Page 550«..1020..549550551552..560570..»

Would you donate a kidney to someone you had never met?

By Sykes24Tracey

I found the whole process fascinating and rewarding, and when Alison contacted me to tell me that the first couple Id donated to hadnt eventually conceived, she also told me she was setting up Altrui, and I got involved. Its an amazing thing to be a part of. I wouldnt donate again, as Im focusing on my own family now, but I love supporting other donors with their journeys.

I told Lyndon about it all not long after we met, but there was never a problem he has two children from a previous relationship so we both come with a past. Having my daughter has just confirmed how precious my eggs must have been to the couples whose lives I have changed. Im sure that when she is able to understand what Ive done she will be proud of her mum.

Alan Fisher 35, is a data analyst and lives in Nottingham with his girlfriend, Cat. He joined the UKs blood cancer charity and bone marrow register, Anthony Nolan (anthonynolan.org), in 2010 and donated bone marrow at the London Clinic in January

It was a memorable drive to work the day I decided to donate. I tuned into the local radio station to hear a six-year-old boy hosting the breakfast show: he had leukaemia and was raising awareness for the Anthony Nolan register. It was amazing to hear a young, confident voice doing such a brave thing, and I pulled into the office car park feeling uplifted. But as I reached down to turn off the engine the show ended, and I heard the usual presenter explaining that it had been a tribute to the boy, who had died because a donor hadnt been found in time. There and then I knew I would sign up.

I went along to a Join for Joel event organised in memory of the boy, Joel Picker Spence. It was easy: all I had to do was give a saliva sample. Knowing I could be called to donate within months, years or never, I didnt think about it much after that.

A year and a half later I was contacted and told there was a potential recipient for my bone marrow, but after more tests it transpired that they didnt need me. It was a bit of an anticlimax, to be honest. But in 2013, just before Christmas, I got another phone call and recognised the number on my phone. Its my turn now, I thought.

My employers were great about me taking time off. The hospital wanted to take bone marrow under general anaesthetic from my pelvic bone. It seems like the more invasive option you can sometimes give by a stem cell blood donation but as I dont like needles I didnt mind the idea of being knocked out.

The procedure itself went fine: I spent the night before at hospital and was taken to theatre early. When I awoke after the operation, which took less than an hour, I actually thought it hadnt happened. I was left feeling drained, but only for a few days. I also had two small puncture wounds in the small of my back, but they healed nicely. For me, it was a minor inconvenience for the recipient and their family, I hope it has meant a lot more. I found out afterwards that the amount of bone marrow needed indicated that the recipient was a child. Before I was discharged, I also found out it was a young boy, about the same age as Joel.

Jay Kelly 36, is a fertility and birth hypnotherapist. She is divorced and lives in Harrogate with her four daughters, aged 13, 10 and seven (twins). She recently gave birth to a baby for another couple, whom she met through Surrogacy UK (surrogacyuk.org)

Deciding to become a surrogate wasnt some road to Damascus moment. It was something that had been bubbling under for a long time. Through my work I meet a lot of women unable to conceive and I just cant imagine how distressing it must be for them. My children are everything to me, and it struck me that if I could help a couple who couldnt have what I have, it would be a pretty amazing thing to do.

See more here:
Would you donate a kidney to someone you had never met?

To Read More: Would you donate a kidney to someone you had never met?
categoriaBone Marrow Stem Cells commentoComments Off on Would you donate a kidney to someone you had never met? | dataApril 4th, 2014
Read All

DrSkinSpa.com Announces the Addition of Eminence Bamboo Firming Fluid, 1.2 oz.

By JoanneRUSSELL25

Irvine, CA (PRWEB) April 03, 2014

DrSkinSpa.com is a top-tier skin care web-retail store. It places its primary focus on bringing clinically tested skin care creations that are manufactured using naturally derived ingredients. The company proudly markets an extensive line of natural and effective anti wrinkle cream skin products. Skin care rejuvenators are just one of the many categories of beauty products sold here and DrSkinSpa.com has just added Eminence Bamboo Firming Fluid, 1.2 oz. to its extensive line.

The organic skin care product that is Eminence Bamboo Firming Fluid, 1.2 oz., contains an abundance of plant ingredients, essential oils, and anti-aging Swiss Green Apple Stem Cells. When placed together in this anti aging products, wrinkles and lines are smoothed, hydrated, and the skin is firmed up for a younger appearance.

The key ingredients in Eminence Bamboo Firming Fluid, 1.2 oz. include bamboo, both coconut oil and water, a natural retinol alternative complex with chicory root and tara tree, Swiss Green Apple Stem Cells, and monoi, a fragrant and firming Tahitian oil.

Bamboo has both soluble and insoluble fiber, free-radical fighting antioxidants, proteins, skin-enriching vitamins and minerals to help firm and anti age skin. Coconut oil is included in Eminence Bamboo Firming Fluid, 1.2 oz., for its moisturizing effects, which also help restore skins natural moisture barrier. This oil also works as an antioxidant. The coconut water in this serum balances the skins pH, returning moisture to skin; it also tones the complexion. Coconut water has natural reserves of Vitamin C, electrolytes, calcium, potassium and phosphorous, all plusses for both skin and body.

The Natural Retinol Alternative Complex in Eminence Bamboo Firming Fluid, 1.2 oz., is a combination of chicory root natural sugars (oligosaccharides) and tara tree. The sugars from chicory root firm up loose and sagging skin with immediate activity. It also increases collagen synthesis. Tara tree provides long-lasting moisture.

Dr. Farid Mostamand, owner of DrSkinSpa.com, says, Eminence Bamboo Firming Fluid, 1.2 oz., contains the patented PhytoCellTec. These are the Swiss Green Apple Stem Cells concentrate formula that has been clinically shown to reduce and prevent signs of aging.

DrSkinSpa.com is doctor operated and owned. The company studies and choosesfor sale only the finest products, with clinically proven and natural ingredients. DrSkinSpa.com extends to customers a two-week money-back guarantee for every product sold on their web site. The site also provides customers with a 120% price protection warranty in addition to no cost shipping. Complimentaryaesthetician consultations are also available. DrSkinSpa.com is owned by Crescent Health Center and is based in Anaheim, California.

Read more:
DrSkinSpa.com Announces the Addition of Eminence Bamboo Firming Fluid, 1.2 oz.

To Read More: DrSkinSpa.com Announces the Addition of Eminence Bamboo Firming Fluid, 1.2 oz.
categoriaSkin Stem Cells commentoComments Off on DrSkinSpa.com Announces the Addition of Eminence Bamboo Firming Fluid, 1.2 oz. | dataApril 4th, 2014
Read All

Muscle paralysis eased by light-sensitive stem cells

By NEVAGiles23

A genetic tweak can make light work of some nervous disorders. Using flashes of light to stimulate modified neurons can restore movement to paralysed muscles. A study demonstrating this, carried out in mice, lays the path for using such "optogenetic" approaches to treat nerve disorders ranging from spinal cord injury to epilepsy and motor neuron disease.

Optogenetics has been hailed as one of the most significant recent developments in neuroscience. It involves genetically modifying neurons so they produce a light-sensitive protein, which makes them "fire", sending an electrical signal, when exposed to light.

So far optogenetics has mainly been used to explore how the brain works, but some groups are exploring using it as therapy. One stumbling block has been fears about irreversibly genetically manipulating the brain.

In the latest study, a team led by Linda Greensmith of University College London altered mouse stem cells in the lab before transplanting them into nerves in the leg this means they would be easier to remove if something went wrong.

"It's a very exciting approach that has a lot of potential," says Ziv Williams of Harvard Medical School in Boston.

Greensmith's team inserted an algal gene that codes for a light-responsive protein into mouse embryonic stem cells. They then added signalling molecules to make the stem cells develop into motor neurons, the cells that carry signals to and from the spinal cord to the rest of the body. They implanted these into the sciatic nerve which runs from the spinal cord to the lower limbs of mice whose original nerves had been cut.

After waiting five weeks for the implanted neurons to integrate with the muscle, Greensmith's team anaesthetised the mice, cut open their skin and shone pulses of blue light on the nerve. The leg muscles contracted in response. "We were surprised at how well this worked," says Greensmith.

Most current approaches being investigated to help people who are paralysed involve electrically stimulating their nerves or muscles. But this can be painful because they may still have working pain neurons. Plus, the electricity makes the muscles contract too forcefully, making them tire quickly.

Using the optogenetic approach, however, allows the muscle fibres to be stimulated more gently, because the light level can be increased with each pulse. "It gives a very smooth contraction," says Greensmith.

To make the technique practical for use in people, the researchers are developing a light-emitting diode in the form of a cuff that would go around the nerve, which could be connected to a miniature battery pack under the skin.

View original post here:
Muscle paralysis eased by light-sensitive stem cells

To Read More: Muscle paralysis eased by light-sensitive stem cells
categoriaSkin Stem Cells commentoComments Off on Muscle paralysis eased by light-sensitive stem cells | dataApril 4th, 2014
Read All

TiGenix : licenses exclusive marketing and distribution rights for ChondroCelect to Sobi

By raymumme

Regulated information 3 April, 2014

TiGenix licenses exclusive marketing and distribution rights for ChondroCelect to Sobi

Sobi to assume responsibility for the commercialisation of ChondroCelect in existing and new markets in Europe and beyond

Sobi's considerable expertise and resources will enhance the availability of ChondroCelect to many more patients in many more countries

TiGenix to focus its resources on developing its pipeline of allogeneic treatments using expanded adipose-derived stem cells (eASC's)

Leuven (BELGIUM) - 3 April, 2014 -TiGenix NV (Euronext Brussels: TIG), the European leader in cell therapy, announced today that it has licensed the marketing and distribution of ChondroCelect, the cell-based medicinal product for the repair of cartilage defects of the knee, to the international specialty healthcare company dedicated to rare diseases, Swedish Orphan Biovitrum AB ('Sobi', NASDAQ OMX Stockholm: SOBI).

ChondroCelect was the first cell-based product to be approved in Europe. It is currently available for patients and reimbursed in Belgium, the Netherlands and Spain. Sales of ChondroCelect in 2013 were Euro 4.3 million, a growth of 25% on a like-for-like basis over 2012.

Sobi will continue to market and distribute the product where it is currently available and has also acquired the exclusive rights to expand the product's availability to patients in multiple additional territories, including the rest of the European Union, Norway, Switzerland, Turkey, and Russia, plus the countries of the Middle East and North Africa.

TiGenix will receive a royalty of 22% of the net sales of ChondroCelect in the first year of the agreement, and 20% of the net sales of ChondroCelect thereafter. There will be no upfront or milestone payments. The agreement will take effect on 1 June 2014, and has a duration of 10 years.

"We are delighted to reach this agreement with Sobi", said Eduardo Bravo, CEO of TiGenix. "With its experience of marketing and distributing specialty products, and with its human and financial resources, Sobi has the ability to bring ChondroCelect to a far greater number of patients in many more countries. This then allows TiGenix to focus its human and financial resources on the development of its platform and pipeline of allogeneic treatments using expanded adipose-derived stem cells (eASC's) for the benefit of patients suffering from a range of inflammatory and immunological conditions."

Follow this link:
TiGenix : licenses exclusive marketing and distribution rights for ChondroCelect to Sobi

To Read More: TiGenix : licenses exclusive marketing and distribution rights for ChondroCelect to Sobi
categoriaUncategorized commentoComments Off on TiGenix : licenses exclusive marketing and distribution rights for ChondroCelect to Sobi | dataApril 4th, 2014
Read All

Introduction to Stem Cell Therapy – Video

By NEVAGiles23


Introduction to Stem Cell Therapy
Dr. Michael Belich of Integrative Medical Clinics talks about Stem Cell Therapy basics. For more detailed information go to http://www.integrativemc.com.au.

By: Integrative Medical Clinics

Follow this link:
Introduction to Stem Cell Therapy - Video

To Read More: Introduction to Stem Cell Therapy – Video
categoriaUncategorized commentoComments Off on Introduction to Stem Cell Therapy – Video | dataApril 4th, 2014
Read All

New York Podiatrist Dr. Jeffrey Adler to Be Interviewed April 5 on NewsTalkRadio 77 WABC About the Use of Stem Cell …

By daniellenierenberg

New York, New York (PRWEB) April 03, 2014

Dr. Jeffrey Adler, New York podiatrist and Owner/Medical Director of Adler Footcare New York, will be interviewed by radio personality Laura Smith and taking live calls on New York talk show 77 WABC about the use of stem cells to treat chronic foot pain.

Adler Footcare New York uses live birth stem cells to help treat patients with chronic foot problems such as: Plantar fasciitis, Osteoarthritis, Achilles tendonitis and torn soft tissue. The stem cell treatment is proving to be much more effective than traditional treatments like physical therapy or orthotic therapy.

Stem cells have the ability to replicate themselves or change into the cell type that is needed to repair damaged tissue. The therapy works by directly introducing live stem cells into the affected area causing pain. Its approved by the FDA and consistently reviewed by medical professionals to remove the potential of any communicable diseases.

Dr. Adler often travels to other states to share his knowledge with other doctors in his profession. His latest research on stem cell therapy has gained much interest among his peers in the medical industry.

When compared to traditional treatments, stem therapy is proving to be more successful and longer lasting, Dr. Adler said. We are seeing patients heal much quicker and return to their normal activities much sooner.

To learn more about stem cell replacement therapy or to schedule a consultation with a New York podiatrist at Adler Footcare, call (212) 704-4310 or visit http://www.mynycpodiatrist.com.

About Adler Footcare New York Dr. Jeffrey L. Adler, Medical/Surgical Director and owner of Adler Footcare New York has been practicing podiatric medicine since 1979 and has performed thousands of foot and ankle surgeries. Dr. Adler is board certified in Podiatric Surgery and Primary Podiatric Medicine by the American Board of Multiple Specialties in Podiatry. Dr. Adler is also a Professor of Minimally Invasive Foot Surgery for the Academy of Ambulatory Foot and Ankle Surgeons. As one of only several in the country who perform minimally invasive podiatric surgery, Dr. Adlers patients enjoy significantly reduced recovery times.

Link:
New York Podiatrist Dr. Jeffrey Adler to Be Interviewed April 5 on NewsTalkRadio 77 WABC About the Use of Stem Cell ...

To Read More: New York Podiatrist Dr. Jeffrey Adler to Be Interviewed April 5 on NewsTalkRadio 77 WABC About the Use of Stem Cell …
categoriaUncategorized commentoComments Off on New York Podiatrist Dr. Jeffrey Adler to Be Interviewed April 5 on NewsTalkRadio 77 WABC About the Use of Stem Cell … | dataApril 4th, 2014
Read All

Better way to grow motor neurons from stem cells

By NEVAGiles23

Researchers report they can generate human motor neurons from stem cells much more quickly and efficiently than previous methods allowed. The finding, described in Nature Communications, will aid efforts to model human motor neuron development, and to understand and treat spinal cord injuries and motor neuron diseases such as amyotrophic lateral sclerosis (ALS).

The new method involves adding critical signaling molecules to precursor cells a few days earlier than previous methods specified. This increases the proportion of healthy motor neurons derived from stem cells (from 30 to 70 percent) and cuts in half the time required to do so.

"We would argue that whatever happens in the human body is going to be quite efficient, quite rapid," said University of Illinois cell and developmental biology professor Fei Wang, who led the study with visiting scholar Qiuhao Qu and materials science and engineering professor Jianjun Cheng. "Previous approaches took 40 to 50 days, and then the efficiency was very low -- 20 to 30 percent. So it's unlikely that those methods recreate human motor neuron development."

Qu's method produced a much larger population of mature, functional motor neurons in 20 days.

The new approach will allow scientists to induce mature human motor neuron development in cell culture, and to identify the factors that are vital to that process, Wang said.

Stem cells are unique in that they can adopt the shape and function of a variety of cell types. Generating neurons from stem cells (either embryonic stem cells or those "induced" to revert back to an embryo-like state) requires adding signaling molecules to the cells at critical moments in their development.

Wang and other colleagues previously discovered a molecule (called compound C) that converts stem cells into "neural progenitor cells," an early stage in the cells' development into neurons. But further coaxing these cells to become motor neurons presented unusual challenges.

Previous studies added two important signaling molecules at Day 6 (six days after exposure to compound C), but with limited success in generating motor neurons. In the new study, Qu discovered that adding the signaling molecules at Day 3 worked much better: The neural progenitor cells quickly and efficiently differentiated into motor neurons.

This indicates that Day 3 represents a previously unrecognized neural progenitor cell stage, Wang said.

The new approach has immediate applications in the lab. Watching how stem cells (derived from ALS patients' own skin cells, for example) develop into motor neurons will offer new insights into disease processes, and any method that improves the speed and efficiency of generating the motor neurons will aid scientists. The cells can also be used to screen for drugs to treat motor neuron diseases, and may one day be used therapeutically to restore lost function.

Read this article:
Better way to grow motor neurons from stem cells

To Read More: Better way to grow motor neurons from stem cells
categoriaSpinal Cord Stem Cells commentoComments Off on Better way to grow motor neurons from stem cells | dataApril 2nd, 2014
Read All

Stem Cells Can Revive Failing Heart

By raymumme

Stem cells injected directly into heart muscle can help patients suffering from severe heart failure by improving an ailing heart's ability to pump blood, a new Danish trial indicates.

Doctors drew stem cells from patients' own bone marrow, and then injected those cells into portions of the heart where scar tissue seemed to interfere with heart function, explained lead researcher Dr. Anders Bruun Mathiasen. He is a research fellow in the Cardiac Catheterization Lab at Rigshospitalet University Hospital Copenhagen.

Within six months of treatment, patients who received stem cell injections had improved heart pumping function compared to patients receiving a placebo, according to findings that were to be presented Monday at the American Academy of Cardiology's annual meeting in Washington, D.C.

"We know these stem cells can initiate the growth of new blood vessels and heart muscle tissue," Mathiasen said. "That's what we think has happened."

If larger follow-up trials prove the treatment's effectiveness, it could provide hope for people suffering from untreatable heart failure.

"Heart failure is one of the biggest causes of death. If you can save lives or improve their symptoms, then a treatment like this would be extremely beneficial," said Dr. Cindy Grines, a cardiologist with the Detroit Medical Center and a spokeswoman for the American College of Cardiology.

The treatment could delay the need for a heart transplant and extend the lives of people who can't qualify for a transplant, Grines added.

This new clinical trial included 59 patients with severe heart failure who were considered untreatable. It is the largest randomized trial to test the potential of stem cell injections in treating heart disease, the researchers said.

In the trial, 39 patients received injections of stem cells into their heart muscle through a catheter inserted in the groin. The procedure required only local anesthesia, Mathiasen said. The other 20 received saline injections.

Doctors first mapped the patient's heart using a sensor sent through the catheter that tracks both heart movement and voltage conducted by heart tissue.

Read the original here:
Stem Cells Can Revive Failing Heart

To Read More: Stem Cells Can Revive Failing Heart
categoriaCardiac Stem Cells commentoComments Off on Stem Cells Can Revive Failing Heart | dataApril 2nd, 2014
Read All

New human trial shows stem cells are effective for failing …

By Dr. Matthew Watson

Patients with severe ischemic heart disease and heart failure can benefit from a new treatment in which stem cells found in bone marrow are injected directly into the heart muscle, according to research presented at the American College of Cardiology's 63rd Annual Scientific Session.

"Our results show that this stem cell treatment is safe and it improves heart function when compared to placebo," said Anders Bruun Mathiasen, M.D., research fellow in the Cardiac Catherization Lab at Rigshospitalet University Hospital Copenhagen, and lead investigator of the study. "This represents an exciting development that has the potential to benefit many people who suffer from this common and deadly disease."

Ischemic heart disease, also known as coronary artery disease, is the number one cause of death for both men and women in the United States. It results from a gradual buildup of plaque in the heart's coronary arteries and can lead to chest pain, heart attack and heart failure.

The study is the largest placebo-controlled double-blind randomized trial to treat patients with chronic ischemic heart failure by injecting a type of stem cell known as mesenchymal stromal cells directly into the heart muscle.

Six months after treatment, patients who received stem cell injections had improved heart pump function compared to patients receiving a placebo. Treated patients showed an 8.2-milliliter decrease in the study's primary endpoint, end systolic volume, which indicates the lowest volume of blood in the heart during the pumping cycle and is a key measure of the heart's ability to pump effectively. The placebo group showed an increase of 6 milliliters in end systolic volume.

The study included 59 patients with chronic ischemic heart disease and severe heart failure. Each patient first underwent a procedure to extract a small amount of bone marrow. Researchers then isolated from the marrow a small number of mesenchymal stromal cells and induced the cells to self-replicate. Patients then received an injection of either saline placebo or their own cultured mesenchymal stromal cells into the heart muscle through a catheter inserted in the groin.

"Isolating and culturing the stem cells is a relatively straightforward process, and the procedure to inject the stem cells into the heart requires only local anesthesia, so it appears to be all-in-all a promising treatment for patients who have no other options," Mathiasen said.

Although there are other therapies available for patients with ischemic heart disease, these therapies do not help all patients and many patients continue to face fatigue, shortness of breath and accumulation of fluid in the lungs and legs.

Previous studies have shown mesenchymal stromal cells can stimulate repair and regeneration in a variety of tissues, including heart muscle. Mathiasen said in the case of ischemic heart failure, the treatment likely works by facilitating the growth of new blood vessels and new heart muscle.

The study also supports findings from previous, smaller studies, which showed reduced scar tissue in the hearts of patients who received the stem cell treatment, offering additional confirmation that the treatment stimulates the growth of new heart muscle cells.

Read the rest here:
New human trial shows stem cells are effective for failing ...

To Read More: New human trial shows stem cells are effective for failing …
categoriaBone Marrow Stem Cells commentoComments Off on New human trial shows stem cells are effective for failing … | dataApril 2nd, 2014
Read All

Stem Cells May Rejuvenate Failing Hearts, Study Suggests

By Dr. Matthew Watson

By Dennis Thompson HealthDay Reporter

MONDAY, March 31, 2014 (HealthDay News) -- Stem cells injected directly into heart muscle can help patients suffering from severe heart failure by improving an ailing heart's ability to pump blood, a new Danish trial indicates.

Doctors drew stem cells from patients' own bone marrow, and then injected those cells into portions of the heart where scar tissue seemed to interfere with heart function, explained lead researcher Dr. Anders Bruun Mathiasen. He is a research fellow in the Cardiac Catheterization Lab at Rigshospitalet University Hospital Copenhagen.

Within six months of treatment, patients who received stem cell injections had improved heart pumping function compared to patients receiving a placebo, according to findings that were to be presented Monday at the American Academy of Cardiology's annual meeting in Washington, D.C.

"We know these stem cells can initiate the growth of new blood vessels and heart muscle tissue," Mathiasen said. "That's what we think has happened."

If larger follow-up trials prove the treatment's effectiveness, it could provide hope for people suffering from untreatable heart failure.

"Heart failure is one of the biggest causes of death. If you can save lives or improve their symptoms, then a treatment like this would be extremely beneficial," said Dr. Cindy Grines, a cardiologist with the Detroit Medical Center and a spokeswoman for the American College of Cardiology.

The treatment could delay the need for a heart transplant and extend the lives of people who can't qualify for a transplant, Grines added.

This new clinical trial included 59 patients with severe heart failure who were considered untreatable. It is the largest randomized trial to test the potential of stem cell injections in treating heart disease, the researchers said.

In the trial, 39 patients received injections of stem cells into their heart muscle through a catheter inserted in the groin. The procedure required only local anesthesia, Mathiasen said. The other 20 received saline injections.

Originally posted here:
Stem Cells May Rejuvenate Failing Hearts, Study Suggests

To Read More: Stem Cells May Rejuvenate Failing Hearts, Study Suggests
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cells May Rejuvenate Failing Hearts, Study Suggests | dataApril 2nd, 2014
Read All

Doctor who started a cancer center at SLU became one of its first patients

By Dr. Matthew Watson

Dr. Friedrich Schuening came to St. Louis to start a bone marrow transplant center at St. Louis University. In November 2012, the month before he was scheduled to open the facility, he was attending a conference when he felt a shortness of breath.

Tests disclosed that he had leukemia, the disease in which he was an expert. When the bone marrow transplant center opened, he became one of the first patients.

I never would have thought, in my wildest dreams, after having treated a disease my whole professional life that I would be a patient myself, he told the Post-Dispatch at the time.

Dr. Schuening underwent two bone marrow transplants. The first was in February 2013, and a month later he was back at work treating patients. But his leukemia returned, and doctors performed a second transplant in June 2013.

His leukemia went into remission. But the bone marrow transplant, although successful, led to complications that caused his death, according to one of his physicians, Dr. Mark J. Fesler.

Dr. Schuening died on Thursday (March 27, 2014) at Barnes-Jewish Hospital. He was 71 and had lived in Creve Coeur.

He devoted his life to treating patients with blood cancers. He was an internationally known expert in stem cells, regenerative medicine and bone marrow transplants. He wrote more than 120 scientific papers.

He came to St. Louis University in May 2011, to start his third bone marrow transplant center. The first two were at the University of Wisconsin at Madison and Vanderbilt University, according to St. Louis University.

Friedrich Georg Schuening was born in 1942 in Trier, Germany. His father served in the German Navy, and his mother taught school.

At first, Dr. Schuening studied theology at the University of Mainz in Germany. Instead of going into the ministry, he began studying psychiatry, then switched to medicine to study the body. He earned an M.D. at the University of Hamburg.

Original post:
Doctor who started a cancer center at SLU became one of its first patients

To Read More: Doctor who started a cancer center at SLU became one of its first patients
categoriaBone Marrow Stem Cells commentoComments Off on Doctor who started a cancer center at SLU became one of its first patients | dataApril 2nd, 2014
Read All

'Fabricated' stem cell paper technique may yet be proven valid

By LizaAVILA

Just weeks after invalidating a groundbreaking paper describing a simple technique for generating pluripotent stem cells, professor Kenneth Ka Ho Lee now believes he has identified the correct approach.

Lee, chief of stem cell research at the Chinese University of Hong, spoke to Wired.co.uk in March about his tentative excitement when he read the Nature study in question, published at the start of the year. The proposed Stap cells (stimulus-triggered acquisition of pluripotency) in it were a revelation, because they suggested there was a simple way to generate embryonic-like stem cells that could potentially be used in the treatment of diseases such as Parkinson's. The method involved reprogramming a donor's own adult blood and skin cells (in this case, mice) by exposing them to extreme trauma, such as an acid bath.

Lee could see its potential, but like the rest of the community he had his doubts. While reports circulated that the images published in the Nature study also featured in older papers penned by lead researcher Haruko Obokata of Japan's Riken Centre, Lee set about trying to replicate the experiment himself.

It didn't work.

Since then the Riken Centre has launched an investigation into the legitimacy of the trial, and that investigation today revealed Obokata had indeed falsified information, including results and images of DNA fragments used.

"Actions like this completely destroy data credibility," commented Shunsuke Ishii, head of the investigative committee and a Riken molecular geneticist, at a press conference. "There is no doubt that she was fully aware of this danger. We've therefore concluded this was an act of research misconduct involving fabrication." Obokata has denied the allegations, but Riken says its own research team will be the one to verify the results and carry out the experiment again.

In the interim however, a coauthor on the paper at the centre of the debacle,Charles Vacanti published yet another protocol for the Stap technique, fairly different from the original. Vacanti, of ear-on-a-mouse fame, is a professor at Harvard Medical School and published online what he said was found to be "an effective protocol for generating Stap cells in our lab, regardless of the cell type being studied". It was a combination of the two approaches mentioned in the Naturepaper -- the acid bath, and the trituration process (the application of pressure on the cells using pipettes to induce stress). He describes the latter process as being exerted with force, more so than in the original paper, and over a lengthy period -- twice a day for the first week.

Nature had already rejected Lee's version of experiments for publication last month. Undeterred, he set about applying Vacanti's technique. Liveblogging the experiments on ResearchGate, the open source platform where Lee had published his first set of experiments, the Hong Kong researcher immediately saw the excess stress was leading to rapid cell death among the lung fibroblast cells used.

"The Vacanti protocol put a deal of emphasis on mechanically passing the cells through narrow bore glass pipettes for 30 minutes before acid treatment and then growing the cells on non-adhesive culture plates," Lee told Wired.co.uk. "We conducted these experiments, but it did not induce expression of the pluripotent stem cell markers (Oct4, Sox2 and Nanog)."

Nevertheless, things appeared to turn around. In his preliminary studies Lee has concluded that it could be the extreme stress through trituration, and not the acid bath, that was responsible for creating the Stap cells.

Read the original:
'Fabricated' stem cell paper technique may yet be proven valid

To Read More: 'Fabricated' stem cell paper technique may yet be proven valid
categoriaSkin Stem Cells commentoComments Off on 'Fabricated' stem cell paper technique may yet be proven valid | dataApril 2nd, 2014
Read All

Cell Therapy for Parkinson’s Disease – Video

By raymumme


Cell Therapy for Parkinson #39;s Disease
An introduction to the cell therapy research underway with eight Parkinson #39;s Disease patients at the Scripps Clinic and Scripps Research Institute in San Diego.

By: Summit4StemCell

Follow this link:
Cell Therapy for Parkinson's Disease - Video

To Read More: Cell Therapy for Parkinson’s Disease – Video
categoriaUncategorized commentoComments Off on Cell Therapy for Parkinson’s Disease – Video | dataApril 2nd, 2014
Read All

Grover before Stem Cell Therapy – Video

By JoanneRUSSELL25


Grover before Stem Cell Therapy
This video is of Grover before his Stem Cell Therapy and after 12 sessions of Laser Therapy. Grover could not bear any weight on his leg prior to the Laser T...

By: Animal Haven Veterinary Center

See the rest here:
Grover before Stem Cell Therapy - Video

To Read More: Grover before Stem Cell Therapy – Video
categoriaUncategorized commentoComments Off on Grover before Stem Cell Therapy – Video | dataApril 2nd, 2014
Read All

Diabetes Treatment at EmCell – Video

By JoanneRUSSELL25


Diabetes Treatment at EmCell
At present, more than 200 million people around the world are affected with diabetes, and this number is growing year after year. Among various types of ther...

By: Stem Cell Therapy Center EMCELL

Link:
Diabetes Treatment at EmCell - Video

To Read More: Diabetes Treatment at EmCell – Video
categoriaUncategorized commentoComments Off on Diabetes Treatment at EmCell – Video | dataApril 2nd, 2014
Read All

Team finds a better way to grow motor neurons from stem cells

By JoanneRUSSELL25

PUBLIC RELEASE DATE:

1-Apr-2014

Contact: Diana Yates diya@illinois.edu 217-333-5802 University of Illinois at Urbana-Champaign

CHAMPAIGN, Ill. Researchers report they can generate human motor neurons from stem cells much more quickly and efficiently than previous methods allowed. The finding, described in Nature Communications, will aid efforts to model human motor neuron development, and to understand and treat spinal cord injuries and motor neuron diseases such as amyotrophic lateral sclerosis (ALS).

The new method involves adding critical signaling molecules to precursor cells a few days earlier than previous methods specified. This increases the proportion of healthy motor neurons derived from stem cells (from 30 to 70 percent) and cuts in half the time required to do so.

"We would argue that whatever happens in the human body is going to be quite efficient, quite rapid," said University of Illinois cell and developmental biology professor Fei Wang, who led the study with visiting scholar Qiuhao Qu and materials science and engineering professor Jianjun Cheng. "Previous approaches took 40 to 50 days, and then the efficiency was very low 20 to 30 percent. So it's unlikely that those methods recreate human motor neuron development."

Qu's method produced a much larger population of mature, functional motor neurons in 20 days.

The new approach will allow scientists to induce mature human motor neuron development in cell culture, and to identify the factors that are vital to that process, Wang said.

Stem cells are unique in that they can adopt the shape and function of a variety of cell types. Generating neurons from stem cells (either embryonic stem cells or those "induced" to revert back to an embryo-like state) requires adding signaling molecules to the cells at critical moments in their development.

Wang and other colleagues previously discovered a molecule (called compound C) that converts stem cells into "neural progenitor cells," an early stage in the cells' development into neurons. But further coaxing these cells to become motor neurons presented unusual challenges.

The rest is here:
Team finds a better way to grow motor neurons from stem cells

To Read More: Team finds a better way to grow motor neurons from stem cells
categoriaSpinal Cord Stem Cells commentoComments Off on Team finds a better way to grow motor neurons from stem cells | dataApril 1st, 2014
Read All

$2.5 million Defense Department grant funds gene therapy study for Lou Gehrig's disease

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

1-Apr-2014

Contact: Sandy Van sandy@prpacific.com 808-526-1708 Cedars-Sinai Medical Center

LOS ANGELES (April 1, 2014) The Cedars-Sinai Regenerative Medicine Institute has received a $2.5 million grant from the Department of Defense to conduct animal studies that, if successful, could provide the basis for a clinical trial of a gene therapy product for patients with Lou Gehrig's disease, also called amyotrophic lateral sclerosis, or ALS.

The incurable disorder attacks muscle-controlling nerve cells motor neurons in the brain, brainstem and spinal cord. As the neurons die, the ability to initiate and control muscle movement is lost. Patients experience muscle weakness that steadily leads to paralysis; the disease usually is fatal within five years of diagnosis. Several genes have been identified in familial forms of ALS, but most cases are caused by a complex combination of unknown genetic and environmental factors, experts believe.

Because ALS affects a higher-than-expected percentage of military veterans, especially those returning from overseas duties, the Defense Department invests $7.5 million annually to search for causes and treatments. The Cedars-Sinai study, led by Clive Svendsen, PhD, professor and director of the Regenerative Medicine Institute at Cedars-Sinai Medical Center, and Genevive Gowing, PhD, a senior scientist in his laboratory, also will involve a research team at the University of Wisconsin, Madison and a Netherlands-based biotechnology company, uniQure, that has extensive experience in human gene therapy research and development.

The research will be conducted in laboratory rats bred to model a genetic form of ALS. If successful, it could have implications for patients with other types of the disease and could translate into a gene therapy clinical trial for this devastating disease.

It centers on a protein, GDNF, that promotes the survival of neurons. In theory, transporting GDNF into the spinal cord could protect neurons and slow disease progression, but attempts so far have failed, largely because the protein does not readily penetrate into the spinal cord. Regenerative Medicine Institute scientists previously showed that spinal transplantation of stem cells that were engineered to produce GDNF increased motor neuron survival, but this had no functional benefit because it did not prevent nerve cell deterioration at a critical site, the "neuromuscular junction" the point where nerve fibers connect with muscle fibers to stimulate muscle action.

Masatoshi Suzuki, PhD, DVM, assistant professor of comparative biosciences at the University of Wisconsin, Madison, who previously worked in the Svendsen Laboratory and remains a close collaborator, recently found that stem cells derived from human bone marrow and engineered to produce GDNF protected nerve cells, improved motor function and increased lifespan when transplanted into muscle groups of a rat model of ALS.

"It seems clear that GDNF has potent neuroprotective effects on motor neuron function when the protein is delivered at the level of the muscle, regardless of the delivery method. We think GDNF will be able to help maintain these connections in patients and thereby keep the motor neuron network functional," Suzuki said.

See original here:
$2.5 million Defense Department grant funds gene therapy study for Lou Gehrig's disease

To Read More: $2.5 million Defense Department grant funds gene therapy study for Lou Gehrig's disease
categoriaSpinal Cord Stem Cells commentoComments Off on $2.5 million Defense Department grant funds gene therapy study for Lou Gehrig's disease | dataApril 1st, 2014
Read All

New human trial shows stem cells are effective for failing hearts: Bone marrow-derived stem cells injected directly …

By NEVAGiles23

Patients with severe ischemic heart disease and heart failure can benefit from a new treatment in which stem cells found in bone marrow are injected directly into the heart muscle, according to research presented at the American College of Cardiology's 63rd Annual Scientific Session.

"Our results show that this stem cell treatment is safe and it improves heart function when compared to placebo," said Anders Bruun Mathiasen, M.D., research fellow in the Cardiac Catherization Lab at Rigshospitalet University Hospital Copenhagen, and lead investigator of the study. "This represents an exciting development that has the potential to benefit many people who suffer from this common and deadly disease."

Ischemic heart disease, also known as coronary artery disease, is the number one cause of death for both men and women in the United States. It results from a gradual buildup of plaque in the heart's coronary arteries and can lead to chest pain, heart attack and heart failure.

The study is the largest placebo-controlled double-blind randomized trial to treat patients with chronic ischemic heart failure by injecting a type of stem cell known as mesenchymal stromal cells directly into the heart muscle.

Six months after treatment, patients who received stem cell injections had improved heart pump function compared to patients receiving a placebo. Treated patients showed an 8.2-milliliter decrease in the study's primary endpoint, end systolic volume, which indicates the lowest volume of blood in the heart during the pumping cycle and is a key measure of the heart's ability to pump effectively. The placebo group showed an increase of 6 milliliters in end systolic volume.

The study included 59 patients with chronic ischemic heart disease and severe heart failure. Each patient first underwent a procedure to extract a small amount of bone marrow. Researchers then isolated from the marrow a small number of mesenchymal stromal cells and induced the cells to self-replicate. Patients then received an injection of either saline placebo or their own cultured mesenchymal stromal cells into the heart muscle through a catheter inserted in the groin.

"Isolating and culturing the stem cells is a relatively straightforward process, and the procedure to inject the stem cells into the heart requires only local anesthesia, so it appears to be all-in-all a promising treatment for patients who have no other options," Mathiasen said.

Although there are other therapies available for patients with ischemic heart disease, these therapies do not help all patients and many patients continue to face fatigue, shortness of breath and accumulation of fluid in the lungs and legs.

Previous studies have shown mesenchymal stromal cells can stimulate repair and regeneration in a variety of tissues, including heart muscle. Mathiasen said in the case of ischemic heart failure, the treatment likely works by facilitating the growth of new blood vessels and new heart muscle.

The study also supports findings from previous, smaller studies, which showed reduced scar tissue in the hearts of patients who received the stem cell treatment, offering additional confirmation that the treatment stimulates the growth of new heart muscle cells.

The rest is here:
New human trial shows stem cells are effective for failing hearts: Bone marrow-derived stem cells injected directly ...

To Read More: New human trial shows stem cells are effective for failing hearts: Bone marrow-derived stem cells injected directly …
categoriaBone Marrow Stem Cells commentoComments Off on New human trial shows stem cells are effective for failing hearts: Bone marrow-derived stem cells injected directly … | dataApril 1st, 2014
Read All

New human trial shows stem cells are effective for failing hearts

By raymumme

PUBLIC RELEASE DATE:

31-Mar-2014

Contact: Beth Casteel bcasteel@acc.org 202-375-6275 American College of Cardiology

WASHINGTON (March 31, 2014) Patients with severe ischemic heart disease and heart failure can benefit from a new treatment in which stem cells found in bone marrow are injected directly into the heart muscle, according to research presented at the American College of Cardiology's 63rd Annual Scientific Session.

"Our results show that this stem cell treatment is safe and it improves heart function when compared to placebo," said Anders Bruun Mathiasen, M.D., research fellow in the Cardiac Catherization Lab at Rigshospitalet University Hospital Copenhagen, and lead investigator of the study. "This represents an exciting development that has the potential to benefit many people who suffer from this common and deadly disease."

Ischemic heart disease, also known as coronary artery disease, is the number one cause of death for both men and women in the United States. It results from a gradual buildup of plaque in the heart's coronary arteries and can lead to chest pain, heart attack and heart failure.

The study is the largest placebo-controlled double-blind randomized trial to treat patients with chronic ischemic heart failure by injecting a type of stem cell known as mesenchymal stromal cells directly into the heart muscle.

Six months after treatment, patients who received stem cell injections had improved heart pump function compared to patients receiving a placebo. Treated patients showed an 8.2-milliliter decrease in the study's primary endpoint, end systolic volume, which indicates the lowest volume of blood in the heart during the pumping cycle and is a key measure of the heart's ability to pump effectively. The placebo group showed an increase of 6 milliliters in end systolic volume.

The study included 59 patients with chronic ischemic heart disease and severe heart failure. Each patient first underwent a procedure to extract a small amount of bone marrow. Researchers then isolated from the marrow a small number of mesenchymal stromal cells and induced the cells to self-replicate. Patients then received an injection of either saline placebo or their own cultured mesenchymal stromal cells into the heart muscle through a catheter inserted in the groin.

"Isolating and culturing the stem cells is a relatively straightforward process, and the procedure to inject the stem cells into the heart requires only local anesthesia, so it appears to be all-in-all a promising treatment for patients who have no other options," Mathiasen said.

More:
New human trial shows stem cells are effective for failing hearts

To Read More: New human trial shows stem cells are effective for failing hearts
categoriaBone Marrow Stem Cells commentoComments Off on New human trial shows stem cells are effective for failing hearts | dataApril 1st, 2014
Read All

Revolutionary stem cell op to treat heart failure

By Sykes24Tracey

Graham Parker, 41, from County Durham is one of first to benefit from trial Some participants were given stem cells and the rest placebo Stem cells were taken from bone marrow in his hip and injected into heart Years later Graham feels better - but still classed as having heart failure

By Carol Davis

PUBLISHED: 18:04 EST, 31 March 2014 | UPDATED: 18:25 EST, 31 March 2014

Graham Parker took part in a trial using stem cells to repair heart damage

A major new trial is using patients' own stem cells to treat heart failure. One of the first to benefit is Graham Parker, 41, an archaeology student from Stanley, County Durham. He tells CAROL DAVIS his story.

Working as a supply teacher a few years ago, I started feeling exhausted. I couldn't walk more than 50 metres without pausing, was constantly breathless and would wake at night coughing.

At first I thought it was a cold or flu, or the stress of a house move. But my mum, a retired nurse, pointed out I'd been ill for two months, and sent me to the doctor.

The GP suspected asthma, and gave me an inhaler. But within a week it was worse and I couldn't walk more than a few yards without retching.

So I saw a second GP. She didn't say what she thought it was - she called an ambulance instead. I was admitted to the Queen Elizabeth Hospital in Gateshead, then transferred to the Freeman Hospital in Newcastle while they ran several tests, including an ECG (electrocardiogram) and MRI (magnetic resonance imaging) scan.

Doctors explained I had heart failure: part of my heart muscle was damaged and the lower pumping chamber had become flabby so couldn't pump blood round my body properly. This was why I was so exhausted.

See the article here:
Revolutionary stem cell op to treat heart failure

To Read More: Revolutionary stem cell op to treat heart failure
categoriaBone Marrow Stem Cells commentoComments Off on Revolutionary stem cell op to treat heart failure | dataApril 1st, 2014
Read All

Page 550«..1020..549550551552..560570..»


Copyright :: 2025