Page 518«..1020..517518519520..530540..»

stem cell therapy Egypt – Video

By NEVAGiles23


stem cell therapy Egypt
/ 01002527255 : http://www.facebook.com/espcr.

By:

View post:
stem cell therapy Egypt - Video

To Read More: stem cell therapy Egypt – Video
categoriaUncategorized commentoComments Off on stem cell therapy Egypt – Video | dataJune 25th, 2014
Read All

CP Help Center Adds New Information About Cerebral Palsy Cord Blood Research

By LizaAVILA

Dallas, TX (PRWEB) June 24, 2014

The birth injury patient advocates at CerebralPalsyHelp.org are alerting parents of children with cerebral palsy of new research information on the site. Duke University was recently awarded a research grant to explore the use of umbilical cord cells to treat brain damage causing cerebral palsy and other conditions*.

The CP Help Center is a national advocacy center providing the latest on cerebral palsy treatment, clinical trials, resources and litigation news. Parents can learn more about their childs condition and how it may have been caused, get information on available assistance, and decide if they should seek legal advice.

Cerebral palsy affects muscle movement, coordination and posture. It is the leading cause of functional and developmental disability in children in the United States**, occurring in approximately 3.3 out of every 1,000 births, and affecting approximately 500,000 children**.

While CP affects muscle function, it is actually a neurological disorder caused by brain damage to the parts that control muscle function***. This usually occurs before, during or after birth***.

Cerebral palsy may be caused by factors occurring to the fetus during pregnancy, or by trauma or asphyxiation during labor***. There is no cure at this time, however, researchers are working towards better treatments.

Now, the CP Help Center has learned that Duke Medical Center has received a $15 million grant from the Marcus Foundation to begin two years of umbilical cord stem cell research, in what is eventually expected to become a five-year, $41 million study*.

Duke researchers will study whether cord blood can help repair dysfunctional or damaged parts of the brain and hope to develop cell-based therapies that could help millions affected by cerebral palsy, stroke or autism*. The study will include approximately 100 children with cerebral palsy, in trials that inject donated cord blood to treat their brain damage*.

Anyone whose child has been diagnosed with cerebral palsy should learn more about how their condition was caused, or speak with a lawyer about their legal options. The CP Help Center only recommends lawyers who specialize in cerebral palsy lawsuits.

For more information on the research, treatment, causes and litigation news related to cerebral palsy, or to speak with a lawyer, visit http://www.cerebralpalsyhelp.org today.

Follow this link:
CP Help Center Adds New Information About Cerebral Palsy Cord Blood Research

To Read More: CP Help Center Adds New Information About Cerebral Palsy Cord Blood Research
categoriaSpinal Cord Stem Cells commentoComments Off on CP Help Center Adds New Information About Cerebral Palsy Cord Blood Research | dataJune 24th, 2014
Read All

Fat of the bone: Exercise, diabetes affect amount of fat inside bones

By NEVAGiles23

In your bones, there is fat.

Why? Researchers don't know, but they have theories.

How does it get there? They have theories about that, too.

Is it the same sort of fat found in muscle? Not sure.

Is this bone fat a bad thing? Yes. Researchers think it is. But sometimes, they say, it might not be so bad.

"This is a new field," said Maya Styner, MD, an assistant professor of medicine in the University of North Carolina School of Medicine. "We don't know exactly how it's produced or why it's there to begin with. There are a lot of unanswered questions."

But Styner, an endocrinologist, has used a new kind of imaging technique to answer at least two: what do diabetes drugs and exercise -- or the lack of it -- do to bone fat, and why does this matter?

Stains and scans

Our bones are not stagnant, rock-like things. They change. Marrow -- the tissue inside bones -- is full of various kinds of cells. And marrow is also full of fat. The amounts of these cells and fats can decrease or increase over time. And the production of these marrow cells and fat depend on a specific type of progenitor cell called a mesenchymal stem cell.

"These stem cells give rise to both bone and fat," Styner said. "For a long time in the bone world, it's been thought that these stem cells produce bone but then, as we age, they start to produce fat, instead."

Read the original:
Fat of the bone: Exercise, diabetes affect amount of fat inside bones

To Read More: Fat of the bone: Exercise, diabetes affect amount of fat inside bones
categoriaBone Marrow Stem Cells commentoComments Off on Fat of the bone: Exercise, diabetes affect amount of fat inside bones | dataJune 24th, 2014
Read All

Many bodies prompt stem cells to change

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

16-Jun-2014

Contact: David Ruth david@rice.edu 713-348-6327 Rice University

HOUSTON (June 16, 2014) How does a stem cell decide what path to take? In a way, it's up to the wisdom of the crowd.

The DNA in a pluripotent stem cell is bombarded with waves of proteins whose ebb and flow nudge the cell toward becoming blood, bone, skin or organs. A new theory by scientists at Rice University shows the cell's journey is neither a simple step-by-step process nor all random.

Theoretical biologist Peter Wolynes and postdoctoral fellow Bin Zhang set out to create a mathematical tool to analyze large, realistic gene networks. As a bonus, their open-access study to be published this week by the Proceedings of the National Academy of Sciences helped them understand that the process by which stem cells differentiate is a many-body problem.

"Many-body" refers to physical systems that involve interactions between large numbers of particles. Scientists assume these many bodies conspire to have a function in every system, but the "problem" is figuring out just what that function is. In the new work, these bodies consist not only of the thousands of proteins expressed by embryonic stem cells but also DNA binding sites that lead to feedback loops and other "attractors" that prompt the cell to move from one steady state to the next until it reaches a final configuration.

To test their tool, the researchers looked at the roles of eight key proteins and how they rise and fall in number, bind and unbind to DNA and degrade during stem cell differentiation. Though the interactions may not always follow a precise path, their general pattern inevitably leads to the desired result for the same reason a strand of amino acids will inevitably fold into the proper protein: because the landscape dictates that it be so.

Wolynes called the new work a "stylized," simplified model meant to give a general but accurate overview of how cell networks function. It's based on a theory he formed in 2003 with Masaki Sasai of Nagoya University but now takes into account the fact that not one but many genes can be responsible for even a single decision in a cellular process.

"This is what Bin figured out, that one could generalize our 2003 model to be much more realistic about how several different proteins bind to DNA in order to turn it on or off," Wolynes said.

See the article here:
Many bodies prompt stem cells to change

To Read More: Many bodies prompt stem cells to change
categoriaSkin Stem Cells commentoComments Off on Many bodies prompt stem cells to change | dataJune 24th, 2014
Read All

The Discovery of a Unique Skincare System Which Acts as Food for the Skin and Absorb Immediately Reducing the …

By daniellenierenberg

Stratford, CT (PRWEB) June 24, 2014

Consumers should be aware of four things before buying skin care which are the ingredients, the formulation and the science to support the claims. The final thing they should notice are the results.

It had been several years since the anti-aging category had skyrocketed. Women are realizing that they can indeed skip the invasive procedures and reverse the signs of premature ageing skin with the help of a few bottles and jars. Theres just one catch, theyre just not bottles and jars; its Innarah. Innarah is the skin care collection that will change the way women feel about their skin.

Innarah is the first ever formulated skin care that works with the skins immune system.

Mr. Manzoor H. Jaffery, CEO Innarah Inc. has formulated a unique technology known as biofermentation. Mr. Jaffery perfected these fermented, anti-aging formulas and signature VenoDefense collection, which replicates the effects of snake venom using a botanical base with cutting edge ingredients such as Elk Antler Velvet, Ormus Gold, Plant Stem Cells and Marine Phytoplankton.

After being dissatisfied with so many skin care products on the market, Mr. Jaffery wanted something that really worked. Jaffery developed a process called Bioferm that is modelled on the ancient alchemic process called Nigredo, whose sole purpose is to transform the life force within matter. This process is actually different from other product formulations where the trick is their blending process. So, in essence, because Innarahs ingredients are fermented, there is no danger of the ingredients going through an oxidation process; plus, the result is a much more powerful cream.

As Jaffery explains, The ingredients are powerful, just like raw food. It helps with the skins own immune system. Many might dismiss this as hogwash, but listen to the science behind this for a bit. Because the skin is the largest organ in the body, and is the first line of defense in the immune system, its imperative to help protect it. This is why people recommend to eat daily fruits and vegetables.

Now, how can a skin care cream help with the immune system? It all has to do with the reticulation of Langerhans Cells, which are white blood cells generated in the bone marrow, Jaffery goes on to say. When they arrive at the epidermis, they develop small legs or dendrites, and automatically generate an immune response to the skin when they come into contact with ingredients they dont recognize. But ingredients that have been through the biofermentation process are readily accepted by these cells, so in essence Innarah acts as a bio catalyst.

Innarah is one of the few companies that offers an Oxygenated Crme that helps the healing of adult acne, cold sores, hyperpigmentation and other skin issues. Using Innarah products also aid the skin by diffusing and removing under eye puffiness and inflammation.

Innarah is for any skin color or gender and is recommended for people between 25-85 years old. Innarah is for that glow from-within associated with youth.

Link:
The Discovery of a Unique Skincare System Which Acts as Food for the Skin and Absorb Immediately Reducing the ...

To Read More: The Discovery of a Unique Skincare System Which Acts as Food for the Skin and Absorb Immediately Reducing the …
categoriaSkin Stem Cells commentoComments Off on The Discovery of a Unique Skincare System Which Acts as Food for the Skin and Absorb Immediately Reducing the … | dataJune 24th, 2014
Read All

BIO Convention Puts Spotlight On San Diego Stem-Cell Research

By daniellenierenberg

San Diego is buzzing about biotech this week: The BIO International Convention is in town at the San Diego Convention Center. While the conference has drawn big names like entrepreneur Sir Richard Branson and former Secretary of State Hillary Clinton as its keynote speakers, it's not just the guests who are making headlines.

Companies are announcing new ventures and clinical trials on a wide range of bio-tech topics, including regenerative medicine and stem cells.

A popular method now being used by stem cell researchers is known as "disease in a dish." The process uses a patient's own skin cells and manipulates them into stem cells. The cells are then tested with drug combinations right in the Petri dish to determine if they might assist with a condition or disease. But even though these cells, known as IPS cells, are not controversial embryonic cells, ethical questions about their use remain.

Read more here:
BIO Convention Puts Spotlight On San Diego Stem-Cell Research

To Read More: BIO Convention Puts Spotlight On San Diego Stem-Cell Research
categoriaSkin Stem Cells commentoComments Off on BIO Convention Puts Spotlight On San Diego Stem-Cell Research | dataJune 24th, 2014
Read All

Alzheimer’s Disease Prevention and Treatment – Video

By JoanneRUSSELL25


Alzheimer #39;s Disease Prevention and Treatment
http://www.placidway.com/subtreatment-detail/treatment,31,subtreatment,256.html/Alzheimers-Disease-Stem-Cell-Therapy--Treatment-Abroad - Watch this educational video about Alzheimer #39;s disease...

By: placidways

Excerpt from:
Alzheimer's Disease Prevention and Treatment - Video

To Read More: Alzheimer’s Disease Prevention and Treatment – Video
categoriaUncategorized commentoComments Off on Alzheimer’s Disease Prevention and Treatment – Video | dataJune 24th, 2014
Read All

Promising T cell therapy

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

17-Jun-2014

Contact: Vera Siegler vera.siegler@tum.de 49-892-892-2731 Technische Universitaet Muenchen

This news release is available in German.

The cells of the human immune system are created from special stem cells in the bone marrow. In diseases affecting the bone marrow, such as leukemia, the degenerate cells must be destroyed using radiation or chemotherapy. Subsequently, the hematopoietic system has to be replaced with stem cells from the blood of a healthy donor. Because of the resulting temporary weakening of the immune system, patients are more exposed to viruses that would normally be warded off.

The cytomegalovirus (CMV), which can cause serious damage to lungs or liver in persons with a weakened defense, poses a major clinical problem. In healthy human beings, a CMV infection will usually not produce any symptoms, since the virus is kept at bay by specific immune cells. In their work, the scientists were able to demonstrate that the transfer of just a few specific immune cells is sufficient to protect the recipient with the weakened immune system against infections. To do this, they used T cells that can recognize and kill specific pathogens.

Tested in an animal model

Dr. Christian Stemberger, first author of the study, and his colleagues, first isolated T cells from the blood of healthy donor mice. These immune cells were directed against molecular elements of a bacterial species which normally causes severe infections in animals. The T cells were then transferred to recipient mice that, due to a genetic modification, could no longer produce immune cells of their own similarly to patients suffering from leukemia.

Following the T cell transfer, the researchers infected the treated recipient mice with the bacteria. The results showed that the animals now have effective immune protection against the pathogens, preventing them from becoming ill. "The most astonishing result was that the offspring cells of just one transferred donor cell were enough to completely protect the animals," Christian Stemberger explains.

Successfully used in patients

The rest is here:
Promising T cell therapy

To Read More: Promising T cell therapy
categoriaUncategorized commentoComments Off on Promising T cell therapy | dataJune 24th, 2014
Read All

Pushing cells towards a higher pluripotency state

By LizaAVILA

Stem cells have the unique ability to become any type of cell in the body. Given this, the possibility that they can be cultured and engineered in the laboratory makes them an attractive option for regenerative medicine. However, some conditions that are commonly used for culturing human stem cells have the potential to introduce contaminants, thus rendering the cells unusable for clinical use. These conditions cannot be avoided, however, as they help maintain the pluripotency of the stem cells.

In a study published in Scientific Reports, a group from the RIKEN Center for Life Science Technologies in Japan has gained new insight into the role of CCL2, a chemokine known to be involved in the immune response, in the enhancement of stem cell pluripotency. In the study, the researchers replaced basic fibroblast growth factor (bFGF), a critical component of human stem cell culture, with CCL2 and studied its effect. The work showed that CCL2 used as a replacement for bFGF activated the JAK/STAT pathway, which is known to be involved in the immune response and maintenance of mouse pluripotent stem cells. In addition, the cells cultured with CCL2 demonstrated a higher tendency of colony attachment, high efficiency of cellular differentiation, and hints of X chromosome reactivation in female cells, all markers of pluripotency.

To understand the global effects of CCL2, the researchers compared the transcriptome of stem cells cultured with CCL2 and those with bFGF. They found that stem cells cultured with CCL2 had higher expression of genes related to the hypoxic response, such as HIF2A (EPAS1). The study opens up avenues for further exploring the relationship between cellular stress, such as hypoxia, and the enhancement of pluripotency in cells. Yuki Hasegawa of CLST, who led the study, says, "Among the differentially expressed genes, we found out that the most significantly differentially expressed ones were those related to hypoxic responses, and hypoxia is known to be important in the progression of tumors and the maintenance of pluripotency. These results could potentially contribute to greater consistency of human induced pluripotent stem cells (iPSCs), which are important both for regenerative medicine and for research into diseases processes."

As a way to apply CCL2 towards the culturing of human iPSCs with more consistent quality, the researchers developed dishes coated with CCL2 and LIF protein beads. This allowed stem cells to be cultured in a feeder-free condition, preventing the risk that viruses or other contaminants could be transmitted to the stem cells. While the exact mechanisms of how CCL2 enhances pluripotency has yet to be elucidated, this work highlights the usefulness of CCL2 in stem cell culture.

Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.

Go here to read the rest:
Pushing cells towards a higher pluripotency state

To Read More: Pushing cells towards a higher pluripotency state
categoriaUncategorized commentoComments Off on Pushing cells towards a higher pluripotency state | dataJune 24th, 2014
Read All

Stem cell-based transplantation approach improves recovery from stroke

By raymumme

PUBLIC RELEASE DATE:

19-Jun-2014

Contact: Mary Beth O'Leary moleary@cell.com 617-397-2802 Cell Press

Stroke is a leading cause of death and disability in developed countries, and there is an urgent need for more clinically effective treatments. A study published by Cell Press June 19th in Stem Cell Reports reveals that simultaneous transplantation of neural and vascular progenitor cells can reduce stroke-related brain damage and improve behavioral recovery in rodents. The stem cell-based approach could represent a promising strategy for the treatment of stroke in humans.

"Our findings suggest that early cotransplantation treatment can not only replace lost cells, but also prevent further deterioration of the injured brain following ischemic stroke," says senior study author Wei-Qiang Gao of Shanghai Jiaotong University. "With the development of human embryonic and induced pluripotent stem cell technology, we are optimistic about the potential translation of our research into clinical use."

The most common kind of stroke, known as ischemic stroke, is caused by a blood clot that blocks or plugs a blood vessel in the brain. Although a medicine called tissue plasminogen activator can break up blood clots in the brain, it must be given soon after the start of symptoms to work, and there are no other clinically effective treatments currently available for this condition. Stem cell transplantation represents a promising therapeutic strategy, but transplantation of either neural progenitor cells or vascular cells has shown restricted therapeutic effectiveness.

In the new study, Gao teamed up with colleagues at Shanghai Jiao Tong University, including Jia Li, Yaohui Tang, and Guo-Yuan Yang, to test whether cotransplantation of both neural and vascular precursor cells would lead to better outcomes. They induced ischemic stroke in rats and then simultaneously injected neural and vascular progenitor cells from mice into the stroke-damaged rat brains 24 hours later. The transplanted precursor cells turned into all major types of vascular and brain cells, including mature, functional neurons. The resulting vascular cells developed into microvessels, while the grafted neural cells produced molecules known to stimulate the growth of both neurons and vessels.

"This is the first study to use embryonic stem cell-derived vascular progenitor cells together with neural progenitor cells to treat ischemic stroke," Gao says. "These two types of progenitors generate nearly all types of brain cells, including endothelial cells, pericytes/smooth muscle cells, neurons, and astrocytes, resulting in better restoration of neurovascular units and better replacement of the lost cells in the stroke model. A previously reported cotransplantation approach published in the journal Stem Cells in 2009 (doi: 10.1002/stem.161) was limited because it did not use vascular precursor cells capable of turning into all major types of vascular cells important for recovery. Our findings here suggest that cotransplantation of the two types of cells that restore the neurovascular unit more effectively is a better approach for the treatment of ischemic stroke."

Two weeks after stroke, rats that had undergone cotransplantation showed less brain damage and improved behavioral performance on motor tasks compared with rats that had been treated with neural progenitor cells alone. "Our findings suggest that cotransplantation of neural and vascular cells is much more effective than transplantation of one cell type alone because these two cell types mutually support each other to promote recovery after stroke," Gao says.

###

See the original post:
Stem cell-based transplantation approach improves recovery from stroke

To Read More: Stem cell-based transplantation approach improves recovery from stroke
categoriaUncategorized commentoComments Off on Stem cell-based transplantation approach improves recovery from stroke | dataJune 24th, 2014
Read All

Time-lapse study reveals bottlenecks in stem cell expansion

By NEVAGiles23

PUBLIC RELEASE DATE:

12-Jun-2014

Contact: Hannah Postles h.postles@sheffield.ac.uk 01-142-221-046 University of Sheffield

A time-lapse study of human embryonic stems cells has identified bottlenecks restricting the formation of colonies, a discovery that could lead to improvement in their use in regenerative medicine.

Biologists at the University of Sheffield's Centre for Stem Cell Biology led by Professor Peter Andrews and engineers in the Complex Systems and Signal Processing Group led by Professor Daniel Coca studied human pluripotent stem cells, which are a potential source of cells for regenerative medicine because they have the ability to produce any cell type in the body.

However, using these stem cells in therapies is currently hampered by the fact they can acquire genetic changes during prolonged culture which are non-random and resemble mutations in cancer cells.

Researchers used time-lapse imaging of single human embryonic stem cells to identify aspects of their behaviour that restrict growth and would be targets for mutations that allow cells to grow more efficiently.

Dr Ivana Barbaric, from the University of Sheffield's Department of Biomedical Science, said: "We study pluripotent stem cells, which have huge potential for use in regenerative medicine due to their ability to become any cell in the human body. A pre-requisite for this is maintaining large numbers of undifferentiated cells in culture. However, there are several obstacles such as cells tend to die extensively during culturing and they can mutate spontaneously. Some of these genetic mutations are known to provide stem cells with superior growth, allowing them to overtake the culture a phenomenon termed culture adaptation, which mimics the behaviour of cancer cells.

"In order for pluripotent stem cells to be used safely in regenerative medicine we need to understand how suboptimal culture conditions, for example culturing cells at low split ratios, affect the cells and can lead to culture adaptation."

The team's research combined the use of time-lapse microscopy, single-cell tracking and mathematical modelling to characterise bottlenecks affecting the survival of normal human embryonic stem cells and compared them with adapted cells.

Read more from the original source:
Time-lapse study reveals bottlenecks in stem cell expansion

To Read More: Time-lapse study reveals bottlenecks in stem cell expansion
categoriaUncategorized commentoComments Off on Time-lapse study reveals bottlenecks in stem cell expansion | dataJune 24th, 2014
Read All

Dr. Ruth Roberts – Stem Cell Therapy For Pets – Video

By NEVAGiles23


Dr. Ruth Roberts - Stem Cell Therapy For Pets
Dr. Ruth Roberts visits Lowcountry Live! to discuss the benefits of Stem Cell Therapy for pets.

By: Ruth Roberts

More here:
Dr. Ruth Roberts - Stem Cell Therapy For Pets - Video

To Read More: Dr. Ruth Roberts – Stem Cell Therapy For Pets – Video
categoriaUncategorized commentoComments Off on Dr. Ruth Roberts – Stem Cell Therapy For Pets – Video | dataJune 24th, 2014
Read All

treatment available for autism spectrum disorder – Video

By JoanneRUSSELL25


treatment available for autism spectrum disorder
After stem cell therapy treatment available for autism spectrum disorder parents of the child from London United Kingdom testifying most of the amazing improvements they saw after stem cell...

By: Neurogen Brain and Spine Institute

Link:
treatment available for autism spectrum disorder - Video

To Read More: treatment available for autism spectrum disorder – Video
categoriaUncategorized commentoComments Off on treatment available for autism spectrum disorder – Video | dataJune 24th, 2014
Read All

Stem cell mobilization therapy may effectively treat osteoarthritis

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

19-Jun-2014

Contact: Robert Miranda cogcomm@aol.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Putnam Valley, NY. (June 19, 2014) Researchers in Taiwan have found that peripheral blood stem cells "mobilized" by a special preparation of granulocyte colony-stimulating factor (G-CSF) prior to their injection into rats modeling osteoarthritis (OA), stimulated the bone marrow to produce stem cells, leading to the inhibition of OA progression. The finding, they said, may lead to a more effective therapy for OA, a common joint disease that affects 10 percent of Americans over the age of 60.

The study will be published in a future issue of Cell Transplantation and is currently freely available on-line as an unedited early e-pub at: http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-ct1109Deng.

"Currently, OA treatment involves the use of anti-inflammatory drugs, analgesics, lubricating supplements, or surgery," said study lead author Dr. Shih-Chieh Hung of the Department of Medical Research and Education at the Taipei Veterans general Hospital in Taiwan. "Recently, hematopoietic (blood) stem cells derived from bone marrow have emerged as a potential treatment for OA. We hypothesized that G-CSF-mobilized peripheral blood stem cells (gm-PBSCs) contain a population of primitive stem cells that have the capacity for mobility once released from stem cell niches."

While the beneficial effects of G-CSF-mobilized peripheral blood stem cells have been documented when used for treating the negative effects of chemotherapy and radiation, as well as peripheral arterial diseases, this is the first study to investigate the use of gm-PBSCs to treat skeletal diseases, such as OA.

"We demonstrated that PBSCs, mobilized by G-CSF and infused for five days in rats modelling OA, provided a number of beneficial results, including increasing cluster of differentiation 34 positive (CD34+) cell percentages up to 55 fold," reported the authors. "Further, we demonstrated that the progression of OA was inhibited by the gm-PBSCs."

The researchers noted that the use of G-CSF administration in humans to treat other diseases and conditions has been found to be "safe and effective," despite known side effects such as bone pain, headache, fatigue, and nausea which, they added, are generally "transient, self-limiting and without long-term consequences."

"Although potential long-term adverse effects, such as malignancy after G-CSF administration have been reported, the frequency is low and the relationship between major adverse effects and G-CSF administration is not clear," said Dr. Hung.

Read the rest here:
Stem cell mobilization therapy may effectively treat osteoarthritis

To Read More: Stem cell mobilization therapy may effectively treat osteoarthritis
categoriaUncategorized commentoComments Off on Stem cell mobilization therapy may effectively treat osteoarthritis | dataJune 24th, 2014
Read All

New possibilities for leukemia therapy with novel mode of leukemia cell recognition

By raymumme

Scientists at A*STAR's Singapore Immunology Network (SIgN) have discovered a new class of lipids in the leukemia cells that are detected by a unique group of immune cells. By recognising the lipids, the immune cells stimulate an immune response to destroy the leukemia cells and suppress their growth. The newly identified mode of cancer cell recognition by the immune system opens up new possibilities for leukemia immunotherapy.

leukemia is characterized by the accumulation of cancer cells originating from blood cells, in the blood or bone marrow. Current treatments for leukemia largely involve chemotherapy to eradicate all cancer cells, followed by stem cell transplants to restore healthy blood cells in the patients.

In a recent study reported in the Journal of Experimental Medicine (JEM) online, the team co-led by Dr Lucia Mori and Prof Gennaro De Libero identified a new class of lipids, methyl-lysophosphatidic acids (mLPA), which accumulate in leukemia cells. Following which, the team identified a specific group of immune cells, described as mLPA-specific T-cells that are capable of recognising the mLPA in the leukemia cells. The detection triggers an immune response that activates the T cells to kill the leukemia cells and limits cancer progression. The efficacy of the T cells in killing leukemia cells was also demonstrated in a mouse model of human leukemia.

Thus far, only proteins in cancer cells have been known to activate T cells. This study is a pioneer in its discovery of mLPA, and the specific T cells which can identify lipids expressed by cancer cells. Unlike proteins, lipids in cancer cells do not differ between individuals, indicating that the recognition of mLPA by mLPA-specific T-cells happens in all leukemia patients. This new mode of cancer cell recognition suggests that the T-cells can potentially be harnessed for a leukemia immunotherapy that is effective in all patients.

"The identification of mLPA and its role in activating specific T cells is novel. This knowledge not only sheds light on future leukemia studies, but also complements ongoing leukemia immunotherapy studies focusing on proteins in cancer cells," said Dr Lucia Mori, Principal Investigator at SIgN. "Current treatments run the risk of failure due to re-growth of residual leukemia cells that survive after stem cell transplants. T-cell immunotherapy may serve as a complementary treatment for more effective and safer therapeutic approach towards leukemia."

Professor Laurent Renia, Acting Executive Director of SIgN, said, "At SIgN, we study how the human immune system protects us naturally from infections. We engage in promising disease-specific research projects that ultimately pave the way for the development of treatments and drugs which can better combat these diseases. A pertinent example will be this study; this mode of immune recognition of leukemia cells is an insightful discovery that will create new opportunities for immunotherapy to improve the lives of leukemia patients."

Story Source:

The above story is based on materials provided by A*Star Agency for Science, Technology and Research. Note: Materials may be edited for content and length.

Read more:
New possibilities for leukemia therapy with novel mode of leukemia cell recognition

To Read More: New possibilities for leukemia therapy with novel mode of leukemia cell recognition
categoriaUncategorized commentoComments Off on New possibilities for leukemia therapy with novel mode of leukemia cell recognition | dataJune 24th, 2014
Read All

Cell Separation Technologies Market- Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 – 2019

By raymumme

DUBLIN, June 19, 2014 /PRNewswire/ -- Research and Markets (http://www.researchandmarkets.com/research/v969qd/cell_separation) has announced the addition of the "Cell Separation Technologies Market- Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019" report to their offering.

http://photos.prnewswire.com/prnh/20130307/600769

This report consists of the market analysis for the various technologies used in the cell separation market. Increasing cell therapy oriented research and development globally is driving the cell separation technologies market towards significant growth. The stakeholders for this report include providers and manufacturers of cell separation technology instruments.

The cell separation technologies market is segmented on the basis of technologies that are available in the market and application areas of cell separation technologies. The various technology segments covered in this report are gradient centrifugation and separation based on surface markers. Separation based on surface markers technology include two different techniques namely, magnetic activated cell sorting (MACS) and fluorescence activated cell sorting (FACS).

The application areas of cell separation technologies comprise stem cell research, immunology, neuroscience research and cancer research. Revenue forecast and market analysis for each segment has been given in this study for the period of 2011 to 2019 in terms of USD million in addition to the compound annual growth rate (CAGR %) for each segment of technology and application. The CAGR is provided for forecast period of 2013 to 2019 and 2012 have been considered as base in year for market size estimation.

Geographically, global cell separation technologies market has been segmented into four areas namely, North America, Europe, Asia-Pacific and Rest of the World (RoW). This report also provides the present and future market estimation in terms of USD million for the period 2011 to 2019, in addition to compound annual growth rate (CAGR %) for each geographic area. Further to market size estimation, this report provides recommendations and highlights of the market that should be useful for current and new market players to grow and sustain in the global cell separation technologies market.

Market trends and dynamics such as restraints, opportunities and growth drivers that have impact on present and future position of this market are demonstrated in the market overview chapter of this study. In addition, the market overview chapter also consists of Porter's five forces analysis and market attractiveness by geography to give detailed analysis of the entire competitive status of the global cell separation technologies market.

Key information about the top market players operating in the global cell separation technologies market is given in the company profiles section of this report. Some of the key players profiled in this report include BD Bioscience, EMD Millipore, Mitenyi Biotec GmbH, and STEMCELL Technologies, Terumo BCT, pluriSelect GmbH, and Life Technologies (Thermo Fisher Scientific, Inc.).

Key Topics Covered:

Chapter 1 Introduction

See the original post here:
Cell Separation Technologies Market- Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019

To Read More: Cell Separation Technologies Market- Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 – 2019
categoriaUncategorized commentoComments Off on Cell Separation Technologies Market- Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 – 2019 | dataJune 23rd, 2014
Read All

Umbilical cord blood helps to save lives

By LizaAVILA

SOUTH BEND, Ind.--- In the 1970's, researchers discovered that a newborn's umbilical cord blood contained special stem cells that could help fight certain diseases.

More than 30 years later doctors are still experimenting and learning more about the use of cord blood.

Amanda Canale doesn't take time with her daughter and niece for granted.

She's just happy to feel good.

"I've been in the hospital, and I've been sick my whole life," said Amanda.

Amanda was born with a rare blood disorder that required daily shots.

"Basically, I have no white blood cells. I have no immune system at all," said Amanda

At 23 she developed Leukemia and was given two weeks to live.

She desperately needed a Bone Marrow Transplant, but family members weren't matches.

Her doctor suggested an Umbilical Cord Blood Transplant.

Read more from the original source:
Umbilical cord blood helps to save lives

To Read More: Umbilical cord blood helps to save lives
categoriaBone Marrow Stem Cells commentoComments Off on Umbilical cord blood helps to save lives | dataJune 23rd, 2014
Read All

New tumor-targeting agent images and treats variety of cancers

By JoanneRUSSELL25

Madison, Wisconsin - Scientists at the University of Wisconsin Carbone Cancer Center (UWCCC) report that a new class of tumor-targeting agents can seek out and find dozens of solid tumors, even illuminating brain cancer stem cells that resist current treatments.

Whats more, years of animal studies and early human clinical trials show that this tumor-targeting alkylphosphocholine (APC) molecule can deliver two types of payloads directly to cancer cells: a radioactive or fluorescent imaging label, or a radioactive medicine that binds and kills cancer cells.

This series of images shows how the alkylphosphocholine (APC) molecule targets and illuminates cancer cells.

The results are featured in todays issue of the journal Science Translational Medicine with the journals cover illustration and a podcast.

The APC targeting molecule was created to exploit a weakness shared by tumors as diverse as breast, brain, colorectal, lung, prostate and skin cancers. Unlike normal cells, cancer cells lack the enzymes to metabolize APC and similar phospholipid ethers that merge with cell membranes.

Read more here:
New tumor-targeting agent images and treats variety of cancers

To Read More: New tumor-targeting agent images and treats variety of cancers
categoriaSkin Stem Cells commentoComments Off on New tumor-targeting agent images and treats variety of cancers | dataJune 23rd, 2014
Read All

2014 Vanderbilt GSC 3MT Finalist: Dikshya Bastakoty – Cardiovascular cell therapy – Video

By Dr. Matthew Watson


2014 Vanderbilt GSC 3MT Finalist: Dikshya Bastakoty - Cardiovascular cell therapy
2014 Vanderbilt GSC 3MT Finalist: Dikshya Bastakoty - Cardiovascular cell therapy: teaching stem cells to fix the broken heart.

By: VanderbiltGSC

Read more:
2014 Vanderbilt GSC 3MT Finalist: Dikshya Bastakoty - Cardiovascular cell therapy - Video

To Read More: 2014 Vanderbilt GSC 3MT Finalist: Dikshya Bastakoty – Cardiovascular cell therapy – Video
categoriaUncategorized commentoComments Off on 2014 Vanderbilt GSC 3MT Finalist: Dikshya Bastakoty – Cardiovascular cell therapy – Video | dataJune 23rd, 2014
Read All

Mount Sinai researchers identify protein that keeps blood stem cells healthy as they age

By daniellenierenberg

PUBLIC RELEASE DATE:

9-Jun-2014

Contact: Lucia Lee NewsMedia@mssm.edu 212-241-9200 The Mount Sinai Hospital / Mount Sinai School of Medicine

(New York June 9, 2014) -- A protein may be the key to maintaining the health of aging blood stem cells, according to work by researchers at the Icahn School of Medicine at Mount Sinai recently published online in Stem Cell Reports. Human adults keep stem cell pools on hand in key tissues, including the blood. These stem cells can become replacement cells for those lost to wear and tear. But as the blood stem cells age, their ability to regenerate blood declines, potentially contributing to anemia and the risk of cancers like acute myeloid leukemia and immune deficiency. Whether this age-related decline in stem cell health is at the root of overall aging is unclear.

The new Mount Sinai study reveals how loss of a protein called Sirtuin1 (SIRT1) affects the ability of blood stem cells to regenerate normally, at least in mouse models of human disease. This study has shown that young blood stem cells that lack SIRT1 behave like old ones. With use of advanced mouse models, she and her team found that blood stem cells without adequate SIRT1 resembled aged and defective stem cells, which are thought to be linked to development of malignancies.

"Our data shows that SIRT1 is a protein that is required to maintain the health of blood stem cells and supports the possibility that reduced function of this protein with age may compromise healthy aging," says Saghi Ghaffari, MD, PhD, Associate Professor of Developmental and Regenerative Biology at Mount Sinai's Black Family Stem Cell Institute, Icahn School of Medicine. "Further studies in the laboratory could improve are understanding between aging stem cells and disease."

Next for the team, which includes Pauline Rimmel, PhD, is to investigate whether or not increasing SIRT1 levels in blood stem cells protects them from unhealthy aging or rejuvenates old blood stem cells. The investigators also plan to look at whether SIRT1 therapy could treat diseases already linked to aging, faulty blood stem cells.

They also believe that SIRT1 might be important to maintaining the health of other types of stem cells in the body, which may be linked to overall aging.

The notion that SIRT1 is a powerful regulator of aging has been highly debated, but its connection to the health of blood stem cells "is now clear," says Dr. Ghaffari. "Identifying regulators of stem cell aging is of major significance for public health because of their potential power to promote healthy aging and provide targets to combat diseases of aging," Dr. Ghaffari says.

###

Here is the original post:
Mount Sinai researchers identify protein that keeps blood stem cells healthy as they age

To Read More: Mount Sinai researchers identify protein that keeps blood stem cells healthy as they age
categoriaUncategorized commentoComments Off on Mount Sinai researchers identify protein that keeps blood stem cells healthy as they age | dataJune 23rd, 2014
Read All

Page 518«..1020..517518519520..530540..»


Copyright :: 2025