Conflicts of interest pervasive on California stem cell board
By JoanneRUSSELL25
There's no good time for a public agency to be embroiled in a conflict-of-interest scandal, but this is an especially delicate time for California's stem cell agency.
The California Institute for Regenerative Medicine, as the program is known formally, is on track to finish doling out its $3 billion in funding from the state's voters as soon as 2017. Its original sponsor, Northern California real estate developer Robert Klein II, has been quoted talking about another $5-billion infusion, perhaps via the 2016 ballot.
Any such effort will refocus attention on the program board's inherent conflicts of interest, which were baked in by the terms of Proposition 71, Klein's 2004 ballot initiative that created CIRM and funded it through a bond issue. The prestigious Institute of Medicine in a 2012 report found these conflicts to lead to questions about "the integrity and independence of some of CIRM's decisions."
And now here comes another case. This one involves CIRM former President Alan Trounson, an Australian biologist who left the agency on June 30 and joined the board of one of its highest-profile financial partners a mere seven days later. Trounson's new employer, Stem Cells Inc., is the recipient of a nearly $20-million loan for Alzheimer's research.
CIRM says Trounson's quick move to Stem Cells Inc., where he'll receive a stipend of at least $90,000 a year, is legally "permissible." But officials there acknowledge they were blindsided; the agency learned about Trounson's new position from the company's press release.
Afterward, CIRM rushed out a statement acknowledging that Trounson's appointment to the board of a CIRM loan recipient "creates a serious risk of a conflict of interest." The agency says it will place the relationship between CIRM and the company under "a full review." Administrators reminded Trounson, board members and agency staff that state law bars him from communicating with them on any administrative matter involving Stem Cells Inc. The company declined to comment.
The relationship already reeked of cronyism. As we reported in 2012, the Newark, Calif.-based firm's co-founder, Irving Weissman, director of Stanford University's Institute for Stem Cell Biology and Regenerative Medicine, had been one of the most prominent and outspoken supporters of Proposition 71.
He's also a leading recipient of CIRM funding, listed as the principal investigator on four Stanford grants totaling nearly $35 million. CIRM contributed $43.6 million toward the construction of his institute's $200-million research building at the Stanford campus. Weissman and his wife, Ann Tsukamoto, owned nearly 380,000 shares of the firm as of last April, according to a corporate disclosure. Tsukamoto is one of the company's top executives; Weissman is a board member.
Trounson's move comes as CIRM must begin looking to the future, but any discussions about extending the agency's life span will have to address the flaws created by Proposition 71. Among them is the program's very structure, and even its scientific goals.
Klein's ballot proposition exempts CIRM from virtually any oversight or accountability. Each of the 29 governing board members has to be associated with a California public or private research institution or company, or an advocacy group for patients of one disease or another. The qualifications for board chairman are so specific they initially yielded a single credible candidate: Bob Klein.
Link:
Conflicts of interest pervasive on California stem cell board
Stem RX Bioscience Solution Pvt Ltd hold awareness program on stem cell therapy – Video
By daniellenierenberg
Stem RX Bioscience Solution Pvt Ltd hold awareness program on stem cell therapy
By: nmtvindia
See more here:
Stem RX Bioscience Solution Pvt Ltd hold awareness program on stem cell therapy - Video
Okyanos Heart Institute Live on 850 WFTL: Adult Stem Cell Therapy for Heart Disease – Video
By LizaAVILA
Okyanos Heart Institute Live on 850 WFTL: Adult Stem Cell Therapy for Heart Disease
Okyanos #39; Chief Medical Officer Dr. Howard (Bo) Walpole and Chief Science Officer sat down with Karen Curtis at 850 WFTL in Ft. Lauderdale to discuss the promise of adult stem cell therapy as...
By: Okyanos Heart Institute
Here is the original post:
Okyanos Heart Institute Live on 850 WFTL: Adult Stem Cell Therapy for Heart Disease - Video
Interleukin-10 aids survival of cells transplanted to repair cardiac tissues after MI
By Dr. Matthew Watson
PUBLIC RELEASE DATE:
18-Jul-2014
Contact: Robert Miranda cogcomm@aol.com Cell Transplantation Center of Excellence for Aging and Brain Repair
Putnam Valley, NY. (July 18th 2014) The long-term, positive benefits of transplanted allogenic (other-donated) smooth muscle cells (SMCs) to repair cardiac tissues after myocardial infarction (MI) have been enhanced by the addition of interleukin 10 (IL-10) to the transplanted cells, report researchers in Canada. Their study with rats modeled with MI has shown that SMCs modified with IL-10 - a small, anti-inflammatory protein - benefitted cell survival, improved heart function, and also provided protection against the host's rejection of the allogenic SMCs.
The study will be published in a future issue of Cell Transplantation and is currently freely available on-line as an unedited early e-pub at: http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-CT1170Dhingra.
Three groups of rats modeled with MI were treated with SMC injections into the MI-damaged area of the heart. One group received unmodified autologous (self-donated) SMCs; a second group received unmodified allogenic (other-donated) SMCs; the third group received allogenic SMCs modified with IL-10. After three weeks, the unmodified autologous cells had engrafted while the unmodified allogenic cells had been rejected by the hosts. However, the IL-10-modified allogenic cells were found to greatly improve cell survival, improve ventricular function, increase myocardial wall thickness, and also prevent host immune response and rejection of the foreign cells.
"While the most appropriate cell type for cardiac repair remains controversial, mesenchymal stem cells (MSCs) that have been differentiated toward myogenic cells restore ventricular function better, as previous studies have shown," said study co-author Ren-Ke Li of the MaRS Centre in Toronto, Canada. "This study demonstrated that IL-10 gene-enhanced cell therapy prevented immune response, increased survival of SMCs in the heart, and improved cardiac function when compared to the results with the control groups."
The researchers noted that while the use of autologous SMCs donated by patients may be optimal for cell therapy, SMCs self-donated by older, debilitated patients who likely have other serious health problems, have limited regenerative capability. Thus, allogenic SMCs from young, healthy donors are the most beneficial cells, but rejection of foreign cells by the host has been a problem in allogenic cell transplantation. This study suggests that the use of allogenic SMCs modified with IL-10 can prevent host rejection.
"Future studies will be required to determine the long-term effects of IL-10 transduced SMCs to evaluate cell survival and cardiac function at six months and one year," concluded the researchers.
"The use of IL-10 overexpression to reduce rejection of allogenic SMCs is an interesting idea" said Dr. Amit N. Patel, director of cardiovascular regenerative medicine at the University of Utah and section editor for Cell Transplantation. "Further studies will help to determine if this manipulation could prove useful for translation of allogenic SMC therapies to humans".
Read more from the original source:
Interleukin-10 aids survival of cells transplanted to repair cardiac tissues after MI
Case Study: Stem Cells vs Coronary Artery Bypass Surgery in a Patient with Multi-Vessel Disease 6 Year Follow Up
By raymumme
Case Study: Stem Cells vs Coronary Artery Bypass Surgery in a Patient with Multi-Vessel Disease 6 Year Follow Up
Stem cells outperform heart bypass surgery. A heart patient treated with his own stem cells instead of undergoing coronary bypass surgery is exceeding all expectations 6 years after his adult stem cell treatment.
In 2008, Howie Lindeman, then 58 years old, was facing open heart bypass surgery for three blocked coronary arteries. Lindeman, now 64, had his first heart attack at age 39 that severely damaged his heart. He went through multiple procedures over the last several years including having several stents placed in his blocked arteries. When he developed almost constant chest pain and struggled to walk just 25 feet his doctors decided to perform another heart catheterization. They found severe disease; two arteries were 100% blocked and the remaining one was at 80%. Cardiac bypass surgery was immediately recommended.
Lindeman was not quite ready to have his chest cracked open, so he sought alternative options. He was aware of successful treatments for single blocked arteries with stem cells. Determined to avoid surgery he inquired as to the possibility of stem cell treatment for his condition. Dr. Zannos Grekos, a cardiologist with Regenocyte, agreed to treat him as a case study with the understanding that if the treatment was not successful bypass surgery was his only option. Lindeman was treated with his own stem cells in March of 2008. Within one week of the stem cell procedure Lindeman was feeling much better and returned to fulltime work. His subsequent cardiac testing showed continued improvement up to one year later and now 6 years after his procedure he has had no further cardiac events, his heart tests have remained stable and he continues to work fulltime as a sound engineer touring the world.
I have a high stress, high energy job that I absolutely love, says Lindeman. The treatment has allowed me to continue my career and enjoy the active lifestyle I thought I had lost for good. Im a new person and I continue to feel better every day. Click here to see a video of Howie Lindeman.
The Regenocyte treatment is an outpatient procedure and after a period of observation, the patients then are typically discharged from the hospital. The patient is followed up regularly with testing to monitor their progress and measure their results. Lindemans follow up nuclear cardiac stress testing show a greater than 100% improvement in exercise capacity and improved myocardial perfusion. A heart catheterization performed a year after treatment showed a significant increase in heart function and new blood vessels. Lindemans progress was last reported in December 2011.
Dr. Grekos describes how stem cells are extracted from the patient and then processed in a laboratory. The stem cells are then activated and educated to heal the damaged heart. The lab process provides a key step in Regenocytes treatment success, Dr. Grekos explained. The lab extracts the stem cells from the sample and activates them into over a billion cells while educating them to assist the area of the body that needs treatment. These activated stem cells are known as Regenocytes (regenerative cells). The whole process takes about 3 days.
In this ground-breaking treatment, Dr. Zannos Grekos, an interventional cardiologist, inserted a catheter into Lindemans heart. Over the next 20 minutes, adult stem cells were introduced into the damaged part of his heart. The process of tissue repair begins almost immediately.
We continue to see remarkable results from adult stem cell treatment, said Grekos. Successes like those weve seen with Howie are common and show significant promise for diseases in other organs.
Dr. Grekos and the Regenocyte medical team continue to research the impact of adult stem cell therapy on heart disease. For more information on Regenocyte Adult Stem Cell procedures, upcoming seminars, and to see videos featuring Lindeman, visit http://www.regenocyte.com.
Original post:
Case Study: Stem Cells vs Coronary Artery Bypass Surgery in a Patient with Multi-Vessel Disease 6 Year Follow Up
Scientists using gene therapy to create biological pacemaker
By Dr. Matthew Watson
WASHINGTON --
The study, published Wednesday, is one step toward developing an alternative to electronic pacemakers that are implanted into 300,000 Americans a year.
"There are people who desperately need a pacemaker but can't get one safely," said Dr. Eduardo Marban, director of the Cedars-Sinai Heart Institute in Los Angeles, who led the work. "This development heralds a new era of gene therapy" that one day might offer them an option.
Your heartbeat depends on a natural pacemaker, a small cluster of cells - it's about the size of a peppercorn, Marban says - that generates electrical activity. Called the sinoatrial node, it acts like a metronome to keep the heart pulsing at 60 to 100 beats a minute or so, more when you're active. If that node quits working correctly, hooking the heart to an electronic pacemaker works very well for most people.
But about 2 percent of recipients develop an infection that requires the pacemaker to be removed for weeks until antibiotics wipe out the germs, Marban said. And some fetuses are at risk of stillbirth when their heartbeat falters, a condition called congenital heart block.
For over a decade, teams of researchers have worked to create a biological alternative that might help those kinds of patients, trying such approaches as using stem cells to spur the growth of a new sinoatrial node.
Marban's newest attempt uses gene therapy to reprogram a small number of existing heart muscle cells so that they start looking and acting like natural pacemaker cells instead.
Because pigs' hearts are so similar to human hearts, Marban's team studied the approach in 12 laboratory pigs with a defective heart rhythm.
They used a gene named TBX18 that plays a role in the embryonic development of the sinoatrial node. Working through a vein, they injected the gene into some of the pigs' hearts - in a spot that doesn't normally initiate heartbeats - and tracked them for two weeks.
Two days later, treated pigs had faster heartbeats than control pigs who didn't receive the gene, the researchers reported in the journal Science Translational Medicine. That heart rate automatically fluctuated, faster during the day. The treated animals also became more active, without signs of side effects.
Read the original here:
Scientists using gene therapy to create biological pacemaker
Cancer treatment clears two Australian patients of HIV
By NEVAGiles23
Thomas Deernick, NCMIR/Science Photo Library
The HIV virus (yellow particles), seen on a white blood cell in this scanning electron micrograph.
Scientists have uncovered two new cases of HIV patients in whom the virus has become undetectable.
The two patients, both Australian men, became apparently HIV-free after receiving stem cells to treat cancer. They are still on antiretroviral therapy (ART) as a precaution, but those drugs alone could not be responsible for bringing the virus to such low levels, says David Cooper, director of the Kirby Institute at the University of New South Wales in Sydney, who led the discovery. A year ago, a different group of researchers had reported cases with a similar outcome.
Cooper presented details of the cases today at a press briefing in Melbourne, Australia, where delegates are convening for next week's 20th International AIDS Conference. The announcement came just a day after the news that at least six people heading to the conference died when a Malaysia Airlines flight was shot down in Ukraine.
Cooper began searching for patients who had been purged of the HIV virus after attending a presentation by a US team last year at a conference of the International AIDS Society in Kuala Lumpur. At that meeting, researchers from Brigham and Womens Hospital in Boston, Massachusetts, reported that two patients who had received stem-cell transplants were virus-free.
Cooper and his collaborators scanned the archives of St Vincents hospital in Sydney, one of the largest bone-marrow centres in Australia. We went back and looked whether we had transplanted [on] any HIV-positive patients, and found these two, says Cooper.
The first patient had received a bone-marrow transplant for non-Hodgkin's lymphoma in 2011. His replacement stem cells came from a donor who carried one copy of a gene thought to afford protection against the virus. The other had been treated for leukaemia in 2012.
Unfortunately, several months after the 'Boston' patients stopped taking ART, the virus returned. An infant born with HIV in Mississippi who received antiretroviral therapy soon after birth, then stopped it for more than three years, was thought to have been cured, but has had the virus rebound, too.
At the moment, there is only one person in the world who is still considered cured of HIV: Timothy Ray Brown, the 'Berlin patient', who received a bone-marrow transplant and has had no signs of the virus in his blood for six years without ART. The bone marrow received by the Berlin patient came from a donor who happened to have a natural genetic resistance to his strain of HIV.
Read the original post:
Cancer treatment clears two Australian patients of HIV
Two men cleared of AIDS virus after bone marrow transplants
By Sykes24Tracey
HIV on macrophage image by Public Library of Science
A 53-year-old and a 47-year-old man appear to be clear of HIV after receiving bone marrow transplants for leukaemia and lymphoma respectively at St Vincent's Hospital in Sydney, Australia, in partnership with the University of New South Wales' Kirby Institute.
Moreover, the leukaemia patient is the first recorded case of clearing the virus without the presence of a rare anti-HIV gene in the donor marrow.
To date, there have been several reported cases of cleared HIV. Timothy Ray Brown, a US citizen, was treated in 2007 and 2008 for leukaemia with transplanted stem cells from a donor with the CCR5 delta32 mutation, which is resistant to HIV, and was reported clear of the virus in 2008. Brown stopped taking his antiretroviral medication and has remained HIV-free.
In 2012, two other patients in Boston had similar treatments with bone marrow cells that did not contain the mutation. They initially tested clear of the virus, but -- when they ceased taking antiretroviral medication -- the virus returned.
The lymphoma patient, treated in 2010, did receive one transplant of bone marrow that contained one of two copies of a gene that is possibly resistant to HIV. The leukaemia patient, treated in 2011, received donor marrow with no resistive gene. Both patients remain on antiretroviral medication as a precaution, since the virus may be in remission rather than completely cured.
"We're so pleased that both patients are doing reasonably well years after the treatment for their cancers and remain free of both the original cancer and the HIV virus," said study senior author and UNSW Kirby Institute director Scientia Professor David Cooper said.
The next step is to figure out why the body responds to a bone marrow transplant in a way that makes the virus retreat. One possible explanation is that the body's immune response to the foreign cells of the transplant causes it to fight harder against HIV. This is because, while bone marrow transplant seems to be the most effective means of clearing the AIDS virus to date, it is not an acceptable risk for patients whose lives aren't already endangered by bone cancer.
"The procedure itself has an up to 10 percent mortality rate," Professor Cooper explained. "But you take that risk in someone with leukaemia or lymphoma because they're going to die without it, and the transplantation will result in cure. For someone with HIV, you would certainly not transplant them when they have an almost normal life span with standard antiretroviral therapy."
The team of researchers plans to replicate the immune response to bone marrow transplantation in a laboratory setting in the hope of devising a less invasive and less dangerous immunotherapy against the virus.
Continue reading here:
Two men cleared of AIDS virus after bone marrow transplants
'Support' cells in brain play important role in Down syndrome
By daniellenierenberg
Researchers from UC Davis School of Medicine and Shriners Hospitals for Children -- Northern California have identified a group of cells in the brain that they say plays an important role in the abnormal neuron development in Down syndrome. After developing a new model for studying the syndrome using patient-derived stem cells, the scientists also found that applying an inexpensive antibiotic to the cells appears to correct many abnormalities in the interaction between the cells and developing neurons.
The findings, which focused on support cells in the brain called astroglial cells, appear online today in Nature Communications.
"We have developed a human cellular model for studying brain development in Down syndrome that allows us to carry out detailed physiological studies and screen possible new therapies," said Wenbin Deng, associate professor of biochemistry and molecular medicine and principal investigator of the study. "This model is more realistic than traditional animal models because it is derived from a patient's own cells."
Down syndrome is the most common chromosomal cause of mild to moderate intellectual disabilities in the United States, where it occurs in one in every 691 live births. It develops when a person has three copies of the 21st chromosome instead of the normal two. While mouse models have traditionally been used in studying the genetic disorder, Deng said the animal model is inadequate because the human brain is more complicated, and much of that complexity arises from astroglia cells, the star-shaped cells that play an important role in the physical structure of the brain as well as in the transmission of nerve impulses.
"Although neurons are regarded as our 'thinking cells,' the astroglia have an extremely important supportive role," said Deng. "Astroglial function is increasingly recognized as a critical factor in neuronal dysfunction in the brain, and this is the first study to show its importance in Down syndrome."
Creating a unique human cellular model
To investigate the role of astroglia in Down syndrome, the research team took skin cells from individuals with Down syndrome and transformed them into stem cells, which are known as induced pluripotent stem cells (iPSC). The cells possess the same genetic make-up as the donor and an ability to grow into different cell types. Deng and his colleagues next induced the stem cells to develop into separate pure populations of astroglial cells and neurons. This allowed them to systematically analyze factors expressed by the astroglia and then study their effects on neuron development.
They found that a certain protein, known as S100B, is markedly increased in astroglial cells from patients with Down syndrome compared with those from healthy controls. S100B released by astroglial cells promotes harmful astroglial activation (astrogliosis) and adversely affects neurons, causing them to die at increased rates or develop in multiple dysfunctional ways.
The investigators obtained further evidence of the critical role of astroglial cells in Down syndrome by implanting the skin-cell derived astroglial cells from Down syndrome patients into mice. Those mice then developed the neuropathological phenotypes of Down syndrome, while mice implanted with Down syndrome neurons did not.
Neuroprotective effects of antibiotics
View original post here:
'Support' cells in brain play important role in Down syndrome
Discovery may make it easier to develop life-saving stem cells
By Dr. Matthew Watson
PUBLIC RELEASE DATE:
17-Jul-2014
Contact: Tom Oswald tom.oswald@cabs.msu.edu 517-432-0920 Michigan State University
Not unlike looking for the proverbial needle in a haystack, a team of Michigan State University researchers have found a gene that could be key to the development of stem cells cells that can potentially save millions of lives by morphing into practically any cell in the body.
The gene, known as ASF1A, was not discovered by the team. However, it is at least one of the genes responsible for the mechanism of cellular reprogramming, a phenomenon that can turn one cell type into another, which is key to the making of stem cells.
In a paper published in the journal Science, the researchers describe how they analyzed more than 5,000 genes from a human egg, or oocyte, before determining that the ASF1A, along with another gene known as OCT4 and a helper soluble molecule, were the ones responsible for the reprogramming.
"This has the potential to be a major breakthrough in the way we look at how stem cells are developed," said Elena Gonzalez-Munoz, a former MSU post-doctoral researcher and first author of the paper. "Researchers are just now figuring out how adult somatic cells such as skin cells can be turned into embryonic stem cells. Hopefully this will be the way to understand more about how that mechanism works."
In 2006, an MSU team identified the thousands of genes that reside in the oocyte. It was from those, they concluded, that they could identify the genes responsible for cellular reprogramming.
In 2007, a team of Japanese researchers found that by introducing four other genes into cells, stem cells could be created without the use of a human egg. These cells are called induced pluripotent stem cells, or iPSCs.
"This is important because the iPSCs are derived directly from adult tissue and can be a perfect genetic match for a patient," said Jose Cibelli, an MSU professor of animal science and a member of the team.
Continued here:
Discovery may make it easier to develop life-saving stem cells
I-DNA Phyto Stem Cell Therapy Miracle – Lily Khoo Testimonial – Video
By LizaAVILA
I-DNA Phyto Stem Cell Therapy Miracle - Lily Khoo Testimonial
3 3 weeks, improving eye sight, skin tightening, solving triangular eyes...
By: I-DNA DEER PLACENTA SINGAPORE ORIGINAL
Here is the original post:
I-DNA Phyto Stem Cell Therapy Miracle - Lily Khoo Testimonial - Video
Diabetes stem cell therapy readied
By LizaAVILA
Paul Laikind, CEO of ViaCyte, which is making a treatment for diabetes from human embryonic stem cells.
In an historic announcement for the stem cell field, San Diego's ViaCyte said Thursday it has applied to start human clinical trials of its treatment for Type 1 diabetes.
ViaCyte grows replacement insulin-producing cells from human embryonic stem cells. The cells are packaged while maturing in a semi-permeable device and implanted. In animal trials, the cells produce insulin, relieving diabetes.
Now the company proposes to take what could be a cure for diabetes into people. ViaCyte has asked to begin a Phase 1/2 clinical trial, which would assess both safety and efficacy of its product. ViaCyte is targeting Type 1 diabetes, in which the insulin-producing cells are destroyed. Patients require multiple injections of insulin daily to survive.
The announcement is good news for California's stem cell agency, the California Institute for Regenerative Medicine. The agency has awarded nearly $39 million to ViaCyte to ready its device for human use.
Paul Laikind, ViaCytes chief executive, said if all goes smoothly, the first patients will be treated in August or September. Based on animal studies, it will take a few months to see results, and just a few patients will be treated at first.
CIRM itself, funded with $3 billion in state bond funds, has come under pressure to show results from its work. The money is projected to run out in 2017. Some supporters of the agency have proposed launching a new initiative to continue funding.
"This is a great example of how the investment that the voters made in creating CIRM is beginning to move from labs to patients," said Joe Panetta, a member of CIRM's governing board and chief executive of Biocom, the San Diego-based life science trade group. ""There are at least a dozen other clinical trials in progress. This is good for CIRM and San Diego."
Jonathan Thomas, chairman of CIRM's governing board, called the filing "a big step in developing therapies for Type 1 diabetes."
"The project is one that has been front and center for us for six years," Thomas said. "As a principal funder of Viacyte since 2008, we are delighted that they have taken this major step towards getting a Type 1 Diabetes therapy to patients."
The rest is here:
Diabetes stem cell therapy readied
ViaCyte asks to start diabetes stem cell therapy
By raymumme
Paul Laikind, CEO of ViaCyte, which is making a treatment for diabetes from human embryonic stem cells.
In an historic announcement for the stem cell field, San Diego's ViaCyte said Thursday it has applied to start human clinical trials of its treatment for Type 1 diabetes.
ViaCyte grows replacement insulin-producing cells from human embryonic stem cells. The cells are packaged while maturing in a semi-permeable device and implanted. In animal trials, the cells produce insulin, relieving diabetes.
Now the company proposes to take what could be a cure for diabetes into people. ViaCyte has asked to begin a Phase 1/2 clinical trial, which would assess both safety and efficacy of its product. ViaCyte is targeting Type 1 diabetes, in which the insulin-producing cells are destroyed. Patients require multiple injections of insulin daily to survive.
The announcement is good news for California's stem cell agency, the California Institute for Regenerative Medicine. The agency has awarded nearly $39 million to ViaCyte to ready its device for human use.
Paul Laikind, ViaCytes chief executive, said if all goes smoothly, the first patients will be treated in August or September. Based on animal studies, it will take a few months to see results, and just a few patients will be treated at first.
CIRM itself, funded with $3 billion in state bond funds, has come under pressure to show results from its work. The money is projected to run out in 2017. Some supporters of the agency have proposed launching a new initiative to continue funding.
"This is a great example of how the investment that the voters made in creating CIRM is beginning to move from labs to patients," said Joe Panetta, a member of CIRM's governing board and chief executive of Biocom, the San Diego-based life science trade group. ""There are at least a dozen other clinical trials in progress. This is good for CIRM and San Diego."
Robert N. Klein, former chairman of CIRM's board, who has a 24-year-old son with Type 1 diabetes, praised the announcement.
"This is an exciting day for the father of any son or daughter who has Type 1 diabetes," Klein said. "This is a very critical trial that we're optimistic about. ViaCyte has a team that is extremely well-qualified to deal with complications and setbacks that often come up. They have extreme quality integration of their clinical and scientific groups, so they can respond well to modifications they may have to make along the way to accomplish all of their goals."
See more here:
ViaCyte asks to start diabetes stem cell therapy
Scientists use gene therapy to create biological pacemaker
By Dr. Matthew Watson
Washington No batteries required: Scientists are creating a biological pacemaker by injecting a gene into the hearts of sick pigs that changed ordinary cardiac cells into a special kind that induces a steady heartbeat.
The study, published Wednesday, is one step toward developing an alternative to electronic pacemakers that are implanted into 300,000 Americans a year.
There are people who desperately need a pacemaker but cant get one safely, said Dr. Eduardo Marban, director of the Cedars-Sinai Heart Institute in Los Angeles, who led the work. This development heralds a new era of gene therapy that one day might offer them an option.
Your heartbeat depends on a natural pacemaker, a small cluster of cells its about the size of a peppercorn, Marban says that generates electrical activity. Called the sinoatrial node, it acts like a metronome to keep the heart pulsing at 60 to 100 beats a minute or so, more when youre active. If that node quits working correctly, hooking the heart to an electronic pacemaker works very well for most people.
But about 2 percent of recipients develop an infection that requires the pacemaker to be removed for weeks until antibiotics wipe out the germs, Marban said. And some fetuses are at risk of stillbirth when their heartbeat falters, a condition called congenital heart block.
For over a decade, teams of researchers have worked to create a biological alternative that might help those kinds of patients, trying such approaches as using stem cells to spur the growth of a new sinoatrial node.
Marbans newest attempt uses gene therapy to reprogram a small number of existing heart muscle cells so that they start looking and acting like natural pacemaker cells instead.
Because pigs hearts are so similar to human hearts, Marbans team studied the approach in 12 laboratory pigs with a defective heart rhythm.
They used a gene named TBX18 that plays a role in the embryonic development of the sinoatrial node. Working through a vein, they injected the gene into some of the pigs hearts in a spot that doesnt normally initiate heartbeats and tracked them for two weeks.
Two days later, treated pigs had faster heartbeats than control pigs who didnt receive the gene, the researchers reported in the journal Science Translational Medicine. That heart rate automatically fluctuated, faster during the day. The treated animals also became more active, without signs of side effects.
Visit link:
Scientists use gene therapy to create biological pacemaker
Scientists Try To Create Biological Pacemaker
By daniellenierenberg
WASHINGTON (AP) -- No batteries required: Scientists are creating a biological pacemaker by injecting a gene into the hearts of sick pigs that changed ordinary cardiac cells into a special kind that induces a steady heartbeat.
The study, published Wednesday, is one step toward developing an alternative to electronic pacemakers that are implanted into 300,000 Americans a year.
"There are people who desperately need a pacemaker but can't get one safely," said Dr. Eduardo Marban, director of the Cedars-Sinai Heart Institute in Los Angeles, who led the work. "This development heralds a new era of gene therapy" that one day might offer them an option.
Your heartbeat depends on a natural pacemaker, a small cluster of cells it's about the size of a peppercorn, Marban says that generates electrical activity. Called the sinoatrial node, it acts like a metronome to keep the heart pulsing at 60 to 100 beats a minute or so, more when you're active. If that node quits working correctly, hooking the heart to an electronic pacemaker works very well for most people.
But about 2 percent of recipients develop an infection that requires the pacemaker to be removed for weeks until antibiotics wipe out the germs, Marban said. And some fetuses are at risk of stillbirth when their heartbeat falters, a condition called congenital heart block.
For over a decade, teams of researchers have worked to create a biological alternative that might help those kinds of patients, trying such approaches as using stem cells to spur the growth of a new sinoatrial node.
Marban's newest attempt uses gene therapy to reprogram a small number of existing heart muscle cells so that they start looking and acting like natural pacemaker cells instead.
Because pigs' hearts are so similar to human hearts, Marban's team studied the approach in 12 laboratory pigs with a defective heart rhythm.
They used a gene named TBX18 that plays a role in the embryonic development of the sinoatrial node. Working through a vein, they injected the gene into some of the pigs' hearts in a spot that doesn't normally initiate heartbeats and tracked them for two weeks.
Two days later, treated pigs had faster heartbeats than control pigs who didn't receive the gene, the researchers reported in the journal Science Translational Medicine. That heart rate automatically fluctuated, faster during the day. The treated animals also became more active, without signs of side effects.
Continue reading here:
Scientists Try To Create Biological Pacemaker
Scientists creating a biological pacemaker
By Dr. Matthew Watson
........................................................................................................................................................................................
WASHINGTON No batteries required: Scientists are creating a biological pacemaker by injecting a gene into the hearts of sick pigs that changed ordinary cardiac cells into a special kind that induces a steady heartbeat.
The study, published Wednesday, is one step toward developing an alternative to electronic pacemakers that are implanted into 300,000 Americans a year.
There are people who desperately need a pacemaker but cant get one safely, said Dr. Eduardo Marban, director of the Cedars-Sinai Heart Institute in Los Angeles, who led the work. This development heralds a new era of gene therapy that one day might offer them an option.
Your heartbeat depends on a natural pacemaker, a small cluster of cells its about the size of a peppercorn, Marban says that generates electrical activity. Called the sinoatrial node, it acts like a metronome to keep the heart pulsing at 60 to 100 beats a minute or so, more when youre active. If that node quits working correctly, hooking the heart to an electronic pacemaker works very well for most people.
But about 2 percent of recipients develop an infection that requires the pacemaker to be removed for weeks until antibiotics wipe out the germs, Marban said. And some fetuses are at risk of stillbirth when their heartbeat falters, a condition called congenital heart block.
For over a decade, teams of researchers have worked to create a biological alternative that might help those kinds of patients, trying such approaches as using stem cells to spur the growth of a new sinoatrial node.
Marbans newest attempt uses gene therapy to reprogram a small number of existing heart muscle cells so that they start looking and acting like natural pacemaker cells instead.
Because pigs hearts are so similar to human hearts, Marbans team studied the approach in 12 laboratory pigs with a defective heart rhythm.
They used a gene named TBX18 that plays a role in the embryonic development of the sinoatrial node. Working through a vein, they injected the gene into some of the pigs hearts in a spot that doesnt normally initiate heartbeats and tracked them for two weeks.
Read more:
Scientists creating a biological pacemaker
Tele readers rush to save lives: Faith Cushnies plight highlights importance of bone marrow donors
By raymumme
More than 100 people from Tayside have signed up for the bone marrow register since the Tele published the story of tragic tot Faith Cushnie.
The nine-month-old from Menzieshill needed a bone marrow donation to beat leukaemia, but the donor backed out and doctors have told Faiths parents that there is now nothing they can do for her.
But 109 of you were so touched by Faiths story you immediately registered to be donors at the bone marrow and stem cell charity Anthony Nolan.
Over the same period last year the charity did not have a single registration from Tayside.
Incredibly, Dundee is currently sending the second highest number of visitors to the charitys website, after London, with 658 sessions on Tuesday and Wednesday.
Charities like Anthony Nolan typically struggle for donors, in comparison to campaigns like Give Blood.
Blood was donated in Tayside 21,000 times in the last year but only 4,000 people in the region are on the list of bone marrow donors.
Thats despite an average of around 600 people being diagnosed with leukaemia in Scotland during that time.
Dr David Meiklejohn, a consultant in the department of haematology in Ninewells Hospital, said nearly all donors were volunteers.
He said: Its important to raise awareness as we cant get donors otherwise.
The rest is here:
Tele readers rush to save lives: Faith Cushnies plight highlights importance of bone marrow donors
Does intravenous transplantation of BMSCs promote neural regeneration after TBI?
By NEVAGiles23
PUBLIC RELEASE DATE:
15-Jul-2014
Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research
The brain has a low renewable capacity for self-repair and generation of new functional neurons in the treatment of trauma, inflammation and cerebral diseases. Cytotherapy is one option to regenerate central nervous system that aim at replacing the functional depleted cells due to traumatic brain injury (TBI). Bone marrow mesenchymal stem cells (BMSCs) are also considered a candidate for cytotherapy because they can differentiate into neurons/nerve cells, pass across blood-brain barrier, migrate into the injured region, secrete neurotrophic factor, and provide microenvironment for neural regeneration. Prof. Mohammad Ali Khalili, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Iran and his team administered TBI rats 3106 BMSCs via the tail vein and found that the BMSCs transplanted via the tail vein promoted nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells. Related results were published in Neural Regeneration Research (Vol. 9, No. 9, 2014).
Article: " Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury" by Fatemeh Anbari1, Mohammad Ali Khalili1, Ahmad Reza Bahrami2, Arezoo Khoradmehr1, Fatemeh Sadeghian1, Farzaneh Fesahat1, Ali Nabi1 (1 Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; 2 Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran)
Anbari F, Khalili MA, Bahrami AR, Khoradmehr A, Sadeghian F, Fesahat F, Nabi A. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury. Neural Regen Res. 2014;9(9):919-923.
Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research http://www.nrronline.org/
###
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Read more here:
Does intravenous transplantation of BMSCs promote neural regeneration after TBI?
Roswell Park Recognized for Quality in Bone Marrow Transplant Care
By LizaAVILA
Contact Information
Available for logged-in reporters only
Newswise Buffalo, NY BlueCross BlueShield of Western New York today has redesignated Roswell Park Cancer Institute (RPCI) as a Blue Distinction Center for delivering quality transplant care as part of the Blue Distinction Centers for Specialty Care program. Approximately 100 Blue Distinction Centers for Transplants have been designated in the United States, with only four located in New York State.
Blue Distinction Centers are medical facilities shown to deliver quality specialty care based on objective, transparent measures for patient safety and health outcomes that were developed with input from the medical community. To receive a Blue Distinction Centers for Transplants designation, medical facilities must demonstrate success in meeting patient safety criteria as well as transplant-specific quality measures (including survival metrics). RPCI received the same Blue Distinction Center designation in 2011.
Blood and marrow hematopoietic stem-cell transplants, also known as bone-marrow transplants, are a common approach for treating many types of hematologic cancers, including forms of leukemia, lymphoma and multiple myeloma. They involve the transplant of blood or bone marrow stem cells from a donor or from the patients themselves as a way of sparing the patient the toxic effects of intensive chemotherapy and/or radiation.
Because blood and marrow transplant is such a highly complex procedure, a patients medical needs before, during and after a transplant procedure are extensive and labor-intensive, said Philip McCarthy, MD, Director of RPCIs Blood & Marrow Transplant Program. Given that context, were especially proud to once again earn Blue Distinction for our transplant program from BlueCross BlueShield.
More Research shows that Blue Distinction Centers demonstrate better quality and improved outcomes for patients with higher survival rates compared with their peers.
We are pleased that RPCI has been recognized for their quality transplant care, said Dr. Thomas Schenk, Senior Vice President and Chief Medical Officer, BlueCross BlueShield of Western New York. As part of the BCBS network they are a valued and once again nationally recognized provider of quality care.
Although rare, the number of transplants including heart, lung, liver, pancreas and bone marrow/blood stem cell in the nation have increased in recent years. There were 28,954 transplant procedures performed in 2013 compared to 28,052 in 2012. Today, more than 123,000 people are awaiting organ donations for transplants, according to the U.S. Department of Health & Human Services.
In 2006, the Blue Distinction Centers for Specialty Care program was developed to help patients find quality providers for their specialty care needs while encouraging healthcare professionals to improve the care they deliver.
More here:
Roswell Park Recognized for Quality in Bone Marrow Transplant Care
Gene Profiling Technique to Accelerate Stem Cell Therapies for Eye Diseases
By Dr. Matthew Watson
Contact Information
Available for logged-in reporters only
Newswise Researchers at the National Institutes of Health have developed a technique that will speed up the production of stem-cell derived tissues. The method simultaneously measures the expression of multiple genes, allowing scientists to quickly characterize cells according to their function and stage of development. The technique will help the researchers in their efforts to use patients skin cells to regenerate retinal pigment epithelium (RPE)a tissue in the back of the eye that is affected in several blinding eye diseases. It will also help the scientists search for drugs for personalized treatments.
Progress in stem cell-based therapies has been limited by our capacity to authenticate cells and tissues, said Kapil Bharti, Ph.D., a Stadtman Investigator in the Unit on Ocular and Stem Cell Translational Research at the National Eye Institute (NEI), a part of NIH. This assay expands that capacity and streamlines the process.
The assay was described in a recent issue of Stem Cells Translational Medicine.
The RPE is a single layer of cells that lies adjacent to the retina, where the light-sensitive photoreceptors commonly called rods and cones are located. The RPE supports photoreceptor function. Several diseases cause the RPE to break down, which in turn leads to the loss of photoreceptors and vision.
The stem cells Dr. Bharti is using to make RPE are induced pluripotent (iPS) stem cells, which are produced by reverting mature cells to an immature state, akin to embryonic stem cells. iPS cells can be derived from a patients skin or blood cells, coaxed into other cell types (such as neurons or muscle), and in theory, re-implanted without causing immune rejection.
To verify the identity of RPE made from iPS cells, scientists use microscopy to ensure the tissue looks like RPE and physiological assays to ensure the tissue behaves like RPE. They also use a technique called quantitative RT-PCR to measure the expression of genes that indicate ongoing cell development and function. For example, expression of the gene SOX2 is much higher in iPS cells than mature RPE.
But quantitative RT-PCR only permits the simultaneous measurement of a few genes per sample. Dr. Bharti teamed up with Marc Ferrer, Ph.D., of NIHs National Center for Advancing Translational Sciences (NCATS) to develop a multiplex assaya method for simultaneously measuring multiple genes per RPE sample in a highly automated fashion. The assay is based on a commercially available platform from the biotech company Affymetrix. In the assay, tiny snippets of DNA tethered to beads are used to capture RNA moleculescreated when genes are expressed by cells in the RPE sample. Once captured, the RNA from distinct genes is labeled with a fluorescent tag.
Starting with cells from a skin biopsy, the researchers generated iPS-derived RPE and then measured the expression of eight genes that are markers of development, function, and disease. They measured RNA levels of each gene one at a time using quantitative RT-PCR and then all genes simultaneously using the multiplex assay. When compared, the results correlated.
Read the original:
Gene Profiling Technique to Accelerate Stem Cell Therapies for Eye Diseases