Page 557«..1020..556557558559..570580..»

New trial offers new hope for those with spinal cord injuries

By NEVAGiles23

CALGARY- A Winnipeg paramedic has become the first Canadian to take part in an international clinical trial involving the treatment of spinal cord injuries using stem cells.

Alex Petric was injured last year during a winter vacation in Panama.

I misjudged the water and just dove in, the 29-year-old recalls. I hit shallow water and became paralyzed immediately.

Petric, now a paraplegic, became involved with the trial just four months after his injury.

Its a phase one trial which means that its looking at the safety and tolerability of the procedure, explains Dr. Steve Casha, medical team lead for the University of Calgary.

A Swiss company, calledStem Cells Incorporatedis the driving force behind the research. A team in Switzerland has already treated eight other spinal cord patients.

During the trial, researchers must first identify the precise location of Petrics spinal cord injury. Then, stem cells are injected into two sites above and two sites below the injury to hopefully recreate lost tissue.

What these cells will hopefully do, and what they seem to do from previous clinical studies is take up residence in the spinal cord. They are a self-renewing population and they can differentiate or become various cells, Dr. Casha explains.

While the first phase of the trial focuses on safety, the ultimate goal is to develop a cure for spinal cord injuries. So far, two patients in the study have regained sensation.

Petric says his expectations are realistic, but his dream is to walk again.

Originally posted here:
New trial offers new hope for those with spinal cord injuries

To Read More: New trial offers new hope for those with spinal cord injuries
categoriaSpinal Cord Stem Cells commentoComments Off on New trial offers new hope for those with spinal cord injuries | dataJanuary 25th, 2014
Read All

Cedars-Sinai clinical trial studies vaccine targeting cancer stem cells in brain cancers

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

24-Jan-2014

Contact: Sandy Van sandy@prpacific.com 808-526-1708 Cedars-Sinai Medical Center

LOS ANGELES (Jan. 24, 2014) An early-phase clinical trial of an experimental vaccine that targets cancer stem cells in patients with recurrent glioblastoma multiforme, the most common and aggressive malignant brain tumor, has been launched by researchers at Cedars-Sinai's Department of Neurosurgery, Johnnie L. Cochran, Jr. Brain Tumor Center and Department of Neurology.

Like normal stem cells, cancer stem cells have the ability to self-renew and generate new cells, but instead of producing healthy cells, they create cancer cells. In theory, if the cancer stem cells can be destroyed, a tumor may not be able to sustain itself, but if the cancer originators are not removed or destroyed, a tumor will continue to return despite the use of existing cancer-killing therapies.

The Phase I study, which will enroll about 45 patients and last two years, evaluates safety and dosing of a vaccine created individually for each participant and designed to boost the immune system's natural ability to protect the body against foreign invaders called antigens. The drug targets a protein, CD133, found on cancer stem cells of some brain tumors and other cancers.

Immune system cells called dendritic cells will be derived from each patient's blood, combined with commercially prepared glioblastoma proteins and grown in the laboratory before being injected under the skin as a vaccine weekly for four weeks and then once every two months, according to Jeremy Rudnick, MD, neuro-oncologist in the Cedars-Sinai Department of Neurosurgery and Department of Neurology, the study's principal investigator.

Dendritic cells are the immune system's most powerful antigen-presenting cells those responsible for helping the immune system recognize invaders. By being loaded with specific protein fragments of CD133, the dendritic cells become "trained" to recognize the antigen as a target and stimulate an immune response when they come in contact.

The cancer stem cell study is the latest evolution in Cedars-Sinai's history of dendritic cell vaccine research, which was introduced experimentally in patient trials in 1998.

Cedars-Sinai's brain cancer stem cell study is open to patients whose glioblastoma multiforme has returned following surgical removal. Potential participants will be screened for eligibility requirements and undergo evaluations and medical tests at regular intervals. The vaccine and study-related tests and follow-up care will be provided at no cost to patients. For more information, call 1-800-CEDARS-1 or contact Cherry Sanchez by phone at 310-423-8100 or email cherry.sanchez@cshs.org.

Excerpt from:
Cedars-Sinai clinical trial studies vaccine targeting cancer stem cells in brain cancers

To Read More: Cedars-Sinai clinical trial studies vaccine targeting cancer stem cells in brain cancers
categoriaSkin Stem Cells commentoComments Off on Cedars-Sinai clinical trial studies vaccine targeting cancer stem cells in brain cancers | dataJanuary 24th, 2014
Read All

Tracing unique cells with mathematics

By raymumme

Jan. 23, 2014 Stem cells can turn into heart cells, skin cells can mutate to cancer cells; even cells of the same tissue type exhibit small heterogeneities. Scientists use single-cell analyses to investigate these heterogeneities. But the method is still laborious and considerable inaccuracies conceal smaller effects. Scientists at the Helmholtz Zentrum Muenchen, at the Technische Unitversitaet Muenchen and the University of Virginia (USA) have now found a way to simplify and improve the analysis by mathematical methods.

Each cell in our body is unique. Even cells of the same tissue type that look identical under the microscope differ slightly from each other. To understand how a heart cell can develop from a stem cell, why one beta-cell produces insulin and the other does not, or why a normal tissue cell suddenly mutates to a cancer cell, scientists have been targeting the activities of ribonucleic acid, RNA.

Proteins are constantly being assembled and disassembled in the cell. RNA molecules read blueprints for proteins from the DNA and initiate their production. In the last few years scientists around the world have developed sequencing methods that are capable of detecting all active RNA molecules within a single cell at a certain time.

At the end of December 2013 the journal Nature Methods declared single-cell sequencing the "Method of the Year." However, analysis of individual cells is extremely complex, and the handling of the cells generates errors and inaccuracies. Smaller differences in gene regulation can be overwhelmed by the statistical "noise."

Scientists led by Professor Fabian Theis, Chair of Mathematical modeling of biological systems at the Technische Universitaet Muenchen and director of the Institute of Computational Biology at the Helmholtz Zentrum Muenchen, have now found a way to considerably improve single-cell analysis by applying methods of mathematical statistics.

Instead of just one cell, they took 16-80 samples with ten cells each. "A sample of ten cells is much easier to handle," says Professor Theis. "With ten times the amount of cell material, the influences of ambient conditions can be markedly suppressed." However, cells with different properties are then distributed randomly on the samples. Therefore Theis's collaborator Christiane Fuchs developed statistical methods to still identify the single-cell properties in the mixture of signals.

On the basis of known biological data, Theis and Fuchs modeled the distribution for the case of genes that exhibit two well-defined regulatory states. Together with biologists Kevin Janes and Sameer Bajikar at the University of Virginia in Charlottesville (USA), they were able to prove experimentally that with the help of statistical methods samples containing ten cells deliver results of higher accuracy than can be achieved through analysis of the same number of single cell samples.

In many cases, several gene actions are triggered by the same factor. Even in such cases, the statistical method can be applied successfully. Fluorescent markers indicate the gene activities. The result is a mosaic, which again can be checked to spot whether different cells respond differently to the factor.

The method is so sensitive that it even shows one deviation in 40 otherwise identical cells. The fact that this difference actually is an effect and not a random outlier could be proven experimentally.

Link:
Tracing unique cells with mathematics

To Read More: Tracing unique cells with mathematics
categoriaSkin Stem Cells commentoComments Off on Tracing unique cells with mathematics | dataJanuary 23rd, 2014
Read All

Statistical Methods Improve Biological Single-Cell Analyses

By JoanneRUSSELL25

Stem cells can turn into heart cells, skin cells can mutate to cancer cells; even cells of the same tissue type exhibit small heterogeneities. Scientists use single-cell analyses to investigate these heterogeneities. But the method is still laborious and considerable inaccuracies conceal smaller effects. Scientists at the Technische Universitaet Muenchen (TUM), the Helmholtz Zentrum Muenchen and the University of Virginia (USA) have now found a way to simplify and improve the analysis by mathematical methods.

Each cell in our body is unique. Even cells of the same tissue type that look identical under the microscope differ slightly from each other. To understand how a heart cell can develop from a stem cell, why one beta-cell produces insulin and the other does not, or why a normal tissue cell suddenly mutates to a cancer cell, scientists have been targeting the activities of ribonucleic acid, RNA.

Proteins are constantly being assembled and disassembled in the cell. RNA molecules read blueprints for proteins from the DNA and initiate their production. In the last few years scientists around the world have developed sequencing methods that are capable of detecting all active RNA molecules within a single cell at a certain time.

At the end of December 2013 the journal Nature Methods declared single-cell sequencing the "Method of the Year." However, analysis of individual cells is extremely complex, and the handling of the cells generates errors and inaccuracies. Smaller differences in gene regulation can be overwhelmed by the statistical "noise."

Easier And More Accurate, Thanks To Statistics

Scientists led by Professor Fabian Theis, Chair of Mathematical modeling of biological systems at the Technische Universitaet Muenchen and director of the Institute of Computational Biology at the Helmholtz Zentrum Muenchen, have now found a way to considerably improve single-cell analysis by applying methods of mathematical statistics.

Instead of just one cell, they took 16-80 samples with ten cells each. "A sample of ten cells is much easier to handle," says Professor Theis. "With ten times the amount of cell material, the influences of ambient conditions can be markedly suppressed." However, cells with different properties are then distributed randomly on the samples. Therefore Theis's collaborator Christiane Fuchs developed statistical methods to still identify the single-cell properties in the mixture of signals.

Combining Model and Experiment

On the basis of known biological data, Theis and Fuchs modeled the distribution for the case of genes that exhibit two well-defined regulatory states. Together with biologists Kevin Janes and Sameer Bajikar at the University of Virginia in Charlottesville (USA), they were able to prove experimentally that with the help of statistical methods samples containing ten cells deliver results of higher accuracy than can be achieved through analysis of the same number of single cell samples.

In many cases, several gene actions are triggered by the same factor. Even in such cases, the statistical method can be applied successfully. Fluorescent markers indicate the gene activities. The result is a mosaic, which again can be checked to spot whether different cells respond differently to the factor.

Read the original:
Statistical Methods Improve Biological Single-Cell Analyses

To Read More: Statistical Methods Improve Biological Single-Cell Analyses
categoriaSkin Stem Cells commentoComments Off on Statistical Methods Improve Biological Single-Cell Analyses | dataJanuary 23rd, 2014
Read All

Insulin-producing beta cells from stem cells

By Dr. Matthew Watson

Jan. 23, 2014 The Wnt/-catenin signaling pathway and microRNA 335 are instrumental in helping form differentiated progenitor cells from stem cells. These are organized in germ layers and are thus the origin of different tissue types, including the pancreas and its insulin-producing beta cells. With these findings, Helmholtz Zentrum Mnchen scientists have discovered key molecular functions of stem cell differentiation which could be used for beta cell replacement therapy in diabetes. The results of the two studies were published in the journal Development.

The findings of the scientists of the Institute of Diabetes and Regeneration Research (IDR) at Helmholtz Zentrum Mnchen (HMGU) provide new insights into the molecular regulation of stem cell differentiation. These results reveal important target structures for regenerative therapy approaches to chronic diseases such as diabetes.

During embryonic development, organ-specific cell types are formed from pluripotent stem cells, which can differentiate into all cell types of the human body. The pluripotent cells of the embryo organize themselves at an early stage in germ layers: the endoderm, mesoderm and ectoderm. From these three cell populations different functional tissue cells arise, such as skin cells, muscle cells, and specific organ cells.

Various signaling pathways are important for this germ layer organization, including the Wnt/-catenin signaling pathway. The cells of the pancreas, such as the beta cells, originate from the endoderm, the germ layer from which the gastrointestinal tract, the liver and the lungs also arise. Professor Heiko Lickert, director of the IDR, in collaboration with Professor Gunnar Schotta of LMU Mnchen, showed that the Wnt/-catenin signaling pathway regulates Sox17, which in turn regulates molecular programs that assign pluripotent cells to the endoderm, thus inducing an initial differentiation of the stem cells. In another project Professor Lickert and his colleague Professor Fabian Theis, director of the Institute of Computational Biology (ICB) at Helmholtz Zentrum Mnchen, discovered an additional mechanism that influences the progenitor cells. miRNA-335, a messenger nucleic acid, regulates the endodermal transcription factors Sox17 and Foxa2 and is essential for the differentiation of cells within this germ layer and their demarcation from the adjacent mesoderm. The concentrations of the transcription factors determine here whether these cells develop into lung, liver or pancreas cells. To achieve these results, the scientists combined their expertise in experimental research with mathematical modeling.

"Our findings represent two key processes of stem cell differentiation," said Lickert. "With an improved understanding of cell formation we can succeed in generating functional specialized cells from stem cells. These could be used for a variety of therapeutic approaches. In diabetes, we may be able to replace the defective beta cells, but regenerative medicine also offers new therapeutic options for other organ defects and diseases."

Diabetes is characterized by a dysfunction of the insulin-producing beta cells of the pancreas. Regenerative treatment approaches aim to renew or replace these cells. An EU-funded research project ('HumEn'), in which Lickert and his team are participating, shall provide further insights in the field of beta-cell replacement therapy.

The aim of research at Helmholtz Zentrum Mnchen, a partner in the German Center for Diabetes Research (DZD), is to develop new approaches for the diagnosis, treatment and prevention of major common diseases such as diabetes mellitus.

Read more here:
Insulin-producing beta cells from stem cells

To Read More: Insulin-producing beta cells from stem cells
categoriaSkin Stem Cells commentoComments Off on Insulin-producing beta cells from stem cells | dataJanuary 23rd, 2014
Read All

Insulin-producing beta cells from stem cells: Scientists decipher early molecular mechanisms of differentiation

By Sykes24Tracey

8 hours ago Endodermal cells, they form organs such as lung, liver and pancreas. Credit: IDR, Helmholtz Zentrum Mnchen

The Wnt/-catenin signaling pathway and microRNA 335 are instrumental in helping form differentiated progenitor cells from stem cells. These are organized in germ layers and are thus the origin of different tissue types, including the pancreas and its insulin-producing beta cells. With these findings, Helmholtz Zentrum Mnchen scientists have discovered key molecular functions of stem cell differentiation which could be used for beta cell replacement therapy in diabetes. The results of the two studies were published in the renowned journal Development.

The findings of the scientists of the Institute of Diabetes and Regeneration Research (IDR) at Helmholtz Zentrum Mnchen (HMGU) provide new insights into the molecular regulation of stem cell differentiation. These results reveal important target structures for regenerative therapy approaches to chronic diseases such as diabetes.

During embryonic development, organ-specific cell types are formed from pluripotent stem cells, which can differentiate into all cell types of the human body. The pluripotent cells of the embryo organize themselves at an early stage in germ layers: the endoderm, mesoderm and ectoderm. From these three cell populations different functional tissue cells arise, such as skin cells, muscle cells, and specific organ cells.

Various signaling pathways are important for this germ layer organization, including the Wnt/-catenin signaling pathway. The cells of the pancreas, such as the beta cells, originate from the endoderm, the germ layer from which the gastrointestinal tract, the liver and the lungs also arise. Professor Heiko Lickert, director of the IDR, in collaboration with Professor Gunnar Schotta of LMU Mnchen, showed that the Wnt/-catenin signaling pathway regulates Sox17, which in turn regulates molecular programs that assign pluripotent cells to the endoderm, thus inducing an initial differentiation of the stem cells.

In another project Professor Lickert and his colleague Professor Fabian Theis, director of the Institute of Computational Biology (ICB) at Helmholtz Zentrum Mnchen, discovered an additional mechanism that influences the progenitor cells. miRNA-335, a messenger nucleic acid, regulates the endodermal transcription factors Sox17 and Foxa2 and is essential for the differentiation of cells within this germ layer and their demarcation from the adjacent mesoderm. The concentrations of the transcription factors determine here whether these cells develop into lung, liver or pancreas cells. To achieve these results, the scientists combined their expertise in experimental research with mathematical modeling.

"Our findings represent two key processes of stem cell differentiation," said Lickert. "With an improved understanding of cell formation we can succeed in generating functional specialized cells from stem cells. These could be used for a variety of therapeutic approaches. In diabetes, we may be able to replace the defective beta cells, but regenerative medicine also offers new therapeutic options for other organ defects and diseases."

Diabetes is characterized by a dysfunction of the insulin-producing beta cells of the pancreas. Regenerative treatment approaches aim to renew or replace these cells. An EU-funded research project ('HumEn'), in which Lickert and his team are participating, shall provide further insights in the field of beta-cell replacement therapy.

The aim of research at Helmholtz Zentrum Mnchen, a partner in the German Center for Diabetes Research (DZD), is to develop new approaches for the diagnosis, treatment and prevention of major common diseases such as diabetes mellitus.

Explore further: Stem cells on the road to specialization

See original here:
Insulin-producing beta cells from stem cells: Scientists decipher early molecular mechanisms of differentiation

To Read More: Insulin-producing beta cells from stem cells: Scientists decipher early molecular mechanisms of differentiation
categoriaSkin Stem Cells commentoComments Off on Insulin-producing beta cells from stem cells: Scientists decipher early molecular mechanisms of differentiation | dataJanuary 23rd, 2014
Read All

Bioquark Inc. Appoints Dr. Joel I. Osorio MD, Specialist in Functional Anti-Aging Regenerative and Stem Cell Medicine …

By raymumme

Philadelphia, PA (PRWEB) January 23, 2014

Bioquark, Inc., (http://www.bioquark.com) a company focused on the development of combinatorial biologics for regeneration and disease reversion in human organs and tissues, today announces the appointment of Dr. Joel I. Osorio MD, as VP of International Clinical Development.

We are honored to have someone with Dr. Osorios experience join us as we execute on a globalized clinical strategy, said Ira S. Pastor, CEO, Bioquark Inc. His broad clinical experience in functional anti-aging regenerative and stem cell based medicine make him a very valuable addition to the Bioquark team.

Dr. Osorio brings over 9 years of experience in medical practice, both in the private practice and public medical settings. Currently the medical director of the medical spa Bamboo Rejuvenecimiento Facial y Coporal (http://www.bamboobelleza.com), Dr. Osorio has served in capacities in both private and public practice, as a hospital staff physician, and as emergency health services coordinator for a variety of private and public institutions throughout Mexico. He earned MD degrees at both Westhill University and the National Autonomous University of Mexico as a medical surgeon, has diplomas in aesthetic medicine from the Autonomous University of Guadalajara, is an Advance Fellow by the American Board of Anti-Aging and Regenerative Medicine (http://www.a4m.com/joel-osorio-bamboo-rejuvenecimiento-facial-y-corporal-naucalpan-estado-de-mxico.html), is a visiting scholar at University of North Carolina at Chapel Hill in dermatology, a fellow in stem cell medicine by the American Academy of Anti-Aging Medicine and University of South Florida, and currently is completing additional masters work in metabolic and nutrition sciences at University of South Florida. Dr. Osorio is also a member of the round table of ReGeNeRaTe Laboratories Mexico Committee (a DNAge-Lab Company), and has been actively working in the applied stem cell field since 2007. In 2011, Dr. Osorio became a member of the International Cellular Medicine Society, is a PRP certified practitioner in aesthetic and regenerative fields, and from 2009 to 2012 managed the blood bank at Ruben Lenero public hospital. Dr. Osorio frequently appears on Mexican national television programs and interviews regularly as a speaker on the topic of anti-aging (http://www.youtube.com/watch?v=Z4SvkBTS-P0) as well as contributes in various magazines and periodicals on anti-aging related subjects.

I am very excited about the candidates being developed at Bioquark and their very novel approach to human regeneration and disease reversion, as well as the broader biological programs focused on anti-aging," said Dr. Osorio. "I'm pleased to be joining the team and am looking forward to playing a more active role in this truly transformational platform."

About Bioquark, Inc. Bioquark Inc. (http://www.bioquark.com) is focused on the development of biologic based products that have the ability to alter the regulatory state of human tissues and organs, with the goal of curing a wide range of diseases, as well as effecting complex regeneration. Bioquark is developing biological pharmaceutical candidates, as well as products for the global consumer health and wellness market segments.

View original post here:
Bioquark Inc. Appoints Dr. Joel I. Osorio MD, Specialist in Functional Anti-Aging Regenerative and Stem Cell Medicine ...

To Read More: Bioquark Inc. Appoints Dr. Joel I. Osorio MD, Specialist in Functional Anti-Aging Regenerative and Stem Cell Medicine …
categoriaUncategorized commentoComments Off on Bioquark Inc. Appoints Dr. Joel I. Osorio MD, Specialist in Functional Anti-Aging Regenerative and Stem Cell Medicine … | dataJanuary 23rd, 2014
Read All

Scientists find estrogen promotes blood-forming stem cell function

By LizaAVILA

Jan. 22, 2014 Scientists have known for years that stem cells in male and female sexual organs are regulated differently by their respective hormones. In a surprising discovery, researchers at the Children's Medical Center Research Institute at UT Southwestern (CRI) and Baylor College of Medicine have found that stem cells in the blood-forming system -- which is similar in both sexes -- also are regulated differently by hormones, with estrogen proving to be an especially prolific promoter of stem cell self-renewal.

The research, published in Nature, raises several intriguing possibilities for further investigation that might lead to improved treatments for blood cancers and increased safety and effectiveness of chemotherapy.

Before the finding, blood-forming stem cells were thought to be regulated similarly in both males and females, according to the paper's senior author, Dr. Sean Morrison, Director of CRI, Professor of Pediatrics, and the Mary McDermott Cook Chair in Pediatric Genetics at UT Southwestern Medical Center.

However, while working in Dr. Morrison's laboratory as postdoctoral fellows, Dr. Daisuke Nakada, the first and co-corresponding author of the study, and Dr. Hideyuki Oguro discovered that blood-forming stem cells divide more frequently in females than in males due to higher estrogen levels. The research, conducted using mice, demonstrated that the activity of blood-forming stem cells was regulated by systemic hormonal signals in addition to being regulated by local changes within the blood-forming system.

"This discovery explains how red blood cell production is augmented during pregnancy," said Dr. Morrison. "In female mice, estrogen increases the proliferation of blood-forming stem cells in preparation for pregnancy. Elevated estrogen levels that are sustained during pregnancy induce stem cell mobilization and red cell production in the spleen, which serves as a reserve site for additional red blood cell production."

The study involved treating male and female mice over a period of several days with amounts of estrogen needed to achieve a level consistent with pregnancy. When an estrogen receptor that is present within blood-forming stem cells was deleted from those cells, they were no longer able to respond to estrogen, nor were they able to increase red blood cell production. The results demonstrate that estrogen acts directly on the stem cells to increase their proliferation and the number of red blood cells they generate.

"If estrogen has the same effect on stem cells in humans as in mice, then this effect raises a number of possibilities that could change the way we treat people with diseases of blood cell-formation," said Dr. Morrison. "Can we promote regeneration in the blood-forming system by administering estrogen? Can we reduce the toxicity of chemotherapy to the blood-forming system by taking into account estrogen levels in female patients? Does estrogen promote the growth of some blood cancers? There are numerous clinical opportunities to pursue."

See the article here:
Scientists find estrogen promotes blood-forming stem cell function

To Read More: Scientists find estrogen promotes blood-forming stem cell function
categoriaUncategorized commentoComments Off on Scientists find estrogen promotes blood-forming stem cell function | dataJanuary 23rd, 2014
Read All

stem cell therapy treatment for cerebral palsy sri lanka by dr alok sharma, mumbai, india – Video

By NEVAGiles23


stem cell therapy treatment for cerebral palsy sri lanka by dr alok sharma, mumbai, india
improvement seen in just 3 months after stem cell therapy treatment for cerebral palsy by dr alok sharma, mumbai, india. Stem Cell Therapy done date 4/10/201...

By: Neurogen Brain and Spine Institute

See more here:
stem cell therapy treatment for cerebral palsy sri lanka by dr alok sharma, mumbai, india - Video

To Read More: stem cell therapy treatment for cerebral palsy sri lanka by dr alok sharma, mumbai, india – Video
categoriaUncategorized commentoComments Off on stem cell therapy treatment for cerebral palsy sri lanka by dr alok sharma, mumbai, india – Video | dataJanuary 23rd, 2014
Read All

stem cell therapy treatment for global developmental delay by dr alok sharma, mumbai, india – Video

By Dr. Matthew Watson


stem cell therapy treatment for global developmental delay by dr alok sharma, mumbai, india
improvement seen in just 5 days after stem cell therapy treatment for ______ by dr alok sharma, mumbai, india. Stem Cell Therapy done date 17/12/2013 After S...

By: Neurogen Brain and Spine Institute

Read the original:
stem cell therapy treatment for global developmental delay by dr alok sharma, mumbai, india - Video

To Read More: stem cell therapy treatment for global developmental delay by dr alok sharma, mumbai, india – Video
categoriaUncategorized commentoComments Off on stem cell therapy treatment for global developmental delay by dr alok sharma, mumbai, india – Video | dataJanuary 23rd, 2014
Read All

Stem cells could offer alternative treatment for patients with resistant tuberculosis

By NEVAGiles23

A team of international researchers has turned to stem cells in a quest to find an a more effective treatment for patients with drug-resistant tuberculosis (TB). The new method being investigated involves using the patients own bone marrow mesenchymal stromal cells (MSCs) to boost immune response and heal damaged tissue.

Multi-drug resistant TB effects around 450,000 in Eastern Europe, Asia, and South Africa according to the World Health Organization, and conventional treatments have a low rate of success.

Currently in its preliminary stages, the study is designed to investigate the possibility that MSCs can help organs to regulate themselves and repair damaged or traumatized tissues. Specifically in this case, the stem cells migrate to the lung with TB bacteria inflammation and improve the immune response to help the body get rid of the bacteria.

Between September 2009 and June 2011, the study looked at 30 patients from a specialist center in Minsk, Belarus, whose age varied from 21 to 65 years old, and who were resistant to TB drugs. They chose Belarus because of the high rate of resistant tuberculosis (76 percent) among treated patients in that region. They also observed 30 patients who met the inclusion criteria and who opted not to have MSC therapy.

Besides giving patients the anti-TB antibiotics, the researchers collected cells from their own bone marrow, cultured them and introduced them back into the patient within four weeks of the start of the anti-TB drug treatment. Eighteen months later, the rate of cure for patients who received MSC therapy was more than three times higher compared with those who didnt get treated with the cells.

MSC therapy produced a few side effects, which the researchers considered mild. Fourteen patients had high cholesterol, 11 patients suffered from nausea while 10 others had lymphopenia (low level of lymphocytes in the blood) or diarrhoea.

The researchers noted MSC cells harvested from TB patients did not present any aberrant features in comparison with those extracted from healthy donors. Neither did the anti-TB drugs seem to have a negative impact on the harvest. Concerns over the risk of suppressing an immune response, leading to the worsening of tuberculosis, did not materialize. However, they highlight that future studies would need to assess whether certain anti-M tuberculosis drug combinations or concomitant M. tuberculosis infection (a type of TB infection) could have an impact.

The results of this novel and exciting study show that the current challenges and difficulties of treating multi-drug resistant TB are not insurmountable, and they bring a unique opportunity with a fresh solution to treat hundreds of thousands of people who die unnecessarily of drug-resistant TB," says co-author Professor Alimuddin Zumla. "Further evaluation in phase 2 trials is now urgently required to ascertain efficacy and further safety in different geographical regions such as South Africa where multi-drug resistant and extensively-drug resistant TB are rife.

Details of the study are published in The Lancet Respiratory Medicine.

Source: UCL

Continued here:
Stem cells could offer alternative treatment for patients with resistant tuberculosis

To Read More: Stem cells could offer alternative treatment for patients with resistant tuberculosis
categoriaBone Marrow Stem Cells commentoComments Off on Stem cells could offer alternative treatment for patients with resistant tuberculosis | dataJanuary 22nd, 2014
Read All

Makucell – Best Anti Aging Skin Care

By Dr. Matthew Watson

Renew

Revolutionary skin care with a novel,proprietary approach tocellular aging.

The bodys signals govern skin stem cells, controlling the decision to remain dormant, divide or differentiate (become normal, active tissue cells). Signals flow in path-ways and multiple paths funnel into the common Wnt signaling pathway. Signaling stimulatesskin stem cells to begin the process leading to fibroblasts, keratino-

cytesand other dermal/epidermalcells.

Renewnt skin care products contain the high-end ingredients available today for cosmeceuticals, but also have an entirely new technology,Asymmtate.Unlike many cosmetic agents, Asymmtate has been clinically provento penetrate through the epidermis into the dermis. Makucell currentlyoffers fourtargeted skin careproducts.

Asymmtate AwakensSkin's Stem Cells

Asymmtateis a small molecule that optimizes signaling in the Wnt Pathway and was developed by a team of researchers led byDr. Michael Kahn of the Eli and Edythe Broad Center for Regenerative Medicine at the Keck School of Medicine of the University of Southern California.

Chief Medical Officer

Vice President of Medical &

Scientific Affairs

See the rest here:
Makucell - Best Anti Aging Skin Care

To Read More: Makucell – Best Anti Aging Skin Care
categoriaSkin Stem Cells commentoComments Off on Makucell – Best Anti Aging Skin Care | dataJanuary 22nd, 2014
Read All

Scientists Find That Estrogen Promotes Blood-Forming Stem Cell Function

By NEVAGiles23

Contact Information

Available for logged-in reporters only

Newswise DALLAS Jan. 22, 2014 Scientists have known for years that stem cells in male and female sexual organs are regulated differently by their respective hormones. In a surprising discovery, researchers at the Childrens Medical Center Research Institute at UTSouthwestern (CRI) and Baylor College of Medicine have found that stem cells in the blood-forming system which is similar in both sexes also are regulated differently by hormones, with estrogen proving to be an especially prolific promoter of stem cell self-renewal.

The research, published in Nature, raises several intriguing possibilities for further investigation that might lead to improved treatments for blood cancers and increased safety and effectiveness of chemotherapy.

Before the finding, blood-forming stem cells were thought to be regulated similarly in both males and females, according to the papers senior author, Dr. Sean Morrison, Director of CRI, Professor of Pediatrics, and the Mary McDermott Cook Chair in Pediatric Genetics at UTSouthwestern Medical Center.

However, while working in Dr. Morrisons laboratory as postdoctoral fellows, Dr. Daisuke Nakada, the first and co-corresponding author of the study, and Dr. Hideyuki Oguro discovered that blood-forming stem cells divide more frequently in females than in males due to higher estrogen levels. The research, conducted using mice, demonstrated that the activity of blood-forming stem cells was regulated by systemic hormonal signals in addition to being regulated by local changes within the blood-forming system.

This discovery explains how red blood cell production is augmented during pregnancy, said Dr. Morrison. In female mice, estrogen increases the proliferation of blood-forming stem cells in preparation for pregnancy. Elevated estrogen levels that are sustained during pregnancy induce stem cell mobilization and red cell production in the spleen, which serves as a reserve site for additional red blood cell production.

The study involved treating male and female mice over a period of several days with amounts of estrogen needed to achieve a level consistent with pregnancy. When an estrogen receptor that is present within blood-forming stem cells was deleted from those cells, they were no longer able to respond to estrogen, nor were they able to increase red blood cell production. The results demonstrate that estrogen acts directly on the stem cells to increase their proliferation and the number of red blood cells they generate.

If estrogen has the same effect on stem cells in humans as in mice, then this effect raises a number of possibilities that could change the way we treat people with diseases of blood cell-formation, said Dr. Morrison. Can we promote regeneration in the blood-forming system by administering estrogen? Can we reduce the toxicity of chemotherapy to the blood-forming system by taking into account estrogen levels in female patients? Does estrogen promote the growth of some blood cancers? There are numerous clinical opportunities to pursue.

Research support for Dr. Morrison came from the Cancer Prevention and Research Institute of Texas (CPRIT); the National Heart, Lung, and Blood Institute; the Howard Hughes Medical Institute; and donors to Childrens Medical Center Foundation. Dr. Nakada is now a CPRIT Scholar and Assistant Professor of Molecular and Human Genetics at Baylor College of Medicine. The research was initiated in the Life Sciences Institute at the University of Michigan and completed at Baylor College of Medicine and CRI.

Read the rest here:
Scientists Find That Estrogen Promotes Blood-Forming Stem Cell Function

To Read More: Scientists Find That Estrogen Promotes Blood-Forming Stem Cell Function
categoriaUncategorized commentoComments Off on Scientists Find That Estrogen Promotes Blood-Forming Stem Cell Function | dataJanuary 22nd, 2014
Read All

stem cell therapy treatment for Right Hemiparesis Cerebral Palsy by dr alok sharma, mumbai, india – Video

By Dr. Matthew Watson


stem cell therapy treatment for Right Hemiparesis Cerebral Palsy by dr alok sharma, mumbai, india
improvement seen in just 5 days after stem cell therapy treatment for Right Hemiparesis Cerebral Palsy by dr alok sharma, mumbai, india. Stem Cell Therapy do...

By: Neurogen Brain and Spine Institute

Read more from the original source:
stem cell therapy treatment for Right Hemiparesis Cerebral Palsy by dr alok sharma, mumbai, india - Video

To Read More: stem cell therapy treatment for Right Hemiparesis Cerebral Palsy by dr alok sharma, mumbai, india – Video
categoriaUncategorized commentoComments Off on stem cell therapy treatment for Right Hemiparesis Cerebral Palsy by dr alok sharma, mumbai, india – Video | dataJanuary 22nd, 2014
Read All

Pluristem Gains Most in 17 Months on Stem-Cell Study

By Dr. Matthew Watson

Pluristem Therapeutics Inc. (PSTI), the Israeli developer of stem-cell therapies, rose the most in more than 17 months after an experimental treatment showed promise in a study of 20 patients with muscle injuries.

The stock surged 22 percent to 16.18 shekels ($4.63) at 11:04 a.m. in Tel Aviv. Earlier it gained as much as 27 percent, the biggest increase since Aug. 6, 2012. The shares fell 15 percent yesterday ahead of the study results.

The early-stage clinical trial assessing Pluristems placental-expanded, or PLX-PAD, cells in people who had a buttock muscle injured during hip-replacement surgery found the treatment was safe, the company said in a statement today. Patients getting the injection also fared better in a muscle-contraction exercise six months later.

These are remarkable results that signal advances in the cell-therapy industry, Jason Kolbert, an analyst with Maxim Group LLC in New York, said at a press conference organized by Pluristem in Tel Aviv.

The study results suggest the stem-cell therapy could help treat a broader range of muscle and tendon injuries, according to the Haifa-based company. We intend to move forward with implementing our strategy towards using PLX cells in orthopedic indications and muscle trauma, Chief Executive Officer Zami Aberman said in the statement.

The results come after the U.S. Food and Drug Administration in June placed one of Pluristems most advanced studies on hold after a patient suffered an allergic reaction. The hold was lifted in September.

To contact the reporter on this story: David Wainer in Tel Aviv at dwainer3@bloomberg.net

See the rest here:
Pluristem Gains Most in 17 Months on Stem-Cell Study

To Read More: Pluristem Gains Most in 17 Months on Stem-Cell Study
categoriaUncategorized commentoComments Off on Pluristem Gains Most in 17 Months on Stem-Cell Study | dataJanuary 22nd, 2014
Read All

Dr. Burton Feinerman Shares Experiences from Celebrity Care to Modern Medicine

By JoanneRUSSELL25

TAMPA, Fla. (PRWEB) January 22, 2014

Societys continual, obsessive search for perpetual youth has lead many on a tumultuous path of medical mayhem from shots to creams and a variety of procedures in between.

A leader in modern medicine, Dr. Burton Feinerman has always been at the forefront of new and life changing procedures in the healthcare community. Feinerman's experience includes his time as a key research associate at the Papanicolau Cancer Research Institute in Miami.

His career took a glamorous turn when he became a concierge physician to the stars at his office in Maui, Hawaii. He has treated a variety of high-profile clientele including celebrities Eddie Murphy, Larry David, Pink, Brittney Spears, Nick Nolte, Christian Slater, Arnold Schwarzenegger and Oprah, who once thanked him with an autographed magazine for the shot in the tush.

Staying true to his mission to find relief for those afflicted with incurable diseases, Feinerman soon focused his efforts on the innovative and unfamiliar world of cell regeneration and gene therapy. As one of the original physician scientists to create stem cell protocols for incurable diseases, Feinerman now runs his clinic in Tampa, Fla. where he treats patients with conditions such as Alzheimers, ALS, Autism, brain damage, Cerebral Palsy, Multiple Sclerosis, Spinal Cord Injury, Parkinsonism, Heart Disease, COPD, diabetes, Chronic Kidney Disease, Pulmonary Fibrosis, Tay Sachs, Sandhoff Disease, Stargardt Disease, Huntington Disease, Scleroderma, Lupus, Rheumatoid Arthritis, Crohns Disease, cancer of all types, Macular Degeneration and Retinitis Pigmentosa.

The emerging developments in stem cell therapy, gene therapy, nanotechnology and tissue engineering offer new hope to millions of patients, said Feinerman.

Stem Cells and Sex Wars By: Dr. Burton Feinerman ISBN: 978-1481774789 Available at Amazon, Barnes and Noble and Authorhouse online bookstores.

About the authors A graduate of New York Medical College, Dr. Burton Feinerman also received extensive postgraduate training from Long Island College Hospital and the Mayo Clinic. He served as chief medicine for the U.S. Army, as part of the 98th General Hospital in Germany as well as chairman of medicine at Miami General Hospital, Opa-Locka Hospital, N. Miami General Hospital and chairman of cancer technologies Kids Medical Centers of America. Active in many industry organizations, Feinerman is a member of the Society of Apheresis, the Society of Bone Marrow Blood Transplantation, the International Society for Cellular Therapy, the Society for Cranial Transplantation and Brain Repair, and the Society for Cardiac Translational Therapy. With over 55 years of experience in medical practice, he is currently the president and CEO of Stem Cell Regen Med.

Read the original here:
Dr. Burton Feinerman Shares Experiences from Celebrity Care to Modern Medicine

To Read More: Dr. Burton Feinerman Shares Experiences from Celebrity Care to Modern Medicine
categoriaUncategorized commentoComments Off on Dr. Burton Feinerman Shares Experiences from Celebrity Care to Modern Medicine | dataJanuary 22nd, 2014
Read All

Stem Cell, Eye Stem Cell,Copd Stem Cell – Video

By NEVAGiles23


Stem Cell, Eye Stem Cell,Copd Stem Cell
http://yourservice.us/jeunesseglobal.html Stem cell therapy is an intervention strategy that introduces new adult stem cells into damaged tissue in order to ...

By: Agus Saifudin

Here is the original post:
Stem Cell, Eye Stem Cell,Copd Stem Cell - Video

To Read More: Stem Cell, Eye Stem Cell,Copd Stem Cell – Video
categoriaUncategorized commentoComments Off on Stem Cell, Eye Stem Cell,Copd Stem Cell – Video | dataJanuary 22nd, 2014
Read All

Anti Stem Cell, Stem Cell Spray, Fetal Stem Cell, Stem Cell Face By Dr. Renato Calabria – Video

By Sykes24Tracey


Anti Stem Cell, Stem Cell Spray, Fetal Stem Cell, Stem Cell Face By Dr. Renato Calabria
http://yourservice.us/jeunesseglobal.html Stem cell therapy is an intervention strategy that introduces new adult stem cells into damaged tissue in order to ...

By: Agus Saifudin

Go here to read the rest:
Anti Stem Cell, Stem Cell Spray, Fetal Stem Cell, Stem Cell Face By Dr. Renato Calabria - Video

To Read More: Anti Stem Cell, Stem Cell Spray, Fetal Stem Cell, Stem Cell Face By Dr. Renato Calabria – Video
categoriaUncategorized commentoComments Off on Anti Stem Cell, Stem Cell Spray, Fetal Stem Cell, Stem Cell Face By Dr. Renato Calabria – Video | dataJanuary 22nd, 2014
Read All

Diabetes Stem Cell, Stem Cell Paraplegic,Stem Cells Regenerate New Finger! – Video

By daniellenierenberg


Diabetes Stem Cell, Stem Cell Paraplegic,Stem Cells Regenerate New Finger!
http://yourservice.us/jeunesseglobal.html Stem cell therapy is an intervention strategy that introduces new adult stem cells into damaged tissue in order to ...

By: Agus Saifudin

The rest is here:
Diabetes Stem Cell, Stem Cell Paraplegic,Stem Cells Regenerate New Finger! - Video

To Read More: Diabetes Stem Cell, Stem Cell Paraplegic,Stem Cells Regenerate New Finger! – Video
categoriaUncategorized commentoComments Off on Diabetes Stem Cell, Stem Cell Paraplegic,Stem Cells Regenerate New Finger! – Video | dataJanuary 22nd, 2014
Read All

Crystalbartonnyc, Anti Aging Routine,Blind Girl Headed To China For Stem Cell Surgery – Video

By NEVAGiles23


Crystalbartonnyc, Anti Aging Routine,Blind Girl Headed To China For Stem Cell Surgery
http://yourservice.us/jeunesseglobal.html Stem cell therapy is an intervention strategy that introduces new adult stem cells into damaged tissue in order to ...

By: Agus Saifudin

Originally posted here:
Crystalbartonnyc, Anti Aging Routine,Blind Girl Headed To China For Stem Cell Surgery - Video

To Read More: Crystalbartonnyc, Anti Aging Routine,Blind Girl Headed To China For Stem Cell Surgery – Video
categoriaUncategorized commentoComments Off on Crystalbartonnyc, Anti Aging Routine,Blind Girl Headed To China For Stem Cell Surgery – Video | dataJanuary 22nd, 2014
Read All

Page 557«..1020..556557558559..570580..»


Copyright :: 2025