Page 555«..1020..554555556557..560570..»

Acid bath turns cells from any tissue into stem cells

By raymumme

The development of human embryonic stem cells, which have the ability to form any cell in the body, may enable us to repair tissues damaged by injury or disease. Initially, these cells could only be obtained through methods that some deemed ethically unacceptable, but researchers eventually developed a combination of genes that could reprogram most cells into an embryonic-like state. That worked great for studies, but wasn't going to work for medical uses, since one of the genes involved has been associated with cancer.

Researchers have since been focusing on whittling down the requirements needed for getting a cell to behave like a stem cell. Now, researchers have figured out a radically simplified process: expose the cells to acidic conditions, then put them in conditions that stem cells grow well in. After a week, it's possible to direct these cells into a state that's even more flexible than embryonic stem cells.

The catalyst for this work is rather unusual. The researchers were motivated by something that works in plants: expose individual plant cells to acidic conditions, grow them in hormones that normally direct plant development, and you can get a whole plant back out. But we're talking about plants here, which evolved with multicellularity and with specialized tissues in a lineage that's completely separate from that of animals. So there's absolutely no reason to suspect that animal cells would react in a similar way to acid treatmentand a number of reasons to expect they wouldn't.

And yet the researchers went ahead and tried anyway. And, amazingly, it worked.

The treatments weren't especially harshonly a half-hour in a pH of 5.45.8. Afterward, the cells were placed in the same culture medium that stem cells are grown in. Many of the cells died, and the ones that were left didn't proliferate like stem cells do. But, over the course of a week, the surviving cells began to activate the genes that are normally expressed by stem cells. This was initially tried with precursors to blood cells, but it turned out to work with a huge variety of tissues: brain, skin, muscle, fat, bone marrow, lung, and liver (all of them obtained from micethis hasn't been tried with human cells yet).

While these cells didn't divide like stem cells, they did behave like them. Injecting them into embryos showed that they were incorporated into every tissue in the body, meaning they had the potential to form any cell. That suggests they are a distinct class of cell from the other ones we're aware of (the researchers call them STAP cells).

But, if they don't grow in culture, it's hard to use or study them. So, the authors tried various combinations of hormones and growth factors that stem cells like. One combination got some of the STAP cells to grow, after which they behaved very much like embryonic stem cells. But a second combination of growth factors got the cells to contribute to non-embryonic tissues, like the placenta, as well. So, in this sense, they seem to be even more flexible than embryonic stem cells, and seem more akin to one of the first cells formed after fertilization.

The people behind this development have done a tremendous amount of work, so much that it was spread across two papers. Still, like many good results, it raises lots of other questions. Many cells in our bodies get exposed to acidic conditions every daywhy do those manage to stably maintain their identity? A related question is what goes on at a molecular level inside the cell after acid treatment. Understanding that will help us learn more about the stem cell fate itself.

And then there are the practical questions. How close are these STAP cells to an actual embryonic cell, in terms of the state of its DNA and gene expression? And, if there are differences, are they significant enough to prevent these cells from being used in safe and efficient medical treatments?

January 30, 2014. DOI: 10.1038/nature12968, 10.1038/nature12969 (About DOIs).

Here is the original post:
Acid bath turns cells from any tissue into stem cells

To Read More: Acid bath turns cells from any tissue into stem cells
categoriaBone Marrow Stem Cells commentoComments Off on Acid bath turns cells from any tissue into stem cells | dataJanuary 30th, 2014
Read All

Hair-follicle generating stem cells may help with baldness

By LizaAVILA

PHILADELPHIA, Jan. 29 (UPI) -- U.S. researchers say they used epithelial stem cells to regenerate different cell types of human skin and hair follicles that may help those going bald.

Dr. Xiaowei "George" Xu, associate professor of pathology and laboratory medicine and dermatology at the Perelman School of Medicine at University of Pennsylvania, and colleagues at the New Jersey Institute of Technology, said they started with human skin cells called dermal fibroblasts.

By adding three genes, they converted those cells into induced pluripotent stem cells, which have the capability to differentiate into any cell types in the body. They then converted the induced pluripotent stem cells into epithelial stem cells, normally found at the bulge of hair follicles.

Starting with procedures other research teams had previously worked out to convert induced pluripotent stem cells into keratinocytes, Xu's team demonstrated that by carefully controlling the timing of the growth factors the cells received, they could force the induced pluripotent stem cells to generate large numbers of epithelial stem cells.

The team succeeded in turning more than 25 percent of the induced pluripotent stem cells into epithelial stem cells in 18 days.

Those cells were then purified using the proteins they expressed on their surfaces.

"This is the first time anyone has made scalable amounts of epithelial stem cells that are capable of generating the epithelial component of hair follicles," Xu said in a statement. "And those cells have many potential applications including wound healing, cosmetics and hair regeneration."

The findings were published in Nature Communications.

Read the original here:
Hair-follicle generating stem cells may help with baldness

To Read More: Hair-follicle generating stem cells may help with baldness
categoriaSkin Stem Cells commentoComments Off on Hair-follicle generating stem cells may help with baldness | dataJanuary 30th, 2014
Read All

Human skin cells help regrow hair in mice

By Sykes24Tracey

WASHINGTON: In a breakthrough, scientists claim to have successfully transformed human skin cells into hair-follicle-generating stem cells for the first time.

Xiaowei "George" Xu from the Perelman School of Medicine, University of Pennsylvania, and colleagues have found a method for converting adult cells into epithelial stem cells (EpSCs), the first time anyone has achieved this in either humans or mice.

The epithelial stem cells, when implanted into immunocompromised mice, regenerated the different cell types of human skin and hair follicles, and even produced structurally recognizable hair shaft, raising the possibility that they may eventually enable hair regeneration in people.

Xu and his team started with human skin cells called dermal fibroblasts. By adding three genes, they converted those cells into induced pluripotent stem cells (iPSCs), which have the capability to differentiate into any cell types in the body. They then converted the iPS cells into epithelial stem cells, normally found at the bulge of hair follicles.

The team demonstrated that by carefully controlling the timing of the growth factors the cells received, they could force the iPSCs to generate large numbers of epithelial stem cells.

Read more here:
Human skin cells help regrow hair in mice

To Read More: Human skin cells help regrow hair in mice
categoriaSkin Stem Cells commentoComments Off on Human skin cells help regrow hair in mice | dataJanuary 30th, 2014
Read All

New stem cell may aid medicine

By Dr. Matthew Watson

Mouse cells exposed to an acidic environment turned into embryonic-like "STAP" cells. These were used to generate an entire fetus.

A simple lab treatment can turn ordinary cells from mice into a new kind of stem cell, according to a surprising study that hints at a new way to grow tissue for treating illnesses like diabetes and Parkinsons disease.

Researchers in Boston and Japan exposed spleen cells from newborn mice to an acidic environment. In lab tests, that made the cells act like embryonic stem cells, showing enough versatility to produce the tissues of a mouse embryo, for example.

Cells from skin, muscle, fat and other tissue of newborn mice went through the same change, which could be triggered by exposing cells to any of a variety of stressful situations, researchers said.

Its very simple to do. I think you could do this actually in a college lab, said Dr. Charles Vacanti of Brigham and Womens Hospital in Boston, an author of two papers published online Wednesday by the journal Nature. They can be found here and here.

If it works in humans, the method could improve upon an existing method of generating artificial embryonic stem cells, called induced pluripotent stem cells. These IPS cells can be made from patients, then turned into the needed cells, reducing the possibility of transplant rejection. Pluripotent is a term for cells that act like embryonic stem cells, which can turn into nearly any tissue of the body, except for placental tissues.

In San Diego, scientists led by The Scripps Research Institutes Jeanne Loring propose to treat Parkinsons disease patients with brain cells generated from their own IPS cells. Because these cells arent taken from human embryos, they dont raise the ethical concerns some have with using embryonic stem cells.

However induced pluripotent stem cells are made by reprogramming ordinary cells with added genes or chemicals, which raises concerns about safety. The new method, in contrast, causes the cell to change its own behavior after researchers have applied an external stress. The actual DNA sequence is unaltered, creating a change that is epigenetic, or taking place outside the genome. Researchers dubbed the new cells STAP cells, for stimulus-triggered acquisition of pluripotency.

This is part of a shift in our view of pluripotency, Loring said by email. Eight years ago we thought that cells were stable -- whatever they are, they stay that way. Now, were thinking in terms of how powerful epigenetics is -- that we can change cell fate without changing their DNA.

Loring said it will take years to apply the new method for human therapy.

Here is the original post:
New stem cell may aid medicine

To Read More: New stem cell may aid medicine
categoriaIPS Cell Therapy commentoComments Off on New stem cell may aid medicine | dataJanuary 30th, 2014
Read All

Row over controversial stem-cell procedure flares up again

By Sykes24Tracey

Nicolo' Minerbi / LUZphoto / eyevine

Mauro Ferrari, who heads the Institute for Academic Medicine at the Houston Methodist Hospital in Texas, is the Italian government's nominee to chair a committee on the controversial Stamina Foundation.

Top scientists in Italy have called on the health minister Beatrice Lorenzin to reconsider the composition of the new scientific advisory committee she has proposed to assess a controversial stem-cell therapy offered by the Stamina Foundation.

Their move follows a renewed media frenzy around the affair, prompted by statements made to the press and television by the committees proposed president, Mauro Ferrari, shortly after he was nominated on 28 December.

The Stamina therapy, which has not been scientifically proven to be effective in a clinical trial, involves extracting mesenchymal stem cells from bone marrow of a patient, manipulating them and then reinjecting them into the same patients blood or spinal fluid. Stamina, based in Brescia, has already treated more than 80 patients for a wide range of serious diseases.

Stamina's practices have been widely criticized by experts both in Italy and outside, and the first government-appointed scientific committee to rule on Stamina prepared a detailed report describing the Stamina protocol as without a scientific basis, ineffective and dangerous. However, a regional court declared that committee unlawfully biased on 4 December. But after that committee's report was leaked to the press on 20 December (see 'Leaked files slam stem-cell therapy'), many families of patients who claim to have been damaged by the therapy announced that they had brought charges for damages against Stamina and its president Davide Vannoni. Both have denied any wrongdoing.

In response to the court findings, minister Lorenzin nominated Ferrari to chair a new committee. Ferrari, who heads the Institute for Academic Medicine at the Houston Methodist Hospital in Texas, told journalists that he was neither for nor against the Stamina method.

However on the 22 January episode of a widely viewed television show, Le iene, Ferrari said he thought Stamina offered Italy the opportunity to take a world lead in bringing experimental therapies into the clinic. He also referred to Stamina as the first important case for regenerative medicine here in Italy, a statement that has incensed some Italian researchers.

Michele de Luca, a stem-cell biologist from the University of Modena and Reggio Emilia says that Ferrari's assertions were an insult to the many scientists in Italy working on translating stem-cell research into new clinical applications. In particular, De Luca's own group was the first in the world to cure a form of blindness with a stem-cell therapy they developed, he points out.

In a letter dated 26 January, which was seen by Nature, four influential clinical scientists say that they were extremely worried by Ferrari's televised statements. The signatories were Silvio Garattini, head of the Mario Negri Institute for Pharmacological Research in Milan; Giuseppe Remuzzi, head of the Mario Negri Institute in Bergamo; Gianluca Vago, rector of the University of Milan; and Alberto Zangrillo, vice-rector for clinical activities at the University Vita-Salute San Raffaele in Milan.

Read the rest here:
Row over controversial stem-cell procedure flares up again

To Read More: Row over controversial stem-cell procedure flares up again
categoriaUncategorized commentoComments Off on Row over controversial stem-cell procedure flares up again | dataJanuary 30th, 2014
Read All

Stem cell agency's grants to UCLA help set stage for revolutionary medicine

By raymumme

PUBLIC RELEASE DATE:

29-Jan-2014

Contact: Shaun Mason smason@mednet.ucla.edu 310-206-2805 University of California - Los Angeles

Scientists from UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research were today awarded grants totaling more than $3.5 million by California's stem cell agency for their ongoing efforts to advance revolutionary stem cell science in medicine.

Recipients of the awards from the California Institute of Renerative Medicine (CIRM) included Lili Yang ($614,400), who researches how stem cells become rare immune cells; Denis Evseenko ($1,146,468), who is studying the biological niche in which stem cells grow into cartilage; Thomas Otis and Bennet Novitch ($1,148,758), who are using new techniques to study communication between nerve and muscle cells in spinal muscular atrophy; and Samantha Butler ($598,367), who is investigating the molecular elements that drive stem cells to become the neurons in charge of our sense of touch.

"These basic biology grants form the foundation of the revolutionary advances we are seeing in stem cell science," said Dr. Owen Witte, professor and director of the Broad Stem Cell Research Center. "Every cellular therapy that reaches patients must begin in the laboratory with ideas and experiments that will lead us to revolutionize medicine and ultimately improve human life. That makes these awards invaluable to our research effort."

The awards are part of CIRM's Basic Biology V grant program, which fosters cutting-edge research on significant unresolved issues in human stem cell biology, with a focus on unravelling the key mechanisms that determine how stem cells decide which cells they will become. By learning how such mechanisms work, scientists can develop therapies that drive stem cells to regenerate or replace damaged or diseased tissue.

Lili Yang: Tracking special immune cells

The various cells that make up human blood all arise from hematopoietic stem cells. These include special white blood cells called T cells, the "foot soldiers" of the immune system that attack bacteria, viruses and other disease-causing invaders. Among these T cells is a smaller group, a kind of "special forces" unit known as invariant natural killer T cells, or iNKT cells, which have a remarkable capacity to mount immediate and powerful responses to disease when activated and are believed to be important to the immune system's regulation of infections, allergies, cancer and autoimmune diseases such as Type I diabetes and multiple sclerosis.

The iNKT cells develop in small numbers in the blood generally accounting for less than 1 percent of blood cells but can differ greatly in numbers among individuals. Very little is known about how blood stem cells produce iNKT cells.

Excerpt from:
Stem cell agency's grants to UCLA help set stage for revolutionary medicine

To Read More: Stem cell agency's grants to UCLA help set stage for revolutionary medicine
categoriaUncategorized commentoComments Off on Stem cell agency's grants to UCLA help set stage for revolutionary medicine | dataJanuary 30th, 2014
Read All

Cell cycle speed is key to making aging cells young again

By NEVAGiles23

PUBLIC RELEASE DATE:

30-Jan-2014

Contact: Bill Hathaway william.hathaway@yale.edu 203-432-1322 Yale University

A fundamental axiom of biology used to be that cell fate is a one-way street once a cell commits to becoming muscle, skin, or blood it always remains muscle, skin, or blood cell. That belief was upended in the past decade when a Japanese scientist introduced four simple factors into skin cells and returned them to an embryonic-like state, capable of becoming almost any cell type in the body.

Hopeful of revolutionary medical therapies using a patient's own cells, scientists rushed to capitalize on the discovery by 2012 Nobel Laureate Shinya Yamanaka. However, the process has remained slow and inefficient, and scientists have had a difficult time discovering a genetic explanation of why this should be.

In the Jan. 30 issue of the journal Cell, Yale School of Medicine researchers identified a major obstacle to converting cells back to their youthful state the speed of the cell cycle, or the time required for a cell to divide.

When the cell cycle accelerates to a certain speed, the barriers that keep a cell's fate on one path diminish. In such a state, cells are easily persuaded to change their identity and become pluripotent, or capable of becoming multiple cell types

"One analogy may be that when temperature increases to sufficient degrees, even a very hard piece of steel can be malleable so that you can give it a new shape easily," said Shangqin Guo, assistant professor of cell biology at the Yale Stem Cell Center and lead author of the paper. "Once cells are cycling extremely fast, they do not seem to face the same barriers to becoming pluripotent."

Guo's team studied blood-forming cells, which when dividing undergo specific changes in their cell cycle to produce new blood cells. Blood-forming progenitor cells normally produce only new blood cells. However, the introduction of Yamanaka factors sometimes but not always help these blood-forming cells become other types of cells. The new report finds that after this treatment blood-forming cells tend to become pluripotent when the cell cycle is completed in eight hours or less, an unusual speed for adult cells. Cells that cycle more slowly remain blood cells.

"This discovery changes the way people think about how to change cell fate and reveals that a basic 'house-keeping' function of a cell, such as its cell cycle length, can actually have a major impact on switching the fate of a cell," said Haifan Lin, director of the Yale Stem Cell Center.

Go here to see the original:
Cell cycle speed is key to making aging cells young again

To Read More: Cell cycle speed is key to making aging cells young again
categoriaUncategorized commentoComments Off on Cell cycle speed is key to making aging cells young again | dataJanuary 30th, 2014
Read All

Stem Cell Agency Helps Set the Stage for Revolutionary Medicine

By daniellenierenberg

Contact Information

Available for logged-in reporters only

Newswise Scientists from UCLAs Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have received new awards from the California Institute of Regenerative Medicine (CIRM), the state stem cell research agency, that will forward revolutionary stem cell science in medicine.

Recipients included Dr. Lili Yang, assistant professor of microbiology, immunology and molecular genetics who received $614,400 for her project to develop a novel system for studying how stem cells become rare immune cells; Dr. Denis Evseenko, assistant professor of orthopedic surgery, who received $1,146,468 for his project to identify the elements of the biological niche in which stem cells grow most efficiently into articular cartilage cells; Dr. Thomas Otis, professor and chair of neurobiology and Dr. Ben Novitch, assistant professor of neurobiology, who received $1,148,758 for their project using new light-based optigenetic techniques to study the communication between nerve and muscle cells in spinal muscular atrophy, an inherited degenerative neuromuscular disease in children; and Dr. Samantha Butler, assistant professor of neurobiology, received $598,367 for her project on discovering which molecular elements drive stem cells to become the neurons, or nerve cells, in charge of our sense of touch.

These basic biology grants form the foundation of the revolutionary advances we are seeing in stem cell science, said Dr. Owen Witte, professor and director of the Broad Stem Cell Research Center, and every cellular therapy that reaches patients must begin in the laboratory with ideas and experiments that will lead us to revolutionize medicine and ultimately improve human life. That makes these awards invaluable to our research effort.

The awards were part of CIRMs Basic Biology V grant program, carrying on the initiative to foster cutting-edge research on significant unresolved issues in human stem cell biology. The emphasis of this research is on unravelling the secrets of key mechanisms that determine how stem cells, which can become any cell in the body, differentiate, or decide which cell they become. By learning how these mechanisms work, scientists can then create therapies that drive the stem cells to regenerate or replace damaged or diseased tissue.

Using A New Method to Track Special Immune Cells All the different cells that make up the blood come from hematopoietic or blood stem cells. These include special white blood cells called T cells, which serve as the foot soldiers of the immune system, attacking bacteria, viruses and other invaders that cause diseases.

Among the T cells is a smaller group of cells called invariant natural killer T (iNKT) cells, which have a remarkable capacity to mount immediate and powerful responses to disease when activated, a small special forces unit among the foot soldiers, and are believed to be important to immune system regulation of infections, allergies, cancer and autoimmune diseases such as Type I diabetes and multiple sclerosis.

The iNKT cells develop in small numbers in the blood, usually less than 1 percent of all the blood cells, and can differ greatly in numbers between individuals. Very little is known about how the blood stem cells produce iNKT cells.

Dr. Lili Yangs project will develop a novel model system to genetically program human blood stem cells to become iNKT cells. Dr. Yang and her colleagues will track the differentiation of human blood stem cells into iNKT cells providing a pathway to answer many critical questions about iNKT cell development.

Continue reading here:
Stem Cell Agency Helps Set the Stage for Revolutionary Medicine

To Read More: Stem Cell Agency Helps Set the Stage for Revolutionary Medicine
categoriaUncategorized commentoComments Off on Stem Cell Agency Helps Set the Stage for Revolutionary Medicine | dataJanuary 30th, 2014
Read All

New breakthrough in stem cell research

By Dr. Matthew Watson

(CNN) We run too hard, we fall down, we're sick - all of this puts stress on the cells in our bodies. But in what's being called a breakthrough in regenerative medicine, researchers have found a way to make stem cells by purposely putting mature cells under stress.

Two new studies published Wednesday in the journal Nature describe a method of taking mature cells from mice and turning them into embryonic-like stem cells, which can be coaxed into becoming any other kind of cell possible. One method effectively boils down to this: Put the cells in an acidic environment.

"I think the process we've described mimics Mother Nature," said Dr. Charles Vacanti, director of the laboratory for Tissue Engineering and Regenerative Medicine at Brigham & Women's Hospital in Boston and senior author on one of the studies. "It's a natural process that cells normally respond to."

Both studies represent a new step in the thriving science of stem cell research, which seeks to develop therapies to repair bodily damage and cure disease by being able to insert cells that can grow into whatever tissues or organs are needed. If you take an organ that's functioning at 10 percent of normal and bring it up to 25 percent functionality, that could greatly reduce the likelihood of fatality in that particular disease, Vacanti said.

This method by Vacanti and his colleagues "is truly the simplest, cheapest, fastest method ever achieved for reprogramming [cells]," said Jeff Karp, associate professor of medicine at the Brigham & Women's Hospital and principal faculty member at the Harvard Stem Cell Institute. He was not involved in the study.

Before the technique described in Nature, the leading candidates for creating stem cells artificially were those derived from embryos and stem cells from adult cells that require the insertion of DNA to become reprogrammable.

Stem cells are created the natural way every time an egg that is fertilized begins to divide. During the first four to five days of cell division, so-called pluripotent stem cells develop. They have the ability to turn into any cell in the body. Removing stem cells from the embryo destroys it, which is why this type of research is controversial.

Researchers have also developed a method of producing embryonic-like stem cells by taking a skin cell from a patient, for example, and adding a few bits of foreign DNA to reprogram the skin cell to become like an embryo and produce pluripotent cells, too. However, these cells are usually used for research because researchers do not want to give patients cells with extra DNA.

The new method does not involve the destruction of embryos or inserting new genetic material into cells, Vacanti said. It also avoids the problem of rejection: The body may reject stem cells that came from other people, but this method uses an individual's own mature cells.

"It was really surprising to see that such a remarkable transformation could be triggered simply by stimuli from outside of the cell," said Haruko Obokata of the Riken Center for Developmental Biology in Japan in a news conference this week.

Read the original post:
New breakthrough in stem cell research

To Read More: New breakthrough in stem cell research
categoriaUncategorized commentoComments Off on New breakthrough in stem cell research | dataJanuary 30th, 2014
Read All

Stem Cell Therapy: Plantar Fasciitis – Video

By daniellenierenberg


Stem Cell Therapy: Plantar Fasciitis
Understand whether the source of your pain might be Plantar Fasciitis, and how biologic regenerative treatments can repair this critical connecting tissue in your foot. For more information,...

By: StemCell ARTS

Read more from the original source:
Stem Cell Therapy: Plantar Fasciitis - Video

To Read More: Stem Cell Therapy: Plantar Fasciitis – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy: Plantar Fasciitis – Video | dataJanuary 30th, 2014
Read All

‘Stem cells’ created in less than 30 minutes in ‘groundbreaking’ discovery

By Sykes24Tracey

Professor Austin Smith of Cambridge University, writing in the Journal Nature said the new cells could be seen as a blank slate from which any cell could emerge depending on its environment.

Remarkably, instead of triggering cell death or tumour growth as might be expected, a new cell state emerges that exhibits and unprecedented potential for differentiation into every possible cell type, he said.

The discovery has been hailed as incredible by scientists who believe it will speed up the advancement of personalised medicine.

Stem cells offer the possibility of a renewable source of replacement cells and tissues to treat diseases including Alzheimer's, spinal cord injury, stroke, heart disease, diabetes, osteoarthritis, and rheumatoid arthritis.

They could be used to regenerate organs, stimulate the growth of new blood vessels, or create skin grafts.

(This) approach in the mouse is the most simple, lowest cost and quickest method to generate pluripotent cells from mature cells, said Professor Chris Mason, Chair of Regenerative Medicine Bioprocessing, at University College London.

If it works in man, this could be the game changer that ultimately makes a wide range of cell therapies available using the patients own cells as starting material the age of personalised medicine would have finally arrived.

Who would have thought that to reprogram adult cells to an embryonic stem cell-like (pluripotent) state just required a small amount of acid for less than half an hour an incredible discovery.

Professor Mason said the development was likely to speed up the development of technology in everyday clinical practice although warned that was still years away.

Dr Dusko Ilic, Reader in Stem Cell Science, Kings College London, said the findings were revolutionary.

View original post here:
'Stem cells' created in less than 30 minutes in 'groundbreaking' discovery

To Read More: ‘Stem cells’ created in less than 30 minutes in ‘groundbreaking’ discovery
categoriaSpinal Cord Stem Cells commentoComments Off on ‘Stem cells’ created in less than 30 minutes in ‘groundbreaking’ discovery | dataJanuary 29th, 2014
Read All

Researchers turn adult cells back into stem cells

By daniellenierenberg

In a step that has implications for stem cell research, human biology and the treatment of disease, researchers in Japan and at Harvard University have managed to turn adult cells back into flexible stem cells without changing their DNA.

The researchers discovered that they could put cells in various challenging circumstances ?? including in acidic solutions and under physical pressure ?? and turn mature blood cells into cells that were capable of turning into virtually any cell in the body.

The research, published today in the journal Nature, was in mice. If it can be repeated in people, it has the potential to transform research using stem cells to treat disease, and it may lead to a new understanding of how the body heals from injury, said Charles Vacanti, the Harvard Medical School stem cell and tissue engineering biologist who led the research.

Biology textbooks say that once a cell matures to serve a specific role, like, say a red blood cell, it can never go back into a less mature state. Vacanti and his colleagues say their new research upends that dogma.

"This study demonstrates that any mature cell when placed in the right environment can go back, become a stem cell, which then has the potential to become any cell needed by that tissue," said Vacanti, also of Brigham and Women's Hospital in Boston.

He believes that that process happens naturally in the body after injury, and the more significant the injury, the farther back these cells will revert. "With a very significant injury, you will cause it to revert clear back to what is basically an embryonic stem cell," he said.

In an early embryo, all cells are stem cells, capable of turning into any cell in the body. As the fetus develops, those cells differentiate into cells with specific functions in muscles, blood, organs, etc. Some of those mature cells develop diseases and injuries. The promise of stem cells ?? as yet largely unrealized ?? is to provide patients with healthy versions of their own cells that can then repair damage and reverse disease.

Most people are familiar with stem cell research because until 2006, embryos had to be destroyed to study them.

Then, Japanese researcher Shinya Yamanaka developed a strategy for tinkering with adult cells, reverting them to stem cells. This has led to dramatic advances in the field, but because his approach required changes to the genetic material in a cell's nucleus, researchers have been anxious about using these cells in patients.

If stem cells can be created simply by bathing adult cells in a low-pH solution or putting them under physical pressure, that would make research simpler and more applicable to the real world, according to several researchers not involved in the new work.

See the rest here:
Researchers turn adult cells back into stem cells

To Read More: Researchers turn adult cells back into stem cells
categoriaBone Marrow Stem Cells commentoComments Off on Researchers turn adult cells back into stem cells | dataJanuary 29th, 2014
Read All

Carving out a Niche for Stem Cells – Video

By JoanneRUSSELL25


Carving out a Niche for Stem Cells
Carving out a Niche for Stem Cells Air date: Wednesday, January 15, 2014, 3:00:00 PM Runtime: 01:04:50 Description: Wednesday Afternoon Lecture Series Typica...

By: nihvcast

More:
Carving out a Niche for Stem Cells - Video

To Read More: Carving out a Niche for Stem Cells – Video
categoriaSkin Stem Cells commentoComments Off on Carving out a Niche for Stem Cells – Video | dataJanuary 29th, 2014
Read All

Bye bye baldness? Researchers regrow hair using skin cells

By JoanneRUSSELL25

Could the cure for baldness be found within our own skin?

For the first time, researchers from the Perelman School of Medicine at the University of Pennsylvania were successfully able to take human skin cells and transform them into hair-follicle-generating stem cells. These cells were then transplanted onto mice, and turned into human-like skin and hair follicles. The mice eventually grew tiny hair shafts.

The study was published Jan. 28 in Nature Communications.

The researchers began by using a type of skin cell known as dermal fibroblasts. They added three genes in order to transform them into induced pluripotent stem cells (iPSCs). These stem cells have the ability to transform into other cells found throughout the body.

Specifically, the iPSCs in this study were made into epithelial cells, which make up connective, muscle and nerve tissue. These cells are normally found at the bulb-like ends of hair follicles. The team was able to accomplish this by controlling the cells' growth time, and were able to turn 25 percent of the iPSCs into epithelial stem cells in about 18 days.

The epithelial stem cells were then mixed with mice hair follicle skin cells. They were then transplanted onto mice who had their immune systems suppressed. The cells produced human outer skin layer cells and follicles that were close to actual human hair follicles, which then grew the beginning of the hair shafts.

Dr. Xiaowei George Xu, associate professor of pathology, laboratory medicine and dermatology at the Perelman School of Medicine, said in a press release that these cells may be able to do more than generate hair. They could also be used in wound care and in cosmetics.

This is the first time anyone has made scalable amounts of epithelial stem cells that are capable of generating the epithelial component of hair follicles, Xu explained.

But, the research is still far from practical use. The next step is to create the other type of cell found in hair, dermal papillae, which are small bumps of cells found in the second layer of skin that poke into the top layer of skin. These dermal papillae create our fingerprints, among other things. For the experiments, the researchers used mice cells to make up for the lack of human ones.

When a person loses hair, they lose both types of cells, Xu said. We have solved one major problem, the epithelial component of the hair follicle. We need to figure out a way to also make new dermal papillae cells, and no one has figured that part out yet.

Read more from the original source:
Bye bye baldness? Researchers regrow hair using skin cells

To Read More: Bye bye baldness? Researchers regrow hair using skin cells
categoriaSkin Stem Cells commentoComments Off on Bye bye baldness? Researchers regrow hair using skin cells | dataJanuary 29th, 2014
Read All

The future of stem cells is easy & inexpensive: Embryonic regeneration research is ‘game-changing’

By JoanneRUSSELL25

LONDON, Jan 29 (Reuters) - In experiments that could open a new era in stem cell biology, scientists have found a cheap and easy way to reprogram mature cells from mice back into an embryonic-like state that allowed them to generate many types of tissue.

The research, described as game-changing by experts in the field, suggests human cells could in future be reprogrammed by the same technique, offering a simpler way to replace damaged cells or grow new organs for sick and injured people.

Chris Mason, chair of regenerative medicine bioprocessing at University College London, who was not involved in the work, said its approach was "the most simple, lowest-cost and quickest method" to generate so-called pluripotent cells - able to develop into many different cell types - from mature cells.

"If it works in man, this could be the game changer that ultimately makes a wide range of cell therapies available using the patient's own cells as starting material - the age of personalized medicine would have finally arrived," he said.

The experiments, reported in two papers in the journal Nature on Wednesday, involved scientists from the RIKEN Center for Developmental Biology in Japan and Brigham and Women's Hospital and Harvard Medical School in the United States.

Beginning with mature, adult cells, researchers let them multiply and then subjected them to stress "almost to the point of death", they explained, by exposing them to various events including trauma, low oxygen levels and acidic environments.

Within days, the scientists found that the cells survived and recovered from the stressful stimulus by naturally reverting into a state similar to that of an embryonic stem cell.

These stem cells created by this exposure to stresses - dubbed STAP cells by the researchers - were then able to differentiate and mature into different types of cells and tissue, depending on the environments they were given.

"If we can work out the mechanisms by which differentiation states are maintained and lost, it could open up a wide range of possibilities for new research and applications using living cells," said Haruko Obokata, who lead the work at RIKEN.

Stem cells are the body's master cells and are able to differentiate into all other types of cells. Scientists say that, by helping to regenerate tissue, they could offer ways of tackling diseases for which there are currently only limited treatments - including heart disease, Parkinson's and stroke.

Read the original:
The future of stem cells is easy & inexpensive: Embryonic regeneration research is ‘game-changing’

To Read More: The future of stem cells is easy & inexpensive: Embryonic regeneration research is ‘game-changing’
categoriaSkin Stem Cells commentoComments Off on The future of stem cells is easy & inexpensive: Embryonic regeneration research is ‘game-changing’ | dataJanuary 29th, 2014
Read All

Groundbreaking discovery could pave way for routine use of stem cells in medicine

By Sykes24Tracey

Scientists have created embryonic-like stem cells by simply bathing ordinary skin or blood cells in a weak acid solution for half an hour in an astonishing breakthrough that could allow doctors in the future to repair diseased tissue with a patient's own cells.

Researchers at the Riken Centre for Developmental Biology in Japan have announced the breakthrough in the journal Nature and it has been welcomed in Britain as an important step towards using stem cells routinely in medicine without the ethical or practical problems of creating human embryos or genetically modified cells.

Although the research was carried out on laboratory mice, scientists believe that the same approach should also work on human cells. It radically changes the way "pluripotent" stem cells - which can develop into any of the specialised tissues of the body - can be created from a patient's own cells as part of a "self-repair" kit.

"Once again Japanese scientists have unexpectedly rewritten the rules on making pluripotent cells from adult cells....that requires only transient exposure of adult cells to an acidic solution. How much easier can it possibly get?" said Professor Chris Mason, chair of regenerative medicine at University College London.

Two studies in Nature have shown that there is now a third way of producing pluripotent stem cells, other than creating embryos or inducing the changes by introducing new genes into a cell. The third way is by far the simplest of the three approaches, scientists said.

The scientists believe that the acidity of the solution created a "shock" that caused the blood cells of adult mice to revert to their original, embryonic-like state. From this pluripotent state, the newly created stem cells were cultured in specially prepared solutions of growth factors to develop into fully mature cells, including an entire foetus.

Professor Robin Lovell-Badge of the Medical Research Council's National Institute for Medical Research, said: "It is going to be a while before the nature of these cells are understood, and whether they might prove to be useful for developing therapies, but the really intriguing thing to discover will be the mechanism underlying how a low pH shock triggers reprogramming. And why it does not happen when we eat lemon or vinegar or drink cola?"

See more here:
Groundbreaking discovery could pave way for routine use of stem cells in medicine

To Read More: Groundbreaking discovery could pave way for routine use of stem cells in medicine
categoriaSkin Stem Cells commentoComments Off on Groundbreaking discovery could pave way for routine use of stem cells in medicine | dataJanuary 29th, 2014
Read All

Stem cells in "revolutionary" boost

By Dr. Matthew Watson

PARIS: Scientists on Wednesday reported a simple way to turn animal cells back to a youthful, neutral state, a feat hailed as a "game-changer" in the quest to grow transplant tissue in the lab.

The research, reported in the journal Nature, could be the third great advance in stem cells -- a futuristic field that aims to reverse Alzheimer's, cancer and other crippling or lethal diseases.

The latest breakthrough comes from Japan, as did its predecessor which earned its inventor a Nobel Prize.

The new approach, provided it overcomes safety hurdles, could smash cost and technical barriers in stem-cell research, said independent commentators.

"If it works in man, this could be the game-changer that ultimately makes a wide range of cell therapies available using the patient's own cells as starting material," said Chris Mason, a professor of regenerative medicine at University College London.

"The age of personalised medicine will have arrived."

Stem cells are primitive cells that, as they grow, differentiate into the various specialised cells that make up the different organs -- the brain, the heart, the kidney and so on.

The goal is to create stem cells in the lab and nudge them to grow into these differentiated cells, thus replenishing organs damaged by disease or accident.

One of the obstacles, though, is ensuring that these transplanted cells are not attacked as alien by the body's immune system.

To achieve that, the stem cells would have to carry the patient's own genetic code, to identify them as friendly.

Read the original post:
Stem cells in "revolutionary" boost

To Read More: Stem cells in "revolutionary" boost
categoriaIPS Cell Therapy commentoComments Off on Stem cells in "revolutionary" boost | dataJanuary 29th, 2014
Read All

Stem cell power unleashed after 30 minute dip in acid

By daniellenierenberg

Continue reading page |1|2 |3

A mouse embryo made with reprogrammed cells (Image: Haruko Obokata)

A LITTLE stress is all it took to make new life from old. Adult cells have been given the potential to turn into any type of body tissue just by tweaking their environment. This simple change alone promises to revolutionise stem cell medicine.

Yet New Scientist has also learned that this technique may have already been used to make a clone. "The implication is that you can very easily, from a drop of blood and simple techniques, create a perfect identical twin," says Charles Vacanti at Harvard Medical School, co-leader of the team involved.

Details were still emerging as New Scientist went to press, but the principles of the new technique were outlined in mice in work published this week. The implications are huge, and have far-reaching applications in regenerative medicine, cancer treatment and human cloning.

In the first few days after conception, an embryo consists of a bundle of cells that are pluripotent, which means they can develop into all cell types in the body. These embryonic stem cells have great potential for replacing tissue that is damaged or diseased but, as their use involves destroying an embryo, they have sparked much controversy.

To avoid this, in 2006 Shinya Yamanaka at Kyoto University, Japan, and colleagues worked out how to reprogram adult human cells into what they called induced pluripotent stem cells (iPSCs). They did this by introducing four genes that are normally found in pluripotent cells, using a harmless virus.

The breakthrough was hailed as a milestone of regenerative medicine the ability to produce any cell type without destroying a human embryo. It won Yamanaka and his colleague John Gurdon at the University of Cambridge a Nobel prize in 2012. But turning these stem cells into therapies has been slow because there is a risk that the new genes can switch on others that cause cancer.

Now, Vacanti, along with Haruko Obokata at the Riken Center for Developmental Biology in Kobe, Japan, and colleagues have discovered a different way to rewind adult cells without touching the DNA. The method is striking for its simplicity: all you need to do is place the cells in a stressful situation, such as an acidic environment.

The idea that this might work comes from a phenomenon seen in the plant kingdom, whereby drastic environmental stress can change an ordinary cell into an immature one from which a whole new plant can arise. For example, the presence of a specific hormone has been shown to transform a single adult carrot cell into a new plant. Some adult cells in reptiles and birds are also known to have the ability to do this.

Excerpt from:
Stem cell power unleashed after 30 minute dip in acid

To Read More: Stem cell power unleashed after 30 minute dip in acid
categoriaUncategorized commentoComments Off on Stem cell power unleashed after 30 minute dip in acid | dataJanuary 29th, 2014
Read All

Scientists make pure precursor liver and pancreas cells from stem cells

By Dr. Matthew Watson

Current ratings for: Scientists make pure precursor liver and pancreas cells from stem cells

Public / Patient:

0 (0 votes)

Health Professionals:

0 (0 votes)

A new study published in the journal Cell Stem Cell, describes how scientists have developed a way of producing highly sought populations of a pure tissue-specific cell from human pluripotent stem cells.

Human pluripotent stem cells (hPSCs) are precursor cells than can produce over 200 distinct cell types in the human body. They hold great promise for regenerative medicine and drug screening. The idea is to be able to generate a range of pure tissue types by manipulating these precursor cells.

However, it is proving very challenging to obtain large numbers of pure, untainted, tissue-specific cells from hPSCs. Part of the problem is how to ensure they receive highly specific signals, that do not coax them down paths that lead to a range of other tissue types.

Now, a team led by the Genome Institute of Singapore (GIS) in the Agency for Science, Technology and Research (A*STAR) has developed a new way of coaxing hPSCs to produce highly pure populations of endoderm, a valuable cell type that gives rise to organs like the liver and pancreas, bringing closer the day when stem cells can be used in clinical settings.

One of the study leaders is Dr. Bing Lim, senior group leader and associate director of Cancer Stem Cell Biology at the GIS. He and his colleagues developed a highly systematic and novel screening method.

The rest is here:
Scientists make pure precursor liver and pancreas cells from stem cells

To Read More: Scientists make pure precursor liver and pancreas cells from stem cells
categoriaUncategorized commentoComments Off on Scientists make pure precursor liver and pancreas cells from stem cells | dataJanuary 29th, 2014
Read All

Scientists make a new type of stem cell, using a little acid

By LizaAVILA

2 hours ago

Haruko Obokata / Nature

Japanese researchers have created a new type of stem cell just by pressuring normal cells in the body. This image shows a mouse embryo created using these cells, which are genetically engineered to glow green.

Scientists have made a whole new type of stem cell using little more than a little acid, and they say it may represent a way to skip all the complex and controversial steps that it now takes to make cells to regenerate tissues and organs.

The team in Japan includes some of the foremost experts in making what are called pluripotent stem cells master cells that have the power to morph into any type of cells, from blood to bone to muscle. These master cells look and act like an embryo right after conception and, like a days-old embryo, have the power to generate new tissue of any type.

Making these powerful cells usually requires the use of embryos something many disapprove of or tricky mixtures of genes to turn back the clock.

While theres not an immediate use for the discovery, it could add to the arsenal of tools that scientists can use in trying to find ways to repair the human body, the team reports in this weeks issue of the journal Nature.

It is also exciting to think about the new possibilities this finding offers, not only in areas like regenerative medicine but also perhaps in the study of senescence and cancer as well, Haruko Obokata of the RIKEN Center for Developmental Biology in Kobe, Japan, told reporters in a conference call.

Obokatas team worked with mice, and found they could get ordinary cells from baby mice to turn into pluripotent stem cells by bathing them in a slightly acidic solution. They call them stimulus-triggered acquisition of pluripotency, or STAP, cells.

Other stem cells experts praised the work. These breakthroughs are so impressive and potentially powerful truly another dramatic game-changer, said Dr. Gerald Schatten, a stem cell and genetic engineering expert at the University of Pittsburgh.

Go here to see the original:
Scientists make a new type of stem cell, using a little acid

To Read More: Scientists make a new type of stem cell, using a little acid
categoriaUncategorized commentoComments Off on Scientists make a new type of stem cell, using a little acid | dataJanuary 29th, 2014
Read All

Page 555«..1020..554555556557..560570..»


Copyright :: 2025