Page 636«..1020..635636637638..650660..»

Stem Cell Orthodoxy and Peer Review

By Dr. Matthew Watson


Going against the grain can be
difficult as UC Davis stem cell scientist Paul Knoepfler learned
again in connection with his research that dealt with similarities
between cancer and iPS cells.

His “unsettling” findings troubled
some scientists who reviewed his paper prior to its publication in
September in Stem Cells and Development. (See here and here.)
As many readers know, iPS or
reprogrammed adult cells are currently a hot research avenue in stem
cell research because they avoid many of the ticklish ethical and
political problems connected with human embryonic stem cells.
Knoepfler shared his thoughts on the
publication and peer review process on his blog last week. He wrote,

“Not surprisingly...there are certain
members of the stem cell field who would rather focus away from the
ideas that iPS cells are similar in some respects to cancer.”

Knoepfler, whose research was financed
in part by the California stem cell agency, wrote,

“Once we had a manuscript together
comparing iPS cells to cancer cells, we sent it to several high
profile journals without much luck. We thought that the fact that our
data indicated that iPS cells are similar to cancer cells might make
reviewers and editors excited. We thought that the paper was novel
and thought provoking in a number of ways. At the same time I
realized the theme of the paper would be controversial. 

“I would say two general things about
the review process at the two journals that turned down the paper.
First, the reviewers at these journals were enormously helpful with
their suggestions and helped us improve the paper substantially.
Second, they were clearly very uncomfortable with the notion that iPS
cells are related in some ways to cancer so unsettled in fact that I
believe it influenced their reviews.”

At one journal, a reviewer said the
findings were either “not sufficiently novel” or “trivial.”
“Little useful insights” said another. And a third said, “many
unsettling results....”
Knoepfler commented on this blog,

“Yeah, it may be unsettling that iPS
cells share traits with cancer cells, but if that is the reality,
isn’t it important that people know that and think about it, talk
about it, and address the issue with eyes open?”

Knoepfler's item and similar comments
from other researchers that can found elsewhere on the Internet
indirectly raise questions about the California stem cell agency's process
of peer review of applications for hundreds of millions of dollars in
funding, especially in the wake of this summer's unprecedented rash of appeals of decisions by grant reviewers.
The key question is whether the agency's closed-door process reinforces orthodoxy or, in fact, is all but controlled by what
amounts to scientific conventional wisdom. Obviously, no researcher
likes to see a paper rejected or a grant denied. But the record
number of appeals at CIRM and other private complaints could well indicate
that potentially profitable proposals are receiving a less than
welcome reception behind closed doors from agency reviewers.
The agency's board itself is
hard-pressed to make such determinations. It is hamstrung by
procedures that do not permit it to expand an application directly –
only a staff-written summary. Names of applicants and institutions
are censored, although the board is required by law to discuss in
public most aspects of a research proposal. Exceptions are permitted for proprietary information. Additionally, a handful of the 29 members of the governing board do participate in the reviews, which come before final action by the board. 
Currently the agency is pushing hard to
commercialize stem cell research and fulfill at least some of the
promises to voters that were made in 2004. To do that, the agency may
well have to step outside of the normal comfort zone of the good
burghers of stem cell science.

Source:
http://feedproxy.google.com/~r/blogspot/uqpFc/~3/LITB6cXS-ZM/stem-cell-orthodoxy-and-peer-review.html

To Read More: Stem Cell Orthodoxy and Peer Review
categoriaStem Cell Therapy commentoComments Off on Stem Cell Orthodoxy and Peer Review | dataOctober 14th, 2012
Read All

StemCells, Inc. Awarded Broad U.S. Patent Covering Expandable Liver Cells

By Dr. Matthew Watson

NEWARK, Calif., Oct. 12, 2012 (GLOBE NEWSWIRE) -- StemCells, Inc. (STEM) today announced the issuance of U.S. Patent Number 8,283,164 titled "Liver engrafting cells, assays, and uses thereof." The patent broadly covers purified populations of human liver cells, including the Company's human liver engrafting cells (hLEC). hLEC cells were first isolated by Company researchers in the late 1990s, and Company scientists have repeatedly demonstrated the cells' engraftment and robust bioactivity in vivo and that they are expandable. While the Company's hLEC cells are purified from donated adult livers not suitable for transplant, the newly issued '164 patent importantly claims cells independent of tissue source. Therefore, the '164 patent has potential relevance to those deriving liver cells from iPS or ESC platforms. The term of the '164 patent extends into 2022.

"This new patent extends our IP protection around hLEC cells and should be of interest to those searching for an expandable human liver cell," said Martin McGlynn, President and Chief Executive Officer of StemCells, Inc. "Because the liver is such a key organ, finding an expandable, reliable and well-characterized liver cell population is an important step forward in both medical research and drug development. For example, liver disease afflicts some 25 million Americans and transplantation of an expandable liver cell could potentially address many of the shortcomings of whole liver transplantation. Moreover, the right liver cells could make profound contributions to drug screening and toxicity testing."

In October 2011, StemCells formed a wholly-owned subsidiary to focus on both the therapeutic and research tool applications of its hLEC technologies and to serve as an investment vehicle for those interested in a "pure play" liver cell company. The '164 patent is one of several patents issued to the Company on a worldwide basis claiming expandable liver cells, including U.S. Patent Nos. 7,811,818 and 7,211,404, Japan Patent No. 4445876, Australian Patent No. 2002315392, and European Patent No. 1406998. Patent prosecution in the family is ongoing on a worldwide basis, including China application 02816528.4.

About StemCells, Inc.

StemCells, Inc. is engaged in the research, development, and commercialization of cell-based therapeutics and tools for use in stem cell-based research and drug discovery. The Company's lead therapeutic product candidate, HuCNS-SC(R) cells (purified human neural stem cells), is currently in development as a potential treatment for a broad range of central nervous system disorders. The Company recently reported results from a Phase I clinical trial in Pelizaeus-Merzbacher disease (PMD), a fatal myelination disorder in children. The trial results showed preliminary evidence of progressive and durable donor-derived myelination in all four patients transplanted with HuCNS-SC cells. The Company is also conducting a Phase I/II clinical trial in chronic spinal cord injury in Switzerland and a Phase I/II clinical trial in dry age-related macular degeneration in the United States. In addition, the Company is pursuing preclinical studies of its HuCNS-SC cells in Alzheimer's disease. StemCells also markets stem cell research products, including media and reagents, under the SC Proven(R) brand. Further information about StemCells is available at http://www.stemcellsinc.com.

The StemCells, Inc. logo is available at http://www.globenewswire.com/newsroom/prs/?pkgid=7014

Apart from statements of historical fact, the text of this press release constitutes forward-looking statements within the meaning of the Securities Act of 1933, as amended, and the Securities Exchange Act of 1934, as amended, and is subject to the safe harbors created therein. These statements include, but are not limited to, statements regarding the prospect of enforcing the Company's intellectual property against infringers, the potential breadth and length of patent protection in the United States or in any other geography; and the likelihood that any of the Company's intellectual property will be found to be valid and enforceable. These forward-looking statements speak only as of the date of this news release. The Company does not undertake to update any of these forward-looking statements to reflect events or circumstances that occur after the date hereof. Such statements reflect management's current views and are based on certain assumptions that may or may not ultimately prove valid. The Company's actual results may vary materially from those contemplated in such forward-looking statements due to risks and uncertainties to which the Company is subject, including the Company's ability to obtain the increased capital resources needed to continue its current operations and to conduct the research, preclinical development and clinical trials necessary for regulatory approvals and for continued patent prosecution efforts; uncertainty regarding the validity and enforceability of the Company's existing patents; and other factors that are described under the heading "Risk Factors" in the Company's Annual Report on Form 10-K for the year ended December 31, 2011, and in its subsequent reports on Form 10-Q and Form 8-K.

Continue reading here:
StemCells, Inc. Awarded Broad U.S. Patent Covering Expandable Liver Cells

To Read More: StemCells, Inc. Awarded Broad U.S. Patent Covering Expandable Liver Cells
categoriaSpinal Cord Stem Cells commentoComments Off on StemCells, Inc. Awarded Broad U.S. Patent Covering Expandable Liver Cells | dataOctober 14th, 2012
Read All

Bay Area stem cell researchers see encouraging results

By daniellenierenberg

SAN FRANCISCO (KGO) -- Bay Area stem cell researchers are reporting early, encouraging results from two clinical trials. The first, involves patients, paralyzed with spinal cord injuries and a treatment that could offer new hope for their future.

Nearly 20 years after the football injury that left him paralyzed, Roman Reed still holds onto the hope that he will someday walk again.

"One hundred percent, without a doubt. I've been wrong about the date, but not the fact I will walk again," said Reed.

Reed now runs a foundation to promote stem cell research and has been closely watching a clinical trial being conducted by Bay Area based Stem Cells Inc. Its goal is to use stem cell therapy to restore motor function in patients with spinal cord injuries.

"We're on the road on to being able to cure paralysis, it's so important, and stem cells are the way to do it," said Reed.

Stephen Huhn, M.D., Ph.D., from Stem Cells Inc., says the test procedure began a two hour surgery to clear a path to the spinal cord. Researchers then injected the cells directly into the damaged area.

"So the first three patients in the trial were designed to enroll patients who had the worst of the worst injuries. In other words, complete loss of sensory function and complete loss of motor function below the level of injury," said Huhn.

The phase one trials are all about establishing safety, but six months out, the researchers began measuring some intriguing improvements in two of those three patients. Both reported feeling in areas below the areas of their injuries.

The company cautions that the data is very preliminary, but they say researchers were able to measure the improved sensory response using several testing methods, including electrical stimulation, and response to heat -- which are considered more accurate than the patient's own self-reporting.

"You can't fake that. When we saw that data, that's when we became very excited," said Martin McGlynn, the CEO of Stems Cells Inc.

View post:
Bay Area stem cell researchers see encouraging results

To Read More: Bay Area stem cell researchers see encouraging results
categoriaSpinal Cord Stem Cells commentoComments Off on Bay Area stem cell researchers see encouraging results | dataOctober 14th, 2012
Read All

Anmore boy needs bone marrow transplant

By LizaAVILA

METRO VANCOUVER -- It started with a routine blood test after a bout of pneumonia.

But since finding two rare bone marrow conditions, the family of 11-year-old Jonathan Barnes has been campaigning to shore up the list of potential marrow donors, and to keep local blood banks stocked.

Without finding a bone marrow donor who will match Jonathan's criteria, the Anmore youngster will likely end up with leukemia. Despite the frightening prospect, Jonathan and his family are meeting the challenge with poise.

"He knows he has a condition called myelodysplasia. He knows that he needs to have a bone marrow transplant," said Mariam Barnes, Jonathan's mother.

"He knows he will get cancer if he doesn't have the transplant. But in the way that children are always so wonderfully unique, he's not fazed by that."

While finding an exact match is extremely difficult, getting on the donor list is easier than most people might think, Barnes said.

"A lot of people don't do it because they think it's involving needles but the beginning step is just a mouth swab. It comes to you in the post and you post it back, and they put you on the register," she said.

"What we didn't know and what I don't think many people know, is that they're desperately short of young male donors . There's 19 million people on the transplant register across the world, but only 10 per cent of those are the groups that they need - ethnically diverse young men."

It would be easier to find a match for the family if they could use donated stem cells from umbilical chords, but that procedure won't be available in Canada until next year and the Barnes don't have that much time, she said.

"We're just praying and hoping that someone, somewhere in the world, will put forward a match that will fit with Jonathan."

View post:
Anmore boy needs bone marrow transplant

To Read More: Anmore boy needs bone marrow transplant
categoriaBone Marrow Stem Cells commentoComments Off on Anmore boy needs bone marrow transplant | dataOctober 14th, 2012
Read All

Stem cells from muscle tissue 'may help cure neurodegenerative diseases'

By Sykes24Tracey

Washington, October 13 (ANI): In a new study, researchers have taken the first steps to create neural-like stem cells from muscle tissue in animals.

"Reversing brain degeneration and trauma lesions will depend on cell therapy, but we can't harvest neural stem cells from the brain or spinal cord without harming the donor," Osvaldo Delbono, lead author of the study from Wake Forest Baptist Medical Center, said.

"Skeletal muscle tissue, which makes up 50 percent of the body, is easily accessible and biopsies of muscle are relatively harmless to the donor, so we think it may be an alternative source of neural-like cells that potentially could be used to treat brain or spinal cord injury, neurodegenerative disorders, brain tumours and other diseases, although more studies are needed," Delbono said.

In an earlier study, the Wake Forest Baptist team isolated neural precursor cells derived from skeletal muscle of adult transgenic mice.

In the current research, the team isolated neural precursor cells from in vitro adult skeletal muscle of various species including non-human primates and aging mice, and showed that these cells not only survived in the brain, but also migrated to the area of the brain where neural stem cells originate.

Another issue the researchers investigated was whether these neural-like cells would form tumours, a characteristic of many types of stem cells. To test this, the team injected the cells below the skin and in the brains of mice, and after one month, no tumours were found.

"Right now, patients with glioblastomas or other brain tumours have very poor outcomes and relatively few treatment options," Alexander Birbrair, first author of the study, said.

"Because our cells survived and migrated in the brain, we may be able to use them as drug-delivery vehicles in the future, not only for brain tumours but also for other central nervous system diseases," he added.

The findings of the study have been published online in the journals Experimental Cell Research and Stem Cell Research. ANI)

See the rest here:
Stem cells from muscle tissue 'may help cure neurodegenerative diseases'

To Read More: Stem cells from muscle tissue 'may help cure neurodegenerative diseases'
categoriaSkin Stem Cells commentoComments Off on Stem cells from muscle tissue 'may help cure neurodegenerative diseases' | dataOctober 14th, 2012
Read All

Could Stem Cells Treat Autism? Newly Approved Study May Tell

By raymumme

By Mary Brophy Marcus HealthDay Reporter

FRIDAY, Oct. 12 (HealthDay News) -- Autism researchers have been given the go-ahead by the U.S. Food and Drug Administration to launch a small study in children with autism that evaluates whether a child's own umbilical cord blood may be an effective treatment.

Thirty children with the disorder, aged 2 to 7, will receive injections of their own stem cells from umbilical cord blood banked by their parents after their births. All of the cord blood comes from the Cord Blood Registry, the world's largest stem cell bank.

Scientists at Sutter Neuroscience Institute, in Sacramento, Calif., said the placebo-controlled study will evaluate whether the stem cell therapy helps improve language and behavior in the youngsters.

There is anecdotal evidence that stem cell infusions may have a benefit in other conditions such as cerebral palsy, said lead study investigator Dr. Michael Chez, director of pediatric neurology at the institute.

"We're hoping we'll see in the autism population a group of patients that also responds," Chez said. Other autism and stem cell research is going on abroad, but this study is the first to use a child's own cord blood stem cells.

Chez said the study will involve only patients whose autism is not linked to a genetic syndrome or brain injury, and all of the children will eventually receive the stem cells.

Two infusions will take place during the 13-month study. At the start of the research, the children will be split into two groups, half receiving an infusion of cord blood stem cells and half receiving a placebo. At six months, the groups will swap therapies. The infusions will be conducted on an outpatient basis with close monitoring, Chez said.

"We're working with Sutter Children's Hospital, who does our oncology infusions with the same-age children," he said. "They are very experienced nurses who work with preschool and school-age kids to help them get through medical experiences."

Each child and his or her parents will be given a private room with a television and videos, beverages, and perhaps a visit from the hospital's canine therapy dog, and then a topical anesthetic will be applied to the arm to numb the skin before intravenous needle placement. A hematology expert will be giving the infusions and monitoring for safety, said Chez, who noted that each child will be watched closely for an hour and a half before heading home. They will be seen the next day as well for a safety check.

Link:
Could Stem Cells Treat Autism? Newly Approved Study May Tell

To Read More: Could Stem Cells Treat Autism? Newly Approved Study May Tell
categoriaSkin Stem Cells commentoComments Off on Could Stem Cells Treat Autism? Newly Approved Study May Tell | dataOctober 14th, 2012
Read All

Ricky Reyes to help set up Fresh Cell Therapy clinic in the Philippines

By JoanneRUSSELL25

Hanggang ngayon ay usap-usapan pa rin ang Fresh Cell Therapy (FCT) o mas kilala natin bilang stem cell therapy lalo nat marami nang celebrities ang nahihikayat na sumailalim sa naturang medical procedure na nagpo-promote ng anti-aging at nakatutulong para labanan ang ilang serious health conditions.

Isa na nga rito ang sikat na hairstylist, beauty expert, philanthropist, businessman, at TV host na si Ricky Reyes o mas kilala bilang si Mother Ricky.

Sumailalim si Mother Ricky sa FCT noong Hunyo ng taong ito at ngayon nga ay ine-enjoy niya ang benepisyo nito sa kanyang kalusugan.

The fact that my arthritis is gone, Im very, very happy and Im thankful to Bobby [Kittichaiwong, Villa Medica CEO). And its just a two-shot on my back, gone instantly. You know, yung quality of life mo na hindi ka aray-aray-aray?

Tapos nagpunta ako sa Germany last June and its such a beautiful place. We even had meron ka pang tour sa Paris [France]. Very nice place, sabi ni Mother Ricky.

Nakausap ng PEP.ph (Philippine Entertainment Portal) si Mother Ricky sa presscon ng Villa Medica tungkol sa FCT na ginanap kaninang tanghali, Oktubre 13, sa Crowne Plaza sa Ortigas, Pasig City.

Hindi rin daw niya maitatanggi ang kabutihang naidulot ng FCT sa kanyang ina, na sumailalim din sa naturang therapy.

Oo naman, with my experience with my mom. Dati nakatungo na, ngayon nakataas na yung leeg na ganyan, paglalarawan pa ni Mother Ricky tungkol sa nagawa ng FCT sa kanyang ina.

Nai-stretch na yung mga kamay. Isang malaking utang na loob ko yun kay Bobby. It is a Christmas gift of Bobby to me to cure my mom.

View original post here:
Ricky Reyes to help set up Fresh Cell Therapy clinic in the Philippines

To Read More: Ricky Reyes to help set up Fresh Cell Therapy clinic in the Philippines
categoriaUncategorized commentoComments Off on Ricky Reyes to help set up Fresh Cell Therapy clinic in the Philippines | dataOctober 14th, 2012
Read All

Doubt cast on clinical stem cell tests

By Sykes24Tracey

Friday, Oct. 12, 2012

Harvard University said neither it nor Massachusetts General Hospital have ever authorized any iPS-related clinical studies by Hisashi Moriguchi, who claims to have achieved the first clinical application using the revolutionary stem cell technology.

"No clinical trials related to Moriguchi's work have been approved by institutional review boards at either Harvard University or Massachusetts General Hospital," a statement issued by Harvard and related institutes said Thursday.

The statement confirmed that Moriguchi "was a visiting fellow at Massachusetts General Hospital from 1999-2000," but added that he "has not been associated with (the institution) or Harvard since that time."

Moriguchi, a researcher at University of Tokyo Hospital, claimed to be a visiting lecturer at Harvard and to have conducted clinical trials at Massachusetts General Hospital with other researchers to transplant artificial cardiac muscle cells developed from iPS cells into six patients with heart disease.

The claim came just after Shinya Yamanaka of Kyoto University and a British scholar were jointly awarded this year's Nobel Prize in physiology or medicine for their research on iPS cells. Yamanaka and John Gurdon were credited with the discovery that mature human cells can be reprogrammed as immature cells capable of developing into all types of body parts.

"Research has been conducted after going through due procedures, such as consultations with a university ethics committee," Moriguchi claimed. "I have been told my method of creating iPS cells is different from the one used by Yamanaka (and Gurdon), but I have been doing it my way and no problems have been identified after transplants."

Moriguchi, who is thought to have asked a heart surgeon to carry out cell transplants, unveiled details about the treatment at a meeting of annual stem-cell research conference at Rockefeller University in New York held Wednesday and Thursday.

But the event's organizer, the nonprofit New York Stem Cell Foundation, subsequently said it "has received information from Harvard University that raises legitimate questions concerning a poster presentation" by Moriguchi, and has withdrawn it from the conference.

Moriguchi graduated from Tokyo Medical and Dental University with a degree in nursing science and does not have a license to practice medicine, according to a professor who taught him as an undergraduate.

View original post here:
Doubt cast on clinical stem cell tests

To Read More: Doubt cast on clinical stem cell tests
categoriaCardiac Stem Cells commentoComments Off on Doubt cast on clinical stem cell tests | dataOctober 12th, 2012
Read All

Safety results of intra-arterial stem cell clinical trial for stroke presented

By Dr. Matthew Watson

ScienceDaily (Oct. 11, 2012) Early results of a Phase II intra-arterial stem cell trial for ischemic stroke showed no adverse events associated with the first 10 patients, allowing investigators to expand the study to a targeted total of 100 patients.

The results were presented October 11 by Sean Savitz, M.D., professor of neurology and director of the Stroke Program at The University of Texas Health Science Center at Houston (UTHealth), at the 8th World Stroke Congress in Brasilia, Brazil.

The trial is the only randomized, double-blind, placebo-controlled intra-arterial clinical trial in the world for ischemic stroke. It is studying the safety and efficacy of a regenerative therapy developed by Aldagen Inc., a wholly-owned subsidiary of Cytomedix, Inc., that uses a patient's own bone marrow stem cells, which can be administered between 13 and 19 days post-stroke.

The therapy, called ALD-401, consists of stem cells that are identified using Aldagen's proprietary technology to isolate cells that express high levels of an enzyme that serves as a marker of stem cells. Pre-clinical studies found that these cells enhance recovery after stroke in mice. The cells are administered into the carotid artery. Patients are followed for 12 months to monitor safety and to assess mental and physical function.

"We have been approved by the Data Safety Monitoring Board (DSMB) to move the study into the next phase, which will allow us to expand the number of sites in order to complete enrollment," said Savitz, senior investigator for the multi-center study. As per the protocol for the trial, the Food and Drug Administration required a review by the DSMB prior to advancing to the next phase.

Preclinical research, including research at the UTHealth Medical School, has suggested that stem cells can promote the repair of the brain after an ischemic stroke, which is caused by a blood clot in the brain. Stroke is a leading cause of disability and the fourth-leading cause of death in the United States, according to 2008 statistics reported by the Centers for Disease Control and Prevention.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by University of Texas Health Science Center at Houston.

View post:
Safety results of intra-arterial stem cell clinical trial for stroke presented

To Read More: Safety results of intra-arterial stem cell clinical trial for stroke presented
categoriaBone Marrow Stem Cells commentoComments Off on Safety results of intra-arterial stem cell clinical trial for stroke presented | dataOctober 12th, 2012
Read All

Neural-like stem cells from muscle tissue may hold key to cell therapies for neurodegenerative diseases

By Dr. Matthew Watson

ScienceDaily (Oct. 12, 2012) Scientists at Wake Forest Baptist Medical Center have taken the first steps to create neural-like stem cells from muscle tissue in animals.

Details of the work are published in two complementary studies published in the September online issues of the journals Experimental Cell Research and Stem Cell Research.

"Reversing brain degeneration and trauma lesions will depend on cell therapy, but we can't harvest neural stem cells from the brain or spinal cord without harming the donor," said Osvaldo Delbono, M.D., Ph.D., professor of internal medicine at Wake Forest Baptist and lead author of the studies.

"Skeletal muscle tissue, which makes up 50 percent of the body, is easily accessible and biopsies of muscle are relatively harmless to the donor, so we think it may be an alternative source of neural-like cells that potentially could be used to treat brain or spinal cord injury, neurodegenerative disorders, brain tumors and other diseases, although more studies are needed."

In an earlier study, the Wake Forest Baptist team isolated neural precursor cells derived from skeletal muscle of adult transgenic mice (PLOS ONE, Feb. 3, 2011).

In the current research, the team isolated neural precursor cells from in vitro adult skeletal muscle of various species including non-human primates and aging mice, and showed that these cells not only survived in the brain, but also migrated to the area of the brain where neural stem cells originate.

Another issue the researchers investigated was whether these neural-like cells would form tumors, a characteristic of many types of stem cells. To test this, the team injected the cells below the skin and in the brains of mice, and after one month, no tumors were found.

"Right now, patients with glioblastomas or other brain tumors have very poor outcomes and relatively few treatment options," said Alexander Birbrair, a doctoral student in Delbono's lab and first author of these studies. "Because our cells survived and migrated in the brain, we may be able to use them as drug-delivery vehicles in the future, not only for brain tumors but also for other central nervous system diseases."

In addition, the Wake Forest Baptist team is now conducting research to determine if these neural-like cells also have the capability to become functioning neurons in the central nervous system.

Co-authors of the studies are Tan Zhang, Ph.D., Zhong-Min Wang, M.S., Maria Laura Messi, M.S., Akiva Mintz, M.D., Ph.D., of Wake Forest Baptist, and Grigori N. Enikolopov, Ph.D., of Cold Spring Harbor Laboratory.

Read the original here:
Neural-like stem cells from muscle tissue may hold key to cell therapies for neurodegenerative diseases

To Read More: Neural-like stem cells from muscle tissue may hold key to cell therapies for neurodegenerative diseases
categoriaSkin Stem Cells commentoComments Off on Neural-like stem cells from muscle tissue may hold key to cell therapies for neurodegenerative diseases | dataOctober 12th, 2012
Read All

Stem cells from muscle tissue may hold key to cell therapies for neurodegenerative diseases

By NEVAGiles23

Public release date: 12-Oct-2012 [ | E-mail | Share ]

Contact: Marguerite Beck marbeck@wakehealth.edu 336-716-2415 Wake Forest Baptist Medical Center

WINSTON-SALEM, N.C. Oct. 12, 2012 Scientists at Wake Forest Baptist Medical Center have taken the first steps to create neural-like stem cells from muscle tissue in animals. Details of the work are published in two complementary studies published in the September online issues of the journals Experimental Cell Research and Stem Cell Research.

"Reversing brain degeneration and trauma lesions will depend on cell therapy, but we can't harvest neural stem cells from the brain or spinal cord without harming the donor," said Osvaldo Delbono, M.D., Ph.D., professor of internal medicine at Wake Forest Baptist and lead author of the studies.

"Skeletal muscle tissue, which makes up 50 percent of the body, is easily accessible and biopsies of muscle are relatively harmless to the donor, so we think it may be an alternative source of neural-like cells that potentially could be used to treat brain or spinal cord injury, neurodegenerative disorders, brain tumors and other diseases, although more studies are needed."

In an earlier study, the Wake Forest Baptist team isolated neural precursor cells derived from skeletal muscle of adult transgenic mice (PLOS One, Feb.3, 2011).

In the current research, the team isolated neural precursor cells from in vitro adult skeletal muscle of various species including non-human primates and aging mice, and showed that these cells not only survived in the brain, but also migrated to the area of the brain where neural stem cells originate.

Another issue the researchers investigated was whether these neural-like cells would form tumors, a characteristic of many types of stem cells. To test this, the team injected the cells below the skin and in the brains of mice, and after one month, no tumors were found.

"Right now, patients with glioblastomas or other brain tumors have very poor outcomes and relatively few treatment options," said Alexander Birbrair, a doctoral student in Delbono's lab and first author of these studies. "Because our cells survived and migrated in the brain, we may be able to use them as drug-delivery vehicles in the future, not only for brain tumors but also for other central nervous system diseases."

In addition, the Wake Forest Baptist team is now conducting research to determine if these neural-like cells also have the capability to become functioning neurons in the central nervous system.

Read the original here:
Stem cells from muscle tissue may hold key to cell therapies for neurodegenerative diseases

To Read More: Stem cells from muscle tissue may hold key to cell therapies for neurodegenerative diseases
categoriaSkin Stem Cells commentoComments Off on Stem cells from muscle tissue may hold key to cell therapies for neurodegenerative diseases | dataOctober 12th, 2012
Read All

Read in

By NEVAGiles23

TOKYO: Shinya Yamanaka, fresh from the Nobel Prize for medicine, states that science and ethics must go hand in hand. Interviewed by the Mainichi Shimbun after the award, he said: "I would like to invite ethical experts as teachers at my laboratory and work to guide iPS [induced pluripotent stem] cell research from that direction as well. The work of a scientific researcher is just one part of the equation. "

Yamanaka, 50, found that adult cells can be transformed into cells in their infancy, stem cells (iPS), which are, so to speak, the raw material for the reconstruction of tissue irreparably damaged by disease. For regenerative medicine the implications of Yamanaka's discovery are obvious. Adult skin cells can for example be reprogrammed and transformed into any other cell that is desired: from the skin to the brain, from the skin to the heart, from the skin to elements that produce insulin.

"Their discovery - says the statement of the jury that awarded him the Nobel Prize on October 8 - has revolutionized our understanding of how cells and organisms develop. Through the programming of human cells, scientists have created new opportunities for the study of diseases and development of methods for the diagnosis and therapy ".

These "opportunities" are not only "scientific", but also "ethical". Much of the scientific research and global investment is in fact launched to design and produce stem cells from embryos, arriving at the point of manipulating and destroying them, facing scientists with enormous ethical problems.

" Ethics are really difficult - Yamanaka explainsto Mainichi - In the United States I began work on mouse experiments, and when I returned to Japan I learned that human embryonic stem cells had been created. I was happy that they would contribute to medical science, but I faced an ethical issue. I started iPS cell research as a way to do good things as a researcher, and I wanted to do what I could to expand the merits of embryonic stem cells. If we make sperm or eggs from iPS cells, however, it leads to the creation of new life, so the work I did on iPS cells led to an ethical problem. If we don't prepare debates for ethical problems in advance, technology will proceed ahead faster than we think.. "

The "ethical question" Yamanaka pushed to find a way to "not keep destroying embryos for our research."

Speaking with his co-workers at the University of Kyoto, immediately after receiving the award, Yamanaka showed dedication and modesty.

"Now - he said - I strongly feel a sense of gratitude and responsibility" gratitude for family and friends who have supported him in a demanding journey of discovery that lasted decades; responsibility for a discovery that gives hope to millions of patients. Now iPS cells can grow into any tissue of the human body allowing regeneration of parts so far irretrievably lost due to illness.

His modesty also led him to warn against excessive hopes. To a journalist who asked him for a message to patients and young researchers awaiting the results of his research heresponded: "The iPS cells are also known as versatile cells, and the technology may be giving the false impression to patients that they could be cured any day now. It will still take five or 10 years of research before the technology is feasible. There are over 200 researchers at my laboratory, and I want patients to not give up hope"

"Dozens of times - he continued - I tried to get some results and I have often failed in the experiments .... Many times I was tempted to give up or cry. Without the support of my family, I could not have continued this search. From now on I will be facing the moment of truth. I would like to return to my laboratory as quickly as possible. "

Link:
Read in

To Read More: Read in
categoriaIPS Cell Therapy commentoComments Off on Read in | dataOctober 12th, 2012
Read All

Stem-cell transplant claims debunked

By daniellenierenberg

Hisashi Moriguchi presented his work at the New York Stem Cell Foundation meeting this week.

AP/Press Association

From the beginning, it seemed too good to be true. Days after Kyoto University biologist Shinya Yamanaka won a Nobel prize for his 2006 discovery of induced pluripotent stem (iPS) cells (see 'Cell rewind wins medicine Nobel'), Hisashi Moriguchi a visiting researcher at the University of Tokyo claimed to have modified that technology to treat a person with terminal heart failure. Eight months after surgical treatment in February, said a front-page splash in the Japanese newspaper Yomiuri Shimbun yesterday, the patient was healthy.

But after being alerted to the story by Nature, Harvard Medical School and Massachusetts General Hospital (MGH), where Moriguchi claimed to have done the work, denied that the procedure had taken place. No clinical trials related to Dr Moriguchi's work have been approved by institutional review boards at either Harvard University or MGH, wrote David Cameron, a spokesman for Harvard Medical School in Boston, Massachusetts. The work he is reporting was not done at MGH, says Ryan Donovan, a public-affairs official at MGH, also in Boston.

A video clip posted online by the Nippon News Network and subsequently removed showed Moriguchi presenting his research at the New York Stem Cell Foundation meeting this week.

If true, Moriguchis feat would have catapulted iPS cells into use in a wide range of clinical situations, years ahead of most specialists' predictions. I hope this therapy is realized in Japan as soon as possible, the head of a Tokyo-based organization devoted to helping children with heart problems told Yomiuri Shimbun.

But there were reasons to be suspicious. Moriguchi said he had invented a method to reprogram cells using just two chemicals: microRNA-145 inhibitor and TGF- ligand1. But Hiromitsu Nakauchi, a stem-cell researcher at the University of Tokyo, says that he has never heard of success with that method. He adds that he had also never heard of Moriguchi before this week.

Moriguchi also said that the cells could be differentiated into cardiac cells using a 'supercooling' method that he had invented. Thats another weird thing, says Nakauchi.

The article in which Moriguchi presented his two-chemical method, published in a book1 describing advances in stem-cell research, includes paragraphs copied almost verbatim from other papers. The section headed 2.3 Western blotting, for example, is identical to a passage from a 2007 paper by Yamanaka2. Section 2.1.1, in which Moriguchi describes human liver biopsies, matches the number of patients and timing of specimen extractions described in an earlier article3, although the name of the institution has been changed.

When contacted by Nature, Moriguchi stood by his publication. We are all doing similar things so it makes sense that wed use similar words, he says. He did admit to using other papers as reference.

See the rest here:
Stem-cell transplant claims debunked

To Read More: Stem-cell transplant claims debunked
categoriaUncategorized commentoComments Off on Stem-cell transplant claims debunked | dataOctober 12th, 2012
Read All

Leading Researchers to Unite at Texas State Capitol for Regenerative Medicine and Stem Cell Research

By JoanneRUSSELL25

AUSTIN, Texas, Oct. 12th, 2012 /PRNewswire-USNewswire/ -- Prominent stem cell scientists, physicians, and advocates from leading medical facilities and research institutions across Texas and California will highlight the 3rd Annual Stem Cell Research Symposium: Spotlight on Texas, on October 19, 2012, at the Texas State Capitol.

This free, public symposium, produced and co-hosted by the Austin-based nonprofit Texas Cures Education Foundation (Texas Cures), is designed to educate the public about the exciting stem cell research andclinical trials currently under way in Texas.The event will also include a discussion of recent Texas laws affecting stem cell research, the potential economic impact of stem cell research and highlight the current progress in one of the most promising areas of medicine.

This year, more than a dozen local and national advocacy groups, institutions and foundations showed their support for the efforts of the hosting organizations Texas Cures and Texans for Stem Cell Research including the Genetics Policy Institute, Alliance for Regenerative Medicine and Texans for Advancement of Medical Research.

The symposium begins at 8:30 a.m. in the Capitol Extension Auditorium (E1.004), located at the Texas State Capitol Building. Admission is free and open to the public.Registration is recommended.

This program unites the diverse stem cell research and regenerative medicine community to provide a unified voice for promising science that holds unmatched potential to benefit patients. Leading speakers at the event will include:

For additional details about the program and presentation topics, please visit TexasCures.org.

The 3rd Annual Stem Cell Research Symposium: Spotlight on Texas is an official World Stem Cell Awareness Day Event. Follow @TexasCures and #stemcellday for live Twitter updates and announcements.

Texas Cures Education Foundation (Texas Cures) TexasCures.orgis a non-partisan, nonprofit 501(c)3] organization based in Austin, Texas. It was founded for the purpose of advancing knowledge of the life-saving work that doctors and researchers perform every day on behalf of patients and their families. Texas Cures facilitates stem cell public education for the betterment of healthcare and the growth of companies, research hospitals, and institutions, charities, and volunteer patient group organizations that include a broad range of regenerative medicine stakeholders. Texas Cures advocates for responsible public policy and encourages legislative and regulatory proposals that expand access to stem cell clinical applications.

SOURCE Texas Cures Education Foundation

More:
Leading Researchers to Unite at Texas State Capitol for Regenerative Medicine and Stem Cell Research

To Read More: Leading Researchers to Unite at Texas State Capitol for Regenerative Medicine and Stem Cell Research
categoriaUncategorized commentoComments Off on Leading Researchers to Unite at Texas State Capitol for Regenerative Medicine and Stem Cell Research | dataOctober 12th, 2012
Read All

Regenevéda Opens Flagship Stem Cell Therapy Clinic in Beverly Hills

By Sykes24Tracey

Regenevda recently opened its brand new flagship facility in Beverly Hills, specializing in cutting edge anti-aging treatments such as Stem Cell Therapy.

Beverly Hills, CA (PRWEB) October 12, 2012

Dr. Thom Lobe is an internationally respected surgeon and has been in practice for over 30 years. Consistently pioneering advances in medicine, Dr. Lobe was one of the first doctors to ever separate conjoined twins. Consistently working to help make advances in medicine, Dr. Lobe also has over 200 publications to his credit.

Overseeing the business aspect of Regenevda is Lindsey Combs. She is responsible for sales, staff, accounting, facility management, and business development. A graduate of the University of California, Los Angeles, Ms. Combs has been working in the anti-aging field for over 10 years and has been a California Licensed Esthetician since 2003.

Being one of the very few physicians in the country to hold the most advanced board certification (FAARM), Dr. Lobe is able to offer Stem Cell Therapy at the Regenevda clinic. Inside each persons own body, there are special cells in nearly every organ and tissue that have the ability to help heal damage. These special cells are called Stem Cells and this therapy works by harvesting these cells from a persons own blood, bone marrow, or fat and can help with different conditions. Some examples of procedures that use Stem Cell Therapy are: Stem Cell Facelifts, Stem Cell Breast Augmentation, and Stem Cell Joint Therapy. Stem Cell treatments are safe, non-invasive, and are done under local anesthesia.

Intravenous Nutrition Therapy (or IV Vitamin Therapy) is another anti-aging and rejuvenation treatment that can also help patients prevent migraines, lose weight, fight chronic infections like hepatitis, candida, lyme disease, as well as fight acute infections like the flu and mono. IV Therapy works by using intravenous solutions to deliver vitamins and minerals directly to the body cells. This bypasses the digestive system and provides a more direct method of delivery, which ensures that all of the nutrients required are delivered, allowing the patient to feel an improvement in condition almost immediately.

Human Growth Hormone (HGH) Therapy is another advanced treatment offered at Regenevda. HGH is secreted by the Pituitary gland and fuels cell growth and reproduction. This production peaks at adolescence. Over time, due to the effect of aging, the production of HGH slows down dramatically. As production declines, it makes it more difficult for the body to recover from physical and mental exertion. HGH Therapy acts as a supplement for HGH deficient adults to lessen body fat, boost lipid lineament, improve memory, promote bone density, as well as decrease risk factors that involve cardio-vascular conditions. If used at the onset of the decrease in HGH production, HGH Therapy can help curtail early aging and even be used as preventive measure against osteoporosis. A complete analysis of the patients sex hormones, evaluation of glucose regulation and functions of the adrenal gland, thyroid gland, and pancreas are performed before the treatment is administered for optimal results.

Combining decades of medical experience with the most cutting edge advances in medical technology, the Regenevda clinic looks to pave the way for the future of anti-aging treatments. The Regenevda Beverly Hills Institute of Cellular Therapy is located at 50 North La Cienega Boulevard. For any inquiries, they can be reached at 855-734-3638, or visit http://www.regeneveda.com.

About Regenevda :

Regeneveda, home of The Beverly Hills Institute of Cellular Therapy, provides state-of-the-art Stem Cell Therapy. Stem Cell Therapy is an effective treatment for chronic conditions such as Arthritis, Diabetes, Chronic Sports Injuries, and Chronic Pain, but is also revolutionizing anti-aging treatments such as Breast Enhancement, Erectile Dysfunction, and Facial Aging.

Visit link:
Regenevéda Opens Flagship Stem Cell Therapy Clinic in Beverly Hills

To Read More: Regenevéda Opens Flagship Stem Cell Therapy Clinic in Beverly Hills
categoriaUncategorized commentoComments Off on Regenevéda Opens Flagship Stem Cell Therapy Clinic in Beverly Hills | dataOctober 12th, 2012
Read All

Scientists discuss stem cell discoveries at New York Stem Cell Foundation Conference

By raymumme

Public release date: 11-Oct-2012 [ | E-mail | Share ]

Contact: David McKeon dmckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY (October 11, 2012) For the second day, The New York Stem Cell Foundation (NYSCF) Seventh Annual Translational Stem Cell Research Conference hosts the world's most preeminent stem cell scientists to present their findings on how advances in stem cell science lead to better treatments and cures for disease and injury. The conference is held at The Rockefeller University in Manhattan on October 10-11.

Today, in disease-specific sessions, scientists will share their latest finds in moving stem cell research to treatments in the following areas: cancer and blood disease; diabetes and autoimmunity; heart and muscles; neurodegeneration and spinal cord injury.

In Cancer and Blood Disease, Elaine Fuchs, PhD, The Rockefeller University, will share findings on identification of skin cancer stem cells, which have implications in understanding other cancers as well as stem cells. Joanne Kurtzberg, MD, Duke University, will discuss her work developing therapies for disease with autologous cord blood transplants. Ravi Majeti, PhD, Stanford University, will describe his recent insights into acute myeloid leukemia and how stem cell technologies can lead to new cancer treatments.

Dieter Egli, PhD, The New York Stem Cell Foundation (NYSCF), will open the session on Diabetes and Autoimmunity by detailing his group's development of stem cell-derived models of pancreatic beta cells for the study of diabetes. Yuval Dor, PhD, Hebrew University, Israel, will discuss experiments with pancreatic beta cells with the goal to understand the regenerative potential of these cells. Matthias von Herrath, MD, Novo Nordisk, will delve into another aspect of Type 1 diabetes, the problem of autoimmunity. He will close the session by sharing insights into the need for an immune modulated therapy to diabetes.

Before the afternoon sessions, Shahin Rafii, MD, Weill Medical College of Cornell University will deliver the first of two keynote addresses of the conference. He will describe his recent successes in deriving vascular cells from amniotic cells.

In the afternoon session on Heart and Muscle Diseases, Amy Wagers, PhD, Harvard University, will focus on advances in treatments and explain how studies into the mechanisms of tissue stem cell renewal may have relevant therapeutic implications. Gordon Keller, PhD, McEwen Centre for Regenerative Medicine, Canada, will describe modeling cardiac cell development from human pluripotent cells for use in toxicology and electrophysiology studies. Helen Blau, PhD, Stanford University, will describe her research to improve stem cell culture in the direction of stem cell fate and for drug screens.

In Neurodegeneration and Spinal Cord Injury, Paola Arlotta, PhD, Harvard University and a NYSCF-Robertson Stem Cell Investigator, will address the application of stem cells to understanding and possibly treating these debilitating diseases and conditions, and will describe investigations to direct reprogramming of neurons into different neuronal lineages. Lorenz Studer, MD, Memorial Sloan-Kettering Cancer Center, will discuss the potential stem cell technology holds in the treatment of Parkinson's disease. Despite past failures in the replacement of lost dopamine neurons, Dr. Studer will describe his novel protocols for the generation of these neurons for eventual use in clinical trials.

Rudolf Jaenisch, MD, The Whitehead Institute, will deliver the second keynote address of the day. Building on Shinya Yamanaka's paradigm-changing work in induced pluripotent stem (iPS) cell reprogramming, Dr. Jaenisch will discuss new methods to counter the generally low successful output of these cells. He will also summarize how targeted genome editing may help unleash the potential of iPS cells and embryonic stem cells for both the study of and therapy for disease.

Go here to read the rest:
Scientists discuss stem cell discoveries at New York Stem Cell Foundation Conference

To Read More: Scientists discuss stem cell discoveries at New York Stem Cell Foundation Conference
categoriaSpinal Cord Stem Cells commentoComments Off on Scientists discuss stem cell discoveries at New York Stem Cell Foundation Conference | dataOctober 12th, 2012
Read All

U.S. marks first iPS clinical applications

By Sykes24Tracey

Friday, Oct. 12, 2012

NEW YORK A team of researchers has transplanted artificial cardiac muscle cells developed from multipurpose stem cells into six patients in the United States in the world's first clinical application of iPS cells, one of the researchers said Wednesday.

Shinya Yamanaka, who won this year's Nobel Prize in medicine or physiology for his development of iPS cells, declined comment on the transplants, while other experts said details about the medical performance should be carefully evaluated.

The researchers developed the muscle cells from induced pluripotent stem cells produced from the patients' livers and transplanted them to the patients, said Hisashi Moriguchi, a visiting professor at Harvard University.

A 34-year-old American male patient who was the first to receive the transplant in February now has normal heart functions and has been discharged from the hospital, Moriguchi said.

The patient suffered from liver cancer and received a liver transplant in February 2009. He developed ischemic cardiomyopathy this February, prompting the researchers to conduct the heart surgery.

The researchers took cells from the patient's original liver, which was kept after removal for the 2009 transplant, and developed iPS cells by adding protein and other medical agents from which they produced cardiac muscle cells. The muscle cells were placed in 30 locations in the patient's heart.

No rejection or cancer development was found in the heart, and his heart function gradually recovered to normal levels 10 days after the surgery, they said.

"We need to improve the efficacy and safety of such medical treatment . . . and think of ways to reduce economic burden on patients," Moriguchi said.

The researchers used an improved technique to produce iPS cells developed by Yamanaka, the professor from Kyoto University who jointly won this year's Nobel with John Gurdon of Britain. Such cells have the potential to grow into any type of body tissue.

Read more:
U.S. marks first iPS clinical applications

To Read More: U.S. marks first iPS clinical applications
categoriaCardiac Stem Cells commentoComments Off on U.S. marks first iPS clinical applications | dataOctober 12th, 2012
Read All

New tool determines leukemia cells' 'readiness to die,' may guide clinical care

By JoanneRUSSELL25

ScienceDaily (Oct. 11, 2012) Researchers at Dana-Farber Cancer Institute have developed a novel method for determining how ready acute myeloid leukemia (AML) cells are to die, a discovery that may help cancer specialists to choose treatments option more effectively for their patients who have AML.

In a study published in the Oct. 12 issue of the journal Cell, the researchers report that their findings may lead to improved tests to predict which patients successfully treated for AML can continue in remission with standard chemotherapy alone, and which patients are likely to relapse despite additional treatment, but might benefit from a bone marrow transplant.

Anthony Letai, MD, PhD, senior author of the paper, said the study's results also help to explain the "therapeutic index" of AML chemo drugs: That is, how a patient's normal blood-forming stem cells can survive chemotherapy doses that kill the leukemia cells. Unlike current predictive tools, the new method determines the degree to which an individual patient's AML cells are "primed to die" by apoptosis, or programmed cell death. Chemotherapy is more effective when the cancer cells are well along the path to self-destruction, while patients with less-primed leukemia cells are more likely to suffer fatal relapse without a bone marrow transplant, said the researchers.

"Our data suggest that applying our assay in addition to conventional indicators yields a much better predictive tool," said Letai. "We plan to confirm this in independent experiments, and then test its performance prospectively in clinical trials to see if we can use it to do a better job of assigning individualized therapy in AML."

According to the American Cancer Society, an estimated 13,780 cases of AML will be diagnosed in the United States this year, and more than 10,000 people are expected to die from AML, making it the most lethal form of leukemia in the U.S.

Currently, clinicians try to predict an AML patient's outcome by assessing the cancer cells' pathological features and whether the cells contain certain mutations that suggest a poorer response. But these indicators do not provide a biological explanation for patients' differing responses to treatment, noted Letai.

The method described in the new study takes a different approach, first described by Letai in 2011 paper. It employs a technique called "BH3 profiling" to measure the readiness of mitochondria -- tiny organelles within the cell -- to unleash chemical compounds that cause the cell to destroy itself. The self-destruction process, called apoptosis, is triggered by "death molecules," whose mission is to eliminate unneeded or dangerously damaged cells from the body. The study's authors called this readiness for apoptotic self-destruction "mitochondrial priming."

BH3 profiling involves exposing cancer cells to BH3 molecules, which mimic the protein death signals in the body. If the cancer cells' mitochondria membrane is rapidly and easily disrupted, then the cells are considered to be highly primed for death. If the mitochondria strongly resist the disruption, the leukemia cells are further from self-destruction and less likely to respond to chemotherapy.

Applying the method to stored AML patient samples, "We found that mitochondrial priming measured by BH3 profiling was a determinant of initial response to induction [initial] chemotherapy, relapse following remission, and requirement for allogeneic bone marrow transplantation," the authors wrote.

Moreover, knowing whether a patient is likely to have a complete response to chemotherapy would be also very useful in personalizing chemotherapy decisions even when bone marrow transplant is not a consideration. "In elderly patients with AML, chemotherapy can be very toxic with an increased risk of fatal complications," said Letai. "You don't want to give chemotherapy unless you know whether it will benefit. Now we can predict who will benefit from it and who won't -- and should receive an alternative treatment."

Read this article:
New tool determines leukemia cells' 'readiness to die,' may guide clinical care

To Read More: New tool determines leukemia cells' 'readiness to die,' may guide clinical care
categoriaBone Marrow Stem Cells commentoComments Off on New tool determines leukemia cells' 'readiness to die,' may guide clinical care | dataOctober 12th, 2012
Read All

Robin Roberts returns home from hospital following bone marrow transplant

By raymumme

Robin Roberts has returned home from the hospital, following a bone marrow transplant she received with stem cells from her sister last month.

"There's no place like home. After 30 days in the hospital I'm home," Roberts Tweeted on October 11. "Praise God from whom all blessings flow. Thank YOU and bless YOU."

The 51-year-old "Good Morning America" anchor was being treated for myelodysplastic syndrome (MDS), a rare blood and bone marrow disorder. Roberts revealed her ailment in June, saying it was caused in part by treatments she had undergone for breast cancer five years ago. Her older sister, Sally-Ann, was her bone marrow donor.

Check out 9 facts about Robin Roberts, her MDS and bone marrow transplant.

Roberts went on medical leave a day early than she had initially planned in late August in order to visit her ailing mother, Lucimarian Tolliver Roberts. Lucimarian died on August 30 at the age of 88 and Robin Roberts made it back just in time to see her mother.

In the recent blog post, Roberts detailed her difficulties with chemotherapy and how her co-workers' visit helped lift her spirits.

"Today is what I like to call 'Thankful Thursday, aka Friday Eve,'" Roberts wrote in a post on October 4. "I have been in the hospital 25 days now. My bone marrow transplant took place exactly two weeks ago. The only numbers that matter are my blood counts and they are... GREAT! My sister Sally-Ann's stem cells apparently feel right at home in my body -- an answer to so many prayers."

"My doctors and rock star nurses are very pleased with my progress and I could not be more thankful for the excellent care I am receiving," she added. "I have had some extremely painful days and it's still difficult for me to eat because of all the chemo."

Roberts also mentioned a visit she had with fellow "Good Morning America" co-workers Josh Elliott and Sam Champion, which can be seen in the photo above, as well as an upcoming visit from a childhood pastor.

"I continue to learn so much on this journey, especially when it comes to true friendship and love. My friends near and far -- like Sam and Josh who came to visit yesterday -- have been lifting my spirits," Roberts wrote. "My childhood pastor (who delivered Momma's eulogy) is coming from down South to see me tomorrow. I am hopeful that I MAY be well enough to continue my recovery at home next week and my sisters plan to come back to NYC for that milestone in my journey."

Excerpt from:
Robin Roberts returns home from hospital following bone marrow transplant

To Read More: Robin Roberts returns home from hospital following bone marrow transplant
categoriaBone Marrow Stem Cells commentoComments Off on Robin Roberts returns home from hospital following bone marrow transplant | dataOctober 12th, 2012
Read All

Generation of functional thyroid tissue from stem cells

By raymumme

ScienceDaily (Oct. 11, 2012) The generation of functional thyroid tissue from stem cells could allow the treatment of patients, which suffer from thyroid hormone deficiency due to defective function, or abnormal development of the thyroid gland. The team of Sabine Costagliola at the IRIBHM (Universit Libre de Bruxelles) recently developed a protocol that allowed for the first time the efficient generation of functional thyroid tissue from stem cells in mice and published the results of their studies in the scientific journal Nature.

Thyroid hormones are a class of iodide-containing molecules that play a critical role in the regulation of various body function including growth, metabolism and heart function and that are crucial for normal brain development. The thyroid gland, an endocrine organ that has been specialized in trapping iodide, is the only organ where these hormones are produced. It is, however, of note that one out of 3000 human newborns is born with congenital hypothyroidism, a condition characterized by insufficient production of thyroid hormones. In the absence of a medical treatment with thyroid hormones -- initiated during the first days after birth -- the child will be affected by an irreversible mental retardation. Moreover, a life-long hormonal treatment is necessary in order to maintain proper regulation of growth and general metabolism.

By employing a protocol in which two important genes can be transiently induced in undifferentiated stem cells, the researchers at IRIBHM were able to efficiently push the differentiation of stem cells into thyrocytes, the primary cell type responsible for thyroid hormone production in the thyroid gland.

A first exciting finding of these studies was the development of functional thyroid tissue already within the culture dishes. As a next step, the team of Sabine Costagliola transplanted the stem-cell-derived thyrocytes into mice lacking a functional thyroid gland. Four weeks after transplantation, the researchers observed that transplanted mice had re-established normal levels of thyroid hormones in their blood and were rescued from the symptoms associated with thyroid hormone deficiency. These findings have several important implications. First, the cell system employed by the IRIBHM group provides a vital tool to better characterize the molecular processes associated with embryonic thyroid development. Second, the results of the transplantation studies open new avenues for the treatment of thyroid hormone deficiency but also for the replacement of thyroid tissue in patients suffering from thyroid cancer.

The researchers are currently developing a similar protocol based on human stem cells and explore ways to generate functional human thyroid tissue by reprogramming pluripotent stem cells (iPS) derived from skin cells.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Universit Libre de Bruxelles, via AlphaGalileo.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Continue reading here:
Generation of functional thyroid tissue from stem cells

To Read More: Generation of functional thyroid tissue from stem cells
categoriaSkin Stem Cells commentoComments Off on Generation of functional thyroid tissue from stem cells | dataOctober 12th, 2012
Read All

Page 636«..1020..635636637638..650660..»


Copyright :: 2025