes24Tracey
Could stem cell injections help rejuvenate your face or body? Probably not, plastic surgery experts say, but ads for these types of bogus procedures abound on the Internet.
"Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk," a team led by Dr. Michael Longaker, of Stanford University Medical Center, wrote in a review published in the August issue ofPlastic and Reconstructive Surgery.
The experts say consumers need to be wary of advertisements promoting the benefits of "minimally invasive, stem cell-based rejuvenation procedures." Claims for stem cell procedures for facelifts, breast augmentation and vaginal rejuvenation are not only unsubstantiated, but also risky, Longaker's team said.
They note that, to date, the U.S. Food and Drug Administration has approved only one cosmetic stem cell procedure designed to treat fine facial wrinkles. And since that single procedure was approved, the product involved has been monitored extensively.
Overall, cosmetic stem cell procedures have not undergone significant scientific scrutiny, the Stanford team said. The risks associated with stem cell and tissue processing have not been closely examined. The effects of aging on stem cells are also not well established, the researchers explained.
14 Photos
Tummy tucks and facelifts pale in comparison to these surprising surgeries patients request
To investigate concerning claims being made about cosmetic stem cell procedures, the researchers performed a basic Internet search. They found the most common result was "stem cell facelifts." Most of the procedures used stem cells isolated from fat but did not provide details on the quality of the stem cells.
More than 100 clinical trials are currently evaluating stem cells derived from fat, but few are focusing on cosmetic treatments. The researchers cautioned that the products used in these cosmetic procedures likely involves additional types of cells unless they utilized sophisticated cell-sorting techniques.
Many blood plasma-enriched "platelet protein treatments" are also incorrectly advertised as stem cell therapy, the study's authors noted.
See more here:
Stem cell beauty treatments? Be wary, experts say
Quebec womans leukemia battle highlights need for minority bone marrow and stem cell donors
By NEVAGiles23
MONTREALA Quebec womans desperate online plea for a compatible stem-cell donor in her bid to fight cancer a second time is shedding light on the lack of minorities on official lists in Canada and abroad.
Mai Duong finds herself battling leukemia again and doctors say they would like to proceed with a transplant of bone marrow or cord blood stem cells within a month.
But Duong, 34, has discovered that locating the right person can be a needle-in-a-haystack challenge, particularly for those who are from a non-Caucasian background.
This is a global problem, Duong, who is of Vietnamese origin, said in an interview from her room at Montreals Maisonneuve-Rosemont Hospital.
We cant do a scavenger hunt every time someone has this type of problem.
Duong, who returned home a few days after being interviewed, said a recent bone marrow biopsy showed no signs of cancer. She will now begin four weeks of maintenance chemotherapy, which is given in lower doses to assist in prolonging a remission.
The mother of a 4-year-old girl, Duong successfully fought off acute leukemia in 2013 with chemotherapy. She had to terminate a 15-week pregnancy to undergo the treatment. Duong was in remission until a blood test revealed leukemia had returned this past May.
Seventy per cent of people who had that type of leukemia were just cured with chemotherapy, and unfortunately Im in the 30 per cent, she said.
The diagnosis and a lack of a match in her family have touched off a mad scramble to find a fellow Vietnamese donor. An online campaign has taken that hunt global.
I have cancer, I had a relapse, I dont have a bone marrow (donor) these are things I cannot change, Duong said. So I said, what can I do about it?
See the article here:
Quebec womans leukemia battle highlights need for minority bone marrow and stem cell donors
Dr Felix new protocol on Stem Cell therapy – Video
By LizaAVILA
Dr Felix new protocol on Stem Cell therapy
Dr. FELIX molecular biologist , medical doctor developed world first protocol using peptides with Stem Cell therapy to improve patients outcome.
By: Soraya Felix
Stem cells for cardiac repair: an introduction
By Dr. Matthew Watson
Abstract
Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair.
Keywords: Stem cell, Regeneration, Heart, Cardiomyocytes
Repairing the injured body with its own tissue as a substrate has captured human fascination for a long time. In Greek mythology, the Lernaean Hydra was a serpent-like creature with multiple heads that regenerated each time they were cut off and Prometheus, a titan punished by Zeus for stealing fire, had a liver that was able to regenerate each night after it was eaten by an eagle. In 1740, Abraham Tembley discovered that microscopic, freshwater animals had the ability to regenerate their head after amputation, later followed by others who discovered that amphibians have the ability to regenerate their tails, limbs, jaws, and eyes.[1],[2] It took scientists until 1933 before they discovered that some human organs, such as the liver, also have the ability to regenerate.[3]
Regenerative therapies are of major interest in cardiovascular medicine. Most cardiovascular diseases, including ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes and in other diseases, such as sick sinus syndrome, specific cardiac cell properties are missing. Unlike the Lernaean Hydra or the human liver, the heart does not have the ability to regenerate itself spontaneously once damaged. Cardiomyocytes are terminally differentiated and have a limited proliferative capacity. Lost cardiomyocytes are replaced by fibroblasts and connective tissue with the remaining cardiomyocytes becoming hypertrophic, which may eventually lead to heart failure. On the contrary, stem cells proliferate indefinitely and can be directed to differentiate into specialized cell types such as cardiomyocytes. The goal of stem cell-based regenerative medicine in cardiovascular disease, therefore, is to create healthy, functional cardiac cells that are able to integrate in the injured heart and restore its function.
In the past decades, several stem cell types have been discovered. These stem cells can be subdivided based on their differentiation capacity. Pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are able to differentiate into all three embryonic germ layers, whereas multipotent stem cells can differentiate into a number of closely related cell types of a single embryonic germ layer. Cardiomyocytes were derived from several stem cell sources (). Other types of stem cells do not differentiate into cardiomyocytes themselves, but support cardiac repair by different mechanisms (). In this review, we will refer to all stem cell-derived cardiomyocytes and differentiated cell types enriched for cardiomyocytes as stem cell-derived cardiomyocytes (SCD-CMs), while we will refer to non-cardiomyocyte derivatives (such as vascular cells) as stem cell-derived cardiac support cells (SCD-CSCs).
Summary of stem cells used for cardiac repair.
Characteristics of stem cells studied for cardiac regeneration potential.
In this review, we will give an introduction to the principles of stem cell-based cardiac repair. Our aim is to give a concise up-to date overview of the therapeutic possibilities of stem cells for cardiac injury. First, we describe general requirements for stem cell therapy. After that, we will discuss in more detail the different stem cell sources and their therapeutic effects, since these vary for each cell type.
In order to be suitable for cardiac repair, stem cell-derived cardiac cells should resemble the original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Ideally there would also be beneficial effects on the host myocardium, for example, by stimulating proliferation or differentiation of local progenitors, neovascularization or by inhibiting apoptosis. The minimum requirement for the donor cells is to have no adverse effects. Finally, stem cell therapy needs to be safe, reproducible, and affordable. Each of these requirements will be discussed separately. ()
Read the rest here:
Stem cells for cardiac repair: an introduction
Childhood coxsackie virus infection depletes cardiac stem cells, might compromise heart health in adults
By NEVAGiles23
here is epidemiological evidence that links type B coxsackie virus (CVB) infection with heart disease, and research published on July 31st in PLOS Pathogens now suggests a mechanism by which early infection impairs the heart's ability to tolerate stress at later stages of life.
CVB infection is very common and affects mostly children. The symptoms range widely: over half of the infections are thought to be asymptomatic, the majority of children who get sick have only a mild fever, and a very small proportion get inflammation of the heart or brain. On the other hand, 70 -- 80% of patients with heart failure show signs of a previous CVB infection but have no history of viral heart disease, raising the possibility that even a mild earlier infection makes them more vulnerable to get heart disease later on.
To investigate this, researchers from San Diego State University, USA, led by Roberta Gottlieb and Ralph Feuer, first established a mouse model of mild juvenile CVB infection. Mice infected with a non-lethal dose of the virus shortly after birth did not develop any heart disease symptoms during the infection or into adulthood, but they had a predisposition to heart disease later in life.
Detailed analysis of the mice after infection showed that the virus does indeed target the heart and is found in cardiac stem cells. When comparing the numbers of cardiac stem cells in previously infected adult mice with uninfected ones, the researchers found significantly smaller numbers in the infected mice.
To test whether the childhood infection and stem cell depletion had any effect on the adult heart, the researchers exposed infected mice to two different types of cardiac stress. They treated some of the mice with a drug known to overstimulate the heart, and they challenged another group by making them swim for 90 minutes every day for 14 days. Following both treatments, the infected mice showed clear signs of early heart disease whereas uninfected controls showed little or no symptoms.
Analyzing the stressed mice in more detail, the researchers found that the hearts from previously infected mice had impaired ability to re-arrange their heart blood vessels and grow new ones. This process, called vascular remodeling, is critical for the heart to respond to changes in the environment, including stress.
As discussed in the article, important open questions remain. For example, does CVB infection affect cardiac stem cells at any age, or is there a vulnerable period in early childhood? It is also not clear whether other strains of CVB have similar properties to the one used here, which was isolated from a patient with heart disease.
Nonetheless, the researchers conclude that their results "support the hypothesis that a mild CVB3 infection early in development can impair the heart's ability to undergo physiologic remodeling, leading to heart disease later in life." They also suggest that "the subtle cardiac alterations might go undetected under normal circumstances but emerge in the setting of increased demand such as intense exercise or chronic high blood pressure."
Story Source:
The above story is based on materials provided by PLOS. Note: Materials may be edited for content and length.
Read more here:
Childhood coxsackie virus infection depletes cardiac stem cells, might compromise heart health in adults
Cancer fight shows lack of minorities on donor lists
By Dr. Matthew Watson
By Sidhartha Banerjee, The Canadian Press Published Saturday, August 2, 2014 8:56AM EDT
MONTREAL -- A Quebec woman's desperate online plea for a compatible stem-cell donor in her bid to fight cancer a second time is shedding light on the lack of minorities on official lists in Canada and abroad.
Mai Duong finds herself battling leukemia again and doctors say they would like to proceed with a transplant of bone marrow or cord blood stem cells within a month.
But Duong, 34, has discovered that locating the right person can be a needle-in-a-haystack challenge, particularly for those who are from a non-Caucasian background.
"This is a global problem," Duong, who is of Vietnamese origin, said in an interview from her room at Montreal's Maisonneuve-Rosemont Hospital.
"We can't do a scavenger hunt every time someone has this type of problem."
Duong, who returned home a few days after being interviewed, said a recent bone marrow biopsy showed no signs of cancer. She will now begin four weeks of maintenance chemotherapy, which is given in lower doses to assist in prolonging a remission.
The mother of a four-year-old girl, Duong successfully fought off acute leukemia in 2013 with chemotherapy. She had to terminate a 15-week pregnancy to undergo the treatment. Duong was in remission until a blood test revealed leukemia had returned this past May.
"Seventy per cent of people who had that type of leukemia were just cured with chemotherapy and unfortunately I'm in the 30 per cent," she said.
The diagnosis and a lack of a match in her family has touched off a mad scramble to find a fellow Vietnamese donor. An online campaign has taken that hunt global.
Group Raising Awarness about Need for Bone Marrow Donors
By raymumme
Following the death of their colleague Marlon Layne, members of the marketing firm Ogilvy and Mather started a campaign to get the word out about the prevalence of blood cancers and the need for more diversity within the donor pool. Over the past three years they've raised nearly $42,000 for the cause and signed up around 160 new donors to the Be the Match Registry.
"I cant change the past but I can ensure that in the future nobody else like Marlon has to be waiting for a marrow registrant from somebody whos of their same race," said Ogilvy & Mather Marketing Analytics Associate Director Omari Jinaki.
But Jinaki says he has noticed a level of hesitancy to participate within the Black community.
"That is rooted, clearly, in hundreds of years of history of being misguided and misrepresented and underrepresented by the systems that are supposed to protect us," said Jinaki.
There's also a lack of awareness of the need within the Latino and Asian communities and lingering misconceptions the donation process- many believing it's painful with significant recovery time.
"The process has changed in the way one donates bone marrow. 75 percent of the time it's just like a blood donation," said Icla Da Silva Foundation President Airam Da Silva.
Depending on the recipient's need- most can now donate via a peripheral blood stem cell or PBSC.
For five days before donation, the donor is injected with filgrastim, which moves more blood-forming cells out of the marrow into the blood stream. The drug can cause head or joint aches and fatigue.
"On the fifth day the donor goes to the blood bank or to the hospital, they donate blood from one arm, the blood goes through a apheresis machine where it separates the bone marrow cells and the rest of the blood goes back on the other arm," said Da Silva.
You can also donate through a surgical procedure- with general or regional anesthesia. Doctors use hollow needles to draw liquid marrow from the back of the pelvic bone. Donors are usually sent home the same or the following day and feel some soreness for around a week after the procedure.
Go here to read the rest:
Group Raising Awarness about Need for Bone Marrow Donors
A.B.Series Apple Stem Cell Serum – Video
By raymumme
A.B.Series Apple Stem Cell Serum
A.B.Series Apple Stem Cell Serum A natural way to rejuvenate and revitalize your skin for a younger you. Apple Stem Cell Serum is formulated from Switzerland based on the Uttwiler Spatlauber...
By: AVAIL Beauty
Continued here:
A.B.Series Apple Stem Cell Serum - Video
Early Stem Cell Transplant Vital in 'Bubble Boy' Disease
By raymumme
By Amy Norton HealthDay Reporter
WEDNESDAY, July 30, 2014 (HealthDay News) -- Babies born with so-called "bubble boy" disease can often be cured with a stem cell transplant, regardless of the donor -- but early treatment is critical, a new study finds.
Severe combined immunodeficiency (SCID), as the condition is medically known, actually refers to a group of rare genetic disorders that all but eliminate the immune system. That leaves children at high risk of severe infections.
The term "bubble boy" became popular after a Texas boy with SCID lived in a plastic bubble to ward off infections. The boy, David Vetter, died in 1984 at the age of 12, after an unsuccessful bone marrow transplant -- an attempt to give him a functioning immune system.
Today, children with SCID have a high chance of survival if they receive an early stem cell transplant, researchers report in the July 31 issue of the New England Journal of Medicine.
In the best-case scenario, a child would get stem cells -- the blood-forming cells within bone marrow -- from a sibling who is a perfect match for certain immune-system genes.
But that's not always an option, partly because kids with SCID are often their parents' first child, said Dr. John Cunningham, director of hematopoietic stem cell transplantation at the University of Chicago Comer Children's Hospital. He was not involved in the study.
In those cases, doctors typically turn to a parent -- who is usually a "half" match, but whose stem cells can be purified to improve the odds of success. Sometimes, stem cells from an unrelated, genetically matched donor can be used.
The good news: Regardless of the donor, children with SCID can frequently be cured, according to the new findings. But early detection and treatment is vital.
"These findings show that if you do these transplants early -- before [the age of] 3.5 months, in a child without infection -- the results are really quite comparable to what you have with a matched sibling," said lead researcher Dr. Richard O'Reilly, chief of the pediatric bone marrow transplant service at Memorial Sloan-Kettering Cancer Center in New York City.
Read the original here:
Early Stem Cell Transplant Vital in 'Bubble Boy' Disease
Recent advances in stem cell biology
By NEVAGiles23
PUBLIC RELEASE DATE:
31-Jul-2014
Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research
Advances in stem cell research will provide enormous opportunities for both biological and future clinical applications. Basically, stem cells could replicate any other cells in the body, offering immense hope of curing Alzheimer's disease, repairing damaged spinal cords, treating kidney, liver and lung diseases and making damaged hearts whole. The potential for profit is staggering. Prof. Jinhui Chen from Indiana University in USA considered that this field of research still faces myriad biological, ethical, legal, political, and financial challenges. The eventual resolution of these conflicts will determine the success of the research and potentially the face of medicine in the future. The relevant study has been published in the Neural Regeneration Research (Vol. 9, No. 7, 2014).
###
Article: " A brief review of recent advances in stem cell biology " by Jinhui Chen1, Libing Zhou2, Su-yue Pan3 (1 Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; 2 Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China; 3 Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China)
Chen JH, Zhou LB, Pan SY. A brief review of recent advances in stem cell biology. Neural Regen Res.2014;9(7):684-687.
Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research http://www.nrronline.org/
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Read more:
Recent advances in stem cell biology
Childhood coxsackie virus infection depletes cardiac stem cells and might compromise heart health in adults
By daniellenierenberg
PUBLIC RELEASE DATE:
31-Jul-2014
Contact: Roberta Gottlieb roberta.gottlieb@cshs.org PLOS
There is epidemiological evidence that links type B coxsackie virus (CVB) infection with heart disease, and research published on July 31st in PLOS Pathogens now suggests a mechanism by which early infection impairs the heart's ability to tolerate stress at later stages of life.
CVB infection is very common and affects mostly children. The symptoms range widely: over half of the infections are thought to be asymptomatic, the majority of children who get sick have only a mild fever, and a very small proportion get inflammation of the heart or brain. On the other hand, 70 80% of patients with heart failure show signs of a previous CVB infection but have no history of viral heart disease, raising the possibility that even a mild earlier infection makes them more vulnerable to get heart disease later on.
To investigate this, researchers from San Diego State University, USA, led by Roberta Gottlieb and Ralph Feuer, first established a mouse model of mild juvenile CVB infection. Mice infected with a non-lethal dose of the virus shortly after birth did not develop any heart disease symptoms during the infection or into adulthood, but they had a predisposition to heart disease later in life.
Detailed analysis of the mice after infection showed that the virus does indeed target the heart and is found in cardiac stem cells. When comparing the numbers of cardiac stem cells in previously infected adult mice with uninfected ones, the researchers found significantly smaller numbers in the infected mice.
To test whether the childhood infection and stem cell depletion had any effect on the adult heart, the researchers exposed infected mice to two different types of cardiac stress. They treated some of the mice with a drug known to overstimulate the heart, and they challenged another group by making them swim for 90 minutes every day for 14 days. Following both treatments, the infected mice showed clear signs of early heart disease whereas uninfected controls showed little or no symptoms.
Analyzing the stressed mice in more detail, the researchers found that the hearts from previously infected mice had impaired ability to re-arrange their heart blood vessels and grow new ones. This process, called vascular remodeling, is critical for the heart to respond to changes in the environment, including stress.
As discussed in the article, important open questions remain. For example, does CVB infection affect cardiac stem cells at any age, or is there a vulnerable period in early childhood? It is also not clear whether other strains of CVB have similar properties to the one used here, which was isolated from a patient with heart disease.
Continue reading here:
Childhood coxsackie virus infection depletes cardiac stem cells and might compromise heart health in adults
Bone marrow donor programme celebrates 100 donors and new patron
By NEVAGiles23
SINGAPORE - Singapore's life-saving Bone Marrow Donor Programme celebrated its 100th donor and new patron, Minister for Law and Foreign Affairs K Shanmugam, on Thursday.
Get the full story from The Straits Times.
Here is the statement from the Bone Marrow Donor Programme:
The Bone Marrow Donor Programme (BMDP) celebrates 21 years of saving lives through an extraordinary gift of kindness and generosity as ordinary Singaporeans commit to helping a fellow human being.
As bone marrow transplants become the preferred treatment for a wide number of blood related diseases such as leukaemia and lymphoma, the new BMDP Patron, Minister K Shanmugam, Minister for Law and Foreign Affairs and MP for Nee Soon GRC gave an award to the 100th Singaporean bone marrow donor, Lim Yun Song a 27 year-old Engineer and NTU graduate. This was in recognition of the commitment he and all the other bone marrow donors have made in a purely voluntary capacity to give of themselves a priceless gift of bone marrow (blood stem cells) to save the life of a stranger.
The BMDP manages Singapore's only registry of bone marrow donors and can literally be the last chance of survival for patients with terminal blood-related illnesses. Sadly, though, the chance of finding a donor whose DNA profile is a match to the patient is an alarming 1 in 20,000. With Singapore's unique and rapidly changing demographic, it is more important than ever to recruit more volunteers to join the registry and make sure that each patient is given this last chance of survival.
In conjunction with the 21st anniversary and office inauguration, the BMDP shared a number of significant milestones achieved in recent months.
In addition to reaching the 100th local donor, the number of local donors identified as a patient match increased from 38 in 2012 to 73 last year and year-to-date 64 donors were called up for Confirmatory Typing.
In tandem, the number of volunteers actually going through to make their life-saving donation has increased from seven in the whole of 2013, to nine in the first half of this year with more scheduled.
Minister Shanmugam says, "Bone marrow donors are heroes. They are given a chance to help a fellow human being through a simple yet selfless act of kindness - and they take it. This opportunity is available to everyone but so few rise to the challenge and I hope that more young people - the future of Singapore - will be inspired by what we are seeing here today and will sign up as volunteer bone marrow donors. I'm honoured to join the BMDP as their Patron, and look forward to working with them to build our community of heroes".
View original post here:
Bone marrow donor programme celebrates 100 donors and new patron
Aging Immune System May Get Kick-Start from Discovery of Molecular Defect
By LizaAVILA
Health and Medicine for Seniors
Aging Immune System May Get Kick-Start from Discovery of Molecular Defect
Old stem cells are not just sitting there with damaged DNA ready to develop cancer, as it has long been postulated
"The decline of stem-cell function is a big part of age-related problems. Achieving longer lives relies in part on achieving a better understanding of why stem cells are not able to maintain optimal functioning."
Emmanuelle Passegu, PhD
July 31, 2014 - There's a good reason seniors over 60 are not donor candidates for bone marrow transplantation. The immune system ages and weakens with time, making the elderly prone to life-threatening infection and other maladies, and a UC San Francisco research team now has discovered a reason why.
"We have found the cellular mechanism responsible for the inability of blood-forming cells to maintain blood production over time in an old organism, and have identified molecular defects that could be restored for rejuvenation therapies," said Emmanuelle Passegu, PhD, a professor of medicine and a member of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF.
Passegu, an expert on the stem cells that give rise to the blood and immune system, led a team that published the new findings online July 30, 2014 in the journal Nature.
Blood and immune cells are short-lived, and unlike most tissues, must be constantly replenished. The cells that must keep producing them throughout a lifetime are called "hematopoietic stem cells."
Through cycles of cell division these stem cells preserve their own numbers and generate the daughter cells that give rise to replacement blood and immune cells. But the hematopoietic stem cells falter with age, because they lose the ability to replicate their DNA accurately and efficiently during cell division, Passegu's lab team determined.
View original post here:
Aging Immune System May Get Kick-Start from Discovery of Molecular Defect