More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies
By JoanneRUSSELL25
Durham, NC (PRWEB) December 09, 2013
Generating new cardiac muscle from human embryonic stem cells (hESCs) and/or induced pluripotent stem cells (iPSC) could fulfill the demand for therapeutic applications and drug testing. The production of a similar population of these cells remains a major limitation, but in a study just published in STEM CELLS Translational Medicine, researchers now believe they have found a way to do this.
By combining small molecules and growth factors, the international research team led by investigators at the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai developed a two-step system that caused stem cells to differentiate into ventricular heart muscle cells from hESCs and iPSCs. The process resulted in high efficiency and reproducibility, in a manner that mimicked the developmental steps of normal cardiovascular development.
These chemically induced, ventricular-like cardiomyocytes (termed ciVCMs) exhibited the expected cardiac electrophysiological and calcium handling properties as well as the appropriate heart rate responses, said lead investigator Ioannis Karakikes, Ph.D., of the Stanford University School Of Medicine, Cardiovascular Institute. Other members of the team included scientists from the Icahn School of Medicine at Mount Sinai, New York, and the Stem Cell & Regenerative Medicine Consortium at the University of Hong Kong.
In addition, using an integrated approach involving computational and experimental systems, the researchers demonstrated that using molecules to modulate the Wnt pathway, which passes signals from cell to cell, plays a key role in whether a cell evolves into an atrial or ventricular muscle cell.
The further clarification of the molecular mechanism(s) that underlie this kind of subtype specification is essential to improving our understanding of cardiovascular development. We may be able to regulate the commitment, proliferation and differentiation of pluripotent stem cells into heart muscle cells and then harness them for therapeutic purposes, Dr. Karakikes said.
"Most cases of heart failure are related to a deficiency of heart muscle cells in the lower chambers of the heart, said said Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. An efficient, cost-effective and reproducible system for generating ventricular cardiomyocytes would be a valuable resource for cell therapies as well as drug screening.
###
The full article, Small Molecule-Mediated Directed Differentiation of Human Embryonic Stem Cells Toward Ventricular Cardiomyocytes, can be accessed at http://www.stemcellstm.com.
About STEM CELLS Translational Medicine: STEM CELLS TRANSLATIONAL MEDICINE (SCTM), published by AlphaMed Press, is a monthly peer-reviewed publication dedicated to significantly advancing the clinical utilization of stem cell molecular and cellular biology. By bridging stem cell research and clinical trials, SCTM will help move applications of these critical investigations closer to accepted best practices.
Read the rest here:
More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies
Space Station made accessible for stem cell research
By LizaAVILA
Washington, Dec 7 : NASA and the Center for the Advancement of Science in Space (CASIS) are enabling research aboard the International Space Station that could lead to new stem cell-based therapies for medical conditions faced on Earth and in space.
Scientists will take advantage of the space station's microgravity environment to study the properties of non-embryonic stem cells.
NASA is interested in space-based cell research because it is seeking ways to combat the negative health effects astronauts face in microgravity, including bone loss and muscle atrophy.
Mitigation techniques are necessary to allow humans to push the boundaries of space exploration far into the solar system. This knowledge could help people on Earth, particularly the elderly, who are afflicted with similar conditions.
Two stem cell investigations scheduled to fly to the space station next year were highlighted Friday, Dec. 6, at the World Stem Cell Summit in San Diego.
Lee Hood, a member of the CASIS Board of Directors, moderated a panel session in which scientists Mary Kearns-Jonker of Loma Linda University in California and Roland Kaunas of Texas A&M University discussed their planned research, which will gauge the impact of microgravity on fundamental stem cell properties.
Kearns-Jonker's research will study the aging of neonatal and adult cardiac stem cells in microgravity with the ultimate goal of improving cardiac cell therapy.
Kaunas is a part of a team of researchers developing a system for co-culturing and analyzing stem cells mixed with bone tumor cells in microgravity.
This system will allow researchers to identify potential molecular targets for drugs specific to certain types of cancer.
Stem cells are cells that have not yet become specialized in their functions. They display a remarkable ability to give rise to a spectrum of cell types and ensure life-long tissue rejuvenation and regeneration.
Read more from the original source:
Space Station made accessible for stem cell research
Scientists Grow Functioning Neural Cells in Lab Raising Hopes of Bio-engineered Brain
By LizaAVILA
Researchers in Sweden have successfully grown functioning neural tissues in lab, which has opened up significant new possibilities in medical science including new ways of treating cases of brain damage.
Scientists have already developed sophisticated techniques to grow tissues of other visceral organs such as kidney, liver, trachea, lymph nodes, and veins, and have even performed tissue transplantations in body for organ regeneration.
However, growing neural tissues in the lab is itself tricky as neurons are the most complex cells in our body, and imitating the functional biology of brain has been the most challenging task for scientists trying to unlock the mysteries of human body.
Neural tissues have been grown before in labs, but there is still a long way to go before researchers can achieve in vivo nerve regeneration and differentiation.
But Paolo Macchiarini and Silvia Baiguera at the Karolinska Institute in Stockholm may have identified a way forward.
Organic tissue is grown in a scaffold which replicates the protein-rich environment of tissues in the body, known as extracellular matrix (ECM). The in vitro scaffold thus provides nutrients and biochemical cues to the embedded stem cells to help them grow into differentiated cells.
The researchers contrived a gelatin scaffold with extracellular plasma from rat brain cells to replicate in vivo environment, and then lodged mesenchymal stem cells from another rat's bone marrow into the scaffold. The experiment was successful as the stem cells grew into differentiated neural cells in vitro.
The team believes that the bioengineering technique could be used for surgically treating neurodegenerative disorders and injuries.
Macchiarini hopes of using transplants of bioengineered tissue to replace parts of the brain tissues damaged by gunshots, concussions etc. and in conditions such as Parkinson's and Alzheimer's caused by death of brain cells.
Read more here:
Scientists Grow Functioning Neural Cells in Lab Raising Hopes of Bio-engineered Brain
UTHealth Researchers Study Stem Cell Treatments for Children with CP
By JoanneRUSSELL25
Contact Information
Available for logged-in reporters only
Newswise HOUSTON (Dec. 10, 2013) A first-of-its-kind clinical trial studying two forms of stem cell treatments for children with cerebral palsy (CP) has begun at The University of Texas Health Science Center at Houston (UTHealth) Medical School.
The double-blinded, placebo-controlled studys purpose includes comparing the safety and effectiveness of banked cord blood to bone marrow stem cells. It is led by Charles S. Cox, Jr., M.D., the Childrens Fund, Inc. Distinguished Professor of Pediatric Surgery at the UTHealth Medical School and director of the Pediatric Trauma Program at Childrens Memorial Hermann Hospital. Co-principal investigator is Sean I. Savitz, M.D., professor and the Frank M. Yatsu, M.D., Chair in Neurology in the UTHealth Department of Neurology.
The study builds on Cox extensive research studying stem cell therapy for children and adults who have been admitted to Childrens Memorial Hermann and Memorial Hermann-Texas Medical Center after suffering a traumatic brain injury (TBI). Prior research, published in the March 2010 issue of Neurosurgery, showed that stem cells derived from a patients own bone marrow were safely used in pediatric patients with TBI. Cox is also studying cord blood stem cell treatment for TBI in a separate clinical trial.
A total of 30 children between the ages of 2 and 10 who have CP will be enrolled: 15 who have their own cord blood banked at Cord Blood Registry (CBR) and 15 without banked cord blood. Five in each group will be randomized to a placebo control group. Families must be able to travel to Houston for the treatment and follow-up visits at six, 12 and 24 months.
Parents will not be told if their child received stem cells or a placebo until the 12-month follow-up exam. At that time, parents whose children received the placebo may elect to have their child receive the stem cell treatment through bone marrow harvest or cord blood banked with CBR.
Collaborators for the study include CBR, Lets Cure CP, TIRR Foundation and Childrens Memorial Hermann Hospital. The study has been approved by the U.S. Food and Drug Administration.
Cerebral palsy is a group of disorders that affects the ability to move and maintain balance and posture, according to the Centers for Disease Control. It is caused by abnormal brain development or damage to the developing brain, which affects a persons control over muscles. Treatment includes medications, braces and physical, occupational and speech therapy.
For a list of inclusion and exclusion criteria for the trial, go to http://www.clinicaltrials.gov. For more information, call the toll-free number, 855-566-6273.
See the article here:
UTHealth Researchers Study Stem Cell Treatments for Children with CP
AIDS virus comes back in men who hoped for cure
By raymumme
Dec. 9, 2013 at 10:17 AM ET
Two men who had hoped they might be cured of an HIV infection after getting bone marrow transplants for cancer got some bad news, doctors said Monday. The virus has come back.
The intense and life-threatening treatments for cancer appeared to have wiped the virus out, and the two men took a chance and, earlier this year, stopped taking the HIV drugs that were keeping the virus under control.
At first, no signs of the virus could be found. But their doctors, cautious after decades of fighting a tricky virus, didnt declare a cure.
Its disappointing, said Dr. Daniel Kuritzkes of Brigham and Womens Hospital in Boston, who worked with Dr. Timothy Henrich to treat and study the two men.
But its still taught us a great deal.
The case of the two men shows that even if you make HIV seemingly disappear, it can be hiding out in the body and can re-activate. It might be somewhere other than in blood cells, Henrich said. Other scientists suspect HIV might be able to hole up in organs or inside the intestines.
Through this research we have discovered the HIV reservoir is deeper and more persistent than previously known and that our current standards of probing for HIV may not be sufficient to inform us if long-term HIV remission is possible if antiretroviral therapy is stopped, Henrich said.
Both patients have resumed therapy and are currently doing well. Neither man wants to be named.
Henrich, Kuritzkes and colleagues had actively looked for HIV patients with leukemia or lymphoma who had received bone marrow stem cell transplants.
See more here:
AIDS virus comes back in men who hoped for cure
Stem cell transplantation outcomes ‘improved with new drug regime’
By Sykes24Tracey
Current ratings for: Stem cell transplantation outcomes 'improved with new drug regime'
Ratings require JavaScript to be enabled.
New research suggests that outcomes for patients who have undergone stem cell transplants from unrelated or mismatched donors could be improved with the use of a drug called bortezomib, also known as velcade. This is according to a study presented at the annual meeting of the American Society of Hematology.
Stem cell transplants are treatments carried out in an attempt to cure some cancers affecting the body's bone marrow, such as leukemia, lymphoma and myeloma.
The treatment involves very high doses of chemotherapy (myeloablation) or whole body radiotherapy to clear a person's bone marrow and immune system of cancerous cells.
After this process, the killed cells are replaced with healthy stem cells through a drip that flows into a vein. These stem cells can be from the patient's own body or from a donor - preferably a sibling.
According to researchers from the Dana-Farber Cancer Institute who conducted the study, stem cells from unrelated or mismatched donors are likely to lead to worse patient outcomes following transplantation.
These patients tend to have a higher mortality rate as a result of the treatment and are more likely to experience graft-versus-host-disease (GVHD). This is a disease in which the transplanted cells attack the immune system of the recipient.
According to the researchers, recipients of mismatched donor transplants have a severe GVHD rate of 37%, a 1-year treatment-related mortality rate of 45%, and a 1-year overall survival rate of 43%.
Recipients of unrelated donor transplants have a severe GVHD rate of 28%, a 1-year treatment-related mortality rate of 36%, and a 1-year overall survival rate of 52%.
Read the original here:
Stem cell transplantation outcomes 'improved with new drug regime'
Skin’s own cells offer hope for new ways to repair wounds and reduce impact of aging on the skin
By raymumme
PUBLIC RELEASE DATE:
11-Dec-2013
Contact: Katya Nasim katya.nasim@kcl.ac.uk 44-207-848-3840 King's College London
Scientists at King's College London have, for the first time, identified the unique properties of two different types of cells, known as fibroblasts, in the skin one required for hair growth and the other responsible for repairing skin wounds. The research could pave the way for treatments aimed at repairing injured skin and reducing the impact of ageing on skin function.
Fibroblasts are a type of cell found in the connective tissue of the body's organs, where they produce proteins such as collagen. It is widely believed that all fibroblasts are the same cell type. However, a study on mice by researchers at King's, published today in Nature, indicates that there are at least two distinct types of fibroblasts in the skin: those in the upper layer of connective tissue, which are required for the formation of hair follicles and those in the lower layer, which are responsible for making most of the skin's collagen fibres and for the initial wave of repair of damaged skin.
The study found that the quantity of these fibroblasts can be increased by signals from the overlying epidermis and that an increase in fibroblasts in the upper layer of the skin results in hair follicles forming during wound healing. This could potentially lead to treatments aimed at reducing scarring.
Professor Fiona Watt, lead author and Director of the Centre for Stem Cells and Regenerative Medicine at King's College London, said: 'Changes to the thickness and compostion of the skin as we age mean that older skin is more prone to injury and takes longer to heal. It is possible that this reflects a loss of upper dermal fibroblasts and therefore it may be possible to restore the skin's elasticity by finding ways to stimulate those cells to grow. Such an approach might also stimulate hair growth and reduce scarring.
'Although an early study, our research sheds further light on the complex architecture of the skin and the mechanisms triggered in response to skin wounds. The potential to enhance the skin's response to injury and ageing is hugely exciting. However, clinical trials are required to examine the effectiveness of injecting different types of fibroblasts into the skin of humans.'
Dr Paul Colville-Nash, Programme Manager for Regenerative Medicine at the MRC, said: 'These findings are an important step in our understanding of how the skin repairs itself following injury and how that process becomes less efficient as we age. The insights gleaned from this work will have wide-reaching implications in the area of tissue regeneration and have the potential to transform the lives patients who have suffered major burns and trauma.'
###
Read the original here:
Skin's own cells offer hope for new ways to repair wounds and reduce impact of aging on the skin
Stem cells for Parkinson’s getting ready for clinic
By raymumme
A groundbreaking attempt to heal eight Parkinson's patients with their own cells could move from research to the clinic next year.
For eight Parkinson's patients seeking treatment with a new form of stem cell therapy, 2014 promises to be a milestone. If all goes well, next year the FDA will give approval to begin clinical trials. And if the patients can raise enough money, the scientists and doctors working with them will have the money to proceed.
Jeanne Loring, a stem cell scientist at The Scripps Research Institute, discusses the status of a project to treat Parkinson's patients with their own cells, turned into the kind of brain cells destroyed in Parkinson's. The project is a collaboration with Scripps Health and the Parkinson's Association of San Diego.
Scientists at The Scripps Research Institute led by Jeanne Loring have taken skin cells from all patients and grown them into artificial embryonic stem cells, called induced pluripotent stem cells. They then converted the cells into dopamine-making neurons, the kind destroyed in Parkinson's disease.
Loring discussed the project's progress on Friday morning at the 2013 World Stem Cell Summit in San Diego.
If animal studies now under way and other requirements are met, doctors at Scripps Health will perform a clinical trial. They will grow neurons until they are just short of maturity, then transplant them into the brains of the respective patients. The cells are expected to complete maturation in the brain, forming appropriate connections with their new neighbors, and begin making dopamine.
Earlier attempts to treat Parkinson's with a stem cell-like therapy mostly failed because of difficulties in quality control of the source, neural cells from aborted fetuses, Loring said. But some patients gained lasting improvement, a tantalizing hint that the trials were on the right track.
In January, a "pre-pre-IND meeting" is planned with the FDA, Loring said.
Also speaking were Ed Fitzpatrick, one of the eight patients, and Kyoto University researcher Jun Takahashi, who is independently trying the same approach in Japan.
Ed Fitzpatrick, one of eight Parkinson's patients in a program to be treated with his own cells, grown into the kind of brain cells destroyed in Parkinson's.
More here:
Stem cells for Parkinson's getting ready for clinic
Okyanos Heart Institute CEO Matt Feshbach Congratulates Japan’s Legislators On Stem Cell Bill And Global Regulatory …
By daniellenierenberg
FREEPORT, The Bahamas (PRWEB) December 06, 2013
December 6, 2013 Matt Feshbach, CEO of Okyanos Heart Institute whose mission it is to bring a new standard of care and better quality of life to patients with coronary artery disease using cardiac stem cell therapy, acknowledges the Japanese legislature for its recent approval of a bill aimed at the treatment of certain chronic diseases using regenerative medicine strategies.
The legislation was passed in Japan on November 20th, 2013. The new regenerative medicine law emphasizes the importance of establishing patient safety in the use of adult stem cell therapies prior to being offered commercially. It also serves to support innovation in stem cell and regenerative medicine therapies by providing a framework by which such technologies may be granted new, limited approval paths for some biologics.
Japan has taken a leadership position globally for its passage of enlightened legislation for stem cell therapy, said Feshbach, who recognizes this development as an important milestone in its potential to benefit patients and the field of healthcare.
We applaud Japan as well as other countries including but not limited to Australia, Singapore, and New Zealand for approving stem cell processing devices and/or biologics (such as stem cells) for use in clinics today, he added. This legislation in Japan says that if a stem cell therapy protocol can demonstrate a strong safety profile, physicians have the option to offer it to patients, generally when other standard-of-care interventions have not proven effective and the patients have no other options available to them. Patients will have the choice to use their own stem cells to treat the condition. By tracking the progress of the patients over time, efficacy can be determined and the treatment may become another standard-of-care treatment option available to patients.
While this research is important over the long term, adult stem cell therapy is unique in that it takes advantage of the natural mechanisms of a persons own stem cells to repair the cells, tissues or organs damaged by disease or injury, stated Feshbach. The dawn of a new phase in the evolution of medicine has begun.
Additional countries such as The Bahamas, Panama, Argentina and Jordan have established regulations and legislation designed to both protect patient safety and give access to treatments which have the potential to help unmet needs such as heart failure and other diseases.
Japan represents the second-largest medical market in the world and remains a global leader in both adult stem cell and gene therapy trials. Dr. Shinya Yamanaka, professor and director for the Center for iPS Cell Research and Application (CiRA) at Kyoto University, was awarded a Nobel Prize in 2012 for the discovery of induced pluripotent stem cells (iPS). Click here to read more about the Japanese legislatures recent stem cell measures.
About Okyanos Heart Institute: (Oh key AH nos) Based in Freeport, The Bahamas, Okyanos Heart Institutes mission is to bring a new standard of care and a better quality of life to patients with coronary artery disease using cardiac stem cell therapy. Okyanos adheres to U.S. surgical center standards and is led by Chief Medical Officer Howard T. Walpole Jr., M.D., M.B.A., F.A.C.C., F.S.C.A.I. Okyanos Treatment utilizes a unique blend of stem and regenerative cells derived from ones own adipose (fat) tissue. The cells, when placed into the heart via a minimally-invasive catheterization, stimulate the growth of new blood vessels, a process known as angiogenesis. The treatment facilitates blood flow in the heart and supports intake and use of oxygen (as demonstrated in rigorous clinical trials such as the PRECISE trial). The literary name Okyanos (Oceanos) symbolizes flow. For more information, go to http://www.okyanos.com
View original post here:
Okyanos Heart Institute CEO Matt Feshbach Congratulates Japan’s Legislators On Stem Cell Bill And Global Regulatory ...
Stem cell science: Can two girls help change the face of medicine?
By Dr. Matthew Watson
Dec. 8, 2013 at 2:49 PM ET
Jeff Swensen / for NBC News
The Mogul family at The Children's Institute in Pittsburgh, Pennsylvania where parents Stephen and Robyn have taken their daughter, Bari, 9 and Hayley, 15, to undergoing extensive therapy to help with their rare genetic disorders.
At 15, Hayley Mogul lacks the fine motor skills needed to write. Her sister Bari is 9 and still eating baby food.
There's no cure for their rare disorders, caused by unique genetic mutations. But for once, there's an advantage to having conditions so rare that drug companies cannot even think of looking for a cure. The sisters are taking part in a whole new kind of experiment in which scientists are literally turning back the clock on their cells.
Theyre using an experimental technique to transform the cells into embryonic form, and then growing these baby cells in lab dishes.
The goal is the get the cells to misfire in the lab in just the same way they are in Hayleys and Baris bodies. Its a new marriage of genetics and stem cell research, and represents one of the most promising applications of so-called pluripotent stem cells.
One day these two girls will probably change the face of medicine as we know it, said their father, Steven Mogul.
Steven and Robyn Mogul dont understand why both their daughters ended up with the rare mutations, which cause a range of neurological and metabolic problems.
We have been tested, said Mogul, a 45-year-old wealth manager living in Chicago. We dont have any mutations, and there are no developmental issues. We have no idea how it happened.
Link:
Stem cell science: Can two girls help change the face of medicine?
‘Something positive for humankind’: Girls lend cells to genetic study
By raymumme
NBC News - At 15, Hayley Mogul lacks the fine motor skills needed to write. Her sister Bari is 9 and still eating baby food.
There's no cure for their rare disorders, caused by unique genetic mutations. But for once, there's an advantage to having conditions so rare that drug companies cannot even think of looking for a cure. The sisters are taking part in a whole new kind of experiment in which scientists are literally turning back the clock on their cells.
They're using an experimental technique to transform the cells into embryonic form, and then growing these baby cells in lab dishes.
The goal is the get the cells to misfire in the lab in just the same way they are in Hayley's and Bari's bodies. It's a new marriage of genetics and stem cell research, and represents one of the most promising applications of so-called pluripotent stem cells.
"One day these two girls will probably change the face of medicine as we know it," said their father, Steven Mogul.
Steven and Robyn Mogul don't understand why both their daughters ended up with the rare mutations, which cause a range of neurological and metabolic problems.
"We have been tested," said Mogul, a 45-year-old wealth manager living in Chicago. "We don't have any mutations, and there are no developmental issues. We have no idea how it happened. "
The girls need special schooling and physical therapy. They must wear diapers, and when they get a cold or the flu, they can develop dangerously low blood sugar. "When the kids get sick, get colds or flu, we have to get them to the hospital," Mogul said.
Hayley, 15, has a mutation in a gene called RAI1, which can cause Smith-Magenis syndrome. The syndrome affects 1 in 25,000 people and can disturb sleep patterns, cause obesity and behavioral issues. But Hayley's mutation is unique and puzzling. Bari, 9, has an RAI1 mutation and a similarly unique mutation in the GRIN2B gene, which can cause learning disabilities.
"Bari doesn't talk," Mogul said. "She walks around, she gets around and lets you know what she wants. She is eating baby food and she is drinking from bottles."
See the original post here:
'Something positive for humankind': Girls lend cells to genetic study
Step closer to muscle regeneration
By JoanneRUSSELL25
Dec. 11, 2013 Muscle cell therapy to treat some degenerative diseases, including Muscular Dystrophy, could be a more realistic clinical possibility, now that scientists have found a way to isolate muscle cells from embryonic tissue.
PhD Student Bianca Borchin and Associate Professor Tiziano Barberi from the Australian Regenerative Medicine Institute (ARMI) at Monash University have developed a method to generate skeletal muscle cells, paving the way for future applications in regenerative medicine.
Scientists, for the first time, have found a way to isolate muscle precursor cells from pluripotent stem cells using a purification technique that allows them to differentiate further into muscle cells, providing a platform to test new drugs on human tissue in the lab. Pluripotent stem cells have the ability to become any cell in the human body including, skin, blood, brain matter and skeletal muscles that control movement.
Once the stem cells have begun to differentiate, the challenge for researchers is to control the process and produce only the desired, specific cells. By successfully controlling this process, scientists could provide a variety of specialised cells for replacement in the treatment of a variety of degenerative diseases such as Muscular Dystrophy and Parkinson's disease.
"There is an urgent need to find a source of muscle cells that could be used to replace the defective muscle fibers in degenerative disease. Pluripotent stem cells could be the source of these muscle cells," Professor Barberi said.
"Beyond obtaining muscle from pluripotent stem cells, we also found a way to isolate the muscle precursor cells we generated, which is a prerequisite for their use in regenerative medicine.
"The production of a large number of pure muscle precursor cells does not only have potential therapeutic applications, but also provides a platform for large scale screening of new drugs against muscle disease."
Using a technology known as fluorescence activated cell sorting (FACS), the researchers identified the precise combination of protein markers expressed in muscle precursor cells that enabled them to isolate those cells from the rest of the cultures.
Ms Borchin said there were existing clinical trials based on the use of specialised cells derived from pluripotent stem cells in the treatment of some degenerative diseases but deriving muscle cells from pluripotent stem cells proved to be challenging.
"These results are extremely promising because they mark a significant step towards the use of pluripotent stem cells for muscle repair," Ms Borchin said.
See the article here:
Step closer to muscle regeneration
California’s Stem-Cell Quest Races Time as Money Dwindles
By daniellenierenberg
Californias government-run stem-cell research agency, on course to spend $3 billion in taxpayer money to find treatments for some of the worlds most intractable diseases, is pushing to accelerate human testing before its financing runs out.
For the California Institute for Regenerative Medicine, time is growing short to fund research that demonstrates the potential of stem cells to help treat everything from cancer to heart disease to spinal cord injuries.
The agency, created by voters in 2004, has given out more than half of its $3 billion from state bonds and must spend the rest by 2017. The largest U.S. funding source for stem-cell research outside the federal government, its under pressure to show results to attract new money from pharmaceutical companies, venture capitalists or even more municipal bonds.
We need to figure out how to keep them going, said Jonathan Thomas, a founding partner of Saybrook Capital LLC in Los Angeles, and chairman of the institutes board, which meets today. We could do public-private partnerships, venture philanthropy, a ballot box.
Embryonic stem cells have the potential to change into any type of cell in the body. They are among the first cells created in embryos after conception. Scientists hope they may replace damaged or missing tissue in the brain, heart and immune system.
California voters approved the bonds after President George W. Bush banned the use of federal funds for research on embryonic stem cells. Since then, other types of stem cells have been shown to act like embryonic cells, relieving some of the debate over the ethics of destroying human embryos to use the cells.
The agencys funding decisions have included a grant of $20 million to a team led by Irv Weissman at the Stanford University School of Medicine, seeking a cure for cancer.
Weissmans team is working on an antibody manufactured with stem cells that allows a cancer patients own immune system to destroy a tumor, instead of relying on toxic radiation or chemotherapy. The antibody counteracts a protein called CD47, which creates what scientists call a dont eat me shield around the cancer. Once that cloak is removed, the patients immune system recognizes the cancer and attacks the tumor, shrinking or eliminating it.
Tests on humans are to begin early next year. The antibody has already worked in mice against breast, colon, ovarian, prostate, brain, bladder and liver cancer.
Two other research projects funded by the California agency are in human trials now -- one targeting HIV, the virus that causes AIDS, and another that regrows cardiac tissue in heart-attack victims.
Excerpt from:
California’s Stem-Cell Quest Races Time as Money Dwindles
UCLA Scientists First to Track Joint Cartilage Development in Humans
By Sykes24Tracey
Contact Information
Available for logged-in reporters only
Newswise Stem cell researchers from UCLAs Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have published the first study to identify the origin cells and track the early development of human articular cartilage, providing what could be a new cell source and biological roadmap for therapies to repair cartilage defects and osteoarthritis. These revolutionary therapies could reach clinical trials within three years.
Led by Dr. Denis Evseenko, assistant professor of orthopedic surgery and head of UCLAs Laboratory of Connective Tissue Regeneration, the study was published online ahead of print in Stem Cell Reports on December 12, 2013.
Articular cartilage is a highly specialized tissue formed from cells called chondrocytes that protect the bones of joints from forces associated with load bearing and impact, and allows nearly frictionless motion between the articular surfaces. Cartilage injury and lack of cartilage regeneration often lead to osteoarthritis involving degradation of joints, including cartilage and bone. Osteoarthritis currently affects more than 20 million people in the United States alone, making joint surface restoration a major priority in modern medicine.
Different cell types have been studied with respect to their ability to generate articular cartilage. However, none of the current cell-based repair strategies including expanded articular chondrocytes or mesenchymal stromal cells from adult bone marrow, adipose tissue, sinovium or amniotic fluid have generated long-lasting articular cartilage tissue in the laboratory.
By bridging developmental biology and tissue engineering, Evseenkos discoveries represent a critical missing link providing scientists with checkpoints to tell if the cartilage cells (called chondrocytes) are developing correctly.
We began with three questions about cartilage development, Evseenko said, we wanted to know the key molecular mechanisms, the key cell populations, and the developmental stages in humans. We carefully studied how the chondrocytes developed, watching not only their genes, but other biological markers that will allow us to apply the system for the improvement of current stem cell-based therapeutic approaches.
This research was also the first attempt to generate all the key landmarks that allow generation of clinically relevant cell types for cartilage regeneration with the highest animal-free standards. This means that the process did not rely on any animal components, thus therapeutic products such as stem-cell serums can be produced that are safe for humans.
Evseenko added that in a living organism more than one cell type is responsible for the complete regeneration of tissue, so in addition to the studies involving generation of articular cartilage from human stem cells, he and his team are now trying different protocols using different combinations of adult progenitor cells present in the joint to regenerate cartilage until the best one is found for therapeutic use.
The rest is here:
UCLA Scientists First to Track Joint Cartilage Development in Humans
UCLA Scientists Taking Stem Cell Research to Patients
By JoanneRUSSELL25
Contact Information
Available for logged-in reporters only
Newswise Scientists from UCLAs Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research are bringing stem cell science funded by the California Institute of Regenerative Medicine (CIRM), the state stem cell agency, directly to patients in two exciting new clinical trials scheduled to begin in early 2014. The recipients of the Disease Team Therapy Development III awards were Dr. Dennis Slamon and Dr. Zev Wainberg, whose phase I clinical trial will test a new drug that targets cancer stem cells and has been approved to begin enrolling patients in the US and Canada, and Dr. Donald Kohn, whose first-in-human trial is on stem cell gene therapy for sickle cell disease (SCD).
The announcement of the new awards came on December 12, 2013 at the meeting of the CIRM Independent Citizens Oversight Committee (ICOC) at the Luxe Hotel in Los Angeles. Dr. Owen Witte, Director of the UCLA Broad Stem Cell Research Center, highlighted that the The CIRM support demonstrates that our multidisciplinary Center is at the forefront of translating basic scientific research to new drug and cellular therapies that will revolutionize medicine.
Targeting solid tumor stem cells The Disease Team III grant to Dr. Dennis Slamon and Dr. Zev Wainberg and their US-Canadian collaborative team will support the first in human clinical trial scheduled to open in early 2014. The project builds on Dr. Slamons previous work partially funded by CIRM to develop a drug that targets tumor initiating cells with UCLAs Dr. Zev Wainberg, assistant professor of hematology/oncology and Dr. Tak Mak, director, Campbell Family Institute of the University Health Network in Toronto, Canada. Dr. Slamon, renowned for his research that led to the development of Herceptin, the first FDA-approved targeted therapy for breast cancer, is the director of clinical and translational research at the UCLA Jonsson Comprehensive Cancer Center, and professor, chief and executive vice chair for research in the division of hematology/oncology.
With investigational new drug approval from the Food and Drug Administration (FDA) and Health Canada, the Canadian governments therapeutic regulatory agency, this trial is an international effort to bring leading-edge stem cell science to patients.
We are delighted to receive this CIRM grant that will drive our translational research from the laboratory to the clinic, Slamon said, and allow us to test our targeted drug in a phase I clinical trial.
The trial is based on the evidence built over the last decade for what has become known as the cancer stem cell hypothesis. According to this hypothesis, cancer stem cells are the main drivers of tumor growth and are also resistant to standard cancer treatments. One view is that cancer stem cells inhabit a niche that prevents cancer drugs from reaching them. Another view is that tumors can become resistant to therapy by a process called cell fate decision, by which some tumor cells are killed by therapy and others become cancer stem cells. These cancer stem cells are believed to be capable of self-renewal and repopulation of tumor cells, resulting in the recurrence of cancer.
The target of the new drug is an enzyme in cancer stem cells and tumor cells called Polo-like kinase 4, which was selected because blocking it negatively affects cell fate decisions associated with cancer stem cell renewal and tumor cell growth, thus stopping tumor growth.
This potential anti-cancer drug is now ready to be tested in humans for the first time. Our goal is to test this novel agent in patients in order to establish safety and then to proceed quickly to rapid clinical development. We are excited to continue this academic collaboration with our Canadian colleagues to test this drug in humans for the first time, said Wainberg. Drs. Slamon, Wainberg, Mak and colleagues will also look for biological indications, called biomarkers, that researchers can use to tell if and how the drug is working.
Excerpt from:
UCLA Scientists Taking Stem Cell Research to Patients
What are the potential uses of human stem cells and the …
By Dr. Matthew Watson
Introduction: What are stem cells, and why are they important? What are the unique properties of all stem cells? What are embryonic stem cells? What are adult stem cells? What are the similarities and differences between embryonic and adult stem cells? What are induced pluripotent stem cells? What are the potential uses of human stem cells and the obstacles that must be overcome before these potential uses will be realized? Where can I get more information? VII. What are the potential uses of human stem cells and the obstacles that must be overcome before these potential uses will be realized?
There are many ways in which human stem cells can be used in research and the clinic. Studies of human embryonic stem cells will yield information about the complex events that occur during human development. A primary goal of this work is to identify how undifferentiated stem cells become the differentiated cells that form the tissues and organs. Scientists know that turning genes on and off is central to this process. Some of the most serious medical conditions, such as cancer and birth defects, are due to abnormal cell division and differentiation. A more complete understanding of the genetic and molecular controls of these processes may yield information about how such diseases arise and suggest new strategies for therapy. Predictably controlling cell proliferation and differentiation requires additional basic research on the molecular and genetic signals that regulate cell division and specialization. While recent developments with iPS cells suggest some of the specific factors that may be involved, techniques must be devised to introduce these factors safely into the cells and control the processes that are induced by these factors.
Human stem cells could also be used to test new drugs. For example, new medications could be tested for safety on differentiated cells generated from human pluripotent cell lines. Other kinds of cell lines are already used in this way. Cancer cell lines, for example, are used to screen potential anti-tumor drugs. The availability of pluripotent stem cells would allow drug testing in a wider range of cell types. However, to screen drugs effectively, the conditions must be identical when comparing different drugs. Therefore, scientists will have to be able to precisely control the differentiation of stem cells into the specific cell type on which drugs will be tested. Current knowledge of the signals controlling differentiation falls short of being able to mimic these conditions precisely to generate pure populations of differentiated cells for each drug being tested.
Perhaps the most important potential application of human stem cells is the generation of cells and tissues that could be used for cell-based therapies. Today, donated organs and tissues are often used to replace ailing or destroyed tissue, but the need for transplantable tissues and organs far outweighs the available supply. Stem cells, directed to differentiate into specific cell types, offer the possibility of a renewable source of replacement cells and tissues to treat diseases including Alzheimer's diseases, spinal cord injury, stroke, burns, heart disease, diabetes, osteoarthritis, and rheumatoid arthritis.
Figure 3. Strategies to repair heart muscle with adult stem cells. Click here for larger image.
2001 Terese Winslow
For example, it may become possible to generate healthy heart muscle cells in the laboratory and then transplant those cells into patients with chronic heart disease. Preliminary research in mice and other animals indicates that bone marrow stromal cells, transplanted into a damaged heart, can have beneficial effects. Whether these cells can generate heart muscle cells or stimulate the growth of new blood vessels that repopulate the heart tissue, or help via some other mechanism is actively under investigation. For example, injected cells may accomplish repair by secreting growth factors, rather than actually incorporating into the heart. Promising results from animal studies have served as the basis for a small number of exploratory studies in humans (for discussion, see call-out box, "Can Stem Cells Mend a Broken Heart?"). Other recent studies in cell culture systems indicate that it may be possible to direct the differentiation of embryonic stem cells or adult bone marrow cells into heart muscle cells (Figure 3).
Cardiovascular disease (CVD), which includes hypertension, coronary heart disease, stroke, and congestive heart failure, has ranked as the number one cause of death in the United States every year since 1900 except 1918, when the nation struggled with an influenza epidemic. Nearly 2600 Americans die of CVD each day, roughly one person every 34 seconds. Given the aging of the population and the relatively dramatic recent increases in the prevalence of cardiovascular risk factors such as obesity and type 2 diabetes, CVD will be a significant health concern well into the 21st century.
Cardiovascular disease can deprive heart tissue of oxygen, thereby killing cardiac muscle cells (cardiomyocytes). This loss triggers a cascade of detrimental events, including formation of scar tissue, an overload of blood flow and pressure capacity, the overstretching of viable cardiac cells attempting to sustain cardiac output, leading to heart failure, and eventual death. Restoring damaged heart muscle tissue, through repair or regeneration, is therefore a potentially new strategy to treat heart failure.
More here:
What are the potential uses of human stem cells and the ...
PRP and Stem Cell Therapy for Joint Pain- San Diego Center for Integrative Medicine – Video
By LizaAVILA
PRP and Stem Cell Therapy for Joint Pain- San Diego Center for Integrative Medicine
http://SDIntegrativeMedicine.com PRP and Stem Cell Therapy for Joint Pain at San Diego Center for Integrative Medicine. Platelet-Rich Plasma or PRP, along wi...
By: San Diego Center for Integrative Medicine
Link:
PRP and Stem Cell Therapy for Joint Pain- San Diego Center for Integrative Medicine - Video
Heart Failure Patient Has 3 Normal EKGs After Stem Cell Therapy – Video
By raymumme
Heart Failure Patient Has 3 Normal EKGs After Stem Cell Therapy
I was diagnosed 20 years ago. My heart was stopped up. I have 11 stents in my heart. When they put in (stents) nine, ten and eleven they blocked an artery an...
By: http://www.cellmedicine.com
Read the rest here:
Heart Failure Patient Has 3 Normal EKGs After Stem Cell Therapy - Video
JCI – Advances in stem cell therapy for spinal cord injury
By raymumme
Article tools
Author information
Need help?
Andrea J. Mothe and Charles H. Tator
Toronto Western Research Institute and Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Ontario, Canada.
Address correspondence to: Charles H. Tator, Toronto Western Research Institute and Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8. Phone: 416.603.5889; Fax: 416.603.5745; E-mail: charles.tator@uhn.on.ca.
Published November 1, 2012
Spinal cord injury (SCI) is a devastating condition producing great personal and societal costs and for which there is no effective treatment. Stem cell transplantation is a promising therapeutic strategy, though much preclinical and clinical research work remains. Here, we briefly describe SCI epidemiology, pathophysiology, and experimental and clinical stem cell strategies. Research in stem cell biology and cell reprogramming is rapidly advancing, with the hope of moving stem cell therapy closer to helping people with SCI. We examine issues important for clinical translation and provide a commentary on recent developments, including termination of the first human embryonic stem cell transplantation trial in human SCI.
Spinal cord injury (SCI) is a devastating condition, with sudden loss of sensory, motor, and autonomic function distal to the level of trauma. Despite major advances in the medical and surgical care of SCI patients, no effective treatment exists for the neurological deficits of major SCI (1). Current treatment includes surgery to decompress and stabilize the injury, prevention of secondary complications, management of any that do occur, and rehabilitation. Unfortunately, neurological recovery is limited, and most SCI patients still face substantial neurological dysfunction and lifelong disability. Stem cell therapy offers several highly attractive strategies for spinal cord repair, including replacement of damaged neuronal and glial cells, remyelination of spared axons, restoration of neuronal circuitry, bridging of lesion cavities, production of neurotrophic factors, antiinflammatory cytokines, and other molecules to promote tissue sparing and neovascularization, and a permissive environment for plasticity and axonal regeneration. This review builds on several excellent previous reviews (28) and discusses the incidence and pathophysiology of SCI as well as the key experimental and clinical stem cell strategies for SCI.
Worldwide, the annual incidence of SCI is 1540 cases per million people (9). In Canada, the Rick Hansen Institute estimates there are currently 85,000 people living with SCI, with more than 4,000 new cases per year (10), and in the United States, the Christopher and Dana Reeve Foundation estimates a prevalence of over 1 million patients with SCI and more than 12,000 new cases each year (11).
Read the original here:
JCI - Advances in stem cell therapy for spinal cord injury
Bone marrow – Science Daily
By daniellenierenberg
Bone marrow is the tissue comprising the center of large bones.
It is the place where new blood cells are produced.
Bone marrow contains two types of stem cells: hemopoietic (which can produce blood cells) and stromal (which can produce fat, cartilage and bone).
There are two types of bone marrow: red marrow (also known as myeloid tissue) and yellow marrow.
Red blood cells, platelets and most white blood cells arise in red marrow; some white blood cells develop in yellow marrow.
The color of yellow marrow is due to the much higher number of fat cells.
Both types of bone marrow contain numerous blood vessels and capillaries. At birth, all bone marrow is red.
With age, more and more of it is converted to the yellow type.
Adults have on average about 2.6kg (5.7lbs) of bone marrow, with about half of it being red.
Red marrow is found mainly in the flat bones such as hip bone, breast bone, skull, ribs, vertebrae and shoulder blades, and in the cancellous ("spongy") material at the proximal ends of the long bones femur and humerus.
Read this article:
Bone marrow - Science Daily