Page 565«..1020..564565566567..570580..»

Rewiring stem cells

By LizaAVILA

18 hours ago This is a set of chromosomes in haploid mouse embryonic stem cells. Credit: Martin Leeb

A fast and comprehensive method for determining the function of genes could greatly improve our understanding of a wide range of diseases and conditions, such as heart disease, liver disease and cancer.

The method uses stem cells with a single set of chromosomes, instead of the two sets found in most cells, to reveal what causes the "circuitry" of stem cells to be rewired as they begin the process of conversion into other cell types. The same method could also be used to understand a range of biological processes.

Embryonic stem cells rely on a particular gene circuitry to retain their original, undifferentiated state, making them self-renewing. The dismantling of this circuitry is what allows stem cells to start converting into other types of cells - a process known as cell differentiation - but how this happens is poorly understood.

Researchers from the University of Cambridge Wellcome Trust-MRC Stem Cell Institute have developed a technique which can pinpoint the factors which drive cell differentiation, including many that were previously unidentified. The method, outlined in the Thursday (9 January) edition of the journal Cell Stem Cell, uses stem cells with a single set of chromosomes to uncover how cell differentiation works.

Cells in mammals contain two sets of chromosomes one set inherited from the mother and one from the father. This can present a challenge when studying the function of genes, however: as each cell contains two copies of each gene, determining the link between a genetic change and its physical effect, or phenotype, is immensely complex.

"The conventional approach is to work gene by gene, and in the past people would have spent most of their careers looking at one mutation or one gene," said Dr Martin Leeb, who led the research, in collaboration with Professor Austin Smith. "Today, the process is a bit faster, but it's still a methodical gene by gene approach because when you have an organism with two sets of chromosomes that's really the only way you can go."

Dr Leeb used unfertilised mouse eggs to generate embryonic stem cells with a single set of chromosomes, known as haploid stem cells. These haploid cells show all of the same characteristics as stem cells with two sets of chromosomes, and retain the same full developmental potential, making them a powerful tool for determining how the genetic circuitry of mammalian development functions.

The researchers used transposons "jumping genes" to make mutations in nearly all genes. The effect of a mutation can be seen immediately in haploid cells because there is no second gene copy. Additionally, since embryonic stem cells can convert into almost any cell type, the haploid stem cells can be used to investigate any number of conditions in any number of cell types. Mutations with important biological effects can then rapidly be traced to individual genes by next generation DNA sequencing.

"This is a powerful and revolutionary new tool for discovering how gene circuits operate," said Dr Leeb. "The cells and the methodology we've developed could be applied to a huge range of biological questions."

Go here to see the original:
Rewiring stem cells

To Read More: Rewiring stem cells
categoriaSkin Stem Cells commentoComments Off on Rewiring stem cells | dataJanuary 10th, 2014
Read All

Stem Cell therapy for Cartilage Regeneration in Orthopaedic Surgery – Video

By JoanneRUSSELL25


Stem Cell therapy for Cartilage Regeneration in Orthopaedic Surgery
Prof. A A Shetty and Prof. Seok Jung Kim, founders of Shetty - Kim Research Foundation were here at MediCiti to perform 5 stem cell therapy surgeries on 31st...

By: Mediciti Hospitals

Originally posted here:
Stem Cell therapy for Cartilage Regeneration in Orthopaedic Surgery - Video

To Read More: Stem Cell therapy for Cartilage Regeneration in Orthopaedic Surgery – Video
categoriaUncategorized commentoComments Off on Stem Cell therapy for Cartilage Regeneration in Orthopaedic Surgery – Video | dataJanuary 10th, 2014
Read All

Learn about stem cell therapy and application at Vail event

By JoanneRUSSELL25

VAIL The Vail Symposium hosts Dr. Scott Brandt, Dr. Kristin Comella and Dr. Stan Jones who will lead an interactive discussion on the history, evolution, practical applications and clinical results around stem cell treatments Friday evening in Vail.

The program is part of the Symposiums ongoing Living at Your Peak series, which is dedicated to exploring new breakthroughs in medicine and helping people live healthier, more active lives.

This program fits perfectly with our Living at Your Peak series, said Tracey Flower, the Symposiums executive director. There is a lot surrounding this topic, and has been for quite some time. With recent research in a changing medical industry, it is a great topic to discuss.

An example of breakthroughs in stem cell therapy comes in the form of the record-shattering Broncos quarterback, Peyton Manning. After failed surgeries, Manning traveled to Germany to undergo stem cell treatment on his cervical spine. At 37, Manning is playing his best football.

During this educational program, panelists will discuss the evolution of the stem cell field, explain current procedures, present research and clinical findings, and talk about the potential for stem cell applications in the future.

Join the Vail Symposium at 5 p.m. Friday at the Antlers Hotel in Vail for this event, titled: Stem Cells: The Future of Medicine is Now. Space is limited; reserve your tickets at http://www.vailsymposium.org/calendar or call the Vail Symposium at 970-476-0954.

More about the panelists

Dr. Scott Brandt: Brandt, the medical director of ThriveMD in Edwards, specializes in regenerative and restorative medicine. Brandt completed his undergraduate studies at the University of Michigan at Ann Arbor, and attended medical school at Bowman Gray School of Medicine, Wake Forest University in North Carolina. He then completed his anesthesiology residency training and internship at the University of Illinois and Michael Reese Hospitals in Chicago. As a resident in anesthesiology, Brandt specialized in interventional pain management. Since 1997, this focus has kept him on the leading edge of medical innovations that provide longer lasting solutions for acute and chronic pain. The advancement of stem cell therapy, coupled with Brandts expertise in image-guided injections, has made joint rejuvenation an important part of his practice.

Dr. Kristin Comella: In 2013, Comella was named as one of the 25 most influential people in the stem cell field. She has more than 14 years of experience in regenerative medicine, training and education, research, product development and has served in a number of senior management positions with stem cell related companies. Comella has more than 12 years of cell culturing experience including building and managing the stem cell laboratory at Tulane Universitys Center for Gene Therapy. She has also developed stem cell therapies for osteoarthritis at Osiris Therapeutics. Comella has been a member of the Bioheart senior management team since 2004 and is currently serving as its chief scientific officer.

Dr. Stan Jones: Widely known for performing a ground-breaking stem cell infusion on Governor Rick Perry during a spinal surgery in 2011, Jones is a surgeon and stem cell expert. He received his bachelors degree from Texas Tech in Lubbock before earning his medical degree from the University of Texas Southwestern Medical School in Dallas. Jones continued his medical training at the University of Utah Medical School in Salt Lake City and a residency at the University of Texas Medical School at Houston. Jones was awarded a fellowship to study the lower back at Wellseley Hospital in Toronto, Canada. In addition, he served in the U.S. Army Medical Corp as a Captain. He is licensed to practice in the state of Texas and is certified by the American Board of Orthopedic Surgery.

Visit link:
Learn about stem cell therapy and application at Vail event

To Read More: Learn about stem cell therapy and application at Vail event
categoriaUncategorized commentoComments Off on Learn about stem cell therapy and application at Vail event | dataJanuary 10th, 2014
Read All

Stem Cells Might Reverse Heart Damage From Chemo – Cancer …

By LizaAVILA

By Jennifer Thomas HealthDay Reporter

WEDNESDAY, Dec. 30 (HealthDay News) -- Certain types of chemotherapy can damage the heart while thwarting cancer, a dilemma that has vexed scientists for years. But a new study in rats finds that injecting the heart with stem cells can reverse the damage caused by a potent anti-cancer drug.

The findings could one day mean that cancer patients could safely take higher doses of a powerful class of chemotherapy drugs and have any resulting damage to their hearts repaired later on using their own cardiac stem cells, the researchers said.

The study was published online Dec. 28 in advance of print publication in the journal Circulation.

Doxorubicin is a common chemotherapy drug used to treat many types of cancer, including breast, ovarian, lung, thyroid, neuroblastoma, lymphoma and leukemia.

But the drug can have serious side effects, including heart damage that can lead to congestive failure years after cancer treatment ends.

In the study, researchers removed cardiac stem cells from rodents before chemotherapy. The stem cells were isolated and expanded in the lab.

Rats were then given the chemo drug doxorubicin, inducing heart failure. Afterward, the rats' stem cells were re-injected into their hearts, and the damage was reversed.

"Theoretically, patients could be rescued using their own stem cells," said study author Dr. Piero Anversa, director of the Center for Regenerative Medicine at Brigham and Women's Hospital in Boston.

A Phase 1 clinical trial using a similar procedure in people is already under way, said Dr. Roberto Bolli, chief of cardiology and director of the Institute of Molecular Cardiology at the University of Louisville in Kentucky, who is heading the trial.

More:
Stem Cells Might Reverse Heart Damage From Chemo - Cancer ...

To Read More: Stem Cells Might Reverse Heart Damage From Chemo – Cancer …
categoriaCardiac Stem Cells commentoComments Off on Stem Cells Might Reverse Heart Damage From Chemo – Cancer … | dataJanuary 9th, 2014
Read All

Sugar Land surgeon becomes first in Fort Bend to use stem cells in orthopedic surgery

By daniellenierenberg

Sugar Land orthopedic surgeon Dr. Mark Maffet of Houston Methodist Orthopedics & Sports Medicine is the first orthopedic surgeon in Fort Bend County who is using stem cells to help accelerate healing and recovery after surgery.

Stem cells hold a great deal of promise in orthopedics, Dr. Maffet said. Right now, their use is cutting edge but I believe they will ultimately play a huge role in making surgical repair more successful.

Stem cells are found in bone marrow, blood and various types of tissue. Because they can differentiate into specialized cells and continuously divide, stem cells act as a repair system for the body and can replenish damaged tissue.

Dr. Maffet used stem cells to surgically repair Amy Statlers ACL tear. ACL tears are a common sports injury that often requires reconstruction of the knee.Statleris an active woman who enjoys playing softball and exercising and wanted to get back to her active lifestyle quickly.

Dr. Maffet made me feel comfortable by explaining the process and answering all of my questions about the surgery;it was important for me to have a quick recovery,"Statlerexplained."I am currently in physical therapy and am expected to be back on the softball field for our first practice in February. I am so happy with my recovery thus far and I feel better every day.

During ACL reconstruction surgery, orthopedic surgeons take a tendon from the knee or hamstring (either a patient's own or from a donor) and use it to replace the damaged ACL ligament. Dr. Maffet has begun using stem cells to help the body accept the new tendon and to speed the healing process.

The new ACL graft is soaked in a concentrate full of stem cells and other growth factors prior to fixation, he explained. In other cases, we can simply suture the torn ligament and inject the stem cell concentrate into the affected area.

Dr. Maffet is also using stem cells in rotator cuff repairs of the shoulder. By creating vascular channels down into the bone at the repair site, his goal is to trigger the stem cells located there and improve tendon healing. Other physicians throughout Houston Methodist, including Dr. David Lintner in the Medical Center, are also offering this procedure.

In time, I believe we will be able to show that the use of stem cells in orthopedic applications is making a difference in the lives of our patients, he said. The potential to repair and regenerate damaged tissue or bone, using the patients own stem cells, will give us a fantastic new tool in treating sports injuries and other orthopedic issues. The ability to make our patients recoveries easier and more successful is exciting.

For more information about Houston Methodist Orthopedics & Sports Medicine located in Sugar Land, visit methodistorthopedics.com. For an appointment, call 281.690.4678 or emailmostappts@houstonmethodist.org.

See the original post here:
Sugar Land surgeon becomes first in Fort Bend to use stem cells in orthopedic surgery

To Read More: Sugar Land surgeon becomes first in Fort Bend to use stem cells in orthopedic surgery
categoriaBone Marrow Stem Cells commentoComments Off on Sugar Land surgeon becomes first in Fort Bend to use stem cells in orthopedic surgery | dataJanuary 9th, 2014
Read All

Dermelect cosmeceuticals stem cells to reconstruct, regenerate …

By NEVAGiles23

Stem cell technology in skin care is relativity new to most skin care consumers, while consumers are keen to have new technology as part of their skin care regime, cosmeceutical companies have taken a very in-depth approach to educating their clients on everything stem cell.

Dermelect who are based in New York, have a complete line of skincare stem cell technology whereby each product links and connects to the next, covering all the aspects of skincare a client asks for. Key ingredients across the three products are Alpine Rose, AHA, Mushroom Extract, Algisium C, Ecoskin and Vitamin C.

Reconstruction, regeneration and firmness to begin with the first product in this series in Dermelect Resurface Stem Cell Reconstructing Serum, this serum utilizes the extracted stem cells of the Swiss Alpine Rose, this stem cell works well when the skin is subject to high oxidative, UV stress and environment aggressors. Consider your living and working environment where unseen free radicals are roaming in the atmosphere, reconstruction serum will boost the facial skin stem activity to stimulate the skins protein production.

Post Dermelect Resurface Stem Cell Reconstructing Serum, there is a rich treatment cream Dermelect Resilient Stem Cell Regenerating Treatment that works on the providing a barrier against damaging factors that attack the skins cells ,that try to break down the stem cell production. This luxurious cream has the potential to reverse skin damage as it works to stimulate new skin from the stem cell reservoirs.

At this point in the treatment the stem cells increase their potency to promote cell regenerating, so that tissue is reconstructed to a denser quality and a more elastic skin. In the anti aging skin care lines gaining a better skin density can bring back a more youthful look.

Post Dermelect Resilient Stem Cell Regenerating Treatment, is followed by Dermelect Resurgent Stem Cell Firming Activator this acts as a finishing application to promote stem cell protection, while the activator continues to prevent further free radical damage. Each layer that is easily absorbed into the skin is applied in the gentle circular motion in the morning and evening, each product in the series is light to the touch, but packed with active ingredients.

The founder of Dermelect Cosmeceuticals, Amos Lavian considered the exaggerated claims and prices in skincare when he put together the Dermelect line, Lavian comments We do not exaggerate about benefits nor do we make outrageous claims. We give you an honest approach to skincare with cutting edge ingredients, excellent delivery systems and innovative treatments that focus on targeted solutions of key areas of concern. We empower you with the tools to be more confident in your appearance and to elevate your self-esteem.

The Dermelect line can be experienced in New York at C.O Bigelow 414 6 Avenue New York, NY 10011-8495. It s worth reviewing the Dermelect web site to see the depth of research and knowledge they offer their clients on stem cell skincare.

See more here:
Dermelect cosmeceuticals stem cells to reconstruct, regenerate ...

To Read More: Dermelect cosmeceuticals stem cells to reconstruct, regenerate …
categoriaSkin Stem Cells commentoComments Off on Dermelect cosmeceuticals stem cells to reconstruct, regenerate … | dataJanuary 9th, 2014
Read All

ICMS International Cell Medicine Society

By Dr. Matthew Watson

T he International Cellular Medicine Society (ICMS) is an international non-profit dedicated to patient safety through strict evaluation of protocols and rigorous oversight of clinics and facilities engaged in the translation of point-of-care cell-based treatments.As a Professional Medical Association, the ICMS represents Physiciansand Researchersfrom over 35 countries who share a mission to provide Scientifically Credible and Medically Appropriate Treatments to Informed Patients.Join the ICMS.

The ICMS Works Tirelessly for the Clincial Translation of Field of Cell-Based Point-of-Care Treatments through:

Comprehensive Medical Standards and Best Practice Guidelines for Cell Based Medicine,

Strict Evaluation and Rigerous Oversight of Stem Cell Clinics and Facilities through aGlobal Accreditation Process,

Physician Education through daily updates on the latest Research on Stem Cells, the monthly Currents In Stem Cell Medicine and the annual International Congress for Regenerative and Stem Cell Medicine.

Join the ICMSto receive the latest news and research from cell-based medicne, including the bi-monthly publication, Currents in Stem Cell Medicine.

Read more from the original source:
ICMS International Cell Medicine Society

To Read More: ICMS International Cell Medicine Society
categoriaUncategorized commentoComments Off on ICMS International Cell Medicine Society | dataJanuary 9th, 2014
Read All

Stem cell research identifies new gene targets in patients with Alzheimer’s disease

By raymumme

PUBLIC RELEASE DATE:

8-Jan-2014

Contact: David McKeon DMckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY (January 8, 2014) Scientists at The New York Stem Cell Foundation (NYSCF) Research Institute in collaboration with scientists at the Icahn School of Medicine at Mount Sinai (ISMMS) successfully generated a stem cell model of familial Alzheimer's disease (FAD). Using this stem cell model, researchers identified fourteen genes that may be implicated in the disease and one gene in particular that shows the importance that inflammation may play in the brain of Alzheimer's patients.

In this study, published today in PLOS ONE, the team of scientists produced stem cells and neural precursor cells (NPCs), representing early neural progenitor cells that build the brain, from patients with severe early-onset AD with mutations in the Presenilin 1 (PSEN1) gene. These NPCs had elevated Abeta42/Abeta40 ratios, indicating elevation of the form of amyloid found in the brains of Alzheimer's patients. These levels were greater than those in adult cells that did not have the PSEN1mutation. This elevated ratio showed that these NPCs grown in the petri dish were accurately reflecting the cells in the brains of FAD patients.

"Our ability to accurately recapitulate the disease in the petri dish is an important advance for this disease. These genes provide us with new targets to help elucidate the cause of sporadic forms of the disease as well provide targets for the discovery of new drugs," said Susan L. Solomon, Chief Executive Officer of The New York Stem Cell Foundation.

"The gene expression profile from Noggle's familial Alzheimer's stem cells points to inflammation which is especially exciting because we would not usually associate inflammation with this particular Alzheimer's gene. The greatest breakthroughs come with 'unknown unknowns', that is, things that we don't know now and that we would never discover through standard logic," said Sam Gandy, MD, PhD, Professor of Neurology and Psychiatry and Director of the Center for Cognitive Health at the Icahn School of Medicine at Mount Sinai and a co-author on the study. Gandy is also Associate Director of the NIH-Designated Mount Sinai Alzheimer's Disease Research Center.

The researchers generated induced pluripotent stem (iPS) cells from affected and unaffected individuals from two families carrying PSEN1 mutations. After thorough characterization of the NPCs through gene expression profiling and other methods, they identified fourteen genes that behaved differently in PSEN1 NPCs relative to NPCs from individuals without the mutation. Five of these targets also showed differential expression in late onset Alzheimer's disease patients' brains. Therefore, in the PSEN1 iPS cell model, the researchers reconstituted an essential feature in the molecular development of familial Alzheimer's disease.

Although the majority of Alzheimer's disease cases are late onset and likely result from a mixture of genetic predisposition and environmental factors, there are genetic forms of the disease that affect patients at much earlier ages. PSEN1 mutations cause the most common form of inherited familial Alzheimer's disease and are one hundred percent penetrant, resulting in all individuals with this mutation getting the disease.

The identification of genes that behaved differently in patients with the mutation provides new targets to further study and better understand their effects on the development of Alzheimer's disease. One of these genes, NLRP2, is traditionally thought of as an inflammatory gene.

Read more from the original source:
Stem cell research identifies new gene targets in patients with Alzheimer's disease

To Read More: Stem cell research identifies new gene targets in patients with Alzheimer’s disease
categoriaUncategorized commentoComments Off on Stem cell research identifies new gene targets in patients with Alzheimer’s disease | dataJanuary 9th, 2014
Read All

Breakthrough Research Provides Valuable Insight On Cause Of Alzheimer’s

By NEVAGiles23

New York, NY (PRWEB) January 08, 2014

A stem cell model of familial Alzheimers disease (FAD) was successfully generated, allowing researchers to identify 14 genes potentially implicated in the disease. One gene in particular demonstrates the important role inflammation may play in the brain of Alzheimers patients. The study was completed by scientists at The New York Stem Cell Foundation (NYSCF) Research Institute in collaboration with scientists at the Icahn School of Medicine at Mount Sinai (ISMMS) and funded in part by the Cure Alzheimers Fund(CAF).

In the study published today in PLOS ONE, a team of scientists produced stem cells and neural precursor cells (NPCs), representing early neural progenitor cells that build the brain from patients with severe early-onset AD with mutations in the Presenilin 1 (PSEN1) gene. These NPCs had elevated Abeta42/Abeta40 ratios, indicating elevation of the form of amyloid found in the brains of Alzheimers patients. These levels were greater than those in adult cells that did not have the PSEN1 mutation. This elevated ratio shows that the NPCs grown in the petri dish accurately reflected the cells in the brains of FAD patients.

"The gene expression profile from the familial Alzheimers stem cells points to inflammation, which is especially exciting because we would not usually associate inflammation with this particular Alzheimer's gene," said Sam Gandy, MD, PhD, Professor of Neurology and Psychiatry and Director of the Center for Cognitive Health at the Icahn School of Medicine at Mount Sinai and a co-author on the study. Gandy is also Associate Director of the NIH-Designated Mount Sinai Alzheimers Disease Research Center and leader of the Cure Alzheimers Fund Stem Cell Consortium.

"This is the kind of innovative science that will help us better understand the cause of Alzheimers and how to approach the disease with effective therapies," said Tim Armour, President and CEO of Cure Alzheimers Fund (CAF). "It also showcases how targeted investment of critical resources can make a difference in finding solutions to this debilitating disease."

The researchers generated induced pluripotent stem (iPS) cells from affected and unaffected individuals from two families carrying PSEN1 mutations. After thorough characterization of the NPCs through gene expression profiling and other methods, they identified 14 genes that behaved differently in PSEN1 NPCs relative to NPCs from individuals without the mutation. Five of these targets also showed differential expression in late onset Alzheimers disease patients brains. Therefore, in the PSEN1 iPS cell model, the researchers reconstituted an essential feature in the molecular development of familial Alzheimers disease.

The studys co-lead authors Sam Gandy, MD, PhD and Scott Noggle, PhD are both members of CAFs Stem Cell Consortium, which supported this research. The Stem Cell Consortium is an international group of scientists collaborating on innovative research that investigates, for the first time, the brain cells from individuals with the common form of Alzheimers disease. Other members of the Consortium include Kevin Eggan, PhD, of Harvard University, Marc Tessier-Lavigne, PhD, of Rockefeller University, Doo Kim, PhD, of Harvard Medical School, and Tamir Ben-Hur, MD, PhD, of Hadassah University.

Stem cells are the least mature cells in the body. This means they can be treated with a defined cocktail of factors that can cause maturation of cells along discrete cell types. With iPS cells, which are cells that can become any cell type in the body, it now is possible to take skin cells from adults and return them to an immature state. By redirecting skin cells from Alzheimers patients and turning them into nerve cells, investigators are able to study adult Alzheimers neurons (nerve cells) in the lab.

Although the majority of Alzheimers disease cases are late onset and likely result from a mixture of genetic predisposition and environmental factors, there are genetic forms of the disease that affect patients at much earlier ages. PSEN1 mutations cause the most common form of inherited familial Alzheimers disease and are one hundred percent penetrant, resulting in all individuals with this mutation getting the disease.

Identifying genes that behaved differently in patients with the mutation provides new targets to further study and better understand their effects on the development of Alzheimers disease. One of these genes, NLRP2, is traditionally thought of as an inflammatory gene.

Continue reading here:
Breakthrough Research Provides Valuable Insight On Cause Of Alzheimer’s

To Read More: Breakthrough Research Provides Valuable Insight On Cause Of Alzheimer’s
categoriaUncategorized commentoComments Off on Breakthrough Research Provides Valuable Insight On Cause Of Alzheimer’s | dataJanuary 9th, 2014
Read All

Stem Cells Used to Model Disease that Causes Abnormal Bone Growth

By daniellenierenberg

Researchers have developed a new way to study bone disorders and bone growth, using stem cells from patients afflicted with a rare, genetic bone disease. The approach, based on Nobel-Prize winning techniques, could illuminate the illness, in which muscles and tendons progressively turn into bone, and addresses the similar destructive process that afflicts a growing number of veterans who have suffered blast injuries including traumatic amputations or injuries to the brain and nervous system. This insidious hardening of tissues also grips some patients following joint replacement or severe bone injuries.

The disease model, described in a new study by a UC San Francisco-led team, involves taking skin cells from patients with the bone disease, reprogramming them in a lab dish to their embryonic state, and deriving stem cells from them.

Edward Hsiao, MD, PhD

Once the team derived the stem cells, they identified a cellular mechanism that drives abnormal bone growth in the thus-far untreatable bone disease, calledfibrodysplasiaossificansprogressiva(FOP). Furthermore, they found that certain chemicals could slow abnormal bone growth in the stem cells, a discovery that might help guide future drug development.

Clinically, the genetic and trauma-caused conditions are very similar, with bone formation in muscle leading to pain and restricted movement, according to the leader of the new study, Edward Hsiao, MD, PhD, an endocrinologist who cares for patients with rare and unusual bone diseases at the UCSF Metabolic Bone Clinic in the Division of Endocrinology and Metabolism.

The human cell-based disease model is expected to lead to a better understanding of these disorders and other illnesses, Hsiao said.

The new FOP model already has shed light on the disease process in FOP by showing that the mutated gene can affect different steps of bone formation, Hsiao said. These different stages represent potential targets for limiting or stopping the progression of the disease, and may also be useful for blocking abnormal bone formation in other conditions besides FOP. The human stem-cell lines we developed will be useful for identifying drugs that target the bone-formation process in humans."

The teams development of, and experimentation with, the human stem-cell disease model for FOP, published in the December issue of theOrphanetJournal of Rare Diseases, is a realization of the promise of research using stem cells of the type known as induced pluripotent stem (iPS) cells, immortal cells of nearly limitless potential, derived not from embryos, but from adult tissues.

Shinya Yamanaka, MD, PhD, a UCSF professor of anatomy and a senior investigator with the UCSF-affiliated Gladstone Institutes, as well as the director of the Center foriPSCell Research and Application (CiRA) and a principal investigator at Kyoto University, shared the Nobel Prize in 2012 for discovering how to makeiPScells from skin cells using a handful of protein factors. These factors guide a reprogramming process that reverts the cells to an embryonic state, in which they have the potential to become virtually any type of cell.

Read the original:
Stem Cells Used to Model Disease that Causes Abnormal Bone Growth

To Read More: Stem Cells Used to Model Disease that Causes Abnormal Bone Growth
categoriaSkin Stem Cells commentoComments Off on Stem Cells Used to Model Disease that Causes Abnormal Bone Growth | dataJanuary 8th, 2014
Read All

Arizona Pain Stem Cell Institute Now Offering PRP Therapy for Joint Arthritis Relief

By NEVAGiles23

Phoenix, AZ (PRWEB) January 08, 2014

The top Phoenix stem cell clinic in the Valley, Arizona Pain Stem Cell Institute, is now offering PRP therapy for joint arthritis relief. Platelet rich plasma therapy offers the potential for relieving the pain from knee, hip, shoulder and spinal arthritis. For more information and scheduling with the Board Certified Phoenix pain management doctors, call (602) 507-6550.

Platelet rich plasma therapy, known as PRP therapy, involves a simple blood draw. The blood is then spun in a centrifuge, which then concentrates platelets and growth factors for immediate injection into the arthritic joint. The PRP therapy then acts as an attractant for the body's stem cells.

Recent published studies have shown that PRP therapy offers significant pain relief for arthritic knees and helps preserve existing cartilage. One to three injections may be necessary to obtain optimal results, which are performed as an outpatient and entail minimal risk.

In addition to PRP therapy, the Arizona Pain Stem Cell Institute offers several other regenerative medicine treatments for both joint and spinal arthritis. This includes bone marrow and fat derived stem cell injections along with amniotic stem cell rich injections. These injections are offered for patients as part of numerous clinical research studies.

The stem cell injection studies are enrolling now at the Institute. The studies are industry subsidized, with the procedures performed by the Board Certified pain management physicians.

The Arizona Pain Stem Cell Institute is part of Arizona Pain Specialists. With 5 locations accepting over 50 insurances, the pain clinics offer comprehensive treatment options for patients with both simple and complicated pain conditions.

Call (602) 507-6550 for more information and scheduling.

Go here to see the original:
Arizona Pain Stem Cell Institute Now Offering PRP Therapy for Joint Arthritis Relief

To Read More: Arizona Pain Stem Cell Institute Now Offering PRP Therapy for Joint Arthritis Relief
categoriaUncategorized commentoComments Off on Arizona Pain Stem Cell Institute Now Offering PRP Therapy for Joint Arthritis Relief | dataJanuary 8th, 2014
Read All

NYSCF scientists make living brain cells from Alzheimer’s patients biobanked brain tissue

By NEVAGiles23

PUBLIC RELEASE DATE:

7-Jan-2014

Contact: David McKeon DMckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY (January 7, 2014) Scientists at The New York Stem Cell Foundation (NYSCF) Research Institute, working in collaboration with scientists from Columbia University Medical Center (CUMC), for the first time generated induced pluripotent stem (iPS) cells lines from non-cryoprotected brain tissue of patients with Alzheimer's disease.

These new stem cell lines will allow researchers to "turn back the clock" and observe how Alzheimer's develops in the brain, potentially revealing the onset of the disease at a cellular level long before any symptoms associated with Alzheimer's are displayed. These reconstituted Alzheimer's cells will also provide a platform for drug testing on cells from patients that were definitively diagnosed with the disease. Until now, the only available method to definitively diagnose Alzheimer's disease that has been available to researchers is examining the brain of deceased patients. This discovery will permit scientists for the first time to compare "live" brain cells from Alzheimer's patients to the brain cells of other non-Alzheimer's patients.

NYSCF scientists successfully produced the iPS cells from frozen tissue samples stored for up to eleven years at the New York Brain Bank at Columbia University.

This advance, published today in Acta Neuropathologica Communications , shows that disease-specific iPS cells can be generated from readily available biobanked tissue that has not been cryoprotected, even after they have been frozen for many years. This allows for the generation of iPS cells from brains with confirmed disease pathology as well as allows access to rare patient variants that have been banked. In addition, findings made using iPS cellular models can be cross-validated in the original brain tissue used to generate the cells. The stem cell lines generated for this study included samples from patients with confirmed Alzheimer's disease and four other neurodegenerative diseases.

This important advance opens up critical new avenues of research to study cells affected by disease from patients with definitive diagnoses. This success will leverage existing biobanks to support research in a powerful new way.

iPS cells are typically generated from a skin or blood sample of a patient by turning back the clock of adult cells into pluripotent stem cells, cells that can become any cell type in the body. While valuable, iPS cells are often generated from patients without a clear diagnosis of disease and many neurodegenerative diseases, such as Alzheimer's disease, often lack specific and robust disease classification and severity grading. These diseases and their extent can only be definitively diagnosed by post-mortem brain examinations. For the first time we will now be able to compare cells from living people to cells of patients with definitive diagnoses generated from their banked brain tissue.

Brain bank networks, which combined contain tens of thousands of samples, provide a large and immediate source of tissue including rare disease samples and a conclusive spectrum of disease severity among samples. The challenge to this approach is that the majority of biobanked brain tissue was not meant for growing live cells, and thus was not frozen in the presence of cryoprotectants normally used to protect cells while frozen. NYSCF scientists in collaboration with CUMC scientists have shown that these thousands of samples can now be used to make living human cells for use in disease studies and to develop new drugs or preventative treatments for future patients.

Read more here:
NYSCF scientists make living brain cells from Alzheimer's patients biobanked brain tissue

To Read More: NYSCF scientists make living brain cells from Alzheimer’s patients biobanked brain tissue
categoriaSkin Stem Cells commentoComments Off on NYSCF scientists make living brain cells from Alzheimer’s patients biobanked brain tissue | dataJanuary 7th, 2014
Read All

Leaked files slam stem-cell therapy

By NEVAGiles23

Massimo Valicchia/NurPhoto/Corbis

Potential patients have offered vocal support for Staminas stem-cell treatment in Italy.

A series of damning documents seen by Nature expose deep concerns over the safety and efficacy of the controversial stem-cell therapy promoted by Italys Stamina Foundation. The leaked papers reveal the true nature of the processes involved, long withheld by Staminas president, Davide Vannoni. Other disclosures show that the successes claimed by Stamina for its treatments have been over-stated. And, in an unexpected twist, top Italian scientists are dissociating themselves from an influential Miami-based clinician over his apparent support for the foundation.

Stamina, based in Brescia, claims that it successfully treated more than 80 patients, mostly children, for a wide range of conditions, from Parkinsons disease to muscular dystrophy, before the health authorities halted its operations in August 2012. A clinical trial to assess the treatment formally was approved by the Italian government last May, and an expert committee was convened by the health ministry to study Staminas method and to recommend which illnesses the trial should target.

Stamina says that its technique involves extracting mesenchymal stem cells from a patients bone marrow, culturing them so that they turn into nerve cells, and then injecting them back into the same patient. But full details of the method have never been revealed, and Vannoni provided the full protocol to the expert committee only in August.

In October, the committees report prompted health minister Beatrice Lorenzin to halt plans for the clinical trial. That led to public protests in support of Stamina, and, after an appeal by Vannoni, a court ruled in early December that the expert committee was unlawfully biased. Some members had previously expressed negative opinions of the method, the ruling said. As a result, Lorenzin appointed a new committee on 28December, reopening the possibility of a clinical trial.

Staminas protocol, together with the original committees report, was leaked to the press on 20 December (Nature has also been shown transcripts of the committees deliberations). The leaked papers reveal that the original expert committee identified serious flaws and omissions in Staminas clinical protocol. It did not apply legally required Good Manufacturing Practice standards, the committee says. The protocol exposed an apparent ignorance of stem-cell biology and relevant clinical expertise, the report argues, as well as flawed methods and therapeutic rationale (see Protocol opinion).

What the expert committee said on Staminas methods.

The report of the original expert committee tasked with looking at Staminas clinical protocol includes the following opinions:

The protocol contains no method for screening for pathogens such as prions or viruses, even though the culture medium used could contain them.

See the rest here:
Leaked files slam stem-cell therapy

To Read More: Leaked files slam stem-cell therapy
categoriaUncategorized commentoComments Off on Leaked files slam stem-cell therapy | dataJanuary 7th, 2014
Read All

Gene Patent Case Fuels U.S. Court Test of Stem Cell Right

By Sykes24Tracey

As scientists get closer to using embryonic stem cells in new treatments for blindness, spinal cord injuries and heart disease, a U.S. legal debate could determine who profits from that research.

Consumer Watchdog, a nonprofit advocacy group, wants an appeals court to invalidate a University of Wisconsin-Madisons patentfor stem cells derived from human embryos, saying its too similar to earlier research. The Santa Monica, California, group also says the U.S. Supreme Courts June ruling limiting ownership rights of human genes should apply to stem cells, a potentially lucrative field for medical breakthroughs.

The challenge to Wisconsin Alumni Research Foundation, the universitys licensing arm, is about whether patents help or hinder U.S. stem-cell research, which has been stymied by political debate. The consumer group says it drives up the cost of research by requiring companies and some academics to pay a licensing fee to the university.

What were asking the government to do is say WARF has no right to the patent, said Dan Ravicher, executive director Public Patent Foundation in New York, which is handling the challenge for Consumer Watchdog. Its like the government sent a check to WARF they didnt deserve.

Consumer Watchdog lost a challenge at the U.S. Patent and Trademark Office in January 2013. It wants the Court of Appeals for the Federal Circuit in Washington to review that decision and consider new arguments based on the Supreme Courts finding that genes -- like stem cells -- are a natural material that cant be patented. Beyond the science question, the case has become a flashpoint over how far members of the public can go to invalidate patents on policy grounds.

While the patent expires in April 2015 and the university has other stem-cell-related patents, Consumer Watchdog is continuing a six-year battle to invalidate it because stem-cell research is starting to get some traction into therapeutic uses, Ravicher said.

The promise of embryonic stem cells is to create or repair tissues and organs using material taken from eggs fertilized in the laboratory. The cells created can be replicated indefinitely, and with the right biological cues, may aid in treating damaged heart tissue and spinal cords, or generate therapies for diabetes and cancer. Companies like StemCells Inc. (STEM) and Advanced Cell Technology Inc. are testing therapies to treat macular degeneration, a cause of blindness.

The next paradigm shift in medicine will be advances in cell therapy -- its under way, said Jason Kolbert, senior biotechnology analyst with Maxim Group LLC in New York. He said pharmaceutical makers such as Teva Pharmaceutical Industries Ltd. (TEVA) of Petach Tikva, Israel, and Pfizer (PFE) Inc. of New York are working with stem-cell researchers on new therapies.

Stem-cell science in the U.S. was curbed in 2001 when then-President George W. Bush issued an executive order limiting research to existing cell lines amid controversy over human embryo destruction, even though they were never in a womans uterus. President Barack Obama reversed that order in 2009.

Some scientists have avoided the public debate by using adult cells to find the unlimited potential they have in embryonic cells.

See the original post here:
Gene Patent Case Fuels U.S. Court Test of Stem Cell Right

To Read More: Gene Patent Case Fuels U.S. Court Test of Stem Cell Right
categoriaSpinal Cord Stem Cells commentoComments Off on Gene Patent Case Fuels U.S. Court Test of Stem Cell Right | dataJanuary 6th, 2014
Read All

Biomaterials Get Stem Cells to Commit to a Bony Future

By LizaAVILA

Contact Information

Available for logged-in reporters only

Newswise With the help of biomimetic matrices, a research team led by bioengineers at the University of California, San Diego has discovered exactly how calcium phosphate can coax stem cells to become bone-building cells. This work is published in the Proceedings of the National Academy of Sciences the week of Jan. 6, 2014.

UC San Diego Jacobs School of Engineering professor Shyni Varghese and colleagues have traced a surprising pathway from these biomaterials to bone formation. Their findings will help them refine the design of biomaterials that encourage stem cells to give rise to new bone. The researchers say their study may also point out new targets for treating bone defects and bone metabolic disorders such as major fractures and osteoporosis.

The materials are built to mimic the bodys own cellular niches, in which undifferentiated or blank-slate stem cells from bone marrow transform into specific bone-forming cells. We knew for years that calcium phosphate-based materials promote osteogenic differentiation of stem cells, but none of us knew why, Varghese said.

As engineers, we want to build something that is reproducible and consistent, she explained, so we need to know how building factors contribute to this end.

The researchers found that when phosphate ions gradually dissolve from these materials, they are taken up by the stem cells and used for the production of ATP, a key metabolic molecule. An ATP metabolic product called adenosine then signals the stem cells to commit to becoming bone-forming cells.

Varghese said it was a surprise to her team that the biomaterials were connected to metabolic pathways. And we didnt know how these metabolic pathways could influence stem cells commitment to bone formation.

While the PNAS findings only apply to bone building, Varghese and her students at UC San Diego are working on a variety of projects to understand how stem cells thrive and differentiate into a variety of cell types. With this information, they hope to design biomaterials that can be used to help transform stem cells into tissues that may someday replace diseased or degenerated bone, muscle, or blood vessels.

Stem cell research may seem like an unusual endeavor for engineers, but tissue construction and the development of biomaterials have become one more type of building in the engineering repertoire, Varghese said.

The rest is here:
Biomaterials Get Stem Cells to Commit to a Bony Future

To Read More: Biomaterials Get Stem Cells to Commit to a Bony Future
categoriaBone Marrow Stem Cells commentoComments Off on Biomaterials Get Stem Cells to Commit to a Bony Future | dataJanuary 6th, 2014
Read All

West Coast Stem Cell Clinic, TeleHealth, Now Offering Stem Cell Injections for Ligament Sprains

By NEVAGiles23

Orange County, CA (PRWEB) January 06, 2014

Top West Coast Stem Cell Clinic, TeleHealth, is now offering stem cell injections for ligament sprains. This includes injuries of the ankle, knee, wrist and other extremity joints. Board Certified doctors administer the outpatient injections which can help patients heal quicker than conventional treatments. For more information and scheduling, call (888) 828-4575.

In adults, ligament sprains can take months to heal due to limited blood supply and healing potential. This can keep athletes off the field and inhibit the ability of even recreational athletes to walk and run without pain.

Conventional pain relief treatments are able to provide pain relief. This may include steroid injections or anti-inflammatories by mouth. However, these treatments do not alter the course of the healing.

With the advent of regenerative medicine treatments, the potential exists for quicker healing. These treatments include fat or bone marrow derived stem cell injections along with platelet rich plasma therapy.

Platelet rich plasma therapy, known as PRP therapy, involves a simple blood draw from the patient. The blood is spun in a centrifuge, which concentrates the platelets and growth factors. These are then injected into the area of ligament injury.

With the fat or bone marrow derived stem cells, the material is harvested in an outpatient procedure from the patient. It is processed immediately to concentrate the patient's stem cells and then injected right away into the injured region.

Small published studies have shown the treatment to be very effective for healing the injuries faster than with conventional treatments. There is low risk involved, the treatments are outpatient and performed by highly experienced Board Certified doctors who have over twenty years combined experience in regenerative medicine treatments.

Along with the injections for ligament injury, stem cell injections are also offered for degenerative arthritis, rotator cuff injury, back and neck pain, achilles tendonitis, plantar fasciitis and more.

TeleHealth has two offices for treatment, one in Orange and a second in Upland, CA. Call (888) 828-4575 for more information and scheduling.

Go here to see the original:
West Coast Stem Cell Clinic, TeleHealth, Now Offering Stem Cell Injections for Ligament Sprains

To Read More: West Coast Stem Cell Clinic, TeleHealth, Now Offering Stem Cell Injections for Ligament Sprains
categoriaBone Marrow Stem Cells commentoComments Off on West Coast Stem Cell Clinic, TeleHealth, Now Offering Stem Cell Injections for Ligament Sprains | dataJanuary 6th, 2014
Read All

Patients endorse key stem cell research

By raymumme

Despite some ethical concerns, most patients are now broadly endorsing stem cell research.

In the case of induced pluripotent stem cells (iPSCs), which are stem cells made from skin or other tissues, researchers at the Johns Hopkins University found patients were largely in favour of participating in iPSC research even if personal benefit was unlikely.

The patients, however, raised concerns about consent, privacy and transparency.

"Bioethicists as well as stem cell researchers and policy-makers have discussed ethical issues at length but till date, we didn't have any systematic information about what patients think about these issues," said Jeremy Sugarman, the Harvey M. Meyerhoff professor of bioethics and medicine at Johns Hopkins Berman Institute of Bioethics.

Unlike human embryonic stem cells, iPSCs are derived without destroying a human embryo. Research with human iPSCs is valuable for developing new drugs, studying disease, and perhaps developing medical treatments, said the study published in the journal Cell Stem Cell.

According to the study, consent was highly important for patients. Some patients even suggested that proper informed consent could compensate for other concerns they had about privacy, the "immortalisation" of cells and the commercialisation of stem cells.

There was a "strong desire among participants to have full disclosure of the anticipated uses, with some participants wanting to be able to veto certain uses of their cells", the study added.

"The idea that donated cells would potentially live forever was unnerving to some participants," the report stated.

"This study is a first step in getting crucial information about what values are factored into a decision to participate in iPSC research, and what those participants expect from the experience," said Sugarman.

Read more from the original source:
Patients endorse key stem cell research

To Read More: Patients endorse key stem cell research
categoriaSkin Stem Cells commentoComments Off on Patients endorse key stem cell research | dataJanuary 6th, 2014
Read All

2014 30 Under 30: Science & Healthcare

By LizaAVILA

Cofounder of Stem Cell Theranostics and StartX Med Divya Nag is attacking one of medicine's biggest problems: the fact that most types of human cellslike those in the heart or liverdie when you keep them in a petri dish. This makes testing new drugs a risky, costly and time-consuming business: 90% of medicines that start clinical trials turn out to be too unsafe or ineffective to market. But a new technology, the induced pluripotent stem cell, may help. Nag's company, Stem Cell Theranostics, was created from technology funded by a $20 million grant from the California Institute of Regenerative Medicine and is closing a venture round. It turns cellsusually from a piece of skininto embryonic-like stem cells, then uses them to create heart cells. These cells can live in petri dishes and be used to test new drugs. Someday they might even replace heart tissue that dies during a heart attack. Three large pharmaceutical companies are customers, though revenues are small. Nag, who was already publishing in prestigious scientific journals when she was an undergraduate, dropped out of Stanford to pursue her dream. No regrets: "Our technology was so promising and I was so passionate about it that nothing else made sense to me," she says. "It was very clear this was what I wanted to do."

Continued here:
2014 30 Under 30: Science & Healthcare

To Read More: 2014 30 Under 30: Science & Healthcare
categoriaUncategorized commentoComments Off on 2014 30 Under 30: Science & Healthcare | dataJanuary 6th, 2014
Read All

Beverly Hills Institute for Cellular Therapy Now Offering Revolutionary Stem Cell Face Lift Procedure at Special New …

By LizaAVILA

Beverly Hills, California (PRWEB) January 06, 2014

The top stem cell clinic in Beverly Hills and Los Angeles, Beverly Hills Institute of Cellular Therapy, is now offering revolutionary stem cell facelift procedures with a New Years pricing special. The procedure involves a nonoperative technique with amniotic stem cells performed by licensed providers. No incisions are necessary, and the outpatient procedures are being offered at 20% off regular price. Call (424) 253-5577 for more information and scheduling.

Traditional facelift procedures involve anesthesia, incisions and significant healing time. A stem cell facelift procedure is performed as an outpatient with no incisions or systemic anesthesia necessary. The Beverly Hills Institute utilizes amniotic stem cells, which are processed at an FDA regulated lab and have been used over 10,000 times without adverse events.

Stem cells have the capability to eliminate wrinkles and provide the skin with a more youthful, glowing appearance. The procedure allows patients to avoid the risks of infection and no stitches are necessary. It costs considerably less than a traditional facelift and now at 20% off is a great option for those desiring to look younger without going through separate procedures for each facial area.

As individuals age, the skin tone in the facial area and texture begin to decline. Stem cells are able to rejuvenate collagen deficient areas and have the capability to change into all types of cells in a procedure that is natural, affordable and safe.

Amniotic fluid is extremely rich in stem cells, growth factors, hyaluronic acid and anti-inflammatory cells. The combination works extremely well for the stem cell facial procedure, with results that are often noticeable quickly and long lasting.

This new technology is performed by licensed aestheticians, nurses and Double Board Certified physicians at the Institute. The procedure takes less than an hour to complete. In addition to the stem cell facelift, the Institute also offers stem cell injections for numerous musculoskeletal conditions including tendon and ligament injury along with degenerative arthritis. This includes stem cell therapy for knees, shoulders and hips.

For more information and scheduling to discuss options with stem cell procedures for looking and feeling younger while avoiding surgery, call the Beverly Hills Institue for Cellular Therapy at (424) 253-5577.

Originally posted here:
Beverly Hills Institute for Cellular Therapy Now Offering Revolutionary Stem Cell Face Lift Procedure at Special New ...

To Read More: Beverly Hills Institute for Cellular Therapy Now Offering Revolutionary Stem Cell Face Lift Procedure at Special New …
categoriaUncategorized commentoComments Off on Beverly Hills Institute for Cellular Therapy Now Offering Revolutionary Stem Cell Face Lift Procedure at Special New … | dataJanuary 6th, 2014
Read All

Grace Century Attends Provia Labs First Quarter Expansion Meeting January 5-10

By NEVAGiles23

Ras Al Khaimah, UAE (PRWEB) January 05, 2014

The executive team of UAE based international research and private equity consultancy, Grace Century, FZ LLC is in Boston, Massachusetts this week to attend Provia Laboratories' first quarterly meeting of 2014. The meeting is designed specifically to implement the next phase of the health services company's dental stem cell bio banking service.

According to Scott Wolf, CEO of Grace Century, this week's meeting will be much more than a typical quarterly meeting for Provia Labs and its bio-banking service, Store-A-Tooth. Upon moving into its new headquarters--triple the companys previous space---and bringing all of its operations under one roof, Provia Labs has been able to simultaneously reduce fixed costs and accommodate dramatic growth. The company is ready for its planned North American, European, and Middle East expansion. "These are incredibly exciting times for Provia and its expansion. When we promote a firm, we believe that there is an obligation of oversight to our members that is ongoing. This will be our third visit to Provia," said Wolf.

"2013 was designed to prove our model works. With tremendous dental professional interest and acceptance, we have built not only an existing dentist network of over 6,000, but the model to replicate this nationwide," explains Provia Laboratories CEO, Howard Greenman. "While each geographical territory has its challenges, the common denominator is that there is tremendous demand by families to harvest and bank their childrens stem cells. The key is increasing awareness of their opportunities to do so from teeth."

Provia Labs is presently providing services directly or through collaborators in seven countries and three states in the U.S. The plan is to expand into ten states in 2014. Europe, the Caribbean, and possibly the Middle East will also be added in the New Year.

Besides the bio banking of dental stem cells, Provia has also completed numerous federal consulting contracts and provides bio-specimen containers to some of the worlds premier research facilities through its Proviasette division.

About Grace Century, FZ LLC

Grace Century is an international research and private equity consultancy located in Ras Al Khaimah (north of Dubai) in the United Arab Emirates (UAE). Grace Century specializes in "game-changing" life science and health related private equity projects. For more information, visit: http://gracecentury.com.

About Provia Laboratories, LLC

Provia Laboratories is a health services company specializing in high quality stem cell bio banking (the collection, transport, processing, and cryogenic storage of biological specimens). Its dental stem cell banking service, Store-A-Tooth, gives parents the option to store stem cells today to protect their childrens health tomorrow. Store-A-Tooth preserves stem cells from baby and wisdom teeth that would otherwise be discarded, so parents can be prepared for advances in stem cell therapies that someday may help treat conditions such as type 1 diabetes, spinal cord injury, heart attack, stroke, and neurological disorders like Parkinsons and Alzheimers. For more information about Store-A-Tooth dental stem cell banking, call 1-877-867-5753 or visit http://www.store-a-tooth.com.

More:
Grace Century Attends Provia Labs First Quarter Expansion Meeting January 5-10

To Read More: Grace Century Attends Provia Labs First Quarter Expansion Meeting January 5-10
categoriaSpinal Cord Stem Cells commentoComments Off on Grace Century Attends Provia Labs First Quarter Expansion Meeting January 5-10 | dataJanuary 5th, 2014
Read All

Page 565«..1020..564565566567..570580..»


Copyright :: 2025