:: 20, Feb 2014 :: GOING BEYOND SKIN DEEP IN IDENTIFYING GOOD FAT FROM BAD FAT
By Sykes24Tracey
GOING BEYOND SKIN DEEP IN IDENTIFYING GOOD FAT FROM BAD FAT
A*STAR scientists discover a faster way to tell fat cells apart to get down to the skinny of fat towards healthier outcomes
20 February 2014, Singapore - Scientists from A*STARs Singapore Bioimaging Consortium (SBIC) led in the discovery that two little-known fat cell markers have huge potential to assist researchers to further their understanding of fats. The discovery was recently published in prestigious science journal, Stem Cell Reports[1].
Adipose or fat cells are essential for proper body function. Yet, being too fat is detrimental to your health and raises risk of developing metabolic diseases like diabetes, heart disease and hypertension. With worldwide obesity nearly doubling since 1980, there is an urgent need for research into the science of diseases caused by obesity[2].
Fat stem cells are young cells that mature into fully functioning fat cells. The research team looked at two different fat stem cells types: subcutaneous fat found beneath the skin and visceral fat surrounding internal organs. The researchers are able for the first time to tell apart subcutaneous from visceral fat stem cells using specific cell markers.
The researchers looked at 240 different markers present on the surface of fat stem cells and discovered two markers called CD10 and CD200. An imaging technique called High-Content Screening (HCS) was used to spot these markers individually by latching them with florescence tags. What the scientists found was subcutaneous fat contained more CD10 signals while visceral fat exhibited more CD200. By using the different composition of CD10 and CD200 on fat stem cell surface, scientists can use these marking signatures to differentiate subcutaneous from visceral fat.
Link:
:: 20, Feb 2014 :: GOING BEYOND SKIN DEEP IN IDENTIFYING GOOD FAT FROM BAD FAT
Duke Health System CEO appointed to head Institute of Medicine
By daniellenierenberg
Duke University Health SystemDr. Victor J. Dzau, the current president and CEO of Duke University Health System
Dr. Victor J. Dzau, the current president and CEO of Duke University Health System and chancellor for health affairs at Duke University, has been appointed to a six-year term as the next president of the Institute of Medicine (IOM), effective July 1, 2014. Dr. Dzau will take over the lead role from Dr. Harvey Fineberg, who served in the position for twelve years.
Dr. Dzau began his career in medicine as a cardiologist, having previously taught at Harvard Medical School and served as chair of the department of medicine. He also worked at Brigham and Womens Hospital as the director of research. His ongoing award-winning research has been key in the development of cardiovascular drugs, as well as techniques to repair tissue damage from heart attacks and heart disease using stem cell therapies.
Dr. Eugene Braunwald, often called the father of modern cardiology and a professor of medicine at Harvard Medical School, has known Dr. Dzau for more than 40 years and worked with him at many different stages of his career at Brigham and Womens Hospital and Partners Healthcare. In an interview Wednesday he called the upcoming IOM president a force of nature.
He is what I would call a talented, quadruple threat. A great physician, inspiring teacher, and a very creative scientist, said Dr. Braunwald, who trained Dzau when he was a resident at Brigham and Womens and continued to work with him on cardiovascular research when Dr. Dzau became chief resident, and then faculty at Harvard Medical School. The quadruple threat is that he also sees the larger picture. Hes interested in areas of medicine that most academic physicians have stayed away from. His work and ideas in global and community-based medicine have left an important heritage at each institution where hes worked.
After nearly a decade at Duke, Dr. Dzaus leadership has been credited with the launch of a number of innovative and global-focused medical institutions, including the Duke-National University of Signapore Graduate Medical School, Duke Global Health Institute, Duke Institute for Health Innovation, Duke Cancer Institute, as well as the Duke Translational Medicine Institute.
Im deeply honored to become the next president of the IOM and recognize the critically important role that the IOM will have in improving the health of the nation at a time of extraordinary evolution in biomedical research and health care delivery, Dzau said in a press release from Duke University Health System. The explosion of new data resources, novel technologies and breathtaking research advances make this the most promising time in history for driving innovations that will improve health care delivery, outcomes and quality.
As the health sciences extension of the National Academy of Sciences, the Institute of Medicine is known for its leadership in advancing health sciences and objective medical research nationally as a nonprofit academic research organization. The outgoing IOM president, Dr. Harvey Fineberg (previously Dean of the Harvard School of Public Health) has lead the nonprofit for twelve years. His focus and research have centered around public health policy and an improvement in informed medical decision making.
This leaves the medical community wondering what Dr. Dzau will bring to the Institute.
As a former chairman of the Association of Academic Health Centers (AAHC), Dr. Dzau advocated for the innovative transition of academic medical and health centers into institutions that can survive the rapid transitions in the health care industry. In a recent article in the New England Journal of Medicine, Dr. Dzau discusses the uncertain future of academic medical centers. He argues that industry pressures and cost restraints from the Affordable Care Act limit the research and education-based missions of teaching hospitals.
Excerpt from:
Duke Health System CEO appointed to head Institute of Medicine
Stem Cell Treatment at "EmCell" – Video
By Sykes24Tracey
Stem Cell Treatment at "EmCell"
http://www.emcell.com/ Stem cell therapy is the rapidly developing area of modern medicine. Unique properties of fetal stem cells, the core of EmCell treatme...
By: Stem Cell Therapy Center "EMCELL"
See the original post:
Stem Cell Treatment at "EmCell" - Video
Laminine Testimonial – Chronic Kidney Disease – Video
By Sykes24Tracey
Laminine Testimonial - Chronic Kidney Disease
Laminine is availabe in the Philippines!!! "The Closest Alternative To Stem Cell Therapy..." "The miracle formula from a 9-day-old fertilized hen eggs" For M...
By: Julfran Ytang
Go here to see the original:
Laminine Testimonial - Chronic Kidney Disease - Video
Mountain Ridge Animal Hospital and Pain Management Center of Lafayette, Colorado Helps Local Shepherd Manage the Pain …
By Dr. Matthew Watson
Poway, California (PRWEB) February 20, 2014
Four-and-a-half year old Dakota, a German Shepherd from Colorado, is managing the pain from osteoarthritis with the help of stem cell therapy thanks to Mountain Ridge Animal Hospital and Pain Management Center of Lafayette. Dakotas positive results showed almost immediately, and just a few months post stem cell therapy using Vet-Stem, Inc. services, he is doing activities that he has not done for years.
Dakota was diagnosed with hip dysplasia at just three years old, and in less than two years time his owners felt his quality of life had significantly started to deteriorate. Robert Landry, DVM at Mountain Ridge Animal Hospital and Pain Management Center has been doing regenerative cell therapy with Vet-Stem for six years, treating various types of orthopedic issues and arthritis in small animals, and determined Dakota was a good candidate for the procedure.
Dr. Landry began Dakotas procedure on a Tuesday in October by collecting a small sample of fat called the falciform fat pad, which was sent overnight to Vet-Stems lab in San Diego, California. Received the next morning, the lab processed Dakotas fat and created injectable doses of his own stem cells to be overnighted back to Dr. Landry. Thursday Dakota received his hip injections and recovery began.
Dakotas results were almost immediate, Dakotas owners expressed, He moves around with ease now and can even go up and down the stairs. Last week he jumped into the back of my SUV, which he hasn't done in years. Before the stem cell therapy Dakota never wagged his tail, and now he doesnt stop! His quality of life is so much better and he seems truly happier.
Dr. Landry and the team at Mountain Ridge Animal Hospital and Pain Management Center specialize in companion animal health care, striving to provide the highest quality in Veterinary health care and customer service. Some of their specialties are pain management, surgery, and regenerative medicine. By understanding and valuing the special role that pets play in a family Dr. Landry and team are genuine advocates for each pet's health and care.
About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine, visit http://www.vet-stem.com or call 858-748-2004.
See more here:
Mountain Ridge Animal Hospital and Pain Management Center of Lafayette, Colorado Helps Local Shepherd Manage the Pain ...
Cowboys coach seeks marrow match for daughter
By Dr. Matthew Watson
by GEORGE RIBA
WFAA Sports
Posted on February 18, 2014 at 12:41 PM
DALLAS -- Malena Brownwas hoping for a match onValentines Day weekend, butnot the kind of match you expect.
The 15-year-old daughter of Dallas Cowboys running backs coach Gary Brown is looking for an "angel donor" whose bone marrow stem cells will match hers and help her overcome what's known as CML, or chronic myeloid leukemia.
Well, its kind of scary knowing that there wasn't a match for me, but we're doing a bone marrow drive now and hopefully find somebody that matches me, Malena said.
Neither one of Malena's siblings is a match, and trying to find one has become a challenge.
The No. 1 challenge has been trying to find a match based on her ancestry, and she being biracial, has been extra difficult because the registry is under-represented with African-American and other multiracial people, said Kim Brown, Malenas mother.
We've had nothing but people trying to help us in any way they can, said father Gary Brown. When you know your daughter is going through something hard, and there are other people out there that care as much as you do and want to help her as much as you do.
To add your name to the national registry, all you do is a simple swab test, add it to a booklet, and send it in.
Read the rest here:
Cowboys coach seeks marrow match for daughter
Biologists Create Embryonic-Type Stem Cells Without Embryos
By Sykes24Tracey
By Liisa Vexler
A new age in biology and biotechnology may be upon us as scientists in London, England have successfully created embryonic-type stem cells without the use of actual embryos. By re-engineering mature cells, scientists may be close to overcoming one of the largest ethical debates in stem cell research, the use of human embryos. Though the initial research was conducted with cells from mice, scientists believe the technique could be successful in humans.
Researchers at the University College London were able to generate pluripotent cells from fully developed, or mature cells. Chris Mason, Chair of Regenerative Medicine Bioprocessing at the institution described the process as the most simple, lowest-cost and quickest method to-date. These pluripotent cells have unlimited therapeutic potential as they are able to develop into different cell types.
Mason explained to Reuters, If it works in man, this could be the game changer that ultimately makes a wide range of cell therapies available using the patients own cells as starting material.
Researchers from other institutions including Brigham and Womens Hospital, Harvard Medical School and the RIKENCenter for Developmental Biology in Japan took part in this study.
Scientists performed the experiment by allowing mature cells to multiply and then, using a number of methods, stressing them almost to the point of death. According to the researchers, the cells were able to survive and recover by returning to a state similar to that of an embryonic stem cell.
Stem Cells Defined
Stem cells are undifferentiated cells that have the ability to differentiate into specialized types of cells that the body needs. There are two types of stem cells, embryonic stem cells found in embryos, and adult or IPS stem cells, which are harvested from the blood or skin and genetically reprogrammed into stem cells.
According to scientists, the stem cells ability to regenerate tissue makes them valuable in the fight against degenerative diseases including Parkinsons and cardiovascular disease.
Here is the original post:
Biologists Create Embryonic-Type Stem Cells Without Embryos
BioTime CEO Dr. Michael West to Present at 9th Annual Stem Cell Summit
By NEVAGiles23
ALAMEDA, Calif.--(BUSINESS WIRE)--BioTime, Inc. (NYSE MKT: BTX), a biotechnology company that develops and markets products in the field of regenerative medicine, today announced that Chief Executive Officer Michael D. West, PhD will present at the 9th Annual Stem Cell Summit in New York. Dr. West will speak in the session Disrupting the Pharma Model with Allogeneic Stem Cell Therapies on February 18, 2014, starting at 9:05 a.m. EST.
Dr. West will discuss the potential comparative advantages of treating disease with BioTime's PureStem-based therapeutics compared to traditional small molecule pharmaceuticals and BioTime's product development strategy. The presentation will be made available on BioTime's website at http://www.biotimeinc.com.
About BioTime, Inc.
BioTime is a biotechnology company engaged in research and product development in the field of regenerative medicine. Regenerative medicine refers to therapies based on stem cell technology that are designed to rebuild cell and tissue function lost due to degenerative disease or injury. BioTimes focus is on pluripotent stem cell technology based on human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells. hES and iPS cells provide a means of manufacturing every cell type in the human body and therefore show considerable promise for the development of a number of new therapeutic products. BioTimes therapeutic and research products include a wide array of proprietary PureStem progenitors, HyStem hydrogels, culture media, and differentiation kits. BioTime is developing Renevia (a HyStem product) as a biocompatible, implantable hyaluronan and collagen-based matrix for cell delivery in human clinical applications. In addition, BioTime has developed Hextend, a blood plasma volume expander for use in surgery, emergency trauma treatment and other applications. Hextend is manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ CheilJedang Corporation under exclusive licensing agreements.
BioTime is also developing stem cell and other products for research, therapeutic, and diagnostic use through its subsidiaries:
Asterias Biotherapeutics, Inc. is a new subsidiary which has acquired the stem cell assets of Geron Corporation, including patents and other intellectual property, biological materials, reagents and equipment for the development of new therapeutic products for regenerative medicine.
OncoCyte Corporation is developing products and technologies to diagnose and treat cancer.
Cell Cure Neurosciences Ltd. (Cell Cure Neurosciences) is an Israel-based biotechnology company focused on developing stem cell-based therapies for retinal and neurological disorders, including the development of retinal pigment epithelial cells for the treatment of macular degeneration, and treatments for multiple sclerosis.
LifeMap Sciences, Inc. (LifeMap Sciences) markets, sells and distributes GeneCards, the leading human gene database, as part of an integrated database suite that also includes the LifeMap Discovery database of embryonic development, stem cell research and regenerative medicine, and MalaCards, the human disease database.
ES Cell International Pte Ltd., a Singapore private limited company, developed clinical and research grade hES cell lines and plans to market those cell lines and other BioTime research products in over-seas markets as part of BioTimes ESI BIO Division.
See more here:
BioTime CEO Dr. Michael West to Present at 9th Annual Stem Cell Summit
Extensive renewal of the T cell repertoire following autologous stem cell transplant in MS
By JoanneRUSSELL25
PUBLIC RELEASE DATE:
17-Feb-2014
Contact: Philip Bernstein, Ph.D. ITNCommunications@immunetolerance.org 240-235-6132 Immune Tolerance Network
WA, Seattle (February 17, 2014) A new study describes the complexity of the new T cell repertoire following immune-depleting therapy to treat multiple sclerosis, improving our understanding of immune tolerance and clinical outcomes.
In the Immune Tolerance Network's (ITN) HALT-MS study, 24 patients with relapsing, remitting multiple sclerosis received high-dose immunosuppression followed by a transplant of their own stem cells, called an autologous stem cell transplant, to potentially reprogram the immune system so that it stops attacking the brain and spinal cord. Data published today in the Journal of Clinical Investigation quantified and characterized T cell populations following this aggressive regimen to understand how the reconstituting immune system is related to patient outcomes.
ITN investigators used a high-throughput, deep-sequencing technology (Adaptive Biotechnologies, ImmunoSEQTM Platform) to analyze the T cell receptor (TCR) sequences in CD4+ and CD8+ cells to compare the repertoire at baseline pre-transplant, two months post-transplant and 12 months post-transplant.
Using this approach, alongside conventional flow cytometry, the investigators found that CD4+ and CD8+ lymphocytes exhibit different reconstitution patterns following transplantation. The scientists observed that the dominant CD8+ T cell clones present at baseline were expanded at 12 months post-transplant, suggesting these clones were not effectively eradicated during treatment. In contrast, the dominant CD4+ T cell clones present at baseline were undetectable at 12 months, and the reconstituted CD4+ T cell repertoire was predominantly comprised of new clones.
The results also suggest the possibility that differences in repertoire diversity early in the reconstitution process might be associated with clinical outcomes. Nineteen patients who responded to treatment had a more diverse repertoire two months following transplant compared to four patients who did not respond. Despite the low number of non-responders, these comparisons approached statistical significance and point to the possibility that complexity in the T cell compartment may be important for establishing immune tolerance.
This is one of the first studies to quantitatively compare the baseline T cell repertoire with the reconstituted repertoire following autologous stem cell transplant, and provides a previously unseen in-depth analysis of how the immune system reconstitutes itself following immune-depleting therapy.
###
Read the original post:
Extensive renewal of the T cell repertoire following autologous stem cell transplant in MS
Deep TCR Sequencing Reveals Extensive Renewal of the T Cell Repertoire Following Autologous Stem Cell Transplant in …
By LizaAVILA
Contact Information
Available for logged-in reporters only
Newswise WA, Seattle (February 17, 2014) A new study describes the complexity of the new T cell repertoire following immune-depleting therapy to treat multiple sclerosis, improving our understanding of immune tolerance and clinical outcomes.
In the Immune Tolerance Networks (ITN) HALT-MS study, 24 patients with relapsing, remitting multiple sclerosis received high-dose immunosuppression followed by a transplant of their own stem cells, called an autologous stem cell transplant, to potentially reprogram the immune system so that it stops attacking the brain and spinal cord. Data published today in the Journal of Clinical Investigation (http://www.jci.org/articles/view/71691?key=b64763243f594bab6646) quantified and characterized T cell populations following this aggressive regimen to understand how the reconstituting immune system is related to patient outcomes.
ITN investigators used a high-throughput, deep-sequencing technology (Adaptive Biotechnologies, ImmunoSEQTM Platform) to analyze the T cell receptor (TCR) sequences in CD4+ and CD8+ cells to compare the repertoire at baseline pre-transplant, two months post-transplant and 12 months post-transplant.
Using this approach, alongside conventional flow cytometry, the investigators found that CD4+ and CD8+ lymphocytes exhibit different reconstitution patterns following transplantation. The scientists observed that the dominant CD8+ T cell clones present at baseline were expanded at 12 months post-transplant, suggesting these clones were not effectively eradicated during treatment. In contrast, the dominant CD4+ T cell clones present at baseline were undetectable at 12 months, and the reconstituted CD4+ T cell repertoire was predominantly comprised of new clones.
The results also suggest the possibility that differences in repertoire diversity early in the reconstitution process might be associated with clinical outcomes. Nineteen patients who responded to treatment had a more diverse repertoire two months following transplant compared to four patients who did not respond. Despite the low number of non-responders, these comparisons approached statistical significance and point to the possibility that complexity in the T cell compartment may be important for establishing immune tolerance.
This is one of the first studies to quantitatively compare the baseline T cell repertoire with the reconstituted repertoire following autologous stem cell transplant, and provides a previously unseen in-depth analysis of how the immune system reconstitutes itself following immune-depleting therapy.
About The Immune Tolerance Network The Immune Tolerance Network (ITN) is a research consortium sponsored by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health. The ITN develops and conducts clinical and mechanistic studies of immune tolerance therapies designed to prevent disease-causing immune responses, without compromising the natural protective properties of the immune system. Visit http://www.immunetolerance.org for more information.
###
Read this article:
Deep TCR Sequencing Reveals Extensive Renewal of the T Cell Repertoire Following Autologous Stem Cell Transplant in ...
PGE2 promotes cardiac stem cell activity | Stem Cells Freak
By JoanneRUSSELL25
Researchers at the southern Taiwan-based National Cheng Kung University (NCKU) recently announced in a press conference that they have identified a new drug that can be used to repair aged and damaged hearts.
The stem cell researchers, led by Professor Patrick Ching-Ho Hsieh, from the Institute of Clinical Medicine, NCKU, discovered that prostaglandin E2, a type of hormone-like medicine, is capable of rejuvenating aged hearts.
The discovery sheds light on cardiac cell regeneration and provides another effective option for heart disease patients other than heart transplantation.
Hsieh said that cardiovascular disease such as congestive heart failure is a leading cause of morbidity and mortality throughout the world. Currently, there are about 6 million patients of congestive heart failure in the US and about 0.4 million patients in Taiwan. In spite of intensive medical or surgical treatment, 80% of patients die within 8 years of diagnosis, Hsieh added.
He also noted that biomedical research nowadays has couple of milestones for heart diseases; however, the renewing mechanism is still unknown. It is also lacking a drug allowing stimulation of heart regeneration by endogenous stem cells.
After 7 years of work, Hsiehs team has identified the critical time period and the essential player for this cardiac repairing process.
Also a cardiovascular surgeon at the NCKU Hospital, Hsiehs research group used a special transgenic mouse model he developed when he was a research fellow at Harvard Medical School to investigate how endogenous stem cells regenerate cardiomyocytes following myocardial infarction, or heart attack.
They showed that the cardiac self-repairing process begins within 7 days after injury and it reaches its maximal activity on day 10.
The key player for this process is PGE2 and it is important for regulating cardiac stem cell activities.
References
Here is the original post:
PGE2 promotes cardiac stem cell activity | Stem Cells Freak
stem cell therapy treatment for right brachial plexus by dr alok sharma, mumbai, india – Video
By raymumme
stem cell therapy treatment for right brachial plexus by dr alok sharma, mumbai, india
improvement seen in just 5 days after stem cell therapy treatment for right brachial plexus by dr alok sharma, mumbai, india. Stem Cell Therapy done date 21/...
By: Neurogen Brain and Spine Institute
Read more here:
stem cell therapy treatment for right brachial plexus by dr alok sharma, mumbai, india - Video
Over 5,000 Cubans receive stem cell treatment: Expert
By Dr. Matthew Watson
Sunday, February 16, 20144:07:29 PM(IST)
Havana, Feb 16 (IANS): More than 5,000 patients have received stem cell treatment in Cuba since its procedure was introduced in 2004, a medical expert said.
Porfirio Hernandez, researcher and vice director at the Hematology and Immunology Institute in Cuba, said the stem cell treatment method has been implemented in 13 of the 15 provinces in Cuba.
As a widely acknowledged pioneer of this practice, Hernandez said that more than 60 percent of patients receiving the treatment had suffered from severe ischemia at lower limbs and other blood vessel related ailments, reported Xinhua.
The therapy has also been used to reduce the sufferings of patients with severe orthopedic and cardiac problems, Hernandez added.
Stem cells are capable of self-renewing, regenerating tissues damaged by diverse disease, traumas, and ageing, and stimulating the creation of new blood vessels.
Please note that under 66A of the IT Act, sending offensive or menacing messages through electronic communication service and sending false messages to cheat, mislead or deceive people or to cause annoyance to them is punishable. It is obligatory on Daijiworld to provide the IP address and other details of senders of such comments, to the authority concerned upon request.
Hence, sending offensive comments using daijiworld will be purely at your own risk, and in no way will Daijiworld.com be held responsible.
See the article here:
Over 5,000 Cubans receive stem cell treatment: Expert
Best Wrinkle Serum – Video
By JoanneRUSSELL25
Best Wrinkle Serum
http://tinyurl.com/n57p88w The best wrinkle serum is Anti Aging Serum Advanced Formula, with 10% Photocelltec Malus Domestica -- Swiss Apple Stem Cell Extrac...
By: ph499
Go here to see the original:
Best Wrinkle Serum - Video
Researchers rejuvenate stem cell population from elderly mice, enabling muscle recovery
By JoanneRUSSELL25
PUBLIC RELEASE DATE:
16-Feb-2014
Contact: Krista Conger kristac@stanford.edu 650-725-5371 Stanford University Medical Center
STANFORD, Calif. Researchers at the Stanford University School of Medicine have pinpointed why normal aging is accompanied by a diminished ability to regain strength and mobility after muscle injury: Over time, stem cells within muscle tissues dedicated to repairing damage become less able to generate new muscle fibers and struggle to self-renew.
"In the past, it's been thought that muscle stem cells themselves don't change with age, and that any loss of function is primarily due to external factors in the cells' environment," said Helen Blau, PhD, the Donald and Delia B. Baxter Foundation Professor. "However, when we isolated stem cells from older mice, we found that they exhibit profound changes with age. In fact, two-thirds of the cells are dysfunctional when compared to those from younger mice, and the defect persists even when transplanted into young muscles."
Blau and her colleagues also identified for the first time a process by which the older muscle stem cell populations can be rejuvenated to function like younger cells. "Our findings identify a defect inherent to old muscle stem cells," she said. "Most exciting is that we also discovered a way to overcome the defect. As a result, we have a new therapeutic target that could one day be used to help elderly human patients repair muscle damage."
Blau, a professor of microbiology and immunology and director of Stanford's Baxter Laboratory for Stem Cell Biology, is the senior author of a paper describing the research, which will be published online Feb. 16 in Nature Medicine. Postdoctoral scholar Benjamin Cosgrove, PhD, and former postdoctoral scholar Penney Gilbert, PhD, now an assistant professor at the University of Toronto, are the lead authors.
The researchers found that many muscle stem cells isolated from mice that were 2 years old, equivalent to about 80 years of human life, exhibited elevated levels of activity in a biological cascade called the p38 MAP kinase pathway. This pathway impedes the proliferation of the stem cells and encourages them to instead become non-stem, muscle progenitor cells. As a result, although many of the old stem cells divide in a dish, the resulting colonies are very small and do not contain many stem cells.
Using a drug to block this p38 MAP kinase pathway in old stem cells (while also growing them on a specialized matrix called hydrogel) allowed them to divide rapidly in the laboratory and make a large number of potent new stem cells that can robustly repair muscle damage, Blau said.
"Aging is a stochastic but cumulative process," Cosgrove said. "We've now shown that muscle stem cells progressively lose their stem cell function during aging. This treatment does not turn the clock back on dysfunctional stem cells in the aged population. Rather, it stimulates stem cells from old muscle tissues that are still functional to begin dividing and self-renew."
Follow this link:
Researchers rejuvenate stem cell population from elderly mice, enabling muscle recovery
stem cell research stem cell therapy marrow transplant and lung repair stem cell transplant – Video
By NEVAGiles23
stem cell research stem cell therapy marrow transplant and lung repair stem cell transplant
Learn more: http://www.ez3dbiz.com/rejuvenessence.html.
By: 3dbizez
Read more here:
stem cell research stem cell therapy marrow transplant and lung repair stem cell transplant - Video
adult stem cell therapy blood bone marrow astragalus herb benefits for rheumatoid arthritis – Video
By daniellenierenberg
adult stem cell therapy blood bone marrow astragalus herb benefits for rheumatoid arthritis
Learn more at: http://www.ez3dbiz.com/rejuvenessence.html.
By: 3dbizez
The rest is here:
adult stem cell therapy blood bone marrow astragalus herb benefits for rheumatoid arthritis - Video
Cowboys coach seeks marrow match for teen daughter
By LizaAVILA
by GEORGE RIBA
WFAA Sports
Posted on February 15, 2014 at 10:35 AM
DALLAS Malena Brown is hoping for a match on this Valentines Day weekend, but its not the kind of match you expect.
The 15-year-old daughter of Dallas Cowboys running backs coach Gary Brown is looking for an "angel donor" whose bone marrow stem cells will match hers and help her overcome what's known as CML, or chronic myeloid leukemia.
Well, its kind of scary knowing that there wasn't a match for me, but we're doing a bone marrow drive now and hopefully find somebody that matches me, Malena said.
Neither one of Malena's siblings is a match, and trying to find one has become a challenge.
The No. 1 challenge has been trying to find a match based on her ancestry, and she being biracial, has been extra difficult because the registry is under-represented with African-American and other multiracial people, said Kim Brown, Malenas mother.
We've had nothing but people trying to help us in any way they can, said father Gary Brown. When you know your daughter is going through something hard, and there are other people out there that care as much as you do and want to help her as much as you do.
To add your name to the national registry, all you do is a simple swab test, add it to a booklet, and send it in.
Go here to see the original:
Cowboys coach seeks marrow match for teen daughter
Cowboys coach seeks marrow match for ailing teen daughter
By daniellenierenberg
by GEORGE RIBA
WFAA Sports
Posted on February 14, 2014 at 10:36 PM
Updated today at 8:20 AM
DALLAS Malena Brown is hoping for a match on this Valentines Day weekend, but its not the kind of match you expect.
The 15-year-old daughter of Dallas Cowboys running backs coach Gary Brown is looking for an "angel donor" whose bone marrow stem cells will match hers and help her overcome what's known as CML, or chronic myeloid leukemia.
Well, its kind of scary knowing that there wasn't a match for me, but we're doing a bone marrow drive now and hopefully find somebody that matches me, Malena said.
Neither one of Malena's siblings is a match, and trying to find one has become a challenge.
The No. 1 challenge has been trying to find a match based on her ancestry, and she being biracial, has been extra difficult because the registry is under-represented with African-American and other multiracial people, said Kim Brown, Malenas mother.
We've had nothing but people trying to help us in any way they can, said dad Gary Brown. When you know your daughter is going through something hard, and there are other people out there that care as much as you do and want to help her as much as you do.
See original here:
Cowboys coach seeks marrow match for ailing teen daughter
Harvard scientists find cell fate switch that decides liver, or pancreas?
By NEVAGiles23
PUBLIC RELEASE DATE:
13-Feb-2014
Contact: Joseph Caputo joseph_caputo@harvard.edu 617-496-1491 Harvard University
Harvard stem cell scientists have a new theory for how stem cells decide whether to become liver or pancreatic cells during development. A cell's fate, the researchers found, is determined by the nearby presence of prostaglandin E2, a messenger molecule best known for its role in inflammation and pain. The discovery, published in the journal Developmental Cell, could potentially make liver and pancreas cells easier to generate both in the lab and for future cell therapies.
Wolfram Goessling, MD, PhD, and Trista North, PhD, both principal faculty members of the Harvard Stem Cell Institute (HSCI), identified a gradient of prostaglandin E2 in the region of zebrafish embryos where stem cells differentiate into the internal organs. Experiments conducted by postdoctoral fellow Sahar Nissim, MD, PhD, in the Goessling lab showed how liver-or-pancreas-fated stem cells have specific receptors on their membranes to detect the amount of prostaglandin E2 hormone present and coerce the cell into differentiating into a specific organ type.
"Cells that see more prostaglandin become liver and the cells that see less prostaglandin become pancreas," said Goessling, a Harvard Medical School Assistant Professor of Medicine at Brigham and Women's Hospital and Dana-Farber Cancer Institute. "This is the first time that prostaglandin is being reported as a factor that can lead this fate switch and essentially instruct what kind of identity a cell is going to be."
The researchers next collaborated with the laboratory of HSCI Affiliated Faculty member Richard Maas, MD, PhD, Director of the Genetics Division at Brigham and Women's Hospital, to see whether prostaglandin E2 has a similar function in mammals. Richard Sherwood, PhD, a former graduate student of HSCI Co-director Doug Melton, was successfully able to instruct mouse stem cells to become either liver or pancreas cells by exposing them to different amounts of the hormone. Other experiments showed that prostaglandin E2 could also enhance liver growth and regeneration of liver cells.
Goessling and his research partner North, a Harvard Medical School Assistant Professor of Pathology at Beth Israel Deaconess Hospital, first became intrigued by prostaglandin E2 in 2005, as postdoctoral fellows in the lab of HSCI Executive Committee Chair Leonard Zon, MD. It caught their attention during a chemical screen exposing 2,500 known drugs to zebrafish embryos to find any that could amplify blood stem cell populations. Prostaglandin E2 was the most successful hit the first molecule discovered in any system to have such an effectand recently successfully completed Phase 1b clinical trials as a therapeutic to improve cord blood transplants.
"Prostaglandin might be a master regulator of cell growth in different organs," Goessling said. "It's used in cord blood, as we have shown, it works in the liver, and who knows what other organs might be affected by it."
With evidence of how prostaglandin E2 works in the liver, the researchers next want to calibrate how it can be used in the laboratory to instruct induced pluripotent stem cellsmature cells that have been reprogrammed into a stem-like stateto become liver or pancreas cells. The scientists predict that such a protocol could benefit patients who need liver cells for transplantation or who have had organ injury.
Read more here:
Harvard scientists find cell fate switch that decides liver, or pancreas?