Lesson learned at Hutch helping dogs with lymphoma
By LizaAVILA
Originally published June 18, 2014 at 4:37 PM | Page modified June 19, 2014 at 8:32 PM
BELLINGHAM A decade ago, the San Juan Island owners of Comet brought their beloved golden retriever to Drs. Edmund Sullivan and Theresa Westfall at Bellingham Veterinary to see if Comets diagnosis of lymphoma could be treated as something other than a death sentence.
The odds werent good.
At the time, lymphoma was considered incurable, with chemotherapy treatment only a temporary solution because the cancer nearly always re-emerged and resulted in death within a year.
Sullivan and Westfall, who are married, were determined to help. After talking to Dr. Rainer Storb, an expert on human lymphoma at Fred Hutchinson Cancer Research Center in Seattle, they decided to attempt a bone-marrow transplant on Comet. They spent six months visiting the center to learn how.
After removing and preserving bone-marrow stem cells in a painless procedure, the cells are stored for re-injection after radiation therapy. Through DNA analysis, the patients cells are checked for the presence of tumor cells. Sometimes, blood transfusions are needed to provide platelets and red blood cells during recovery.
Its a common procedure in humans but hadnt been tried with dogs.
It worked. Comet survived.
Since Comets recovery, more than 100 dogs have been cured with the treatment through Bellingham Veterinary, and three more veterinary hospitals around the country have been trained in the procedure. The 50 percent cure rate is considered extraordinary.
I didnt invent the procedure, Sullivan says. The knowledge was already out there and we just applied it to dogs.
Visit link:
Lesson learned at Hutch helping dogs with lymphoma
MP calls for more donors in Pendle to register
By JoanneRUSSELL25
MP calls for more donors in Pendle to register
11:43am Tuesday 17th June 2014 in News
THE Anthony Nolan charity is searching for more heroes in Pendle to join their bone marrow register in the fight against blood cancer.
Championed by Pendle MP Andrew Stephenson, this search is under way as the Anthony Nolan bone marrow register has been mapped across the UK by area for the first time.
In Pendle, there are more than 1,500 residents willing to donate their stem cells, or bone marrow, to save the life of a stranger.
Anthony Nolan, now in its 40th anniversary year, was the worlds first bone marrow register.
Mr Stephenson said: I am delighted that Pendle has one of the highest number of heroes on the register out of anywhere in Britain, but we could get even more.
Im hunting for more people to sign up today, so we can fight blood cancer together. It is something truly heroic to give a stranger a second chance at life. That is why Im proud of the huge number of Pendle residents already signed up and proud to champion this cause.
For details, visit www. anthonynolan.org/superhero.
Read this article:
MP calls for more donors in Pendle to register
Growing Stem Cells in Space: Medicine's Next Big Thing?
By LizaAVILA
FRESNO, Calif. (KFSN) --
It's something Jon Galvan experienced five years ago after he almost died from a hemorrhagic stroke while atSubmit work.
"I was typing away and I felt a pop in my head," Galvan told Ivanhoe.
He was able to recover, but Abba Zubair, MD, PhD, Medical Director of Transfusion Medicine and Stem Cell Therapy at Mayo Clinic, Florida says not everyone is as fortunate.
"If it happens, you either recover completely or die," Dr. Zubair told Ivanhoe. "That's what killed my mother."
SubmitDr. Zubair wants to send bone marrow derived stem cells to the international space station.
"Based on our experience with bone marrow transplant you need about 200 to 500 million cells," Dr. Zubair said.
But conventionally grown stem cells take a month. Experiments on earth have shown that stem cells will grow faster in less gravity.
"Five to ten times faster, but it could be more," Dr. Zubair said.
Specifically he hopes to expand the number of stem cells that will help regeneration of neurons and blood vessels in hemorrhagic stroke patients.
Read the original here:
Growing Stem Cells in Space: Medicine's Next Big Thing?
Shining Light on Madness
By Dr. Matthew Watson
At Novartiss research lab in Cambridge, Massachusetts, a large incubator-like piece of equipment is helping give birth to a new era of psychiatric drug discovery. Inside it, bathed in soft light, lab plates hold living human stem cells; robotic arms systematically squirt nurturing compounds into the plates. Thanks to a series of techniques perfected over the last few years in labs around the world, such stem cellscapable of developing into specialized cell typescan now be created from skin cells. When stem cells derived from people with, say, autism or schizophrenia are grown inside the incubator, Novartis researchers can nudge them to develop into functioning brain cells by precisely varying the chemicals in the cell cultures.
Theyre not exactly creating schizophrenic or autistic neurons, because the cells arent working within the circuitry of the brain, but for drug-discovery purposes its the next best thing. For the first time, researchers have a way to directly examine in molecular detail whats going wrong in the brain cells of patients with these illnesses. And, critically for the pharmaceutical company, there is now a reliable method of screening for drugs that might help. Do the neurons look different from normal ones? Is there a flaw in the way they form connections? Could drugs possibly correct the abnormalities? The answer to each of these questions is a very preliminary yes.
The technique is so promising that Novartis has resumed trying to discover new psychiatric drugs after essentially abandoning the quest. Whats more, its been introduced at a time when knowledge about the genetics behind brain disorders is expanding rapidly and other new tools, including optogenetics and more precise genome editing (see Neurosciences New Toolbox), are enabling neuroscientists to probe the brain directly. All these developments offer renewed hope that science could finally deliver more effective treatments for the millions of people beset by devastating brain disorders.
A revival in psychiatric drug development is badly needed: there hasnt been a breakthrough medicine for any of the common mental illnesses, including schizophrenia, bipolar disorder, or severe depression, in roughly 50 years. From the late 1940s through the 1960s, a series of serendipitous discoveries, beginning with the finding that lithium could help bipolar patients, transformed the treatment of the mentally ill. It became possible to quiet the hallucinations and delusions of schizophrenia and offer a drug to the severely depressed. The sudden availability of pharmacological relief transformed psychiatry and played a role in closing down many of the mammoth mental hospitals of the era. But then, almost as suddenly as it had started, the revolution stalled.
Many of the drugs discovered in the 1950s and 1960s are still the most effective treatments available for schizophrenia, anxiety disorders, and depression. But while these medications have improved the lives of some patients, they are ineffective for others, and they are woefully inadequate in treating many of the worst symptoms. Whats more, the drugs can have severe side effects.
Take schizophrenia, for example. Existing antipsychotic drugs can make the hallucinations and delusions disappear, but they dont improve the so-called negative symptomsthe disruption of emotions such as pleasure, which can leave people uninterested in communicating or even in living. Existing drugs also have no effect on the way schizophrenia can impair concentration, decision-making, and working memory (critical in such tasks as language comprehension). These debilitating cognitive problems make it impossible for people to work and difficult for them even to make the seemingly simple logical choices involved in everyday life. Insidiously, such symptoms can strike high-performing individuals, often in their late teens. People dont understand, says Guoping Feng, a professor of neuroscience at MIT who studies the neural basis of psychiatric disorders. They ask, once a patient is given antipsychotic medicine, Why cant you go to work? But [those with schizophrenia] cant work because they dont have cognitive functions, they dont have normal executive functions. And there are no drugs for this. On top of that are the side effects of antipsychotic medicines, which can include Parkinsons-like movement disorders, dramatic weight gain, or a potentially deadly loss of white blood cells. In short, the illness destroys many patients lives.
We were led down a path that said depression is about being a quart low in serotonin, and schizophrenia means you have a bit too much dopamine on board. But that just isnt how the brain works. The brain isnt a bowl of soup.
Finally, many people with brain disorders are simply not helped at all by available drugs. Antidepressants work well for some people but do nothing for many others, and there are no effective drug treatments for the social disabilities or repetitive behaviors caused by autism.
Overall, neuropsychiatric illness is a leading cause of disability. According to the National Institute of Mental Health (NIMH) in Rockville, Maryland, 26 percent of American adults suffer from a diagnosable mental disorder in any given year. Severe depression, the most common of these disorders, is the leading cause of disability in the U.S. for individuals between 15 and 44. Around 1 percent of the American population suffers from schizophrenia; one in 68 American children is diagnosed with an autism spectrum disorder.
Though the need for better treatments is unquestionable, drug companies had until very recently simply run out of good ideas. The drugs developed in the 1950s and 1960s were discovered by accident, and no one knew how or why they worked. In the subsequent decades, drug researchers reverse-engineered the medications to identify the brain molecules that the drugs acted on, such as dopamine and serotonin. In retrospect, however, scientists now realize that while tweaking the levels of these chemicals addressed some symptoms of psychiatric disorders, it was a crude strategy that ignored the biological mechanisms underlying the illnesses.
See more here:
Shining Light on Madness
Canadian Patent for Adipose Stem Cells Issued Under Vet-Stem License
By JoanneRUSSELL25
Poway, CA (PRWEB) June 20, 2014
Vet-Stem, Inc. announced that another patent has issued under its exclusive worldwide license with Artecel, Inc. and with The University of California. This patent covers compositions of adipose tissue-derived stem cells that can differentiate into many types of tissues include cartilage, bone, nerve, kidney, heart and skin. This patent will provide coverage for the on-going commercial and development programs at Vet-Stem.
This new patent adds to the other patents in the Vet-Stem portfolio that cover compositions and methods of production of regenerative cells from adipose tissue for many diseases in humans and animals. Vet-Stem has exclusive worldwide rights for veterinary use of these patents (over 50 issued and 70 pending patents) which improves the companys intellectual property position in this rapidly developing field.
As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. In the last decade over 10,000 animals including horses, dogs, cats, and some exotics have been treated using Vet-Stems services.
Intellectual property rights are key assets in these markets and our investments in the area over the last decade have created tremendous value for our shareholders, said Robert Harman, DVM, MPVM, CEO and Founder of Vet-Stem. We need to do everything possible to protect and grow the market that we are creating in Regenerative Veterinary Medicine by providing the highest quality control in the industry. The value of this technology has increased greatly since the founding of the company in 2002 by providing clear evidence of the therapeutic activity and safety of these stem cells.
Vet-Stem researchers have been authors on 11 peer-reviewed papers including the first blinded, controlled, multicenter study of adipose-derived stem cells for chronic osteoarthritis in the canine hip joint, and the first multicenter clinical study of adipose-derived stem cells for chronic osteoarthritis in the canine elbow. Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure.
About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.
Read more here:
Canadian Patent for Adipose Stem Cells Issued Under Vet-Stem License
Lung Institute Instrumental in Allowing Robert Ware to Get His Life Back
By daniellenierenberg
Tampa, FL (PRWEB) June 19, 2014
Located in Tampa, FL, Lung Institute was instrumental in allowing Robert Ware get his life back. Three months ago, Robert decided to take his health into his own hands and move ahead with stem cell treatment. Hundreds of people with lung disease have been treated with the companys innovative use of stem cells from the patients own body.
Stem cell therapy is a viable option for many people with lung disease, said Dr. Burton Feinerman, Medical Director of the Lung Institute. Our patients are breathing easier, walking further, and depending less on supplemental oxygen.
For Robert, 71, chronic obstructive pulmonary disease (COPD) was taking over his life. Over the past decade, this progressive lung disease diminished his quality of life and forced him away from the activities he used to love. Robert was unable to be outdoors, attend live music shows in the town squares and work on his yard and landscaping. A few months ago, Robert had a health scare that he thought was a heart attack. He was actually experiencing lung spasms and not receiving enough oxygen, often referred to as a COPD exacerbation.
COPD is not only the third leading cause of death in the United States, but is responsible for severely limiting sufferers quality of life. People with COPD often cant even walk to their mailbox without debilitating shortness of breath. For people without COPD, it is akin to breathing through a small straw while carrying out normal activities.
In Roberts case, his exacerbation caused him to look for alternatives to the traditional medications he had been taking. Robert and his wife decided stem cell therapy at the Lung Institute was the best option for him. Robert received autologous stem cell therapy, meaning stem cells from his own body were used to help cue natural healing processes for damaged lung tissue. After the minimally invasive, outpatient procedure, Robert returned home and was able to regain a substantial amount of his quality of life.
Before treatment, I was pretty much on oxygen all the time, said Robert. I couldnt do much without my oxygen. Today, Im doing just about anything I want to do.
Now, Robert no longer needs to pay someone to take care of his lawn. Robert is able to be outdoors, mow the grass, work around the house and go out with friends.
People are just amazed how well Im doing. Im probably 75% to what I was originally, 10 years ago, added Robert. I started getting better fast and my friends couldnt believe it. They were shocked. It was kind of funfeeling good, rather than being sick.
About Lung Institute At Lung Institute (LI), we are changing the lives of hundreds of people across the nation through the innovative technology of regenerative medicine. We are committed to providing patients a more effective way to address pulmonary conditions and improve quality of life. Our physicians, through their designated practices, have gained worldwide recognition for the successful application of revolutionary minimally invasive stem cell therapies. With over a century of combined medical experience, our doctors have established a patient experience designed with the highest concern for patient safety and quality of care. For more information, visit our website at LungInstitute.com, like us on Facebook, follow us on Twitter or call us today at 1-855-469-5864.
Read the original here:
Lung Institute Instrumental in Allowing Robert Ware to Get His Life Back
Promising T cell therapy to protect from infections after transplant
By LizaAVILA
When patients have to undergo a bone marrow transplant, the procedure weakens their immune system. Viruses that are usually kept in check in a healthy immune system may then cause potentially fatal infections. Scientists at Technische Universitt Mnchen (TUM), together with colleagues from Frankfurt, Wrzburg and Gttingen, have now developed a method which could offer patients conservative protection against such infections after a transplant. The method has already been used to treat several patients successfully.
The cells of the human immune system are created from special stem cells in the bone marrow. In diseases affecting the bone marrow, such as leukemia, the degenerate cells must be destroyed using radiation or chemotherapy. Subsequently, the hematopoietic system has to be replaced with stem cells from the blood of a healthy donor. Because of the resulting temporary weakening of the immune system, patients are more exposed to viruses that would normally be warded off.
The cytomegalovirus (CMV), which can cause serious damage to lungs or liver in persons with a weakened defense, poses a major clinical problem. In healthy human beings, a CMV infection will usually not produce any symptoms, since the virus is kept at bay by specific immune cells. In their work, the scientists were able to demonstrate that the transfer of just a few specific immune cells is sufficient to protect the recipient with the weakened immune system against infections. To do this, they used T cells that can recognize and kill specific pathogens.
Tested in an animal model
Dr. Christian Stemberger, first author of the study, and his colleagues, first isolated T cells from the blood of healthy donor mice. These immune cells were directed against molecular elements of a bacterial species which normally causes severe infections in animals. The T cells were then transferred to recipient mice that, due to a genetic modification, could no longer produce immune cells of their own -- similarly to patients suffering from leukemia.
Following the T cell transfer, the researchers infected the treated recipient mice with the bacteria. The results showed that the animals now have effective immune protection against the pathogens, preventing them from becoming ill. "The most astonishing result was that the offspring cells of just one transferred donor cell were enough to completely protect the animals," Christian Stemberger explains.
Successfully used in patients
Finally, the scientists used virus-specific T cells to treat two critically ill patients. Due to a congenital immunodeficiency and leukemia, respectively, stem cell transplants had to be performed on the two patients. Weakened by the procedure, both patients developed CMV infections.
Using a new method, the scientists therefore isolated T cells specifically programmed to target the CMV virus from the blood of the donor and transferred small numbers of these cells to the patients. After only a few weeks, the virus-specific cells proliferated. At the same time, the number of viruses in the blood dropped. "It is a great advantage that even just a few cells can provide protection. This means that the cells can be used for preventive treatment in low doses that are gentler on the organism," Dr. Michael Neuenhahn, last author of the study, explains.
The potential of the identified T cells will now be examined in a clinical study. In addition to an innovative method for cell purification, scientists also have at their disposal a new TUM facility for the sterile manufacture of cell products. In TUMCells, cells can be produced in highly-pure conditions, in so-called clean rooms. In the future, the scientists want to use recent results and TUMCells to develop innovative cell therapies.
See original here:
Promising T cell therapy to protect from infections after transplant
Children's Research Institute Finds Key to Identifying, Enriching Mesenchymal Stem Cells
By LizaAVILA
Contact Information
Available for logged-in reporters only
Newswise DALLAS June 20, 2014 The Childrens Medical Center Research Institute at UTSouthwestern (CRI) has identified a biomarker that enables researchers to accurately characterize the properties and function of mesenchymal stem cells (MSCs) in the body. MSCs are the focus of nearly 200 active clinical trials registered with the National Institutes of Health, targeting conditions such as bone fractures, cartilage injury, degenerative disc disease, and osteoarthritis.
The finding, published in the journal Cell Stem Cell on June 19, significantly advances the field of MSC biology, and if the same biomarker identified in CRIs studies with mice works in humans, the outlook for clinical trials that use MSCs will be improved by the ability to better identify and characterize the relevant cells.
There has been an increasing amount of clinical interest in MSCs, but advances have been slow because researchers to date have been unable to identify MSCs and study their normal physiological function in the body, said Dr. Sean Morrison, Director of the Childrens Research Institute, Professor of Pediatrics at UTSouthwestern Medical Center, and a Howard Hughes Medical Institute Investigator. We found that a protein known as leptin receptor can serve as a biomarker to accurately identify MSCs in adult bone marrow in vivo, and that those MSCs are the primary source of new bone formation and bone repair after injury.
In the course of their investigation, the CRI researchers found that leptin receptor-positive MSCs are also the main source of factors that promote the maintenance of blood-forming stem cells in the bone marrow.
Unfortunately, many clinical trials that are testing potential therapies using MSCs have been hampered by the use of poorly characterized and impure collections of cultured cells, said Dr. Morrison, senior author of the study and holder of the Mary McDermott Cook Chair in Pediatric Genetics at UTSouthwestern. If this finding is duplicated in our studies with human MSCs, then it will improve the characterization of MSCs that are used clinically and could increase the probability of success for well-designed clinical trials using MSCs.
Dr. Bo Zhou, a postdoctoral research fellow in Dr. Morrisons laboratory, was first author of the paper. Other CRI researchers involved in the study were Drs. Rui Yue and Malea Murphy, both postdoctoral research fellows. The research was supported by the National Heart, Lung, and Blood Institute, the Cancer Prevention and Research Institute of Texas, and donors to the Childrens Medical Center Foundation.
About CRI
Childrens Medical Center Research Institute at UTSouthwestern (CRI) is a joint venture established in2011 to build upon the comprehensive clinical expertise of Childrens Medical Center of Dallas and the internationally recognized scientific excellence of UTSouthwestern Medical Center. CRIs mission is to perform transformative biomedical research to better understand the biological basis of disease, seeking breakthroughs that can change scientific fields and yield new strategies for treating disease. Located in Dallas, Texas, CRI is creating interdisciplinary groups of exceptional scientists and physicians to pursue research at the interface of regenerative medicine, cancer biology and metabolism, fields that hold uncommon potential for advancing science and medicine. More information about CRI is available on its website: cri.utsw.edu
See original here:
Children's Research Institute Finds Key to Identifying, Enriching Mesenchymal Stem Cells
Embryonic Stem Cells Offer Promising Treatment For Multiple Sclerosis
By daniellenierenberg
June 17, 2014
Image Caption: ImStem Biotechnologys Xiaofang Wang, seated, and Ren-He Xu. Credit: Tina Encarnacion/UConn
University of Connecticut
Scientists in the University of Connecticuts Technology Incubation Program have identified a novel approach to treating multiple sclerosis (MS) using human embryonic stem cells, offering a promising new therapy for more than 2.3 million people suffering from the debilitating disease.
The researchers demonstrated that the embryonic stem cell therapy significantly reduced MS disease severity in animal models, and offered better treatment results than stem cells derived from human adult bone marrow.
The study was led by ImStem Biotechnology Inc. of Farmington, Conn., in conjunction with UConn Health Professor Joel Pachter, Assistant Professor Stephen Crocker, and Advanced Cell Technology (ACT) Inc. of Massachusetts. ImStem was founded in 2012 by UConn doctors Xiaofang Wang and Ren-He Xu, along with Yale University doctor Xinghua Pan and investor Michael Men.
The cutting-edge work by ImStem, our first spinoff company, demonstrates the success of Connecticuts Stem Cell and Regenerative Medicine funding program in moving stem cells from bench to bedside, says Professor Marc Lalande, director of the UConns Stem Cell Institute.
The research was supported by a $1.13 million group grant from the state of Connecticuts Stem Cell Research Program that was awarded to ImStem and Professor Pachters lab.
Connecticuts investment in stem cells, especially human embryonic stem cells, continues to position our state as a leader in biomedical research, says Gov. Dannel P. Malloy. This new study moves us one step closer to a stem cell-based clinical product that could improve peoples lives.
The researchers compared eight lines of adult bone marrow stem cells to four lines of human embryonic stem cells. All of the bone marrow-related stem cells expressed high levels of a protein molecule called a cytokine that stimulates autoimmunity and can worsen the disease. All of the human embryonic stem cell-related lines expressed little of the inflammatory cytokine.
Link:
Embryonic Stem Cells Offer Promising Treatment For Multiple Sclerosis
Can enough money buy you eternal youth?
By Sykes24Tracey
NEW YORK (CNNMoney)
No need to go that far.
It turns out, the best kind of anti-aging treatment is inside one's own body, and the rich are taking advantage of it, exploring the latest research in new technologies, genome mapping and stem cell treatments.
Among them is Oracle billionaire Larry Ellison, a large investor of the Ellison Medical Foundation, which supports research exploring the biology that underlies aging and age-related diseases. And there's billionaire Peter Nygrd, who says he wants to live forever (or die trying), and has suggested he's found the keys to immortality in stem cell research.
Some doctors agree that stem cells are a key part of chasing youth.
"If you're a wealthy guy and haven't stored your stem cells, I think you're a total idiot," said Dr. Lionel Bissoon, a New York City physician who sees a number of stressed out, wealthy patients.
Related: It's expensive being rich
They usually come to him with similar problems: "Fatigue, belly fat, erectile dysfunction, tiring very quickly ... all very common with my patients from Wall Street," Bissoon said. The short-term solution to those ailments, he says, is testosterone replacement -- which is relatively affordable at a few hundred dollars a pop -- and IV nutrition.
For the long term he recommends stem cell storage, which works as a sort of rainy day insurance. The cells are extracted, preferably when the patient is on the younger side -- around 30 is said to be a good age -- and can then be used to boost an immune system or help to rebuild damaged organs later.
Dr. Dipnarine Maharaj stores cells at his South Florida Bone Marrow Stem Cell Transplant Institute in Boynton Beach, Fla.
See the original post here:
Can enough money buy you eternal youth?
BioTime Subsidiary Asterias Biotherapeutics Appoints Former Pfizer Senior Executive Pedro Lichtinger as President and …
By daniellenierenberg
Asterias was created by BioTime to acquire Geron Corporations clinical-stage stem cell therapeutic assets. The companys work centers on the development of therapeutics derived from stem cells capable of becoming all of the cell types in the human body to fight disease, a process known as pluripotency. Together, Asterias and BioTime have the largest intellectual property portfolio of any company in the pluripotent stem cell field with over 600 patents and patent applications worldwide covering key therapeutic targets derived from each of the three primary germ layers that give rise to all cells in the human body. Asterias lead clinical programs are its AST-OPC1 cell therapeutic for spinal cord injury, which recently received clinical trial funding support through an award of $14.3 million by the California Institute for Regenerative Medicine (CIRM), and its AST-VAC2 allogeneic dendritic cell cancer immunotherapy platform.
"Pedro has the ideal mix of skills to lead Asterias in the next stage of its growth," said Michael D. West, Ph.D., BioTimes CEO. "His experience in shepherding medicines through clinical and regulatory processes to commercialization will be invaluable as Asterias moves forward with its plans to bring two of its product candidates into clinical trials. Pedro is also a seasoned business leader and manager whose long track record in building businesses and business alliances speaks for itself.
I am excited to be working with Asterias talented employees, whose hard work and incredible talent have been responsible for the rapid advancement of a number of promising treatments, said Mr. Lichtinger. The pluripotent stem cell technology platform is rapidly emerging into the clinic with a focus on major unmet medical needs that have limited or no cures available. Asterias two most advanced clinical programs have the potential to significantly improve patient outcomes and I am delighted to be a part of this effort.
Mr. Lichtinger has served as a director of BioTime since August 2009, during which time he has helped to guide its development as a leader in the field of regenerative medicine. Reflecting his new role at Asterias, Mr. Lichtinger has been nominated for election to the Asterias Board of Directors at the companys upcoming annual meeting, and will not stand for reelection to the BioTime Board of Directors at BioTimes upcoming annual meeting.
Since April, Dr. West, BioTimes longtime CEO, has also served as President and CEO of Asterias. With the appointment of Mr. Lichtinger as CEO, Dr. West will continue to be a member of the Board of Asterias and will resume his position as Vice President Technology Integration at Asterias, while continuing as BioTimes CEO.
Mr. Lichtinger has some 35 years of executive leadership experience in the pharmaceutical industry. Previously, he was president and CEO of Optimer Pharmaceuticals, a role that he held from May 2010 to February 2013. There, he led the successful registration and commercialization of DIFICID (fidaxomicin). Before joining Optimer, Mr. Lichtinger held a series of top management positions at Pfizer over a 25-year career, including serving as president of Pfizers Global Primary Care Unit, where he oversaw $23 billion in revenue and was responsible for a development budget in excess of $800 million including a portfolio of 66 projects. He also led Pfizers European operations as president of that group encompassing 27 countries and all Pfizer medicines, and previously headed Pfizers Global Animal Health business. In these roles, Mr. Lichtinger oversaw the successful development, commercialization, and alliances of numerous drugs.
Before joining Pfizer, Mr. Lichtinger was an executive at Smith Kline Beecham, where he was senior vice president of the companys European animal health unit and previously held multiple other executive roles.
Mr. Lichtinger serves on the Board of Directors of Laboratorios Sanfer, SA de CV, the largest Mexican pharmaceutical company, which is partly owned by General Atlantic, a leading global growth equity investment firm. Mr. Lichtinger, an American born in Mexico, speaks four languages. He holds an MBA from the Wharton School of Business and an engineering degree from the National University of Mexico. He and his wife, Iracilda, passionately support the Boys and Girls Clubs of America and the Brazil Foundation.
About Asterias
Asterias Biotherapeutics (Asterias) is a biotechnology company focused on the emerging field of regenerative medicine. Asterias core technologies center on stem cells capable of becoming all of the cell types in the human body, a property called pluripotency. Asterias plans to develop therapies based on pluripotent stem cells to treat diseases or injuries in a variety of medical fields, with an initial focus on the therapeutic applications of oligodendrocyte progenitor cells (AST-OPC1) and antigen-presenting dendritic cells (AST-VAC1 and AST-VAC2) for the fields of neurology and oncology respectively. AST-OPC1 was tested for treatment of spinal cord injury in the worlds first Phase 1 clinical trial using human embryonic stem cell-derived cells. Asterias plans to seek FDA clearance to reinitiate clinical testing of AST-OPC1 in spinal cord injury this year, and is also evaluating its function in nonclinical models of multiple sclerosis and stroke. AST-VAC1 and AST-VAC2 are dendritic cell-based vaccines designed to immunize cancer patients against telomerase, a protein abnormally expressed in over 95% of human cancer types. AST-VAC2 differs from AST-VAC1 in that the dendritic cells presenting telomerase to the immune system are produced from human embryonic stem cells instead of being derived from human blood.
Continue reading here:
BioTime Subsidiary Asterias Biotherapeutics Appoints Former Pfizer Senior Executive Pedro Lichtinger as President and ...
Patient Testimonial: Stem cell therapy for COPD Treatment in SERBIA – Video
By daniellenierenberg
Patient Testimonial: Stem cell therapy for COPD Treatment in SERBIA
http://www.placidway.com/profile/1617/ - Marko was treated for COPD with Stem Cell Therapy in Swiss Medica #39;s Serbian Clinic. How the treatment effectiveness ...
By: placidways
Excerpt from:
Patient Testimonial: Stem cell therapy for COPD Treatment in SERBIA - Video
Knee and shoulder arthritis/torn rotator cuffs 16 months after stem cell therapy by Dr Harry Adelson – Video
By Dr. Matthew Watson
Knee and shoulder arthritis/torn rotator cuffs 16 months after stem cell therapy by Dr Harry Adelson
Mike discusses his results 16 months after stem cell therapy for his arthritic knees and shoulders and torn rotator cuffs by Dr Harry Adelson at http://www.docerecl...
By: Harry Adelson, N.D.
Read the rest here:
Knee and shoulder arthritis/torn rotator cuffs 16 months after stem cell therapy by Dr Harry Adelson - Video
Successful Fetal Stem Cell Therapy in Kyiv, Ukraine at EmCell via PlacidWay – Video
By Sykes24Tracey
Successful Fetal Stem Cell Therapy in Kyiv, Ukraine at EmCell via PlacidWay
Watch Daniel #39;s testimonial after undergoing successful Fetal Stem Cell Therapy at EmCell in Kyiv, Ukraine.
By: placidways
View post:
Successful Fetal Stem Cell Therapy in Kyiv, Ukraine at EmCell via PlacidWay - Video
StemGenex Announces New Stem Cell Clinical Study for Multiple Sclerosis
By LizaAVILA
La Jolla, CA (PRWEB) June 17, 2014
StemGenex, the leading resource for adult adipose stem cell therapy in the US aimed at improving the lives of patients dealing with degenerative diseases, today announced their newest clinical study for Multiple Sclerosis. StemGenex believes that a commitment to the safety and efficacy of stem cell therapy are paramount when providing care to patients with life threatening diseases.
This clinical study is bringing to the field a new, unique type of stem cell therapy that has the possibility of being more effective than other stem cell treatments currently available. Patients who receive stem cell treatment through StemGenex for Multiple Sclerosis will receive StemGenex multiple administration protocol. This consists of four targeted administration methods of the stem cells to deliver the necessary amount of stem cells past the blood brain barrier.
Principal Investigator Dr. Jeremiah McDole, Ph.D. stated, "Currently available drugs for multiple sclerosis do not halt disease progression or aid in the repair of established damage. We strive to provide regenerative medicine applications that address this critical, underlying issue. While patients experience positive clinical outcomes as a result of stem cell treatment, large, rigorously performed studies are desired in order to guide our best efforts for future development. The study we are conducting is designed to provide us with this essential data."
This study is registered through The National Institutes of Health which can be found at http://www.clinicaltrials.gov and is being conducted under IRB approval. According to StemGenex Director of Patient Advocacy, Joe Perricone, It is important patients have access to top-tier stem cell treatment. By providing access to registered clinical studies through The National Institutes of Health, we are providing patients with the ability to choose a stem cell treatment center with the highest standard of care.
Rita Alexander, founder and president of StemGenex, stated, This is the first of many stem cell clinical studies to come and a positive step for the more than 2 million people around the world suffering with Multiple Sclerosis. The average lifetime cost of current standard of care treatment per MS patient is $1.2 million. The human cost of the disease including pain and suffering endured by MS patients, the profound impact on families and the loss of their ability to contribute to society is without question immeasurable. Dr. McDoles research background in neuroimmunology is certainly an asset in our effort to change the course of neurological diseases.
Stem cell treatment studies are currently being offered by StemGenex to patients diagnosed with Multiple Sclerosis and other degenerative neurological diseases. StemGenex takes a unique approach of compassion and empowerment while providing access to the latest stem cell therapies for degenerative neurological diseases including Parkinsons and Alzheimers disease, stroke recovery and others.
To find out more about stem cell therapy, contact StemGenex either by phone at (800) 609-7795 or email Contact(at)stemgenex(dot)com
Read this article:
StemGenex Announces New Stem Cell Clinical Study for Multiple Sclerosis
Embryonic stem cells offer new treatment for multiple sclerosis
By Dr. Matthew Watson
Scientists in the University of Connecticut's Technology Incubation Program have identified a novel approach to treating multiple sclerosis (MS) using human embryonic stem cells, offering a promising new therapy for more than 2.3 million people suffering from the debilitating disease.
The researchers demonstrated that the embryonic stem cell therapy significantly reduced MS disease severity in animal models, and offered better treatment results than stem cells derived from human adult bone marrow.
The study was led by ImStem Biotechnology Inc. of Farmington, Conn., in conjunction with UConn Health Professor Joel Pachter, Assistant Professor Stephen Crocker, and Advanced Cell Technology (ACT) Inc. of Massachusetts. ImStem was founded in 2012 by UConn doctors Xiaofang Wang and Ren-He Xu, along with Yale University doctor Xinghua Pan and investor Michael Men.
"The cutting-edge work by ImStem, our first spinoff company, demonstrates the success of Connecticut's Stem Cell and Regenerative Medicine funding program in moving stem cells from bench to bedside," says Professor Marc Lalande, director of the UConn's Stem Cell Institute.
The research was supported by a $1.13 million group grant from the state of Connecticut's Stem Cell Research Program that was awarded to ImStem and Professor Pachter's lab.
"Connecticut's investment in stem cells, especially human embryonic stem cells, continues to position our state as a leader in biomedical research," says Gov. Dannel P. Malloy. "This new study moves us one step closer to a stem cell-based clinical product that could improve people's lives."
The researchers compared eight lines of adult bone marrow stem cells to four lines of human embryonic stem cells. All of the bone marrow-related stem cells expressed high levels of a protein molecule called a cytokine that stimulates autoimmunity and can worsen the disease. All of the human embryonic stem cell-related lines expressed little of the inflammatory cytokine.
Another advantage of human embryonic stem cells is that they can be propagated indefinitely in lab cultures and provide an unlimited source of high quality mesenchymal stem cells -- the kind of stem cell needed for treatment of MS, the researchers say. This ability to reliably grow high quality mesenchymal stem cells from embryonic stem cells represents an advantage over adult bone marrow stem cells, which must be obtained from a limited supply of healthy donors and are of more variable quality.
"Groundbreaking research like this furthering opportunities for technology ventures demonstrates how the University acts as an economic engine for the state and regional economy," says Jeff Seemann, UConn's vice president for research.
The findings also offer potential therapy for other autoimmune diseases such as inflammatory bowel disease, rheumatoid arthritis, and type-1 diabetes, according to Xu, a corresponding author on the study and one of the few scientists in the world to have generated new human embryonic stem cell lines.
Excerpt from:
Embryonic stem cells offer new treatment for multiple sclerosis
Global Stem Cell Therapy Industry Pipeline Analysis 2020 – Video
By daniellenierenberg
Global Stem Cell Therapy Industry Pipeline Analysis 2020
Stem Cell Therapy Industry @ http://bit.ly/1qkbHjQ.
By: Ashley Harvey
More:
Global Stem Cell Therapy Industry Pipeline Analysis 2020 - Video
Stem Cell Therapy in South Korea – Video
By Sykes24Tracey
Stem Cell Therapy in South Korea
When traditional treatments fail, Stem Cell Therapy in South Korea offers hope to worldwide patients.
By: placidways
Go here to read the rest:
Stem Cell Therapy in South Korea - Video
Patient Testimonial: Stem cell therapy for Multiple Sclerosis – Video
By NEVAGiles23
Patient Testimonial: Stem cell therapy for Multiple Sclerosis
http://www.placidway.com/profile/1617/ - Stem cell therapy in Switzerland was effective for 44 year old patient who had multiple sclerosis. He explains how the side effects started to diminish...
By: placidways
More here:
Patient Testimonial: Stem cell therapy for Multiple Sclerosis - Video
Lumbar disc pain one year after stem cell therapy by Dr Harry Adelson – Video
By JoanneRUSSELL25
Lumbar disc pain one year after stem cell therapy by Dr Harry Adelson
Lisa describes her outcome one year after having bone marrow stem cells injected into her degenerated and dehydrated lumbar discs by Dr Harry Adelson http://www.docereclinics.com.
By: Harry Adelson, N.D.
Read the rest here:
Lumbar disc pain one year after stem cell therapy by Dr Harry Adelson - Video