Page 570«..1020..569570571572..580590..»

Kidney grown from stem cells by Australian scientists

By raymumme

Scientists are hoping to increase the size of future kidneys and believe the resulting organs will boost research and allow cheaper, faster testing of drugs. Within the next three to five years, the artificial organs could be used to allow doctors to repair damaged kidneys within the body, rather than letting diseases develop before proceeding with a transplant.

The engineered kidney was developed by a team of Australian scientists led by the University of Queensland's Institute for Molecular Bioscience.

Professor Wainwright said the process for developing the kidney was "like a scientific approach to cooking". The scientists methodically examined which genes were switched on and off during kidney development and then manipulated the skin cells into embryonic stem cells which could "self-organise" and form complex human structures.

"The [researchers] spent years looking at what happens if you turn this gene off and this one on," he said. "You can eventually coax these stem cells through a journey they [the cells] go through various stages and then think about being a kidney cell and eventually pop together to form a little piece of kidney."

The research could eventually help address the demand for transplant organs and improve medical testing of new drugs for patients with kidney disease.

Human kidneys are particularly susceptible to damage during trials, which makes finding effective medicines costly and time-consuming.

Professor Melissa Little, from the University of Queensland, said scientists could try to grow full-grown kidneys for transplants or even "clusters of mini kidneys" that could be transplanted to boost patients' renal functions. But she told The Australian she believed such developments were still more than a decade away.

Visit link:
Kidney grown from stem cells by Australian scientists

To Read More: Kidney grown from stem cells by Australian scientists
categoriaSkin Stem Cells commentoComments Off on Kidney grown from stem cells by Australian scientists | dataDecember 16th, 2013
Read All

Stem Cell Therapy for Traumatic Brain Injury – Video

By raymumme


Stem Cell Therapy for Traumatic Brain Injury
Oswaldo Tapenes received multiple injections of human umbilical cord-derived mesenchymal stem cells and his own bone marrow-derived stem cells over the cours...

By: http://www.cellmedicine.com

Read more from the original source:
Stem Cell Therapy for Traumatic Brain Injury - Video

To Read More: Stem Cell Therapy for Traumatic Brain Injury – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy for Traumatic Brain Injury – Video | dataDecember 16th, 2013
Read All

West Coast Stem Cell Clinic, Telehealth, Now Offering Stem Cell Injections for Plantar Fasciitis

By LizaAVILA

Orange County, California (PRWEB) December 16, 2013

Top California stem cell clinic, TeleHealth, is now offering stem cell injections for plantar fasciitis. The condition may lead to chronic pain and may not respond to traditional treatments, with the stem cell therapy often allowing for pain relief and the ability to avoid the need for surgery. For more information and scheduling, call (888) 828-4575.

Planter fasciitis affects millions of Americans. The condition leads to chronic heel pain and may make it difficult to participate in recreational activities and even walk normally. Traditional treatments such as physical therapy, NSAIDS, steroid injections and orthotics are often effective over time. However, the condition may not respond as desired to these options and stem cells for plantar fasciitis may be the answer.

Therefore, stem cell injections that TeleHealth provides may offer an excellent option for healing the inflamed area while at the same time providing considerable pain relief. The conventional pain management treatments tend to mask pain, however, they do not actually heal the condition directly.

Regenerative medicine treatments with stem cells maintain the potential of actually healing the damaged tissue to provide long term relief. Telehealth has multiple US Board Certified doctors who have a long history of providing stem cell therapy for numerous conditions including degenerative arthritis, rotator cuff and Achilles tendonitis, ligament injury, elbow soft tissue tendinitis and more.

For those suffering from planter fasciitis or any of the other arthritic or soft tissue injury conditions, call TeleHealth at (888) 828-4575.

Read the original here:
West Coast Stem Cell Clinic, Telehealth, Now Offering Stem Cell Injections for Plantar Fasciitis

To Read More: West Coast Stem Cell Clinic, Telehealth, Now Offering Stem Cell Injections for Plantar Fasciitis
categoriaUncategorized commentoComments Off on West Coast Stem Cell Clinic, Telehealth, Now Offering Stem Cell Injections for Plantar Fasciitis | dataDecember 16th, 2013
Read All

Arizona Pain Stem Cell Institute Now Offering Stem Cell Therapy for Plantar Fasciitis

By daniellenierenberg

Phoenix, Arizona (PRWEB) December 16, 2013

The top Phoenix stem cell treatment clinic, Arizona Pain Stem Cell Institute, is now offering stem cell therapy for plantar fasciitis. The treatments are offered by Board Certified pain management doctors in Arizona, and often help patients avoid surgery. For more information and scheduling, call (602) 507-6550.

Plantar fasciitis affects millions of Americans, causing heel pain that may make it difficult to participate in recreational activities and walking in general. Conventional treatments such as steroid injections, NSAIDS, bracing and physical therapy at times do not relieve the pain properly. Surgery for plantar fasciitis unfortunately does not always provide the desired relief.

Regenerative medicine at the Arizona Pain Stem Cell Institute offers a nonoperative option for plantar fasciitis. This may include stem cell injections with bone marrow, fat derived or amniotic derived material. The procedure is outpatient and low risk.

In addition to treatments for plantar fasciitis, the Institute offers stem cell treatments for degenerative arthritis, tennis elbow, rotator cuff symptoms, achilles tendonitis and more. The procedures are performed by Board Certified pain doctors, with four research projects ongoing.

The Institute is a division of Arizona Pain Specialists, the leading pain center in Arizona. Five locations accept over 50 insurance plans including Workers Compensation, Personal Injury, PPO's, some HMO's and self pay. The regenerative medicine treatments are offered as fee for service.

For more information and scheduling to discuss plantar fasciitis options, call (602) 507-6550.

Read more:
Arizona Pain Stem Cell Institute Now Offering Stem Cell Therapy for Plantar Fasciitis

To Read More: Arizona Pain Stem Cell Institute Now Offering Stem Cell Therapy for Plantar Fasciitis
categoriaUncategorized commentoComments Off on Arizona Pain Stem Cell Institute Now Offering Stem Cell Therapy for Plantar Fasciitis | dataDecember 16th, 2013
Read All

Stemcell treatment for hair and skin, Autologous Adipose Stem Cell Treatment – Video

By LizaAVILA


Stemcell treatment for hair and skin, Autologous Adipose Stem Cell Treatment
Through the history of stem cell therapy and stem cell research, animal stem cells have been used, human embryonic stem cells, and now research has led us to...

By: Ojas Aesthetic

Read this article:
Stemcell treatment for hair and skin, Autologous Adipose Stem Cell Treatment - Video

To Read More: Stemcell treatment for hair and skin, Autologous Adipose Stem Cell Treatment – Video
categoriaUncategorized commentoComments Off on Stemcell treatment for hair and skin, Autologous Adipose Stem Cell Treatment – Video | dataDecember 15th, 2013
Read All

New study shows stem cell therapy helps brain injuries

By Sykes24Tracey

By Dalia Dangerfield, Reporter Last Updated: Saturday, December 14, 2013, 8:48 PM TAMPA --

USF researchers believe stem cell therapy can help men and women with mild brain injuries.

This is quite a phenomenal observation, said Dr. Cesar Borlongan, a neuroscientist from USF Health. In our hands, stem cell therapy may offer this hope for the soldiers to prevent the progression of the disease and hopefully we can stop the disease process at the early stage."

In a recent study Borlongan injected adult stem cells in rats with traumatic brain injury. The stem cells served as a bridge, allowing new brain cells to move up to the damaged part of the brain.

That's a new concept, it's like the cells are very smart, said Borlongan.

Over time the adult stem cells helped partially repair the brain damage in rats.

Professor Borlongan believes the same may be true for humans allowing them to slowly get better.

The rest is here:
New study shows stem cell therapy helps brain injuries

To Read More: New study shows stem cell therapy helps brain injuries
categoriaUncategorized commentoComments Off on New study shows stem cell therapy helps brain injuries | dataDecember 15th, 2013
Read All

Cedars-Sinai Medical Tipsheet for Dec. 2013

By Dr. Matthew Watson

Contact Information

Available for logged-in reporters only

Scientists Design and Test New Approach for Corneal Stem Cell Treatments Researchers in the Cedars-Sinai Regenerative Medicine Institute have designed and tested a novel, minute-long procedure to prepare human amniotic membrane for use as a scaffold for specialized stem cells that may be used to treat some corneal diseases. This membrane serves as a foundation that supports the growth of stem cells in order to graft them onto the cornea. This new method, explained in a paper published in the journal PLOS ONE, may accelerate research and clinical applications for stem cell corneal transplantation. CONTACT: Cara Martinez, 310-423-7798; Email cara.martinez@cshs.org; Twitter @CedarsSinaiCara

Cancer Science Evolves, One Consent Form at a Time Tucked away in freezers chilled to minus 80 degrees Celsius are blood and tissue samples from Cedars-Sinai patients. The freezers that hold these samples also contain the hopes of investigators determined to uncover new treatments for cancer patients across the globe. As cancer research continues to evolve, scientists rely on specimen samples, such as tissue, blood or urine, from generous patients to advance discoveries and personalize care. Biobanks, like the state-of-the-art biobank at the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, allow patients to make invaluable contributions to medical research and treatment advances that may ultimately be the solution to their own diagnosis or disease down the road. CONTACT: Cara Martinez, 310-423-7798; Email cara.martinez@cshs.org; Twitter @CedarsSinaiCara

Cedars-Sinai, UCLA Health System and Select Medical Announce Partnership to Open Medical Rehabilitation Hospital Cedars-Sinai, UCLA Health System and Select Medical announced today a partnership to create a 138-bed acute inpatient rehabilitation hospital located in the former Century City Hospital. With an expected opening in late 2015, the rehabilitation hospital will serve the growing needs in the community for inpatient rehabilitation, and is also expected to serve as a center for treating complex rehabilitation cases from throughout the nation. The joint venture is an LLC partnership among Cedars-Sinai, UCLA Health System and Select Medical. The vision of the partnership is to develop a world-class regional rehabilitation center providing highly specialized care, advanced treatment, and leading-edge technologies to treat individuals with spinal cord injuries, brain injuries, stroke, amputation, neurological disorders, and musculoskeletal and orthopedic conditions. CONTACT: Sally Stewart, 310-248-6566; Email sally.stewart@cshs.org

Cedars-Sinai Receives Fourth Straight Magnet Recognition for Nursing Excellence from American Nurses Credentialing Center For the fourth time in a row, the American Nurses Credentialing Center has granted Cedars-Sinai the Magnet recognition, the most prestigious designation a healthcare organization can receive for excellence in nursing and patient outcomes. Cedars-Sinai in 2000 became the first Southern California hospital to earn the Magnet honor; it is the only hospital in the state to be granted the designation four times. Cedars-Sinai joins a select list of only 12 hospitals worldwide that have earned Magnet recognition four times. CONTACT: Sally Stewart, 310-248-6566; Email sally.stewart@cshs.org

Ovarian Cancer Discovery Deepens Knowledge of Survival Outcomes Researchers in the Womens Cancer Program at Cedars-Sinais Samuel Oschin Comprehensive Cancer Institute have identified a series of 10 genes that may signify a trifecta of benefits for women diagnosed with ovarian cancer and ultimately reflect improved survival outcomes. The research found that the 10-gene biomarker panel may identify the aggressiveness of a patients disease, help predict survival outcomes and result in novel therapeutic strategies tailored to patients with the most adverse survival outcomes. CONTACT: Cara Martinez, 310-423-7798; Email cara.martinez@cshs.org; Twitter @CedarsSinaiCara

# # #

View post:
Cedars-Sinai Medical Tipsheet for Dec. 2013

To Read More: Cedars-Sinai Medical Tipsheet for Dec. 2013
categoriaSpinal Cord Stem Cells commentoComments Off on Cedars-Sinai Medical Tipsheet for Dec. 2013 | dataDecember 14th, 2013
Read All

Studies: Stem cells reverse heart damage – CNN.com

By Dr. Matthew Watson

A new study says heart damage may be reversible with stem cell therapy without dangerous side effects.

STORY HIGHLIGHTS

(CNN) -- On a June day in 2009, a 39-year-old man named Ken Milles lay on an exam table at Cedars-Sinai Medical Center in Los Angeles. A month earlier, he'd suffered a massive heart attack that destroyed nearly a third of his heart.

"The most difficult part was the uncertainty," he recalls. "Your heart is 30% damaged, and they tell you this could affect you the rest of your life." He was about to receive an infusion of stem cells, grown from cells taken from his own heart a few weeks earlier. No one had ever tried this before.

About three weeks later, in Kentucky, a patient named Mike Jones underwent a similar procedure at the University of Louisville's Jewish Hospital. Jones suffered from advanced heart failure, the result of a heart attack years earlier. Like Milles, he received an infusion of stem cells, grown from his own heart tissue.

"Once you reach this stage of heart disease, you don't get better," says Dr. Robert Bolli, who oversaw Jones' procedure, explaining what doctors have always believed and taught. "You can go down slowly, or go down quickly, but you're going to go down."

Conventional wisdom took a hit Monday, as Bolli's group and a team from Cedars-Sinai each reported that stem cell therapies were able to reverse heart damage, without dangerous side effects, at least in a small group of patients.

In Bolli's study, published in The Lancet, 16 patients with severe heart failure received a purified batch of cardiac stem cells. Within a year, their heart function markedly improved. The heart's pumping ability can be quantified through the "Left Ventricle Ejection Fraction," a measure of how much blood the heart pumps with each contraction. A patient with an LVEF of less than 40% is considered to suffer severe heart failure. When the study began, Bolli's patients had an average LVEF of 30.3%. Four months after receiving stem cells, it was 38.5%. Among seven patients who were followed for a full year, it improved to an astounding 42.5%. A control group of seven patients, given nothing but standard maintenance medications, showed no improvement at all.

"We were surprised by the magnitude of improvement," says Bolli, who says traditional therapies, such as placing a stent to physically widen the patient's artery, typically make a smaller difference. Prior to treatment, Mike Jones couldn't walk to the restroom without stopping for breath, says Bolli. "Now he can drive a tractor on his farm, even play basketball with his grandchildren. His life was transformed."

At Cedars-Sinai, 17 patients, including Milles, were given stem cells approximately six weeks after suffering a moderate to major heart attack. All had lost enough tissue to put them "at big risk" of future heart failure, according to Dr. Eduardo Marban, the director of the Cedars-Sinai Heart Institute, who developed the stem cell procedure used there.

Originally posted here:
Studies: Stem cells reverse heart damage - CNN.com

To Read More: Studies: Stem cells reverse heart damage – CNN.com
categoriaCardiac Stem Cells commentoComments Off on Studies: Stem cells reverse heart damage – CNN.com | dataDecember 14th, 2013
Read All

Skin’s own cells offer hope for new ways to repair wounds, reduce impact of ageing

By daniellenierenberg

London, Dec.12 : Scientists at King's College London have, for the first time, identified the unique properties of two different types of cells, known as fibroblasts, in the skin - one required for hair growth and the other responsible for repairing skin wounds.

The research could pave the way for treatments aimed at repairing injured skin and reducing the impact of ageing on skin function.

Fibroblasts are a type of cell found in the connective tissue of the body's organs, where they produce proteins such as collagen. It is widely believed that all fibroblasts are the same cell type.

However, a study on mice by researchers at King's, published today in Nature, indicates that there are at least two distinct types of fibroblasts in the skin: those in the upper layer of connective tissue, which are required for the formation of hair follicles and those in the lower layer, which are responsible for making most of the skin's collagen fibres and for the initial wave of repair of damaged skin.

The study found that the quantity of these fibroblasts can be increased by signals from the overlying epidermis and that an increase in fibroblasts in the upper layer of the skin results in hair follicles forming during wound healing. This could potentially lead to treatments aimed at reducing scarring.

Professor Fiona Watt, lead author and Director of the Centre for Stem Cells and Regenerative Medicine at King's College London, said: 'Changes to the thickness and compostion of the skin as we age mean that older skin is more prone to injury and takes longer to heal. It is possible that this reflects a loss of upper dermal fibroblasts and therefore it may be possible to restore the skin's elasticity by finding ways to stimulate those cells to grow. Such an approach might also stimulate hair growth and reduce scarring.'

'Although an early study, our research sheds further light on the complex architecture of the skin and the mechanisms triggered in response to skin wounds. The potential to enhance the skin's response to injury and ageing is hugely exciting. However, clinical trials are required to examine the effectiveness of injecting different types of fibroblasts into the skin of humans.'

Dr Paul Colville-Nash, Programme Manager for Regenerative Medicine at the MRC, said: 'These findings are an important step in our understanding of how the skin repairs itself following injury and how that process becomes less efficient as we age. The insights gleaned from this work will have wide-reaching implications in the area of tissue regeneration and have the potential to transform the lives patients who have suffered major burns and trauma.'

This research was funded by the Wellcome Trust, the Medical Research Council and both Guy's and St Thomas' Charity and the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London.

--ANI (Posted on 13-12-2013)

Read more:
Skin's own cells offer hope for new ways to repair wounds, reduce impact of ageing

To Read More: Skin’s own cells offer hope for new ways to repair wounds, reduce impact of ageing
categoriaSkin Stem Cells commentoComments Off on Skin’s own cells offer hope for new ways to repair wounds, reduce impact of ageing | dataDecember 14th, 2013
Read All

Top Science Stories of 2013

By raymumme

Top Science Stories of 2013

From the first vat-grown hamburger to the discovery of the world's largest volcano, scientists pushed back the limits of human knowledge in 2013 and developed technologies that could radically change how we live our lives.

The Science Media Centre team, in conjunction with our colleagues at the AusSMC, have assembled the top 10 picks for the most significant international science stories of the year. Contact the SMC if you would like more information about any of these stories, including copies of the research papers associated with them.

It was also a big year for New Zealand science with researchers publishing studies in some of the world's most influential journals. See below for our Top 10 list of New Zealand science stories that captured the public's attention in 2013.

Top 10 international science stories

1. Space sounds revealed Voyager 1 had boldly gone: In September, NASA's Voyager 1 spacecraft became the first man-made object to leave our solar system and venture into interstellar space. The probe, launched in 1977 with the aim of reaching Jupiter and Saturn, is now over 19 billion kilometres from the sun. Scientists listened in to vibrations in the plasma surrounding Voyager - the sound of interstellar space - after it was hit by a massive solar wave in April. The vibrations allowed them to calculate the plasma's density, which differs between our solar system and interstellar space, confirming Voyager was no longer in our solar system.

2. Carbon dioxide hit a new peak and human influence on the climate was clearer than ever:In May, levels of carbon dioxide in the Earth's atmosphere reached a symbolic milestone, passing 400ppm (parts per million) for the first time in human history. Just a few months later in September, the leading international body for the assessment of climate change, the Intergovernmental Panel on Climate Change (IPCC), found that human influence on the climate system is clearer than ever -we are now 95 percent certain that humans are the cause of global warming. Climate scientists from New Zealand were among the more than 600 scientists and researchers who worked on the IPCC report. 3. Scientists created human stem cells using cloning techniques: In May, researchers used therapeutic cloning to create human embryonic stem cells for the first time. The process involved taking the nucleus - which contains the genetic material - from a normal cell and transferring it into an unfertilised egg with its own genetic material removed. While this approach had previously been used in monkeys and mice, it had never succeeded using human cells. This discovery, described by Australian scientists as "a major breakthrough in regenerative medicine", could help develop personalised therapies for a range of currently untreatable diseases. However, the process requires human donor eggs, which are not easy to obtain, and raises a number of ethical issues.

4. Do you want fries with that? The world's most expensive burger was grown in the lab: The world's first lab-grown burger was cooked and eaten at a news conference in London in August this year - generating headlines around the world. The burger patty - which one food critic described as 'close to meat' - was developed by scientists from Maastricht University in the Netherlands through research funded by Google co-founder Sergey Brin. Starting with stem cells from a biopsy of two cows (a Belgian Blue and a Blonde d'Aquitaine), the scientists grew muscle fibres in the lab. The fibres were pressed together with breadcrumbs and binding ingredients, then coloured with beetroot juice and saffron, resulting in the most expensive hamburger in history at a cost of around NZ$400,000.

5. Doctors stopped HIV in its tracks in the "Mississippi baby": A child born with HIV and treated with a series of antiviral drugs for the first 18 months of its life was found to be free of the virus more than 12 months after treatment ended. When the infant was 30 months of age, HIV-1 antibodies remained completely undetectable. However, the big question of whether this child, known as the "Mississippi baby", has truly been cured of HIV remains unanswered. "The best answer at the moment is a definitive maybe", HIV expert Scott Hammer, wrote in a New England Journal of Medicineeditorial which accompanied the research.

6. Redefining mental illness: In May, the new version of the diagnostic reference manual used by clinicians in the U.S. and around the world to diagnose mental disorders was released. The fifth revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) is the first update in nearly 20 years and followed a decade of review and consultation. It's publication met with widespread controversy. One of its major changes is to introduce a graded scale known as Autism Spectrum Disorder combining the former four autism-related disorders: autistic, Asperger's, childhood disintegrative, and pervasive developmental disorder. Elsewhere, several new disorders were added, new suicide risk assessment scales were introduced and the threshold for diagnosing Post Traumatic Stress Disorder (PTSD) was lowered. Critics of DSM-5, including New Zealand experts, argue that it will lead to the over-diagnosis of mental disorders, stigmatising millions of people who are essentially normal.

Follow this link:
Top Science Stories of 2013

To Read More: Top Science Stories of 2013
categoriaIPS Cell Therapy commentoComments Off on Top Science Stories of 2013 | dataDecember 14th, 2013
Read All

Parkinson’s stem cell project aims for 2014 approval

By raymumme

Parkinson's patient Ed Fitzpatrick speaks about stem cell research for his disease. Fitzpatrick talked on a Dec. 7 panel at the World Stem Cell Summit in San Diego. Bradley J. Fikes

Parkinson's patient Ed Fitzpatrick speaks about stem cell research for his disease. Fitzpatrick talked on a Dec. 7 panel at the World Stem Cell Summit in San Diego.

For eight local Parkinsons patients seeking treatment with stem cell technology, 2014 could bring the milestone theyve been anticipating.

If all goes well, the U.S. Food and Drug Administration will approve an attempt to replace the brain cells destroyed in Parkinsons. The new cells, grown from each patients own skin cells, are expected to restore normal movement in the patients.

Because the new brain cells are made from the patients own cells, immunosuppressive drugs shouldnt be needed. Ideally, patients could stop taking their medications and resume normal activities for many years, or even the rest of their lives.

The project, Summit4StemCell.org, is a collaboration between three nonprofits. The Scripps Research Institute handles the science; Scripps Clinic takes care of the medical side; and the Parkinsons Association of San Diego helps to raise money for the self-funded project.

Since 2011, the focus has been at the institute, where scientists led by Jeanne Loring have made the artificial embryonic stem cells, called induced pluripotent stem cells, and turned them into the needed brain cells. Now Scripps Clinic is assuming a more prominent role to prepare for treating the patients.

A study in rats began in early December; results are expected by April. The animal study is meant to assess safety, although researchers will also look for signs of effectiveness.

In January, scientists will visit the FDA to lay the groundwork for a formal application, said Scripps Clinic neurologist Melissa Houser, who treats all eight patients.

Success in the animal study will likely result in a go-ahead, Houser said. If the animal trial fails, its back to the drawing board.

Follow this link:
Parkinson’s stem cell project aims for 2014 approval

To Read More: Parkinson’s stem cell project aims for 2014 approval
categoriaUncategorized commentoComments Off on Parkinson’s stem cell project aims for 2014 approval | dataDecember 14th, 2013
Read All

UCLA stem cell scientists first to track joint cartilage development in humans

By raymumme

PUBLIC RELEASE DATE:

12-Dec-2013

Contact: Shaun Mason smason@mednet.ucla.edu 310-206-2805 University of California - Los Angeles

Stem cell researchers from UCLA have published the first study to identify the origin cells and track the early development of human articular cartilage, providing what could be a new cell source and biological roadmap for therapies to repair cartilage defects and damage from osteoarthritis.

Such transformative therapies could reach clinical trials within three years, said the scientists from UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.

The study, led by Dr. Denis Evseenko, an assistant professor of orthopedic surgery and head of UCLA's Laboratory of Connective Tissue Regeneration, was published online Dec. 12 in the journal Stem Cell Reports and will appear in a forthcoming print edition.

Articular cartilage, a highly specialized tissue formed from cells called chondrocytes, protects the bones of joints from forces associated with load-bearing and impact and allows nearly frictionless motion between the articular surfaces the areas where bone connects with other bones in a joint.

Cartilage injury and a lack of cartilage regeneration often lead to osteoarthritis, which involves the degradation of joints, including cartilage and bone. Osteoarthritis currently affects more than 20 million people in the U.S., making joint-surface restoration a major priority in modern medicine.

While scientists have studied the ability of different cell types to generate articular cartilage, none of the current cell-based repair strategies including expanded articular chondrocytes or mesenchymal stromal cells from adult bone marrow, adipose tissue, sinovium or amniotic fluid have generated long-lasting articular cartilage tissue in the laboratory.

For the current study, Evseenko and his colleagues used complex molecular biology techniques to determine which cells grown from embryonic stem cells, which can become any cell type in the body, were the progenitors of cartilage cells, or chondrocytes. They then tested and confirmed the growth of these progenitor cells into cartilage cells and monitored their growth progress, observing and recording important genetic features, or landmarks, that indicated the growth stages of these cells as they developed into the cartilage cells.

Read more from the original source:
UCLA stem cell scientists first to track joint cartilage development in humans

To Read More: UCLA stem cell scientists first to track joint cartilage development in humans
categoriaUncategorized commentoComments Off on UCLA stem cell scientists first to track joint cartilage development in humans | dataDecember 14th, 2013
Read All

San Diego Canine Overcomes Pain to Achieve Championship with the Help of Paradise Veterinary Hospital and Vet-Stem, Inc.

By daniellenierenberg

Poway, California (PRWEB) December 13, 2013

Noni is a ten-year-old released Canine Companion for Independence dog who just achieved her Master Agility Champion status after the pain from arthritis tried to slow her down. Nonis owner, Dr. Kim Dembinski, a veterinarian at Paradise Veterinary Hospital in San Diego turned to stem cell therapy by Vet-Stem, Inc. and fellow colleague Dr. Jennipher Harris to help Noni.

When Dr. Dembinski noticed weakness and discomfort in her aging agility dog she was proactive in keeping Noni happy and comfortable, The main thought was that she gives so much between therapy work, being my best friend, and as the clinic mascot that giving her relief from pain and her being more comfortable was the least I could do for her.

Nonis stem cell therapy involved a small fat sample collection, which was brought to Vet-Stems lab in Poway, California. There, highly trained lab technicians processed Nonis fat tissue to isolate the stem cells into doses that could be injected into the arthritic joints that were causing her pain. Normally the tissue is shipped overnight to Vet-Stem and the cells are shipped overnight back to the veterinarian making doses available within 48 hours, but because Paradise Veterinary Hospital is located near Vet-Stem Nonis stem cell doses were available for injection the same day the fat sample was collected.

Noni did very well post procedure; she regained muscle strength and flexibility, Dr. Dembinski reported, Noni did four weeks of rehab then went right back to competing in agility. Six months after the procedure she earned her MACH (Master Agility Champion), AKC (American Kennel Club) title. Because of her stem cell therapy she is still comfortable and playing agility!

Dr. Dembinski is a general practitioner for pets including dogs, cats, small mammals, birds and exotics. She is currently owner and primary veterinarian at Paradise Veterinary Hospital and sits on the board of the San Diego County Veterinary Medical Association. Caring for animals is not just a job for Dr. Dembinski, it is a passion. In her free time she and Noni compete in dog agility trials with AKC, North American Dog Agility Council and Canine Performance Events.

About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

View original post here:
San Diego Canine Overcomes Pain to Achieve Championship with the Help of Paradise Veterinary Hospital and Vet-Stem, Inc.

To Read More: San Diego Canine Overcomes Pain to Achieve Championship with the Help of Paradise Veterinary Hospital and Vet-Stem, Inc.
categoriaUncategorized commentoComments Off on San Diego Canine Overcomes Pain to Achieve Championship with the Help of Paradise Veterinary Hospital and Vet-Stem, Inc. | dataDecember 14th, 2013
Read All

Brain cancer treatment may lie in reactivating immune cells

By LizaAVILA

Current ratings for: Brain cancer treatment may lie in reactivating immune cells

Ratings require JavaScript to be enabled.

When they examined tumor samples of glioblastoma, the deadliest form of brain cancer, researchers in Canada discovered they contained deactivated forms of specialized immune cells that normally fight tumor-generating cells. When they tested a drug that reactivates these immune cells in diseased mice, the animals lived two to three times longer.

The researchers, from the University of Calgary's Hotchkiss Brain Institute (HBI) and Southern Alberta Cancer Research Institute, hope their discovery will lead to clinical trials and eventually to a new standard of care for brain tumor patients.

They write about their findings in a recent online issue of Nature Neuroscience.

Even though treatments already exist, the median survival for patients with glioblastoma is only 15 months - fewer than 1 in 20 survive more than 5 years.

Our brains have their own specialized immune cells called microglia that protect against injury and infection.

They are the brain's "dedicated immune system," explains senior author V. Wee Yong, a professor in Calgary's Departments of Oncology and Clinical Neurosciences.

As with other cancers, brain tumors start from stem cells. In the case of brain tumors, they are called brain tumor initiating cells (BTICs).

BTICs grow and divide rapidly, eventually forming a mass, the tumor itself.

Follow this link:
Brain cancer treatment may lie in reactivating immune cells

To Read More: Brain cancer treatment may lie in reactivating immune cells
categoriaSpinal Cord Stem Cells commentoComments Off on Brain cancer treatment may lie in reactivating immune cells | dataDecember 13th, 2013
Read All

Phoenix Pain Management Doctors at Arizona Pain Stem Cell Institute Now Offering 4 Stem Cell Treatments for Arthritis

By JoanneRUSSELL25

Phoenix, Arizona (PRWEB) December 11, 2013

The top Phoenix stem cell treatment clinic, Arizona Pain Stem Cell Institute, is now offering four stem cell therapies for arthritis. The treatments offered are very low risk and offered as an outpatient. For more information and scheduling on the regenerative medicine treatments offered, call (602) 507-6550.

The Board Certified, Award Winning pain management doctors in Arizona provide either bone marrow, fat derived or amniotic stem cell injections. The fat or bone marrow is harvested from the patient, and immediately processed for injection into the target area. Since the material comes directly from the patient, the risks are exceptionally low.

With regards to the amniotic derived injections, the fluid is obtained from consenting donors and processed at an FDA regulated lab. The treatment does not involve any fetal tissue, and contains a high concentration of stem cells, growth factors and anti-inflammatory factors.

The additional treatment offered is platelet rich plasma therapy, known as PRP therapy for short. PRP therapy involves a simple blood draw from the patient, which is then centrifuged and spun down for 15 minutes to obtain a solution rich in platelets and growth factors.

The PRP is then injected into the target area, where published studies have shown impressive results for arthritis and soft tissue injury such as rotator cuff tendonitis, tennis elbow, Achilles tendonitis, ligament injury and more. The treatments have the potential to not only provide pain relief, but also regenerate the damaged tissue or cartilage.

Numerous athletes over the past few years have turned to regenerative medicine to obtain pain relief and get back into playing condition. This has included athletes such as Hines Ward, Tiger Woods, Kobe Bryant, Rafael Nadal and many more.

The Arizona Pain Stem Cell Institute treats everyone from athletes to college students to executives, manual laborers, senior citizens and more. Board Certified and Award Winning Phoenix pain management doctors offer the stem cell treatments along with other cutting edge pain relief options such as radiofrequency ablation and spinal cord stimulator implants.

Over 50 insurance plans are accepted, and Arizona Pain Specialists offers 5 locations for convenience. Call (602) 507-6550 for scheduling.

View post:
Phoenix Pain Management Doctors at Arizona Pain Stem Cell Institute Now Offering 4 Stem Cell Treatments for Arthritis

To Read More: Phoenix Pain Management Doctors at Arizona Pain Stem Cell Institute Now Offering 4 Stem Cell Treatments for Arthritis
categoriaSpinal Cord Stem Cells commentoComments Off on Phoenix Pain Management Doctors at Arizona Pain Stem Cell Institute Now Offering 4 Stem Cell Treatments for Arthritis | dataDecember 13th, 2013
Read All

More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies

By JoanneRUSSELL25

Durham, NC (PRWEB) December 09, 2013

Generating new cardiac muscle from human embryonic stem cells (hESCs) and/or induced pluripotent stem cells (iPSC) could fulfill the demand for therapeutic applications and drug testing. The production of a similar population of these cells remains a major limitation, but in a study just published in STEM CELLS Translational Medicine, researchers now believe they have found a way to do this.

By combining small molecules and growth factors, the international research team led by investigators at the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai developed a two-step system that caused stem cells to differentiate into ventricular heart muscle cells from hESCs and iPSCs. The process resulted in high efficiency and reproducibility, in a manner that mimicked the developmental steps of normal cardiovascular development.

These chemically induced, ventricular-like cardiomyocytes (termed ciVCMs) exhibited the expected cardiac electrophysiological and calcium handling properties as well as the appropriate heart rate responses, said lead investigator Ioannis Karakikes, Ph.D., of the Stanford University School Of Medicine, Cardiovascular Institute. Other members of the team included scientists from the Icahn School of Medicine at Mount Sinai, New York, and the Stem Cell & Regenerative Medicine Consortium at the University of Hong Kong.

In addition, using an integrated approach involving computational and experimental systems, the researchers demonstrated that using molecules to modulate the Wnt pathway, which passes signals from cell to cell, plays a key role in whether a cell evolves into an atrial or ventricular muscle cell.

The further clarification of the molecular mechanism(s) that underlie this kind of subtype specification is essential to improving our understanding of cardiovascular development. We may be able to regulate the commitment, proliferation and differentiation of pluripotent stem cells into heart muscle cells and then harness them for therapeutic purposes, Dr. Karakikes said.

"Most cases of heart failure are related to a deficiency of heart muscle cells in the lower chambers of the heart, said said Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. An efficient, cost-effective and reproducible system for generating ventricular cardiomyocytes would be a valuable resource for cell therapies as well as drug screening.

###

The full article, Small Molecule-Mediated Directed Differentiation of Human Embryonic Stem Cells Toward Ventricular Cardiomyocytes, can be accessed at http://www.stemcellstm.com.

About STEM CELLS Translational Medicine: STEM CELLS TRANSLATIONAL MEDICINE (SCTM), published by AlphaMed Press, is a monthly peer-reviewed publication dedicated to significantly advancing the clinical utilization of stem cell molecular and cellular biology. By bridging stem cell research and clinical trials, SCTM will help move applications of these critical investigations closer to accepted best practices.

Read the rest here:
More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies

To Read More: More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies
categoriaCardiac Stem Cells commentoComments Off on More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies | dataDecember 13th, 2013
Read All

Space Station made accessible for stem cell research

By LizaAVILA

Washington, Dec 7 : NASA and the Center for the Advancement of Science in Space (CASIS) are enabling research aboard the International Space Station that could lead to new stem cell-based therapies for medical conditions faced on Earth and in space.

Scientists will take advantage of the space station's microgravity environment to study the properties of non-embryonic stem cells.

NASA is interested in space-based cell research because it is seeking ways to combat the negative health effects astronauts face in microgravity, including bone loss and muscle atrophy.

Mitigation techniques are necessary to allow humans to push the boundaries of space exploration far into the solar system. This knowledge could help people on Earth, particularly the elderly, who are afflicted with similar conditions.

Two stem cell investigations scheduled to fly to the space station next year were highlighted Friday, Dec. 6, at the World Stem Cell Summit in San Diego.

Lee Hood, a member of the CASIS Board of Directors, moderated a panel session in which scientists Mary Kearns-Jonker of Loma Linda University in California and Roland Kaunas of Texas A&M University discussed their planned research, which will gauge the impact of microgravity on fundamental stem cell properties.

Kearns-Jonker's research will study the aging of neonatal and adult cardiac stem cells in microgravity with the ultimate goal of improving cardiac cell therapy.

Kaunas is a part of a team of researchers developing a system for co-culturing and analyzing stem cells mixed with bone tumor cells in microgravity.

This system will allow researchers to identify potential molecular targets for drugs specific to certain types of cancer.

Stem cells are cells that have not yet become specialized in their functions. They display a remarkable ability to give rise to a spectrum of cell types and ensure life-long tissue rejuvenation and regeneration.

Read more from the original source:
Space Station made accessible for stem cell research

To Read More: Space Station made accessible for stem cell research
categoriaCardiac Stem Cells commentoComments Off on Space Station made accessible for stem cell research | dataDecember 13th, 2013
Read All

Scientists Grow Functioning Neural Cells in Lab Raising Hopes of Bio-engineered Brain

By LizaAVILA

Researchers in Sweden have successfully grown functioning neural tissues in lab, which has opened up significant new possibilities in medical science including new ways of treating cases of brain damage.

Scientists have already developed sophisticated techniques to grow tissues of other visceral organs such as kidney, liver, trachea, lymph nodes, and veins, and have even performed tissue transplantations in body for organ regeneration.

However, growing neural tissues in the lab is itself tricky as neurons are the most complex cells in our body, and imitating the functional biology of brain has been the most challenging task for scientists trying to unlock the mysteries of human body.

Neural tissues have been grown before in labs, but there is still a long way to go before researchers can achieve in vivo nerve regeneration and differentiation.

But Paolo Macchiarini and Silvia Baiguera at the Karolinska Institute in Stockholm may have identified a way forward.

Organic tissue is grown in a scaffold which replicates the protein-rich environment of tissues in the body, known as extracellular matrix (ECM). The in vitro scaffold thus provides nutrients and biochemical cues to the embedded stem cells to help them grow into differentiated cells.

The researchers contrived a gelatin scaffold with extracellular plasma from rat brain cells to replicate in vivo environment, and then lodged mesenchymal stem cells from another rat's bone marrow into the scaffold. The experiment was successful as the stem cells grew into differentiated neural cells in vitro.

The team believes that the bioengineering technique could be used for surgically treating neurodegenerative disorders and injuries.

Macchiarini hopes of using transplants of bioengineered tissue to replace parts of the brain tissues damaged by gunshots, concussions etc. and in conditions such as Parkinson's and Alzheimer's caused by death of brain cells.

Read more here:
Scientists Grow Functioning Neural Cells in Lab Raising Hopes of Bio-engineered Brain

To Read More: Scientists Grow Functioning Neural Cells in Lab Raising Hopes of Bio-engineered Brain
categoriaBone Marrow Stem Cells commentoComments Off on Scientists Grow Functioning Neural Cells in Lab Raising Hopes of Bio-engineered Brain | dataDecember 13th, 2013
Read All

UTHealth Researchers Study Stem Cell Treatments for Children with CP

By JoanneRUSSELL25

Contact Information

Available for logged-in reporters only

Newswise HOUSTON (Dec. 10, 2013) A first-of-its-kind clinical trial studying two forms of stem cell treatments for children with cerebral palsy (CP) has begun at The University of Texas Health Science Center at Houston (UTHealth) Medical School.

The double-blinded, placebo-controlled studys purpose includes comparing the safety and effectiveness of banked cord blood to bone marrow stem cells. It is led by Charles S. Cox, Jr., M.D., the Childrens Fund, Inc. Distinguished Professor of Pediatric Surgery at the UTHealth Medical School and director of the Pediatric Trauma Program at Childrens Memorial Hermann Hospital. Co-principal investigator is Sean I. Savitz, M.D., professor and the Frank M. Yatsu, M.D., Chair in Neurology in the UTHealth Department of Neurology.

The study builds on Cox extensive research studying stem cell therapy for children and adults who have been admitted to Childrens Memorial Hermann and Memorial Hermann-Texas Medical Center after suffering a traumatic brain injury (TBI). Prior research, published in the March 2010 issue of Neurosurgery, showed that stem cells derived from a patients own bone marrow were safely used in pediatric patients with TBI. Cox is also studying cord blood stem cell treatment for TBI in a separate clinical trial.

A total of 30 children between the ages of 2 and 10 who have CP will be enrolled: 15 who have their own cord blood banked at Cord Blood Registry (CBR) and 15 without banked cord blood. Five in each group will be randomized to a placebo control group. Families must be able to travel to Houston for the treatment and follow-up visits at six, 12 and 24 months.

Parents will not be told if their child received stem cells or a placebo until the 12-month follow-up exam. At that time, parents whose children received the placebo may elect to have their child receive the stem cell treatment through bone marrow harvest or cord blood banked with CBR.

Collaborators for the study include CBR, Lets Cure CP, TIRR Foundation and Childrens Memorial Hermann Hospital. The study has been approved by the U.S. Food and Drug Administration.

Cerebral palsy is a group of disorders that affects the ability to move and maintain balance and posture, according to the Centers for Disease Control. It is caused by abnormal brain development or damage to the developing brain, which affects a persons control over muscles. Treatment includes medications, braces and physical, occupational and speech therapy.

For a list of inclusion and exclusion criteria for the trial, go to http://www.clinicaltrials.gov. For more information, call the toll-free number, 855-566-6273.

See the article here:
UTHealth Researchers Study Stem Cell Treatments for Children with CP

To Read More: UTHealth Researchers Study Stem Cell Treatments for Children with CP
categoriaBone Marrow Stem Cells commentoComments Off on UTHealth Researchers Study Stem Cell Treatments for Children with CP | dataDecember 13th, 2013
Read All

AIDS virus comes back in men who hoped for cure

By raymumme

Dec. 9, 2013 at 10:17 AM ET

Two men who had hoped they might be cured of an HIV infection after getting bone marrow transplants for cancer got some bad news, doctors said Monday. The virus has come back.

The intense and life-threatening treatments for cancer appeared to have wiped the virus out, and the two men took a chance and, earlier this year, stopped taking the HIV drugs that were keeping the virus under control.

At first, no signs of the virus could be found. But their doctors, cautious after decades of fighting a tricky virus, didnt declare a cure.

Its disappointing, said Dr. Daniel Kuritzkes of Brigham and Womens Hospital in Boston, who worked with Dr. Timothy Henrich to treat and study the two men.

But its still taught us a great deal.

The case of the two men shows that even if you make HIV seemingly disappear, it can be hiding out in the body and can re-activate. It might be somewhere other than in blood cells, Henrich said. Other scientists suspect HIV might be able to hole up in organs or inside the intestines.

Through this research we have discovered the HIV reservoir is deeper and more persistent than previously known and that our current standards of probing for HIV may not be sufficient to inform us if long-term HIV remission is possible if antiretroviral therapy is stopped, Henrich said.

Both patients have resumed therapy and are currently doing well. Neither man wants to be named.

Henrich, Kuritzkes and colleagues had actively looked for HIV patients with leukemia or lymphoma who had received bone marrow stem cell transplants.

See more here:
AIDS virus comes back in men who hoped for cure

To Read More: AIDS virus comes back in men who hoped for cure
categoriaBone Marrow Stem Cells commentoComments Off on AIDS virus comes back in men who hoped for cure | dataDecember 13th, 2013
Read All

Page 570«..1020..569570571572..580590..»


Copyright :: 2025