Beauty salon ‘offers’ stem cell therapy
By JoanneRUSSELL25
With all the publicity about the miraculous effects of stem cell therapy, the Department of Health (DOH) should prepare itself for the possibility that the new procedure would be performed by unqualified, and completely clueless, people.
I passed a beauty parlor recently and saw a huge poster on its door announcing the arrival of stem cell therapy. I was instantly reminded of botched breast enhancement and nose jobs performed by salon personnel who seemed to think it was as easy to learn complicated surgical procedures as it was to train to cut hair or do manicures and pedicures.
The DOH should start warning the public not to fall for these special offers just because they are available at giveaway rates.
Modern lifestyle problem
Experts have repeatedly talked about problems brought about by modern lifestyles. Changing diets and stress are two of the best known. Dr. Jaime G. Ignacio, section chief of gastroenterology at Veterans Hospital and head of the Digestive Malignancy Council of the Philippine Society of Gastroenterology, said constipation could be one of the consequences of the combination of these two factors.
Speaking at an event hosted by Boehringer Ingelheim, maker of Dulcolax (generic name Bisacodyl), a formulation for constipation relief, Ignacio, who, as a gastroenterologist is a specialist in digestive system disorders, defined the problem as having fewer than three bowel movements in a week (normal ranges from three times a week to three times a day).
He said constipation itself was not a disease but it could sometimes be a symptom of something serious, like colorectal cancer. But he said about 95 percent of cases were acuteoccurring suddenly and lasting for only a short periodresulting from some sudden lifestyle or hormonal changes, the taking of medication, lack of exercise, etc.
Ignacio said acute was easy to treat, with products like Dulcolax to solve the problem. But, if left unattended, acute constipation could lead to a chronic or long-term condition, which was the more worrisome, and would need medical attention.
He said constipation should be treated as soon as the problem had lasted for four or more days.
Constipation is part of modern living. [Like other diseases] prevention is the key. Safe and effective treatment is available [if needed], Ignacio stressed.
Go here to read the rest:
Beauty salon ‘offers’ stem cell therapy
Realizing the potential of stem cell therapy: Studies report progress in developing treatments for diseases and injuries
By daniellenierenberg
ScienceDaily (Oct. 15, 2012) New animal studies provide additional support for investigating stem cell treatments for Parkinson's disease, head trauma, and dangerous heart problems that accompany spinal cord injury, according to research findings released today.
The work, presented at Neuroscience 2012, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health, shows scientists making progress toward using stem cell therapies to repair neurological damage.
The studies focused on using stem cells to produce neurons -- essential, message-carrying cells in the brain and spinal cord. The loss of neurons and the connections they make for controlling critical bodily functions are the chief hallmarks of brain and spinal cord injuries and of neurodegenerative afflictions such as Parkinson's disease and ALS (amyotrophic lateral sclerosis), also known as Lou Gehrig's disease.
Today's new findings show that:
Other recent findings discussed show that:
"As the fields of developmental and regenerative neuroscience mature, important progress is being made to begin to translate the promise of stem cell therapy into meaningful treatments for a range of well-defined neurological problems," said press conference moderator Jeffrey Macklis, MD, of Harvard University and the Harvard Stem Cell Institute, an expert on development and regeneration of the mammalian central nervous system. "Solid, rigorous, and well-defined pre-clinical work in animals can set the stage toward human clinical trials and effective future therapies."
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by Society for Neuroscience (SfN), via AlphaGalileo.
See the original post:
Realizing the potential of stem cell therapy: Studies report progress in developing treatments for diseases and injuries
Significant Recovery Of Motor And Neurological Functions In Ischemic Stroke Rats With Neuralstem NSI-566 Cells
By daniellenierenberg
ROCKVILLE, Md., Oct. 15, 2012 /PRNewswire/ --Neuralstem, Inc. (NYSE MKT: CUR) announced that data on Neuralstem's NSI-566 spinal cord-derived neural stem cell line in a rat model of ischemic stroke was presented in a poster, "Histopathological Assessment of Adult Ischemic Rat Brains after 4 Weeks of Intracerebral Transplantation of NSI-566RSC Cell Line," at The Society for Neurosciences Annual Meeting (http://www.sfn.org/AM2012/). This study was conducted independently in the laboratory of Dr. Cesar Borlongan, who is the director at the Center of Excellence for Aging and Brain Repair at the University of South Florida College of Medicine. Post-mortem histology was conducted in collaboration with Neuralstem. Rats that suffered ischemic stroke by middle cerebral artery occlusion, were transplanted 7 days post-stroke with increasing doses of NSI-566 into the stroke area. The animals were followed for safety and behavioral response for 56 days post-transplantation. Researchers reported Saturday that there was significant improvement in both motor and neurological tests in the stem cell-treated rats. There were significant dose-dependent differences in the behavioral improvement across treatment groups at post-transplantation periods, with the highest dose showing the most significant improvement in both motor and neurological tests. Similarly, there were significant differences in the behavioral performance among treatment groups at post-transplantation periods, with the most significant improvement in both motor and neurological tests seen at day 56 post-transplantation.
(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )
"This study was designed to evaluate the potential therapeutic value of intracerbral dosing of human neural stem cells (NSI-566, supplied by Neuralstem) in an animal model of adult ischemic stroke," said Cesar V. Borlongan, Ph.D., University of South Florida College of Medicine, and the lead study author. "The results are very clear. The recovery of motor and neurological tests demonstrated by high-dose transplanted stroke animals was significantly better throughout the 56-day study period compared to vehicle-infused stroke animals, or low-dosed animals. In addition, there was stable improvement in the high-dose animals, and they showed a trend of better improvement over time."
A separate poster, "Survival and Differentiation of Human Neural Stem Cells (NSI-566RSC) After Grafting into Ischemia-Injured Porcine Brain," was also presented on Saturday. This study was independently carried out by Dr. Martin Marsala and his colleagues. Dr. Marsala is a professor and the head of the Neuroregeneration Laboratory at University of California San Diego and also a member of the Sanford Consortium for Regenerative Medicine. In this study, the same stem cells were transplanted into the brains of pigs that received an ischemic stroke on one side of the brain. 8-9 weeks after the ischemic event, which models chronic stroke in humans, feasibility and safety of escalating cell doses and injections were assessed. Body temperature, behavior, muscle tone and coordination, sensory function, food consumption, defecation, and micturition were monitored at least twice daily for the first 7 days, and once weekly thereafter, until termination. Up to 12 million cells in 25 cell injection deposits via 5 cannula penetrations were shown to be safe, which closely mimics the intended clinical route and method of delivery in future human clinical trials. At 6 weeks post-transplantation, there were no complications from the cell transplantation method or the cells. All animals recovered and showed progressive improvement with no distinction. All treated animals showed effective engraftment and neuronal maturation with extensive axonal projections. These data support the application of NSI-566RSC cell line to be transplanted into a chronic stage of previously ischemia-injured brain for treatment of motor deficits resulting from stroke.
"Our study was designed to evaluate the potential value of Neuralstem's cells in a chronic model of ischemic stroke and in a species that allowed for the use of human scale transplantation tools and dosing," said Martin Marsala, MD, at the University of California at San Diego Medical School, and the lead study author of the porcine study. "We have demonstrated clearly that both the route of administration and the cells are safe and well tolerated and that the cells survived and differentiated into mature neurons in the host brain tissue."
"We have demonstrated safety and efficacy of NSI-566RSC in a subacute model of ischemic stroke in rats and feasibility and safety in a chronic model of ischemic stroke in mini-pigs," said Karl Johe, PhD, Chairman of Neuralstem's Board of Directors and Chief Scientific Officer. "Together, these two studies demonstrate strong proof of principle data that our NSI-566 cells are ready to go into humans to treat paralysis in stroke patients."
Neuralstem has recently completed a Phase I trial testing the safety of NSI-566 in the treatment of amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) and has been approved to initiate a human clinical trial in ischemic stroke in China, through its subsidiary, Suzhou Neuralstem.
About Neuralstem
Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. Neuralstem has recently treated the last patient in an FDA-approved Phase I safety clinical trial for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, and has been awarded orphan status designation by the FDA.
In addition to ALS, the company is also targeting major central nervous system conditions with its NSI-566 cell therapy platform, including spinal cord injury, ischemic stroke and glioblastoma (brain cancer). The company has submitted an IND (Investigational New Drug) application to the FDA for a Phase I safety trial in spinal cord injury.
See the original post:
Significant Recovery Of Motor And Neurological Functions In Ischemic Stroke Rats With Neuralstem NSI-566 Cells
Protein could be key for drugs that promote bone growth
By JoanneRUSSELL25
ScienceDaily (Oct. 15, 2012) Georgia Health Sciences University researchers have developed a mouse that errs on the side of making bone rather than fat, which could eventually lead to better drugs to treat inflammatory diseases such as rheumatoid arthritis.
Drugs commonly used to treat those types of conditions -- called glucocorticoids -- work by turning down the body's anti-inflammatory response, but simultaneously turn on other pathways that lead to bone loss. The result can lead to osteoporosis and an accumulation of marrow fat, says Dr. Xingming Shi, bone biologist at the GHSU Institute of Molecular Medicine and Genetics.
The key to the body developing bone instead of fat, a small protein called GILZ, was shown in cell cultures in 2008. Now, with work by GHSU Graduate Student Guodong Pan, the work has been replicated in an animal model. Pan received the American Society for Bone and Mineral Research's Young Investigator Award for his work at the society's annual meeting Oct. 12-15 in Minneapolis.
Bone and marrow fat come from the same biological precursor -- mesynchymal stem cells. "The pathways for bone and fat have a reciprocal relationship, so we needed to find the key that disrupts the fat production pathway, which would then instead encourage bone growth," Shi says.
GILZ, Shi and Pan say, was already a known mediator of the anti-inflammatory response of glucocorticoids, and the protein also mediates bone production. Shi's early research had shown that glucocorticoids enhance bone formation in the lab because of a short "burst" of GILZ.
The protein works by inhibiting the way cells regulate fat production and turn on fat-producing genes, Shi says. "When you permanently express GILZ, the fat pathway is suppressed, so the body chooses to produce bone instead."
"We found that when we overexpressed the protein in these mice, it increased bone formation," Pan added. "This supports our original hypothesis that GILZ mediates the body's response to glucocorticoids and encourages bone growth." In fact, the genetically modified mice showed a significant increase in bone mineral density and bone volume as well, he found.
"That means GILZ is a potential new anti-inflammatory drug candidate that could spare people from the harmful effects associated with glucocorticoid therapy," Pan said
Long-term goals, Shi said, are developing the GILZ-like pill that is anti-inflammatory and protects or even increases bone production.
Share this story on Facebook, Twitter, and Google:
Read the rest here:
Protein could be key for drugs that promote bone growth
Stem cell model for hereditary disease developed
By Dr. Matthew Watson
ScienceDaily (Oct. 15, 2012) A new method of using adult stem cells as a model for the hereditary condition Gaucher disease could help accelerate the discovery of new, more effective therapies for this and other conditions such as Parkinson's, according to new research from the University of Maryland School of Medicine.
Scientists at the University of Maryland School of Medicine reprogrammed stem cells to develop into cells that are genetically similar to and react to drugs in a similar way as cells from patients with Gaucher disease. The stem cells will allow the scientists to test potential new therapies in a dish, accelerating the process toward drug discovery, according to the paper published online in the journal the Proceedings of the National Academy of Sciences (PNAS) on Oct. 15.
"We have created a model for all three types of Gaucher disease, and used stem cell-based tests to evaluate the effectiveness of therapies," says senior author Ricardo Feldman, Ph.D., associate professor of microbiology and immunology at the University of Maryland School of Medicine, and a research scientist at the University of Maryland Center for Stem Cell Biology and Regenerative Medicine. "We are confident that this will allow us to test more drugs faster, more accurately and more safely, bringing us closer to new treatments for patients suffering from Gaucher disease. Our findings have potential to help patients with other neurodegenerative diseases as well. For example, about 10 percent of Parkinson's disease patients carry mutations in the recessive gene for Gaucher disease, making our research possibly significant for Parkinson's disease as well."
Gaucher disease is the most frequent lipid-storage disease. It affects 1 in 50,000 people in the general population. It is most common in Ashkenazi Jews, affecting 1 in 1,000 among that specific population. The disease occurs in three subtypes -- Type 1 is the mildest and most common form of the disease, causing symptoms such as enlarged livers and spleens, anemia and bone disease. Type 2 causes very serious brain abnormalities and is usually fatal before the age of two, while Type 3 affects children and adolescents.
The condition is a recessive genetic disorder, meaning that both parents must be carriers for a child to suffer from Gaucher. However, said Dr. Feldman, studies have found that people with only one copy of a mutated Gaucher gene -- those known as carriers -- are at an increased risk of developing Parkinson's disease.
"This science is a reflection of the mission of the University of Maryland School of Medicine -- to take new treatments from bench to bedside, from the laboratory to patients, as quickly as possible," says E. Albert Reece, M.D., Ph.D., M.B.A., vice president for medical affairs at the University of Maryland and John Z. and Akiko K. Bowers Distinguished Professor and dean of the University of Maryland School of Medicine. "We are excited to see where this research goes next, bringing new hope to Gaucher patients and their families."
Dr. Feldman and his colleagues used the new reprogramming technology developed by Shinja Yamanaka in Japan, who was recognized with this year's Nobel Prize for Medicine or Physiology. Scientists engineered cells taken from the skin of Gaucher patients, creating human induced pluripotent stem cells, known as hiPSC -- stem cells that are theoretically capable of forming any type of cell in the body. Scientists differentiated the cells to form white blood cells known as macrophages and neuronal cells.
A key function of macrophages in the body is to ingest and eliminate damaged or aged red blood cells. In Gaucher disease, the macrophages are unable to do so -- they can't digest a lipid present in the red blood cell membrane. The macrophages become engorged with lipid and cannot completely clear the ingested red blood cells. This results in blockage of membrane transport pathways in the macrophages lodged in the bone marrow, spleen and liver. The macrophages that the scientists created from the reprogrammed stem cells exhibited this characteristic hallmark of the macrophages taken from Gaucher patients.
To further test the stem cells, the scientists administered a recombinant enzyme that is effective in treating Gaucher patients with Type 1 disease. When the cells were treated with the enzyme, the function of the macrophages was restored -- they completely cleared the red blood cells.
"The creation of these stem cell lines is a lovely piece of stem cell research," said Curt Civin, M.D., professor of pediatrics and physiology, associate dean for research and founding director of the Center for Stem Cell Biology & Regenerative Medicine at the University of Maryland School of Medicine. "Dr. Feldman is already using these Gaucher patient-derived macrophages to better understand the disease fundamentals and to find novel medicines for Gaucher disease treatment. A major goal of our Center for Stem Cell Biology & Regenerative Medicine is to translate our fundamental discoveries into innovative and practical clinical applications that will enhance the understanding, diagnosis, treatment, and prevention of many human diseases. Clinical applications include not only transplantation of stem cells, but also the use of stem cells for drug discovery as Dr. Feldman's studies so beautifully illustrate."
See more here:
Stem cell model for hereditary disease developed
University of Maryland School of Medicine scientists develop stem cell model for hereditary disease
By daniellenierenberg
Public release date: 15-Oct-2012 [ | E-mail | Share ]
Contact: Karen Robinson karobinson@som.umaryland.edu 410-706-7590 University of Maryland Medical Center
A new method of using adult stem cells as a model for the hereditary condition Gaucher disease could help accelerate the discovery of new, more effective therapies for this and other conditions such as Parkinson's, according to new research from the University of Maryland School of Medicine.
Scientists at the University of Maryland School of Medicine reprogrammed stem cells to develop into cells that are genetically similar to and react to drugs in a similar way as cells from patients with Gaucher disease. The stem cells will allow the scientists to test potential new therapies in a dish, accelerating the process toward drug discovery, according to the paper published online in the journal the Proceedings of the National Academy of Sciences (PNAS) on Oct. 15 (Panicker et.al.).
The study was funded with $1.7 million in grants from the Maryland Stem Cell Research Fund; researchers received a start-up grant for $200,000 in 2007 and a larger, five-year grant for $1.5 million in 2009.
"We have created a model for all three types of Gaucher disease, and used stem cell-based tests to evaluate the effectiveness of therapies," says senior author Ricardo Feldman, Ph.D., associate professor of microbiology and immunology at the University of Maryland School of Medicine, and a research scientist at the University of Maryland Center for Stem Cell Biology and Regenerative Medicine. "We are confident that this will allow us to test more drugs faster, more accurately and more safely, bringing us closer to new treatments for patients suffering from Gaucher disease. Our findings have potential to help patients with other neurodegenerative diseases as well. For example, about 10 percent of Parkinson's disease patients carry mutations in the recessive gene for Gaucher disease, making our research possibly significant for Parkinson's disease as well."
Gaucher disease is the most frequent lipid-storage disease. It affects 1 in 50,000 people in the general population. It is most common in Ashkenazi Jews, affecting 1 in 1,000 among that specific population. The disease occurs in three subtypes Type 1 is the mildest and most common form of the disease, causing symptoms such as enlarged livers and spleens, anemia and bone disease. Type 2 causes very serious brain abnormalities and is usually fatal before the age of two, while Type 3 affects children and adolescents.
The condition is a recessive genetic disorder, meaning that both parents must be carriers for a child to suffer from Gaucher. However, said Dr. Feldman, studies have found that people with only one copy of a mutated Gaucher gene those known as carriers are at an increased risk of developing Parkinson's disease.
"This science is a reflection of the mission of the University of Maryland School of Medicine to take new treatments from bench to bedside, from the laboratory to patients, as quickly as possible," says E. Albert Reece, M.D., Ph.D., M.B.A., vice president for medical affairs at the University of Maryland and John Z. and Akiko K. Bowers Distinguished Professor and dean of the University of Maryland School of Medicine. "We are excited to see where this research goes next, bringing new hope to Gaucher patients and their families."
Dr. Feldman and his colleagues used the new reprogramming technology developed by Shinja Yamanaka in Japan, who was recognized with this year's Nobel Prize for Medicine or Physiology. Scientists engineered cells taken from the skin of Gaucher patients, creating human induced pluripotent stem cells, known as hiPSC stem cells that are theoretically capable of forming any type of cell in the body. Scientists differentiated the cells to form white blood cells known as macrophages and neuronal cells.
Read more:
University of Maryland School of Medicine scientists develop stem cell model for hereditary disease
Realizing the potential of stem cell therapy
By NEVAGiles23
Public release date: 15-Oct-2012 [ | E-mail | Share ]
Contact: Kat Snodgrass 202-962-4090 Society for Neuroscience
NEW ORLEANS New animal studies provide additional support for investigating stem cell treatments for Parkinson's disease, head trauma, and dangerous heart problems that accompany spinal cord injury, according to research findings released today. The work, presented at Neuroscience 2012, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health, shows scientists making progress toward using stem cell therapies to repair neurological damage.
The studies focused on using stem cells to produce neurons essential, message-carrying cells in the brain and spinal cord. The loss of neurons and the connections they make for controlling critical bodily functions are the chief hallmarks of brain and spinal cord injuries and of neurodegenerative afflictions such as Parkinson's disease and ALS (amyotrophic lateral sclerosis), also known as Lou Gehrig's disease.
Today's new findings show that:
Other recent findings discussed show that:
"As the fields of developmental and regenerative neuroscience mature, important progress is being made to begin to translate the promise of stem cell therapy into meaningful treatments for a range of well-defined neurological problems," said press conference moderator Jeffrey Macklis, MD, of Harvard University and the Harvard Stem Cell Institute, an expert on development and regeneration of the mammalian central nervous system. "Solid, rigorous, and well-defined pre-clinical work in animals can set the stage toward human clinical trials and effective future therapies."
###
This research was supported by national funding agencies such as the National Institutes of Health, as well as private and philanthropic organizations.
Todd Bentsen, (202) 962-4086
The rest is here:
Realizing the potential of stem cell therapy
State licensing hearing for Bonita Springs stem cell doctor to begin Tuesday
By raymumme
The Grekos hearing is scheduled to begin at 9 a.m. Tuesday. The location has changed to the Collier County Courthouse in room 4-D, according to a case filing Monday.
The hearing before J. Lawrence Johnson, an administrative law judge from Tallahassee, will begin at 9 a.m. The hearing is scheduled to last four days. The Collier County Courthouse is located at 3315 U.S. 41 E.
Photo by Allie Garza
Zannos Grekos
BONITA SPRINGS Bonita Springs physician Zannos Grekos, whose license is in jeopardy for controversial stem cell therapy, is getting his day before a judge.
Barring a last-minute delay or settlement, an administrative hearing is scheduled to begin Tuesday in Naples for the 47-year-old. He is fighting to get his license back in good standing from a suspension order, while the state Department of Health is pursuing more discipline and potentially revocation of his license.
Trained as a cardiologist, he's been licensed in Florida since 1996.
The trial-like proceeding, without a jury, is scheduled for four days before an administrative law judge. The proceeding is open to the public. The case against Grekos has garnered considerable media attention, including CNN and inquiries from European media.
A Texas father, Jimmy Bell, will be tracking what happens. Last year, he paid $57,000 upfront for his 5-year-old son, Jason, to undergo stem cell therapy to fight pulmonary hypertension. Despite pleas that his boy was weakening by the day, the treatment was never scheduled and Jason died. Bell received a $10,000 refund.
"He's taking advantage of people and it's more for personal gain," Bell said. "I'd like to see that stopped."
Read more here:
State licensing hearing for Bonita Springs stem cell doctor to begin Tuesday
Claim of first human stem cell trial unravels
By LizaAVILA
It has been a crazy week for stem cell research. After the high of a Nobel prize for Japan's Shinya Yamanaka, the pioneer of cellular reprogramming, events took an alarming and surreal turn when a little-known compatriot Hisashi Moriguchi claimed to have already run a clinical trial in which similarly reprogrammed cells were injected into people.
But Moriguchi's claims quickly unravelled. "I have not found a single person to say anything concrete indicating that this has really happened," says Paul Knoepfler, a stem cell researcher at the University of California, Davis, who tracked the unfolding story on his blog.
In a poster presented at a meeting of the New York Stem Cell Foundation, Moriguchi who claimed to work at Harvard Medical School and the University of Tokyo described results from a trial in which cardiac muscle cells were grown from induced pluripotent stem (iPS) cells, and transplanted into six US patients with severe heart failure.
The Yomiuri Shimbun newspaper Japan's biggest splashed the story, based on an interview with Moriguchi, who claimed he had received ethical approval from Harvard Medical School's Institutional Review Board (IRB).
This was surprising, given the safety concerns that surround iPS cells adult cells that have been reprogrammed to an embryonic state. Support for the claim quickly disintegrated: within hours, Harvard released a statement noting that Moriguchi had no current affiliation with the university, nor any ethical approval to run a clinical trial.
Moriguchi's poster describing the clinical trial was taken down after the New York Stem Cell Foundation learned of Harvard's statement but a summary was published on Knoepfler's blog. This suggested an improvement of 41.5 per cent in "ejection fraction" a measure of heart output in patients whose hearts were injected with iPS-derived cells, compared to 4.1 per cent in a placebo group.
That would have been an astonishing claim, says Michael Laflamme at the University of Washington in Seattle, who is working to develop cell therapies for heart attack: "I'm not aware of any clinical trial that reported anything of this magnitude."
Indeed, similar studies involving adult stem cells have typically found improvements of less than 5 per cent (European Journal of Hearth Failure, doi.org/crq5k6).
Moriguchi did not respond to emails from New Scientist. But on Saturday he admitted to reporters that for five of the patients he was actually describing "planned" procedures. Still, Moriguchi maintained that he had transplanted cells into one patient at an unidentified hospital in Boston.
New Scientist's enquiries raise further questions about Moriguchi's work. In papers published earlier this year, he described experiments on freezing human ovarian tissue (Scientific Reports, doi.org/jht), and a remarkable claim to be able to eliminate liver tumour cells using a reprogramming technique (Scientific Reports, doi.org/jhv). Both gave Harvard and University of Tokyo affiliations, and claimed ethical approval from each institution.
Excerpt from:
Claim of first human stem cell trial unravels
Director of Operations for GeneCell International, Jose Cirino, Accentuates the Importance Surrounding the Minority …
By LizaAVILA
Miami, FL (PRWEB) October 15, 2012
Leveraging more than a decade of experience in the biotech industry and a founding member of GeneCell International, Jose Cirino, Director of Operations, is an industry expert for expanding awareness in the field of adult stem cells worldwide. Cirino plays a pivotal role in GeneCell Internationals success, managing all operational aspects of a company thats at the forefront of the biotech industry. While providing leadership and direction for the company, he is responsible for all strategic planning to help advance GeneCells mission and objectives, as well as the expansion of product, service and development at the national and international levels. Currently, Cirino is not only working on the expansion and awareness of cord blood services, but on the implementation of other adult stem cells sources, such as umbilical cord tissue, dental pulp, and adipose (fat) tissue into other countries. He has presentation talks in the advantage of adult cord blood banking to health and biotech industry organizations, conferences and small group meetings (both English and Spanish). Cirino was a key player in the expansion of GeneCell International into Miami, Florida, as the first and only stem cell laboratory of its kind in the South Floridian market and the gateway to international countries.
Through his field of work, Cirinos aspiration and passion is being able to assist individuals in potentially saving their life when a debilitating immune deficiency or disorder arises. Though, Cirino continuously asks himself, Why isn't everyone banking these cells?
His best assumption is that people are not informed about stem cell banking and what is most disheartening, some have never even heard of it. Most people are not aware they have stem cells in their body. Others believe that stem cells only come from only human embryos since this is whats mainly discussed in politics and the news today. May this be the reason they are choosing to have no part in it and ignore it? If so, this is not the case, these cells are found in adults and there are not controversial, moral, ethical or have any political issues surrounding them. The amazing thing about these cells, aside from their potential to treat a variety of different diseases, is that for the most part they can be harvested from the individual through relatively minimally invasive procedures and can be cryogenically frozen (at a temperature of -321 F (-196 C)) and stored for decades until a disease manifests itself or the needed for cell-based therapies arises," said Cirino.
Due to this lack of awareness, there is a massive shortage of stem cell units stored for future treatments. This shortage, or lack of availability, is mostly affecting patients of African, Asian, Hispanic and Native American Indian descent. I, being a minority member of this group, am very concerned by this shortage. Since patients who need a transplant are more likely to find a match within their own genetic background, Cirino adds it is important that the pool of donors reflects the overall community.
A persons blood stem cell type is inherited, which means a patient is more likely to find a matched donor from within their own ethnic group, more than half of cord blood donations and privately banked cord blood in the United States are from Caucasians while minorities remain underrepresented, significantly. By increasing awareness of the advantages of cord blood among minorities, there is a potential for increased access to therapies for more people.
Umbilical cord blood preservation is a process by which blood is collected from the umbilical cord of a newborn baby and is stored cryogenically in a specially-designated bank. According to the National Marrow Donor Program, cord blood contains cells that can be transfused to a patient to treat various diseases, including lymphoma and leukemia. Currently, there are approximately 80 treatable diseases and the list of illnesses continues to grow. Cord blood is rich in stem cells and because certain immune cells found in the cord blood are not mature, there is less risk for the recipients immune system to reject these cells. Cord blood can be used to treat the child from whom the blood was collected as well as some first-degree relatives who are a close genetic match, such as immediate family members. Additionally, patients can get the treatment in about three weeks - as opposed to six to eight for bone marrow from an adult donor.
Prior to founding GeneCell, Cirino served as the President of the International Division to a cord blood laboratory in Boston, Massachusetts, where he was responsible for identifying, evaluating and selecting international representatives for affiliate programs to expand the services internationally. In doing so, he coordinated laboratory development protocol license agreements and implemented these programs throughout various international countries. After the expansion into other countries, Cirino would manage the company owned offices as well as provide support to the affiliate offices, from Mexico and South America, to the UK and the Middle East. He also represented the company at international health and biotech industry conferences, implemented new sales tools and processes for all international divisions of the company, and oversaw all accounting tasks as a method of monitoring its sales projections. Cirino joined the company as the Accounting Manager, where he was responsible for all aspects of U.S. and international accounting functions. He is a seasoned accounting professional, holding various accounting positions within large companies such as Sir Speedy Printing Centers of Boston and Harvard Institute for International Development. He has served as a member within various industry organizations including the International Cord Blood Society, and New England Fertility Society, as well as participated in the International Federation of Gynecology and Obstetrics (FIGO), The Mexican Federation of Ultrasounds, The World Cord Blood Congress, and Stem Cells USA-Regenerative Medicine conferences.
In addition to cord blood, Cirinos implementation projects of other adult stem cells sources, in the U.S. and other countries, include Cord Tissue Segment, Dental Pulp and Adipose Tissue:
About Cord Tissue Segment - A gelatinous substance, which functions as the primary connective tissue of the umbilical cord and is referred to as Whartons Jelly. This segment contains an important amount of Mesenchymal stem cells. These cells are an excellent candidate for regenerative medicine and tissue engineering applications. Mesenchymal stem cells have shown great promise in the potential treatment of diseases such as heart attack, Parkinsons disease, Alzheimers disease, type I diabetes, assist in bone and dental regeneration and expedite wound healing. In the past, the umbilical cord has been viewed as medical waste and discarded, resulting in the loss of this potential life-saving resource. By storing the stem cells extracted from your umbilical cord tissue segment along with your babys cord blood, youll have access to a wider variety of stem cells as new scientific discoveries are made.
Original post:
Director of Operations for GeneCell International, Jose Cirino, Accentuates the Importance Surrounding the Minority ...
Cell transformation earns Nobel Prize
By NEVAGiles23
About a week ago, the Nobel Prize winners in medicine were revealed as Sir John B. Gurdon and Shinya Yamanaka for their work in cell research.
The award was given to these two doctors for the discovery that mature cells can be reprogrammed to become pluripotent." That is, any mature cells can go back to their original state, thus reversing the process of cell aging.
Yamanaka was able to draw this conclusion due to a combination of his own research and the research of Gurdon done 40 years earlier.
In 1962, Gurdon was able to take the nucleus from a frogs intestine and place it into a frogs egg. From this, a normal frog was born. Gurdons research was inspiration to Yamanakas experiment, where he wanted to reverse the process of cell maturity without using an egg.
He was able to figure out a gene combination, which he inserted into a mature cell, so that the cell was able to go back to its primitive state.
According to Yamanaka, whats significant about this technology is not only can we avoid the ethical controversy of using embryos, but also a transplant patient can avoid organ rejection because the treatment will be done by using the patients own cells and not somebody elses.
Past controversy of stem cell research has come from the fact that in order to examine a brand new cell, the scientist would have to kill an embryo. Yamanaka also mentions that this discovery may some day be a possible cure for Parkinsons disease.
Since, Yamanakas discovery was made in 2006, classroom textbooks have already been changed and biology teachers have been informing their students about this new method.
DePaul professor Dr. Elizabeth LeClaire talked to her biology students about the research Thursday.
I dont think [the research] will revolutionize the world of medicine, said LeClaire. This may not be the answer you want to hear, but most diseases are very common and are caused by diet and exercise.
Visit link:
Cell transformation earns Nobel Prize
Cell therapy portfolio outperforms major indices year-to-date
By Dr. Matthew Watson
On August 10 we created a model portfolio in Google Finance of 29 public companies in the cell therapy sector then we compared how that portfolio was doing against the major indices year-to-date (Since 1 January 2012). See that post here. Bottom line: even though we are still in a relatively bullish market, the CT portfolio was doing better. Significantly better.
![]() |
CT model portfolio compared to 3 major indices YTD |
- Cell Therapy Portfolio: +24.44%
- Dow Jones: +4.5%
- S+P 500: +6.78%
- Nasdaq: +10.26%
Yamanaka and the Frailty of Peer Review
By Dr. Matthew Watson
More than one back story exists on
Shinya Yamanaka and his Nobel Prize, but one that has received little
attention this week also raises questions about hoary practice of
peer review and publication of research – not to mention the
awarding of billions of dollars in taxpayer dollars.
article in the New Scientist magazine by Peter Aldous in which the
publication examined more than 200 stem cell papers published from
“2006 onwards.” The study showed an apparent favoritism towards
U.S. scientists. Also specifically reported were long delays in
publication of Yamanaka's papers, including in one case 295 days.
“All's fair in love and war, they
say, but science is supposed to obey more noble ideals. New findings
are submitted for publication, the studies are farmed out to experts
for objective 'peer review' and the best research appears promptly
in the most prestigious journals.
“Some stem cell biologists are crying
foul, however. Last year(2009), 14 researchers in this notoriously
competitive field wrote
to leading journals complaining of "unreasonable or
obstructive reviews". The result, they claimed, is that
'publication of truly original findings may be delayed or rejected.'
“Triggered by this protest, New
Scientist scrutinised the dynamics of publication in the most
exciting and competitive area of stem
cell research, in which cells are 'reprogrammed' to
acquire the versatility of those of an early-stage embryo. In this
fast-moving field, where a Nobel prize is arguably at stake,
biologists are racing feverishly to publish their findings in top
journals.
“Our analysis of more than 200
research papers from 2006 onwards reveals that US-based scientists
are enjoying a significant advantage, getting their papers published
faster and in more prominent journals (find
our data, methods and analyses here).
“More mysterious, given his standing
in the field, is why two of Yamanaka's papers were among the 10 with
the longest lags. In the most delayed of all, Yamanaka reported that
the tumour-suppressing gene p53 inhibits the formation of
iPS cells. The paper took 295 days to be accepted. It was eventually
published by Nature in August 2009 alongside four similar
studies. 'Yamanaka's paper was submitted months before any of the
others,' complains Austin
Smith at the University of Cambridge, UK, who coordinated
the letter sent to leading journals.
“Yamanaka suggests that editors may
be less excited by papers from non-US scientists, but may change
their minds when they receive similar work from leading labs in the
US. In this case, Hochedlinger submitted a paper similar to
Yamanaka's, but nearly six months after him. Ritu
Dhand, Nature's chief biology editor, says that each paper
is assessed on its own merits. Hochedlinger says he was unaware of
Yamanaka's research on p53 before publication.”
wrote of other issues dealing with peer review, but coincidentally
also dealing with iPS cells. What New Scientist and Knoepfler are
discussing is not an isolated situation. It is part of a continuum of
complaints, both serious and self-interested but exceedingly
pervasive. A Google search today on the term “problems with peer
review” turned up 10.1 million references. Writing on Ars Technica last year, Jonathan Gitlin, science policy analyst at the National
Human Genome Research Institute, summarized many of the issues, citing a “published” (our quotation marks)
study that said peer review doesn't work “any better than chance.”
Gitlin said,
“A common criticism is that peer
review is biased towards well-established research groups and the
scientific status quo. Reviewers are unwilling to reject papers from
big names in their fields out of fear, and they can be hostile to
ideas that challenge their own, even if the supporting data is good.
Unscrupulous reviewers can reject papers and then quickly publish
similar work themselves.”
agency, peer review is undergoing some modest, indirect examination
nowadays. The agency is moving towards tighter scrutiny of budgets
proposed by applicants. And, following a record wave of appeals this
summer by disgruntled applicants rejected during peer review, it is
also moving to bring the appeal process under more control.
more successfully towards development of commercial therapies, it may
do well to consider also the frailties of its peer review process and the
perils of scientific orthodoxy.
Yamanaka: ‘Rejected, Slow and Clumsy’
By Dr. Matthew Watson
This week's announcement of the Nobel
Prize for Shinya Yamanaka brought along some interesting
tidbits, including who was “snubbed” as well as recollections
from the recipient.
wrote the “snubbed” piece and quoted Christopher Scott of
Stanford and Paul Knoepfler of UC Davis about the selection issues.
Bardin's piece mentioned Jamie Thomson and Ian Wilmut as scientists
who also could have been considered for the award but were not named.
Ultimately, Bardin wrote that the award committee was looking for a
“singular, paradigm shifting discovery,” which he concluded was
not the case with Thomson or Wilmut.
was another topic in the news coverage, much of it dry as dust.
However, Lisa Krieger of the San Jose Mercury News began her story
with Yamanaka's travails some 20 years ago. At the time, no one was returning his phone
calls as he looked for work, and he was rejected by
50 apparently not-so-farsighted American labs.
decided he was less than successful as an orthopedic surgeon,
according to an account in JapanRealTime. “Slow and clumsy” was
how Yamanaka described himself.
again he reported stumbling. In this case, he found a way to reduce
“bad cholesterol” but with a tiny complication – liver cancer.
That in turn sent him on a journey to learn how cells proliferate and
develop, which led him to the work that won the Nobel Prize.
orthopedic medicine was stimulated by his father along with the treatments
for injuries young Yamanaka received while playing rugby and learning judo. The JapanRealTime account continued,
“'My father probably still thinks in
heaven that I’m a doctor,' he said in the interview(with Asahi
Shimbun last April). 'IPS cells are still at a research phase and
have not treated a single patient. I hope to link it to actual
treatment soon so I will be not embarrassed when I meet my father
someday.'”
report from a high school biology teacher that said the 15-year-old
Gurdon's desire to become a scientist was “quite ridiculous.”
The teacher, who is unnamed, wrote,
“If he can’t learn simple
biological facts he would have no chance of doing the work of a
specialist, and it would be a sheer waste of time, both on his part
and of those who would have to teach him.”
Source:
http://feedproxy.google.com/~r/blogspot/uqpFc/~3/7J31SRIukpg/yamanaka-rejected-slow-and-clumsy.html
Tighter Controls on Stem Cell Grant Budgets Hits Quorum Bump
By Dr. Matthew Watson
SAN FRANCISCO – A move to tighten
budget controls on grants from the $3 billion California stem cell
agency stalled Monday, but it appears that the plan is headed for
ultimate approval.
by the agency's directors' Science Subcommittee, which could not act
on it after it lost its quorum.
the stronger budget controls, but had questions about the specifics
of implementing the plan during closed-door reviews of grant
applications. The proposal is likely to be altered to respond to
those concerns. It would then either come back to the Science
Subcommittee or go to the full board.
recipients of large grants that approval of an application by the
agency's governing board does not provide a carte blanche to
researchers. Ellen Feigal, senior vice president for research and
development, said it can be “extremely difficult” for CIRM staff
to deal with budget problems in grants following board approval.
speed the application process on its next disease team round, which
is aimed at driving research into the clinic. The concept proposal
for that round is scheduled to come before directors later this
month. The round will be limited to “more mature stage” research
that is close to a clinical trial, if not in one. Feigal said 10 to
15 applications are expected.
to CIRM's strategic partnership program was also approved.
Yamanaka and the Golden State
By Dr. Matthew Watson
The iPierian biopharmaceutical company
in South San Francisco was quick to make a change in its web site
this morning after the Nobel Prize for medicine was announced.
scientific advisors, Shinya Yamanaka, to note that he had won the
Nobel. The bio is tucked away on the site, but it is likely that the
company, which specializes in iPS work, will figure out how to put
the news out front on its home page as well as issue a press release.
in California to the Nobel for Yamanaka, who has substantial links to
the Golden State, including UCSF and the Gladstone Institutes.
deftness than iPierian. Yamanaka is a professor at UCSF and a senior
investigator at Gladstone, and the organizations quickly put together a news conference this morning that featured Yamanaka on a video
hook-up from Japan.
issued a press release that quoted the president of Gladstone, R.
Sanders Williams, who also mentioned the California stem cell agency.
Williams said,
“Dr. Yamanaka’s story is a
thrilling tale of creative genius, focused dedication and successful
cross-disciplinary science. These traits, nurtured during Dr.
Yamanaka’s postdoctoral training at Gladstone, have led to a
breakthrough that has helped propel the San Francisco Bay Area to the
forefront of stem cell research. Dozens of labs — often supported
by organizations such as the California Institute for Regenerative
Medicine (CIRM) and the Roddenberry Foundation–have adopted his
technology.”
stem cell effort, published an item on its blog quoting CIRM
President Alan Trounson. He said,
"There are few moments in science
that are undisputed as genuine elegant creativity and simplicity.
Shinya Yamanaka is responsible for one of those. The induced
pluripotent stem cells he created will allow us to interrogate and
understand the full extent and variation of human disease, will
enable us to develop new medicines and will forever change the way
science and medicine will be conducted for the benefit of mankind. An
extraordinary accomplishment by a genuinely modest and brilliant
scientist. He absolutely deserves a Nobel award.”
agency's communications manager, said that just five years after
Yamanaka's research,
“CIRM alone is funding almost $190
million in awards developing better ways of creating iPS cells and
using those cells to develop new therapies (the
full list of iPS grants is on our website).”
cash is the well-connected iPierian, which has taken in $7.1 million.
Yamanaka, however, has never received a grant from the agency, and
it is not known whether he ever applied since CIRM releases only the
names of researchers whose applications were approved.
Source:
http://feedproxy.google.com/~r/blogspot/uqpFc/~3/RbQ09EsO8Qc/yamanaka-and-golden-state.html
Stem Cell Orthodoxy and Peer Review
By Dr. Matthew Watson
Going against the grain can be
difficult as UC Davis stem cell scientist Paul Knoepfler learned
again in connection with his research that dealt with similarities
between cancer and iPS cells.
some scientists who reviewed his paper prior to its publication in
September in Stem Cells and Development. (See here and here.)
reprogrammed adult cells are currently a hot research avenue in stem
cell research because they avoid many of the ticklish ethical and
political problems connected with human embryonic stem cells.
publication and peer review process on his blog last week. He wrote,
“Not surprisingly...there are certain
members of the stem cell field who would rather focus away from the
ideas that iPS cells are similar in some respects to cancer.”
in part by the California stem cell agency, wrote,
“Once we had a manuscript together
comparing iPS cells to cancer cells, we sent it to several high
profile journals without much luck. We thought that the fact that our
data indicated that iPS cells are similar to cancer cells might make
reviewers and editors excited. We thought that the paper was novel
and thought provoking in a number of ways. At the same time I
realized the theme of the paper would be controversial.
“I would say two general things about
the review process at the two journals that turned down the paper.
First, the reviewers at these journals were enormously helpful with
their suggestions and helped us improve the paper substantially.
Second, they were clearly very uncomfortable with the notion that iPS
cells are related in some ways to cancer so unsettled in fact that I
believe it influenced their reviews.”
findings were either “not sufficiently novel” or “trivial.”
“Little useful insights” said another. And a third said, “many
unsettling results....”
“Yeah, it may be unsettling that iPS
cells share traits with cancer cells, but if that is the reality,
isn’t it important that people know that and think about it, talk
about it, and address the issue with eyes open?”
from other researchers that can found elsewhere on the Internet
indirectly raise questions about the California stem cell agency's process
of peer review of applications for hundreds of millions of dollars in
funding, especially in the wake of this summer's unprecedented rash of appeals of decisions by grant reviewers.
amounts to scientific conventional wisdom. Obviously, no researcher
likes to see a paper rejected or a grant denied. But the record
number of appeals at CIRM and other private complaints could well indicate
that potentially profitable proposals are receiving a less than
welcome reception behind closed doors from agency reviewers.
hard-pressed to make such determinations. It is hamstrung by
procedures that do not permit it to expand an application directly –
only a staff-written summary. Names of applicants and institutions
are censored, although the board is required by law to discuss in
public most aspects of a research proposal. Exceptions are permitted for proprietary information. Additionally, a handful of the 29 members of the governing board do participate in the reviews, which come before final action by the board.
commercialize stem cell research and fulfill at least some of the
promises to voters that were made in 2004. To do that, the agency may
well have to step outside of the normal comfort zone of the good
burghers of stem cell science.
StemCells, Inc. Awarded Broad U.S. Patent Covering Expandable Liver Cells
By Dr. Matthew Watson
NEWARK, Calif., Oct. 12, 2012 (GLOBE NEWSWIRE) -- StemCells, Inc. (STEM) today announced the issuance of U.S. Patent Number 8,283,164 titled "Liver engrafting cells, assays, and uses thereof." The patent broadly covers purified populations of human liver cells, including the Company's human liver engrafting cells (hLEC). hLEC cells were first isolated by Company researchers in the late 1990s, and Company scientists have repeatedly demonstrated the cells' engraftment and robust bioactivity in vivo and that they are expandable. While the Company's hLEC cells are purified from donated adult livers not suitable for transplant, the newly issued '164 patent importantly claims cells independent of tissue source. Therefore, the '164 patent has potential relevance to those deriving liver cells from iPS or ESC platforms. The term of the '164 patent extends into 2022.
"This new patent extends our IP protection around hLEC cells and should be of interest to those searching for an expandable human liver cell," said Martin McGlynn, President and Chief Executive Officer of StemCells, Inc. "Because the liver is such a key organ, finding an expandable, reliable and well-characterized liver cell population is an important step forward in both medical research and drug development. For example, liver disease afflicts some 25 million Americans and transplantation of an expandable liver cell could potentially address many of the shortcomings of whole liver transplantation. Moreover, the right liver cells could make profound contributions to drug screening and toxicity testing."
In October 2011, StemCells formed a wholly-owned subsidiary to focus on both the therapeutic and research tool applications of its hLEC technologies and to serve as an investment vehicle for those interested in a "pure play" liver cell company. The '164 patent is one of several patents issued to the Company on a worldwide basis claiming expandable liver cells, including U.S. Patent Nos. 7,811,818 and 7,211,404, Japan Patent No. 4445876, Australian Patent No. 2002315392, and European Patent No. 1406998. Patent prosecution in the family is ongoing on a worldwide basis, including China application 02816528.4.
About StemCells, Inc.
StemCells, Inc. is engaged in the research, development, and commercialization of cell-based therapeutics and tools for use in stem cell-based research and drug discovery. The Company's lead therapeutic product candidate, HuCNS-SC(R) cells (purified human neural stem cells), is currently in development as a potential treatment for a broad range of central nervous system disorders. The Company recently reported results from a Phase I clinical trial in Pelizaeus-Merzbacher disease (PMD), a fatal myelination disorder in children. The trial results showed preliminary evidence of progressive and durable donor-derived myelination in all four patients transplanted with HuCNS-SC cells. The Company is also conducting a Phase I/II clinical trial in chronic spinal cord injury in Switzerland and a Phase I/II clinical trial in dry age-related macular degeneration in the United States. In addition, the Company is pursuing preclinical studies of its HuCNS-SC cells in Alzheimer's disease. StemCells also markets stem cell research products, including media and reagents, under the SC Proven(R) brand. Further information about StemCells is available at http://www.stemcellsinc.com.
The StemCells, Inc. logo is available at http://www.globenewswire.com/newsroom/prs/?pkgid=7014
Apart from statements of historical fact, the text of this press release constitutes forward-looking statements within the meaning of the Securities Act of 1933, as amended, and the Securities Exchange Act of 1934, as amended, and is subject to the safe harbors created therein. These statements include, but are not limited to, statements regarding the prospect of enforcing the Company's intellectual property against infringers, the potential breadth and length of patent protection in the United States or in any other geography; and the likelihood that any of the Company's intellectual property will be found to be valid and enforceable. These forward-looking statements speak only as of the date of this news release. The Company does not undertake to update any of these forward-looking statements to reflect events or circumstances that occur after the date hereof. Such statements reflect management's current views and are based on certain assumptions that may or may not ultimately prove valid. The Company's actual results may vary materially from those contemplated in such forward-looking statements due to risks and uncertainties to which the Company is subject, including the Company's ability to obtain the increased capital resources needed to continue its current operations and to conduct the research, preclinical development and clinical trials necessary for regulatory approvals and for continued patent prosecution efforts; uncertainty regarding the validity and enforceability of the Company's existing patents; and other factors that are described under the heading "Risk Factors" in the Company's Annual Report on Form 10-K for the year ended December 31, 2011, and in its subsequent reports on Form 10-Q and Form 8-K.
Continue reading here:
StemCells, Inc. Awarded Broad U.S. Patent Covering Expandable Liver Cells
Bay Area stem cell researchers see encouraging results
By daniellenierenberg
SAN FRANCISCO (KGO) -- Bay Area stem cell researchers are reporting early, encouraging results from two clinical trials. The first, involves patients, paralyzed with spinal cord injuries and a treatment that could offer new hope for their future.
Nearly 20 years after the football injury that left him paralyzed, Roman Reed still holds onto the hope that he will someday walk again.
"One hundred percent, without a doubt. I've been wrong about the date, but not the fact I will walk again," said Reed.
Reed now runs a foundation to promote stem cell research and has been closely watching a clinical trial being conducted by Bay Area based Stem Cells Inc. Its goal is to use stem cell therapy to restore motor function in patients with spinal cord injuries.
"We're on the road on to being able to cure paralysis, it's so important, and stem cells are the way to do it," said Reed.
Stephen Huhn, M.D., Ph.D., from Stem Cells Inc., says the test procedure began a two hour surgery to clear a path to the spinal cord. Researchers then injected the cells directly into the damaged area.
"So the first three patients in the trial were designed to enroll patients who had the worst of the worst injuries. In other words, complete loss of sensory function and complete loss of motor function below the level of injury," said Huhn.
The phase one trials are all about establishing safety, but six months out, the researchers began measuring some intriguing improvements in two of those three patients. Both reported feeling in areas below the areas of their injuries.
The company cautions that the data is very preliminary, but they say researchers were able to measure the improved sensory response using several testing methods, including electrical stimulation, and response to heat -- which are considered more accurate than the patient's own self-reporting.
"You can't fake that. When we saw that data, that's when we became very excited," said Martin McGlynn, the CEO of Stems Cells Inc.
View post:
Bay Area stem cell researchers see encouraging results
Anmore boy needs bone marrow transplant
By LizaAVILA
METRO VANCOUVER -- It started with a routine blood test after a bout of pneumonia.
But since finding two rare bone marrow conditions, the family of 11-year-old Jonathan Barnes has been campaigning to shore up the list of potential marrow donors, and to keep local blood banks stocked.
Without finding a bone marrow donor who will match Jonathan's criteria, the Anmore youngster will likely end up with leukemia. Despite the frightening prospect, Jonathan and his family are meeting the challenge with poise.
"He knows he has a condition called myelodysplasia. He knows that he needs to have a bone marrow transplant," said Mariam Barnes, Jonathan's mother.
"He knows he will get cancer if he doesn't have the transplant. But in the way that children are always so wonderfully unique, he's not fazed by that."
While finding an exact match is extremely difficult, getting on the donor list is easier than most people might think, Barnes said.
"A lot of people don't do it because they think it's involving needles but the beginning step is just a mouth swab. It comes to you in the post and you post it back, and they put you on the register," she said.
"What we didn't know and what I don't think many people know, is that they're desperately short of young male donors . There's 19 million people on the transplant register across the world, but only 10 per cent of those are the groups that they need - ethnically diverse young men."
It would be easier to find a match for the family if they could use donated stem cells from umbilical chords, but that procedure won't be available in Canada until next year and the Barnes don't have that much time, she said.
"We're just praying and hoping that someone, somewhere in the world, will put forward a match that will fit with Jonathan."
View post:
Anmore boy needs bone marrow transplant